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Abstract: This work introduces a data-driven control approach for stabilizing
high-dimensional dynamical systems from scarce data. The proposed context-
aware controller inference approach is based on the observation that controllers
need to act locally only on the unstable dynamics to stabilize systems. This
means it is sufficient to learn the unstable dynamics alone, which are typi-
cally confined to much lower dimensional spaces than the high-dimensional
state spaces of all system dynamics and thus few data samples are sufficient
to identify them. Numerical experiments demonstrate that context-aware con-
troller inference learns stabilizing controllers from orders of magnitude fewer
data samples than traditional data-driven control techniques and variants of
reinforcement learning. The experiments further show that the low data re-
quirements of context-aware controller inference are especially beneficial in
data-scarce engineering problems with complex physics, for which learning
complete system dynamics is often intractable in terms of data and training
costs.
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1 Introduction

The design of feedback controllers for stabilizing dynamical systems is a ubiquitous task
in science and engineering. Standard control techniques rely on the availability of models
of the system dynamics to construct controllers. If models are unavailable, then typically
models of system dynamics are learned from data first and then standard control tech-
niques are applied to the learned models [7]. However, learning models of complex system
dynamics can require large amounts of data because learning models means identifying
generic descriptions that often also include information about the systems that are un-
necessary for the specific task of finding stabilizing controllers. Additionally, collecting
data from unstable systems is challenging because without a stabilizing controller the sys-
tem cannot be observed for a long time before the dynamics become unstable and thus
data collection becomes uninformative. In this work, we propose context-aware controller
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inference that stabilizes systems based on the unstable dynamics that are learned from
few state observations by leveraging that unstable dynamics typically evolve in spaces of
much lower dimension than the dimension of state spaces of all—stable and unstable—
dynamics. We show that bases of the spaces of unstable dynamics can be efficiently
estimated from derivative information of systems. The corresponding numerical proce-
dure of context-aware controller inference achieves orders of magnitude reductions in the
number of data samples that are required for finding stabilizing controllers compared to
traditional data-driven methods that first identify models of the full dynamics that are
subsequently stabilized.

Many approaches for model-free, data-driven controller design based on parameter tun-
ing have been developed; see, e.g., [9, 13,26, 43]. However, these methods are limited
to systems with a small number of observables and inputs. In machine learning, rein-
forcement learning [27,39, 48] has been successfully applied for the data-driven design of
controllers, employing similar ideas as in the parameter tuning methods mentioned above.
With the development of model reduction, efficient approaches for modeling reduced dy-
namical systems from data have been developed, such as dynamic mode decomposition
and operator inference [36, 38,45, 51, 52], sparse identification methods [8,44], and the
Loewner framework [2,18,29,37,46,47]. These methods inform many data-driven con-
troller techniques that first identify a model of the dynamics that is then stabilized by
classical control approaches. However, it has been shown that less data are required for
the task of stabilization than for the identification of models, which is the motivation for
this work [11,53,54,57].

We introduce context-aware controller inference, which is a new data-driven approach
for learning stabilizing controllers from scarce data and that is applicable to systems with
nonlinear dynamics. Context-aware controller inference exploits that controllers need to
act only on the unstable parts of system dynamics for stabilization [4,5,21,49] and that
spaces in which the unstable dynamics evolve can be estimated efficiently and cheaply from
gradients that are obtained from adjoints. If r is the dimension of the space induced by the
unstable dynamics, then there always exist r states that are sufficient to be observed for
inferring a feedback controller that is guaranteed to stabilize the system. The dimension
r of the space induced by the unstable dynamics is typically orders of magnitude lower
than the dimension of the whole state space in which all dynamics evolve and which often
determines the high data and training costs of traditional data-driven control methods.
Context-aware controller inference thus opens the door to stabilizing systems from scarce
data, such as near rare events and when data generation is expensive, even if systems
describe complex physics.

2 Preliminaries

2.1 Stabilizing dynamical processes with feedback control

Consider a system that gives rise to a process (z"(t)):>0 that is controlled by inputs
(u™(t))¢>0, where z™(t) € RY and u™(t) € RP? are the state and input at time ¢, respectively.
The feasible initial conditions 2®(0) € AR are in the subspace A% C RY. If the process is
continuous in time, then the dynamics are governed by ordinary differential equations

d

Sa"(t) = F(2"(0),u (1)), >0, M
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with the potentially nonlinear right-hand side function f: RY x R? — RY. In discrete
time, the process is governed by the difference equations

2" (t+1) = f(2"(t),u”(t)), t€No:=NU{0}. (2)

Let (z,1) € RY x RP be a controlled, constant-in-time steady state—equilibrium point—
such that, in the continuous-time case,

f(ii’,’l]) =0, (3)

and in the discrete-time case

f(z,u) =z (4)
hold. Conditions (3) and (4) imply that the steady state is constant over time. In the
following, we assume that the nonlinear function f in (1) and (2) is analytic at (z,w).

A steady state (Z,u) is unstable if, for the fixed input signal u, trajectories diverge
away from Z for initial conditions z"(0) in a neighborhood of the steady state Z. A linear
state-feedback controller K € RP*N asymptotically stabilizes trajectories in sufficiently
small neighborhoods about z if, for a given 2"(0) € &p in a neighborhood of Z, the input
trajectory (u"(t))¢>0 with u"(¢t) = K(2"(t) — z) + u leads to 2"(t) — & for t — oo, where
(x™(t))s>0 is given by either (1) or (2); see [33].

2.2 Problem formulation

In this work, a model of the system in form of the right-hand side function f in (1) (or (2))
is unavailable, which means the function f cannot be evaluated directly and is not given
in closed form. Instead, we either can generate data triplets (U, X, X1) by querying
the system at feasible initial conditions and inputs in a black-box fashion or have given
(U2, X, X1). In the continuous-time case, the data triplets are

U™ = [u(to) ... u(tr—1)] € RP*T. X" = [2%(tg) ... aP(ty—1)] € RMT,
X_I,'l_ = [%xn(to) R %l’n(tT_l)] € RNXT,
at discrete time points 0 < tg < t; < ... < tp_1. In the discrete-time case, the data

triplets are

U = [u®(0) ... wMT-1)]eR>*T X" =[27(0) ... 2T —1)] e RV*T,

X4 =[2"(1) ... 2%(T)] e RV,

A data triplet (U, X, X}) can also contain the concatenation of several trajectories,
which is not reflected in the notation for ease of exposition. We seek to construct controllers
K from data triplets (U*, X", X%) to stabilize systems about steady states of interest
(Z,).

The traditional approach to data-driven control is first learning a model of the system
dynamics and then applying standard techniques from control. However, this traditional
two-step learn-then-stabilize approach can be expensive in terms of the number of required
state observations, which typically scales with the dimension of the system [11,53, 54,
57]. In particular, if observing states is expensive and the underlying dynamics describe
complex physical phenomena, then often infeasibly high numbers of state observations
are required to learn models of the system dynamics, which makes traditional learn-then-
stabilize approaches intractable.
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3 Inferring controllers from data of unstable dynamics

We introduce context-aware controller inference that guarantees learning stabilizing con-
trollers with data requirements that scale as the dimension of the subspace spanned by
the unstable dynamics, which is typically orders of magnitude lower than the dimension
of the whole state space in which all dynamics evolve. To achieve this, we exploit that
controllers need to act only on the unstable part of the system dynamics for stabilization.

3.1 Stabilizing nonlinear systems near steady states

Let (Z,u) be a steady state. The right-hand side function f of (1) (or (2)) can be approxi-
mated at (z"(t),u"”(t)) with the first two terms of its Taylor series expansion about (z, u):

P (0,0 (6)) = (2, 8) + 0 (2, 8) (2 (1) — ) + Ouf (&, ) (™ (1) — )

n _\2 n \2
+0 (") - 2)*) + 0 ((w ()~ 0)*),
where O f(Z,u) and 0, f(Z, u) denote the parts of the Jacobian at (Z,u) of f with respect
to 2™(t) and u"(t), respectively. The first term f(z,a) in (5) is either f(z,u) = 0 or
f(z,1) = 7; cf. Equations (3) and (4). With the system matrices A = 0, f(Z,u) € RNV

and B = 0, f(z,u) € RV*P, a model of the linearized system of (1) about the steady state
is

(®)

ax(t) = Az(t) + Bu(t), t >0, (6)
and analogously for the discrete-time case (2),
xz(t+1) = Az(t) + Bu(t), t e Ny, (7)

where z(t) approximates the shifted nonlinear state x"(t) —  at time ¢ and the input u(t)
corresponds to u"(t) — .

The system described by the model (6) (or (7)) is called asymptotically stabilizable if
there exists a constant matrix K € RP*N such that the application of the state feedback
u(t) = Kuz(t) stabilizes the system, i.e., ||x(¢)]] — 0 for ¢ — oco. A linear model such
as (6) is asymptotically stable if all eigenvalues of A have negative real parts; in case of
discrete-time linear models (7), the eigenvalues of A have to be inside the unit disc. A
linear state-space model is called stabilizable if there exists a K such that A + BK has
only stable eigenvalues.

The following proposition states that a controller K obtained from the linearized system
is guaranteed to stabilize the nonlinear system if the state 2"(¢) stays in the neighborhood
of the steady state .

Proposition 1 (Locally stabilizing feedback controller; cf. [33, Sec. 10.1]). Consider a
linearized system described by (6) (or (7)) of a corresponding nonlinear system described
by (1) (or (2)) at the steady state of interest (Z,u), where the nonlinear function f is
analytic. If K is a controller that stabilizes the linearized system asymptotically, then
u™(t) = K(2™(t) — ) + u locally stabilizes the nonlinear system about (Z,u) in the asymp-
totic sense, i.e., there exists an € > 0 such that for all z"(0) € A}(0) with ||z —2™(0)| < e
we have that "(t) — & for t — oo.

3.2 Stabilizing models based on unstable eigenvalues

To restrict the action of a controller K to the unstable eigenvalues of the spectrum of linear
models, we build on the theory of pole placement [42,55] and partial stabilization [4,5,
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21,49]. This leads to a reduction of the dimension of the spaces in which the dynamics
evolve, from a typically high-dimensional state space to subspaces spanned by the unstable
dynamics that are often orders of magnitude lower in dimension. In this section, we
generalize concepts of partial stabilization to be applicable to the data-driven setting.

In the following, when we state that two matrices have the same spectrum, it implies
that they have the same eigenvalues with the same geometric and algebraic multiplicities.

Lemma 1. Consider the linear model (A, B) given in (6) (or (7)) and assume it is
stabilizable. Let W € RNX™ be o basis matriz of the ny-dimensional left eigenspace of A
corresponding to the unstable eigenvalues and define the matrices

~ T ~
A=wTa(wh), B=wTB, (8)
where W1 is a left inverse of W. Let further K stabilize (ﬁ, E) Then, it holds that
K=KwT

stabilizes the model (A, B). Furthermore, it holds that the spectrum of A is the spectrum
of A corresponding to the unstable eigenvalues and that the union of the stable spectrum
of A and the spectrum ofA + BEK is the spectrum of A+ BK.

Lemma 1 implies that the unstable dynamics of the model (A, B) can be fully described
by the space spanned by the columns of the basis matrix W, which contains as columns the
left eigenvectors of the unstable eigenvalues of A. The eigenvalues of A can be complex
such that also the corresponding eigenvectors are complex-valued. However, with the
assumption that A is real-valued, the eigenvalues and eigenvectors appear in complex
conjugate pairs such that there exists a real basis matrix W of the corresponding complex
eigenspace; see, e.g., [17, Sec. 7.4.1]. The last statement of Lemma 1 implies that only the
unstable eigenvalues of A are changed in the closed-loop model by the application of K.
In particular, the eigenvalues are determined via the spectrum of the reduced closed-loop
model A + BK by the construction of K.

Proof of Lemma 1. A basis matrix W € CNX™ of the left eigenspace of A corresponding
to the unstable eigenvalues is defined by

ATW = WAT, (9)

where A € C™*™ consists of Jordan blocks with the unstable eigenvalues of A on its
diagonal. There exists a transformation § € C™*™ with A = S~ AS, where A is from (8),
such that A has by construction the same spectrum as A. Inserting the transformation
into (9) yields

ATW=wsTATs T o ATWsT=wsTA".

Setting W = WST and transposing the eigenvalue relation we see that
~ T
A::WJA(M”) (10)

holds for any left inverse W1 of . Let W be a basis matrix of the orthogonal complement
to the subspace spanned by the columns of W, i.e., it holds that

span([W WL]) =RV,
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with WIW =0 and WTW, = 0. Then, it holds that

wowlT A WL}T:L@ A(;], W WL]TB:[EJ, (1)

where B is as in (8) and the spectrum of A is the stable spectrum of A; see, e.g., [17,
Thm. 7.1.6]. We can now construct a controller K such that A+BK is stable since (A, B)
has been assumed to be stabilizable. Augmenting the controller K by zeros yields the
closed-loop matrix of (11) as

bi-ij+[£jpzo}:

The closed-loop matrix in (12) is stable since K has been chosen such that A+ BK is stable
and Ajy has only stable eigenvalues. Inverting the transformation in (11) and applying
that to (12) gives the closed-loop matrix of the original state-space model with

A+BEKE 0

~ (12)
Aoy + Bo K Ay

A+ BK = [W WL]T<[AI§1 AOQQ]JF[S;] I OD[W wil',

which reveals by multiplying out the block matrices that
K=[E of[w wi =RwT

holds. Since transformations do not change the spectrum of matrices, the spectrum of
A+ BK is the spectrum of (12), which concludes the proof. O

In Lemma 1, the left eigenvector basis is essential for the proof. It leads to the lower
triangular form (11) that has the required ordering of the diagonal blocks with the unstable
eigenvalues contained in the upper and the stable eigenvalues in the lower diagonal block.
This particular ordering is necessary since otherwise the spectrum is disturbed by the
action of the controller; cf. [57, Sec. 3.2.2]. However, the left eigenspace of the unstable
eigenvalues can also be constructed as orthogonal complement of the right eigenspace of
the stable eigenvalues, as the next lemma shows.

Lemma 2. Given a matriz A, let W € RNX™ be a basis matriz of the left eigenspace
corresponding to the unstable eigenvalues of A, and let Q, € RN*™ be a basis matrix
of the orthogonal complement to the right eigenspace of A corresponding to the stable
etgenvalues. Then, it holds that

spanaquzspm1<<Qi)T>, (13)

for all left inverses Qi of Q1. In the case Q1 is an orthogonal basis, Equation (13)
simplifies to
span(W) = span(Q ).

Proof. Let @ be a basis matrix of the eigenspace of A associated with the stable eigenval-
ues. By basis concatenation with ), it holds
—1 A 0
A = 14
@ @ afer Q= [, J) (14
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where the spectrum of A is the unstable spectrum of A and the spectrum of Ay is the
stable one of A; see [17, Thm. 7.1.6]. In particular, we get from (14) that

QL AQ, = A, (15)

for all left inverses QTL of Q. The basis matrix W can be chosen such that the matrices
A and Ag in (11) and (14) are identical, since both spectra are identical there must be
an appropriate similarity transformation. Comparing the two basis matrices in (10) and
(15) yields the result. O

Note that there is a line of work on constructing manifolds of unstable dynamics, in-
stead of subspaces as in our approach. Working with manifolds, instead of spaces, can
potentially be beneficial when systems are strongly nonlinear. The corresponding compu-
tational methods involving manifolds can become computationally challenging, especially
for systems in high-dimensional state spaces [24,59]. It remains future work to efficiently
combine our control approach with methods for constructing unstable manifolds.

3.3 Controller inference from idealized data

In this section, we will construct stabilizing controllers from given data triplets. For
now, we consider data triplets (U_, X_, X;) that are idealized in the sense that they are
obtained from models of the linearized systems. However, in the next section and in the
numerical experiments we will consider data from the original nonlinear systems. In the
continuous-time case, the idealized data triplets are

U_ = [u(t(]) - u(tT_l)] , X_ = [$(t0) - x(tT_l)] ,

Xi=[$zto) ... Saltr-1)],

at discrete time points 0 < ¢y < t; < ... < tp_1 with states from (6), and in the discrete-
time case, the idealized data triplets with states from (7) are

U-=[u0) ... o(T-1)], X_=[z(0) ... =(T-1)],
Xy=[z(1) ... z(D)].

The fundamental principle of data informativity [54] is that potentially many linear
models can describe a given data triplet (U_, X_, X, ) and that a stabilizing controller
needs to stabilize all those linear models to guarantee the stabilization of the model from
which the data has been generated. The set of all linear models that explain (U_, X_, X )
is

Sijs ={(A,B)| Xy = AX_+ BU_},

and all linear models that are stabilized by a given K are
Yx ={(A,B)| A+ BK is stable}.

A given data triplet (U_, X_, X ) is called informative for stabilization if there exists a
controller K that stabilizes all explaining linear models, which means in terms of the two
sets ¥ /s and Yk that ¥/, C Xk holds; see [54].

The matrix A of the linear model (A, B) can have components corresponding to unstable
eigenvalues that do not contribute to the system dynamics, which means these are not

excited by initial conditions from A or the system inputs. For any linear model (A, B)
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with a basis matrix Xy of the initial conditions subspace Xj, there exists an invertible
matrix S € RV*N to transform the system into the Kalman controllability form:

A11 A12 A13 B1 XlO
STIAS=| 0 Agp Ass|, S'B=|0]|, S Xo= |Xan], (16)
0 0 As 0 0

where the zero blocks in the transformed B and X are chosen as large as possible; see [57].
The first block row in (16) corresponds to the controllable dynamics, the second one to
those only excited by the initial conditions and the last block row are zero dynamics,
which are neither excited by inputs nor initial conditions. Consequently, the eigenspaces
corresponding to the unstable eigenvalues in As3 do not result in unstable dynamics since
these components are never excited. In the following, we consider the left eigenbasis matrix
W € RYX" to be minimal in the sense that the subspace W spanned by W contains the
left eigenspaces corresponding to the unstable eigenvalues in A1 and Agy in (16). If Ass
has unstable eigenvalues, the corresponding eigenbasis is not taken into account. In other
words, we consider only those eigenspaces that describe unstable dynamics that can be
excited by initial conditions or inputs.

The following theorem characterizes the stabilization of models based on unstable dy-
namics using the data informativity concept.

Theorem 1. Consider a potentially nonlinear system given by (1) (or (2)). Given
(U_,X_,X1) a data triplet sampled from a linearized model obtained from the consid-
ered nonlinear system about the steady state (T, u), with state-space dimension N. Let
further W € RNX" be a basis matriz of the minimal left eigenspace of the unstable eigen-
values that correspond to the unstable system dynamzcs If the data triplet (U_,X_,X+)
1s informative for stabilization, which means that El/s - E holds for a suitable K € RP*7
and

_=WTX_ and X.=WTX,, (17)

then the controller K = KWT stabilizes the linearized system and is also locally stabilizing
the steady state (Z,u) of the nonlinear system in the sense of Proposition 1.

Proof of Theorem 1. Let (A, B) be the linear model from which the data (U_, X_, X})
has been sampled. Because the columns of W span the eigenspace of unstable eigenvalues,
it holds that

T —~ —~ ~
wTA (WT ) —A W'B=DB and WX, = X,, (18)

where the spectrum of A is the unstable spectrum of A that contributes to the system
dynamics and X is a basis of the subspace of initial conditions &j. For the reduced data
n (17) it holds that

X, =W'X, =WTAX_+W'BU_ = AW 'X_+ BU_=AX_+BU_. (19)

Thus, (j E) is a model that explains the data (U_, X_, )A(+) Since the nonlinear system
is assumed to be stabilizable, this holds for the linearized model, too. Since (U-, X_ X+)
from (17) is informative for stabilization, there is a K such that El /s C EA. Together
with (19), the feedback K stabilizes also the linear model (A, B) from (18). The unstable
eigenvalues of the high-dimensional A that do not contribute to the system dynamics can
be replaced by stable eigenvalues as it does not change the dynamics and consequently
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the given data; see, e.g., [57]. Therefore, one can assume (A, B) to be stabilizable. From
Lemma 1 it follows that K = KWT stabilizes (A, B), which means it stabilizes the lin-
earized system. Since K stabilizes a linearized system of a nonlinear process about the
steady state (Z, @), it follows from Proposition 1 that it also stabilizes the nonlinear process
locally at (Z,u), which concludes the proof. O

It has been shown in [57, Cor. 3 and 4] that the minimum number of state observations
required for stabilizing all low-dimensional linear systems explaining a given data triplet
scales with the intrinsic, minimal state-space dimension of the underlying system that is
described by the model from which data were obtained. Building on the data reduction
in (17) in Theorem 1, the following corollary shows that the restriction to the unstable
dynamics in W can further reduce the number of required state observations to r, the
dimension of W.

Corollary 1. Let Theorem 1 apply and let r be the number of excitable unstable eigenvalues
of the linear model corresponding to the nonlinear system. Then, there always exist r
states of the linear model that are sufficient to be observed for inferring a guaranteed
locally stabilizing controller for the nonlinear system, even if high-dimensional states of
dimension N > r are observed.

The number of state observations r in Corollary 1 for constructing a guaranteed stabi-
lizing controller for the nonlinear system does neither scale with the large state dimension
N nor with the intrinsic system dimension ny;,. In fact, r is typically orders of magnitude
smaller than N and np;,. However, there is a certain price that needs to be paid for the
application of Theorem 1 and Corollary 1: A basis matrix W (or alternatively @ from
Lemma 2) must be available. Approaches for the computation of W (or ;) from data
are discussed in Section 4.

3.4 Computational approach for controller inference

This section introduces a computational approach for context-aware controller inference
that is motivated by the theoretical considerations of the previous sections. We now con-
sider data (U, X", X}) from the nonlinear system rather than idealized data (U_, X_, X} )
as in the previous section. The computational procedure is summarized in Algorithm 1.

In Step 1 of Algorithm 1, the data (U", X", X%}) from the nonlinear system are shifted
as

U= [u(to)—a ... utpa)—a], X_=[z"(t)—2 ... a"(tr1)—7], (20)
X, = [Gam(to) ... Fa(tr-1)],

in the continuous-time case and
U-=[u0)~a ... w(T-1)—a], X_=["0)~-2 ... 2"(T-1)-7], (21)
Xp=["()-7 ... 2"(]) 7],

in the discrete-time case. The shifted data (20) and (21) are related to the idealized data
(U-,X_, X,), which are used in Section 3.3, as

U-=U_, Xo=X_+0(X*-2)?), Xi=X;+0(X}-1)%)+0(U}-u)?),

which holds because of the Taylor approximation (5) and shows that data from the nonlin-
ear system are close to the idealized data if trajectories stay within a small neighborhood
of (z,u).
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Algorithm 1: Context-aware controller inference

Input: Data triplet (U, X, X"), steady state (Z,u), basis matrix W e RNxmu
of the left eigenspace W corresponding to the unstable eigenvalues of the
linear model.

Output: Controller K.

1 Shift (U, X, X%) by the steady state (Z,u) to obtain (U_,X_, X,) via (20)

(or (21)).

2 Project onto the left eigenspace W so that only the unstable dynamics in the
data remain

_ = WTX, and j("—+ = WTX+.

3 Derive the basis matrix V' € R™*" of V using the singular value decomposition

& x]-w o o

4 Project onto V so that only unstable and excitable dynamics remain
_ = VTX, and )?+ = VTX+.

5 Compute the eigenbasis matrix W = WV of the minimal subspace of unstable
dynamics.

6 Infer a low-dimensional stabilizing controller K = ﬁ_@(}? _0)7! from U_, X -
and X, by solving (22) (or (23)) for the unknown ©.
7 Lift the inferred low-dimensional controller K to

K=KWT.

Step 2 of Algorithm 1 projects the shifted data onto the subspace of unstable dynamics
W so that only the unstable parts of the trajectories remain in X_ and )N(Jr. The basis
matrix W may not span the minimal subspace of unstable dynamics as required by Theo-
rem 1, i.e., the subspace W contains an eigenspace of A corresponding to zero dynamics;
cf. the third block row in (16). This can be the case when W is computed as shown in the
next section. The zero dynamics lead to a smaller minimal system dimension r < n, and
rank deficient data matrices X_ and X+ Any rank revealing decomposition of the data
can be used to remove their kernel and reduce the eigenspace to the requested minimal
subspace. In Step 3, the singular value decomposition is used for this purpose. Then
the data is projected onto the minimal subspace of unstable dynamics in Step 4 and the
corresponding basis matrix is computed in Step 5.

Step 6 of Algorithm 1 infers a controller from the unstable and excitable dynamics in
X_ and X+ The controller is given by K=U_ O(X_0)7!, where © € RT*" solves, in
the continuous-time case,

X ©>0 and X;0+60'XI <0 (22)
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and in the discrete-time case
X X.0

X_0=(X_0)" and | 2 >
(X-6) and ) o o7 %6

> 0; (23)

see [11,54,57]. R

In the last step of Algorithm 1, the inferred controller K is lifted to the original state-
space dimension K = KW such that u(t) = K (2™ (t)—Z(t))+u(t) stabilizes the nonlinear
system under the assumptions given in Proposition 1.

In Algorithm 1, the stabilizing controller is inferred from X_ and )?+ by solving the
linear matrix inequalities (22) and (23), respectively. If the number of observed states T’
equals the dimension r of the unstable dynamics, then a computationally more efficient
alternative to solving (22) and (23) is introduced in [54, Thm. 16] and [57, Prp. 2 and
Cor. 1]. It computes only the inverse of the reduced data matrix X_. Also, to identify
a model that describes the unstable system dynamics, Step 6 can be replaced by [57,
Prp. 1]. With the identified model describing the unstable dynamics, classical stabilization
approaches can be employed to compute a suitable K.

Note that the system needs to be stabilizable for the matrix inequalities (22) and (23)
to be solvable. If the system is not stabilizable, the inequalities have no solution and the
solvers employed in Step 6 of Algorithm 1 throw an error that no stabilizing controller can
be inferred.

4 Estimating left eigenspaces from gradient samples

In this section, we discuss leveraging samples of gradients to estimate a basis matrix W
of the left eigenspace W of unstable eigenvalues. Let

P (0) (1)) = St (1) — £ (2 (1), u (1) (24)

denote the residual formulation of the continuous-time model (1). The transposed gradient
of (24) at the steady state (z,u) is

T T
Flz,u) := <8XF(:E,1])> = <6X§t:f) — (0uf (@, )" = AT, (25)
which can be applied to a vector = as
Flz,u](z) :== —Az, (26)

where A is the state matrix of the linearized model from (6). A basis of the left eigenspace
W of A can be obtained from samples of (26). The same holds for the discrete-time
case (2).

The transposed gradient of the residual (24) occurs, for example, in the adjoint equation
of (24). For some cost functional J that depends on the solution trajectory (" (¢)):>0 and
the input (u"(t))¢>0, the adjoint equation is

<8XF(:B“(1€), u“(t)))T)\(t) — (O (2" (1), u" (1)), (27)

where A\(t) € RY are the adjoint variables and 0y denotes the partial derivative with
respect to z™(t); see, e.g., [12, Sec. 2.1]. The matrix on the left-hand side of (27) is
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the linear adjoint operator of (24), which describes the linearized dynamics about the
solution z"(t) backwards in time. From (25) and (27) it follows that the solution of the
adjoint equation at the steady state of interest amounts to the evaluation of the negative,
transposed state matrix of the linear model (25) that has been considered for the theory
in Section 3. In this setting, the resulting matrix in (25) is called the adjoint operator,
which can be applied to tangent directions 2 € CV as shown in (26).

4.1 Active estimation of left eigenspaces

It is a common situation in major software packages, for example, in FEniCS and Fire-
drake [31], that the function (26) is provided by the ability to solve the adjoint equa-
tion (27). Thus, models that are implemented in such software packages allow query-
ing (26) in a black-box fashion. Similarly, models of nonlinear systems where the right-
hand side function f in (1) (or (2)) is implemented with automatic differentiation also
typically provide a vector-Jacobian product routine vjp that computes a query of the
adjoint operator into given directions (26); see [6,15]. Motivated by these capabilities,
we consider in this section the situation that we are allowed to sample the transposed
gradient in (26) at tangent directions z € CV.

With the function F[z, u] from (26) available, Krylov subspace methods can be directly
applied to compute eigenvalues and eigenvectors of — A", without having to assemble A or
—AT; see, for example, [17,50]. Krylov subspace methods converge first to eigenvalues with
large absolute values. In the discrete-time case, the unstable eigenvalues, which are the
ones we are interested in, have larger absolute values than the stable eigenvalues. Thus,
in the discrete-time case, Krylov subspace methods first converge to the eigenvalues and
eigenvectors that we need for controller inference.

In the continuous-time case, shift-and-invert operators can be applied to make Krylov
methods converge quickly to the unstable eigenvalues [41]. The idea is to shift the con-
sidered linear operator (26) with a given ¢ € C and invert the shifted operator such that
the eigenvalues closest to ¢ in the complex plane become those with largest absolute value
to which the Krylov methods converge first. Given a suitable o € C, (rational) Krylov
subspace methods, like the conjugate gradient method and GMRES [17, Chap. 10], solve
linear systems of the form

—Flz,u](z) —ox = b, (28)

for the unknown vector z € CV and a given right-hand side b € CV.

4.2 Estimation of left eigenspaces from gradient samples

Consider now the situation that we have a discrete-time system and data from the oper-
ator (26) such that the column-wise evaluation F[z,u|(X?) = X% holds, where

Xt =[af ... 25_,] and XP=[2f ... a}]. (29)

This is a typical situation when the adjoint equation (27) is solved by an iterative method.
The estimation of the eigenbasis of interest from such data is possible using the dynamic
mode decomposition [45,52]. The eigenvalues and eigenvectors of

H,=X2Vy~ T, (30)

with the economy-size singular value decomposition X? = UXV, are approximations to
the eigenvalues and eigenvectors of —AT; see [52, Sec. 2]. Note that computations with the
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large-scale dense matrix (30) to obtain the eigenvalues and eigenvectors can be avoided
via a low-dimensional reformulation of (30); see [40].

If the data in (29) is generated as recursive sequence, i.e., =, = F[7,u](x}) for
k=0,1,...,T — 1, the theory about Krylov subspace methods applies and the eigen-
values converge first to those of —A" with largest magnitude, i.e., the requested unstable
eigenvalues [30]. For the continuous-time case, such kind of results about eigenvalue esti-
mation are unknown as of now to the best of the authors’ knowledge.

5 Numerical examples

The experiments have been run on an Intel(R) Core(TM) i7-8700 CPU at 3.20 GHz
with 16 GB main memory. The algorithms are implemented in MATLAB 9.9.0.1467703
(R2020b) on CentOS Linux release 7.9.2009 (Core). For the comparison with reinforce-
ment learning, we use the implementations from the Reinforcement Learning Toolbox
version 1.3. For solving the linear matrix inequalities (22) and (23), the disciplined convex
programming toolbox CVX version 2.2, build 1148 (62bfcca) [19,20] is used together with
MOSEK version 9.1.9 [32] as inner optimizer. Source code, data, and numerical results
are available at [56].

5.1 Experimental setup
5.1.1 Simulations, data generation and tests

Data are generated with realizations of normally distributed inputs. Bases of the unstable
dynamics (left eigenbases of unstable eigenvalues) are estimated from adjoint operators
with MATLAB’s eigs, which employs the Krylov-Schur method [50] as suggested in Sec-
tion 4.1. In case of linear system dynamics, we assume zero initial conditions and a test
input is chosen as unit step, which means that the states converge to a constant vector if
the controller stabilizes the system. In case of nonlinear dynamics, the initial condition is
the steady state of interest to which an input disturbance is applied at time 0. The states
will then converge to the steady state, if the controller stabilizes the system.

Figure 1 provides an overview about the performance of context-aware controller infer-
ence in the following numerical experiments. In all experiments, context-aware controller
inference requires at least one order of magnitude fewer data samples to derive stabilizing
controllers than required to learn a model for the traditional two-step data-driven control
approach, including the number of gradient samples to estimate the bases of unstable
dynamics. For the identification of a model that is guaranteed to capture the system
dynamics for the construction of controllers in general, at least T' = N + p samples are
necessary, where N is the dimension of the full state space and p the number of inputs [57].
Under certain assumptions one can identify systems with fewer samples if structure in the
system dynamics is present; however, structure such as low rankness depends on the under-
lying physics and typically still requires subspaces of higher dimensions than the subspaces
of unstable dynamics that are used in our approach; see the introduction in Section 1.

5.1.2 Comparison with reinforcement learning with deep deterministic policy gradient

We compare our approach in the discrete-time case with controllers obtained from rein-
forcement learning via the deep deterministic policy gradient (DDPG) method [27, 48],
which can handle continuous observation and action spaces. The setup for the DDPG
agents is the same as for all numerical examples up to tolerances as tuning parameters.
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Figure 1: Summary of numerical experiments: The proposed context-aware controller in-
ference approach provides stabilizing controllers in all experiments with an at
least one order of magnitude lower number of data samples (state observations +
gradient samples) than traditional two-step approaches that first identify mod-
els and then construct controllers. Reinforcement learning via deep determin-
istic policy gradient (DDPG) manages to stabilize only one system in our ex-
periments, for which it requires 2260 times as many samples as the proposed
context-aware controller inference.

The actor is a shallow network with a single layer and zero bias such that the resulting
weight matrix corresponds to the control matrix K € RP*Y and can be implemented the
same way for simulations as the controller designed by our proposed method. The critic
takes the concatenation of state observations and the control inputs and applies to it a
quadratic activation function. The result is then compressed via a fully connected layer
into the Q-value. The reward function is

—a%, if [|2]]2 > AuV'N,
r(t,x) = { o (27z) ng(t), if controller is stabilizing, (31)
—z'z, otherwise,

with the sum of steps ng(t) = 0.5¢(¢t+1) and problem-dependent regularization parameters
a = 100v/N, A\q and \,. The reward function (31) is motivated by the linear-quadratic
regulator design [49] to penalize the deviation of the current state from 0; see, for ex-
ample, [39] where a similar but continuous reward function has been used. The first
branch in (31) evaluates to a large negative reward if the norm of the state becomes too
large, which is an indication for destabilization, after which the current training episode
is terminated. This is necessary to cope with the limits of numerical accuracy during the
training. The second branch in (31) gives a positive reward to end the training with a
stabilizing controller. Note that it is not possible to check if a given controller stabilizes
the underlying system without system identification; cf. [54,57]. We therefore fall back to
a heuristic and check if the states of three consecutive time steps are close to 0 and then
return a positive reward that outweighs the previously accumulated negative rewards to
end the training. The training itself is performed using discrete-time simulations of the
linear models over the same time period as considered for the test simulations and start-
ing at normally distributed, scaled random initial conditions. We have set a maximum of
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Figure 2: Heat flow: The proposed context-aware controller inference stabilizes the system
in continuous and discrete time. By using 2260x more samples than context-
aware controller inference, DDPG (reinforcement learning) also stabilizes the
system, but it is more aggressive and leads to high-frequency oscillations at the
beginning of the time interval.

1000 training episodes. More details about the setup can be found in the supplementary
material [56].

5.2 Experiments with linear systems
In this section, we consider two examples with linear dynamics such that no additional
linearization or data shift in the sense of (20) and (21) is necessary.

5.2.1 Disturbed heat flow

Consider a two-dimensional heat flow describing the heating process in a rectangular
domain affected by disturbances. We use model HF2D5 introduced in [25] to describe
the underlying system. The model is continuous in time with N = 4489 states and
p = 2 inputs. A discrete-time version of the model is obtained with the implicit Euler
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Figure 3: Heat flow: DDPG takes 77 episodes to learn a controller that satisfies the sta-
bilization test. This corresponds to 10*x more state observations than context-
aware controller inference if an estimate of the basis of the unstable dynamics is
available a priori and 2260 x more observations if a basis has to be estimated.

discretization with sampling time 7 = 0.1. Both, the continuous- and discrete-time models
have a single unstable eigenvalue, r = 1, which excites the unstable system dynamics. To
learn a basis of the unstable dynamics, we use 7 gradient samples in the discrete-time case.
For the continuous-time system, we use the approach described in Section 4.1 with a shift
in the right open half-plane and GMRES for solving (28) without a preconditioner. We
need 192 samples of the gradient to estimate the left eigenbasis. Due to the homogeneous
initial conditions, context-aware controller inference (Algorithm 1) needs T'=r +1 =2
samples to derive a controller.

Four output measurements of the system are shown in Figure 2. Context-aware con-
troller inference smoothly stabilize the dynamics in the discrete- and continuous-time
case. As comparison, we train a controller via reinforcement learning using DDPG for
the discrete-time case. The training performance is shown in Figure 3a. Reinforcement
learning needs 20 365 state observations in 77 episodes to learn a controller that satisfies
the stabilization test. Note that the implemented test does not yield a guarantee for the
constructed controller to be stabilizing, which is in contrast to our proposed method that
yields a stabilization guarantee. The number of state observations needed by DDPG is
nearly 5 times the state-space dimension of the model of the system as well as 2260 times
the number of observations needed by context-aware controller inference, including the
estimation of the eigenbasis. This can be seen in Figure 3b that shows the reward (31)
of context-aware controller. The DDPG-learned controller also stabilizes the test simula-
tion as shown in Figure 2e. The two inferred controllers provide very similar closed-loop
simulation behaviors in Figures 2c and 2d due to the stabilization of single real unstable
eigenvalues while preserving the purely real eigenvalue structure of the problem. On the
other hand, the DDPG-learned controller acts on the full spectrum and introduces com-
plex conjugate eigenvalues that dominate the dynamics leading to an oscillatory behavior
before converging to its long term steady state behavior. The DDPG controller performs
also more aggressively than the inferred ones resulting in overshooting of the trajectories
when compared to the steady state.
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Figure 4: Power system: The growth of output y3 indicates an instability of the system.
The proposed context-aware controller inference approach stabilizes the system
leading to convergence of y3 to 0. Only two state observations are necessary to
infer a controller if a basis of the unstable dynamics is available.

5.2.2 Brazilian interconnected power system

We now consider a system that describes the Brazilian interconnected power system under
heavy load condition. A sketch is shown in Figure 4a. The network consists of generators
and power plants, consumer clusters and industrial loads, and transmission lines, and its
internal energy is controlled by reference voltage excitation; see, e.g., [14,28]. Instabilities
in the system occur by deviations from the considered heavy load condition, e.g., by
disturbances, and result in an increase of the internal network energy, leading to shorts and
blackouts. We consider here the bips98_606 example from [10]. The model has N = 7135
states, described by ordinary differential equations and algebraic constraints, and p = 4
inputs. Due to the algebraic constraints, we only consider the discrete-time case, which is
obtained with implicit Euler and sampling time 7 = 0.1. The model has » = 1 unstable
eigenvalues, for which we learn the corresponding left eigenvector as basis of the unstable
dynamics from 150 gradient samples.

Trajectories of three output measurements up to time 100 are shown in Figure 4b. The
first two outputs represent the voltage at two locations in the network. Those two outputs
do not yet indicate an instability. However, the average of the total network energy, which
is given by the third output, increases rapidly over time in Figure 4b and so indicates
the accumulation of internal energy. From only T = 2 data samples of the system, we
construct a stabilizing controller via context-aware inference. Outputs of the system with
the inferred controller are shown in Figure 4c and demonstrate that the controlled system
dampens the internal energy (output ys).

We also attempted to stabilize the system with DDPG. However, even after manual
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Figure 5: Power system: Reinforcement learning with DDPG runs for 1000 episodes but
in each episode at most five time steps can be taken before the system dynam-
ics become too unstable and lead to numerical issues, which ultimately means
that no stabilizing controller is found with DDPG. In contrast, context-aware
controller inference stabilizes the system after only two state observations if an
estimate of a basis of the unstable dynamics is given and 152 samples if addi-
tionally the basis has to be estimated.

reactants products

Figure 6: Tubular reactor: Schematic representation of a tubular reactor. Reactants are
injected, react inside the reactor, and the products are returned. The control
goal is dampening temperature oscillations during the reaction.

parameter tuning and 1000 episodes, we only obtained controllers that destabilized the
system. The destabilization with DDPG happened so quickly that typically only 2-5 time
steps per episode were sampled, which shows that sampling data of unstable systems is
challenging because after only a short time the instability leads to uninformative data
collection. The training performance of DDPG is compared to controller inference in
Figure 5.

5.3 Experiments with nonlinear system dynamics
5.3.1 Tubular reactor

We consider a tubular reactor as shown in Figure 6 and described in [23,58]. The reaction
is given by an Arrhenius term that relates temperature and specimen concentration to
describe a single exothermic reaction [22]. The nonlinear model is a one-dimensional
discretization of the reaction equations for Figure 6 with N = 3998 states and p = 2
control inputs. The inputs influence the temperature and specimen concentration at the
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Figure 7: Tubular reactor: The proposed context-aware controller inference stabilizes the
system already after observing one order of magnitude fewer states than nec-
essary for stabilizing via the traditional two-step approach. Plots (e) and (f)
indicate that the proposed approach also works well on data directly obtained
from the nonlinear systems.
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Figure 8: Tubular reactor: Reinforcement learning with DDPG fails to find a stabilizing
controller after 1000 episodes in this example. The context-aware approach
needs around 260x fewer samples than what DDPG uses in 1000 episodes.

left end of the tube. Additionally to the continuous-time model, we consider a discrete-
time version obtained using implicit Euler for the linear part and explicit Euler for the
nonlinear part with the sampling time 7 = 0.01. We note that our approach is applicable
with other time-discretization schemes as well.

Simulations without a controller showing the unstable behavior for the first half of
the states representing temperature are given in Figures 7a and 7b. The models have
r = 2 unstable eigenvalues, for which we need 41 and 10 gradient samples to estimate
a basis of the unstable dynamics in the continuous and discrete time case, respectively.
The observations in the continuous-time case include the use of GMRES to solve the
occurring shifted systems of linear equations during the eigenvalue computations. Inspired
by the reaction-diffusion nature of the problem, we use a shifted matrix resulting from
the discretization of a linear diffusion equation as preconditioner. In many cases, with
knowledge about the underlying application, preconditioners can be designed without
system identification [34].

With the learned bases of the unstable dynamics, we use in continuous and discrete
time T" = r + 1 = 3 data samples to design stabilizing controllers. Figures 7c and 7d
show the simulations with controllers inferred from data of the models of the linearized
systems (“idealized data”). In contrast, Figures 7e and 7f show the results obtained with
controllers inferred from data of the original, nonlinear systems, which are sampled close
to the steady state of interest.

We also trained a DDPG agent to stabilize the discrete-time system based on evaluations
of the corresponding linear models. Even after 1000 episodes, the training did not result
in a controller that satisfied the stabilization criterion. The training results are shown in
Figure 8a. In fact, the constructed DDPG controllers often destabilize the system in the
sense of (31) after 3-4 time steps. In Figure 8b, we compare the two types of constructed
controllers in terms of their rewards per data samples. The controller constructed with
the proposed method stabilizes the system with fewer samples than what DDPG requires
in the first training episode alone.
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5.3.2 Laminar flow with an obstacle

We consider a laminar flow behind an obstacle. The flow changes from its smooth steady
state to vortex shedding under arbitrarily small disturbances. Snapshots of the flow ve-
locity at end time are shown in Figure 9. The flow dynamics are described by the Navier-
Stokes equations. The model we consider is a system of differential-algebraic equations
with N = 22060 states and p = 6 control inputs, which allow to change the flow velocities
in a small region right behind the obstacle. The matrices of the continuous-time model
can be obtained from [3]. Due to the presence of algebraic constraints in the model, we
only consider the discrete-time case, for which we obtain data with implicit Euler for the
linear terms and explicit Euler for the quadratic terms with sampling time 7 = 0.0025.
The model has » = 2 excitable unstable eigenvalues.

We need 655 observations of the gradient to learn a basis of the unstable dynamics. Once
a basis is obtained, we need T' = r+2 = 4 state observations to learn a stabilizing controller
with the proposed approach. Figures 9b and 9c show the simulations using controllers
based on data from the linearized system and the nonlinear system, respectively. In both
cases, the flow is smoothly stabilized towards the steady state.

For the DDPG agent, we stopped its training after only 20 episodes due to high com-
putational costs resulting from the expensive evaluation of the linear model. However, 20
episodes are enough to demonstrate the superiority of the proposed method in terms of
data requirements as shown in Figure 10. The final DDPG-controller is not stabilizing the
system.

6 Conclusions

Building on the concept of context-aware learning [1,35,57], we have shown that for the
task of finding a stabilizing controller, it is sufficient to learn only the unstable dynamics of
systems, in contrast to learning models of the complete—stable and unstable—dynamics.
By combining the task of stabilization with learning system dynamics in a context-aware
fashion, we showed that there exist r states that are sufficient to be observed for finding
a guaranteed stabilizing controller, where r is the dimension of the space that spans
the unstable dynamics. The dimension 7 is typically orders of magnitude lower than the
dimension of the state space of all dynamics. These findings are leveraged by the proposed
computational procedure that estimates bases of spaces of unstable dynamics via samples
from gradients and that constructs stabilizing controllers from up to 2000x fewer state
observations than traditional data-driven control methods and variants of reinforcement
learning. This enables data-driven stabilization in applications with scarce data, such as
near rare events and when data generation is expensive. In contrast to the reinforcement
learning method used in the numerical comparisons in this work, the proposed context-
aware learning method certifies the stabilization of the underlying system by the developed
theory such that the proposed context-aware controller inference provides trust for making
high-consequence decisions. There are several avenues for future research. One of them
is combining context-aware learning with methods for constructing manifolds of unstable
dynamics [24,59]. Working with manifolds, instead of spaces, can potentially be beneficial
when systems are strongly nonlinear. At the same time, the nonlinear approximations
introduced by manifolds can be computationally challenging, especially for systems with
high-dimensional state spaces.
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Figure 9: Flow behind a cylinder: The proposed context-aware controller inference stabi-
lizes the system with state observations obtained from the linearized and nonlin-
ear systems. The outputs near the disturbance initiating the unstable behavior
are less oscillatory in the case of using data from the nonlinear system in this

experiment.
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Figure 10: Flow behind a cylinder: We restrict the reinforcement learning to only 20 train-

ing episodes because obtaining samples from the linearized model is computa-
tionally expensive. The proposed approach requires around 38x fewer data
samples than needed in the very first DDPG episode to estimate a basis of the
unstable dynamics and to infer a stabilizing controller in this example.
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