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Abstract 

In this study, various forms of data sharing are axiomatized. A new way of studying coopetition, 

especially data-sharing coopetition, is proposed. The problem of the Bayesian game with signal 

dependence on actions is observed; and a method to handle such dependence is proposed. We 

focus on fixed-route transit service markets. A discrete model is first presented to analyze the 

data-sharing coopetition of an oligopolistic transit market when an externality effect exists. 

Given a fixed data sharing structure, a Bayesian game is used to capture the competition under 

uncertainty while a coalition formation model is used to determine the stable data-sharing 

decisions. A new method of composite coalition is proposed to study efficient markets. An 

alternative continuous model is proposed to handle large networks using simulation. We apply 

these models to various types of networks. Test results show that perfect information may lead 

to perfect selfishness. Sharing more data does not necessarily improve transit service for all 

groups, at least if transit operators remain noncooperative. Service complementarity does not 

necessarily guarantee a grand data-sharing coalition. These results can provide insights on 

policy-making, like whether city authorities should enforce compulsory data-sharing along 

with cooperation between operators or setup a voluntary data-sharing platform. 
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1 Introduction 

Mobility-as-a-Service (MaaS) systems play an increasingly important role in providing urban 

transportation, especially in a smart cities context (Chow, 2018, Wong et al., 2020). Travelers 

may book one or more mobility services in getting from one location to another, particularly 

in congested areas where driving is not reliable or too costly. This is the case in many dense 

cities like New York, Tokyo, or London, which traditionally provide only fixed route public 

transit services. Due to the emergence of Internet of Things (IoT), many new privately operated 

mobility services have found their way to urban markets: peer-to-peer ridesharing, ride-hail, 

carshare, micromobility, microtransit, with variations that incorporate electric charging or 

automation. 

Public agencies need to obtain data from private operators to measure and evaluate the 

market impact on travelers. This is nontrivial because operators risk losing competitive 

advantages if certain shared data is exploited by adversaries. As shown in He and Chow (2020), 

network data can be used by adversaries to reverse engineer an algorithm or operating policy. 

As such, operators require a certain level of privacy control when sharing data onto open data 

platforms to support public agency efforts. Due to this challenge, agencies in the industry have 

begun devising “Mobility Data Specifications” (MDS) to reach consensus on what types of 

data can and should be shared, and in what format, to best support mobility platform functions. 

An example is from the Los Angeles Department of Transportation (LADOT, 2020). 

Addressing this concern from mobility operators can be important for cities with explicit 

oligopolistic competition, such as the MTR and private buses in Hong Kong (Today, 2018); 

regional competition between agencies like Port Authority (Path Train) and NJ Transit in the 

NJ/NYC metropolitan area; or considering private mobility companies like Uber Transit that 

provide service in coexistence with public transit agencies (Amtrak, 2017, TheVerge, 2021). 

This study investigates data sharing decisions in these contexts. Data sharing decisions cannot 

be separated from transit network operations; the value of data is in fact derived from transit 

operation. 

We propose a new coopetitive game methodology to study the joint decision of data sharing 

along with operational decisions like frequency setting between two or more coexisting 

operators (Chow and Sayarshad, 2014). An important feature of this type of game is that the 

payoff of an operator, or a coalition of operators who share data with each other, depends on 

the noncooperative actions of all other operators and the user route choices on a transit network. 

In other words, the novelty of the method lies in characterizing the data sharing as a type of 

coalition formation while simultaneously modeling the frequency setting as a noncooperative 

game with Bayesian equilibria for a given data-sharing coalition structure. 

2 Literature review 

2.1 Oligopolistic transit markets 

Research studies on oligopolistic markets of transit operators have existed for decades. Harker 

(1988) studied deregulated transit systems with non-overlapping corridors to a central business 

district (CBD). He introduced the generalized Nash equilibrium concept and quasi-variational 

inequality (QVI) formulation. Fernandez and Marcotte (1992) first studied the transit market 

with a full network equilibrium model. They assumed a free competitive network – operators 

are free to offer service on any route. They combined the operator revenue maximization upper 

level model with user travel time-minimizing lower level model and expressed them as a 

system of variational inequalities (VI). Zubieta (1998) modified the Fernandez and Marcotte 

(1992) model to study the case where operators have exclusive right to run and adjust 
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frequencies. The transit route user equilibrium constraints expressed as VIs by Fernandez and 

Marcotte (1992) and Zubieta (1998) is an elegant way to capture the interactions between users 

and transit operators. This idea is used in this study. 

Zhou et al. (2005) studied the oligopolistic transit market with elastic demand. They 

proposed a bi-level equilibrium model whose decision variables are prices. They transformed 

the problem to a QVI to prove the existence of Nash equilibria. Sun and Gao (2007) proposed 

a generalized Nash equilibrium model to study the joint behavior of operators and users. Clark 

et al. (2011) investigated the relationship between fares and trip lengths in a transit duopoly 

market equilibrium. They compared the results of collusion, Cournot, Stackelberg, Bertrand 

and sequential price competition models. Clark et al. (2014) studied the equilibrium of a 

duopoly providing complementary transport services differentiated by travel distances. 

Equilibria were derived for collusion and competition in price and quantity. Yao et al. (2019) 

focused on the problem of an upper-level transit authority assigning transit lines to lower-level 

operators making line frequency strategies. Rasulkhani and Chow (2019), Pantelidis et al. 

(2020b), and Ma et al. (2021) proposed different models under a stable matching framework 

to reveal the joint behavior of operator decisions (pricing and routes to serve) and user path 

choices. Pantelidis et al. (2020a) investigated the problem of how multiple operators can pool 

their risk together by setting up an insurance contract to share resources under disruption using 

cooperative game theory. The value of a coalition is computed by two-stage stochastic 

optimization. 

Previous studies on transit markets mainly focus on using non-cooperative game theory to 

study the frequency or fare settings. There remains a research gap on modeling oligopolistic 

public transit design games involving data sharing as a strategy. 

2.2 Data sharing game 

Data, knowledge, or patent sharing games have much in common. Most of these studies use 

cooperative game theory. We remark that this implies some constraints on the data sharing 

form to be explained in Section 3. Muto et al. (1989) studied the information market game in 

which there is one veto player holding valuable information, such as patents. The payoff of a 

coalition 𝑆 ⊆ 𝑁 is the profit which it can gain without the help of any outside firm. Aumann 

(1999) proposed five equivalent formalizations of the idea of knowledge: signal functions, 

information functions, information partitions, knowledge operators, and knowledge universal 

fields. Information partitions have been widely used to study information sharing since then. 

We adopt this interpretation of knowledge in this study. 

Brânzei et al. (2001) studied information collecting (IC) games. This type of game has one 

decision-maker (the only veto player) and many information holders. The information partition 

structure from Aumann (1999) is adopted. Decision maker 𝑖 chooses a single action for each 

element of the information partition that maximizes expected payoff. Slikker et al. (2003) 

extended IC games to information sharing (IS) games. Each player is a decision maker and 

receives a reward. The coalition in this game means a data-sharing coalition: members share 

all the data that they have with each other. The reward of a coalition is the sum of its members’ 

expected rewards. This type of game has monotonic allocation schemes, which means as a 

coalition grows larger, every player involved can secure more rewards. Two facts lead to this 

property: 1) a player can identify the true state better with added information, and 2) the reward 

of one player is independent of the actions of the other players. The grand coalition is optimal 

for everyone; hence it is guaranteed to emerge. 

Slikker et al.’s (2003) IS game cannot be directly applied to transit markets; the reward of 

a transit operator depends not just on its own operational decisions. This interaction is 

sometimes called the externality effect (Ray, 2007). Hence the transit game does not belong to 
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the class of games with monotonic allocation schemes generally and the grand coalition is not 

guaranteed. Ray (2007) and Diamantoudi and Xue (2007) studied the IS game with externality 

effect using coalition formation theory. The solution is a coalition structure that is stable from 

deviations. Deviation means a group of players within a coalition trying to break out. The group 

must also attempt to predict the coalition structure that arises elsewhere, otherwise it won’t be 

able to compute its own payoffs since they depend on the actions of other players. Hence the 

set of coalitional equilibrium actions (“EBA set”) are built recursively, starting from singletons. 

The final solution depends on the “initial” condition specified. Ray (2007) gave two types of 

initial conditions: starting from either a grand coalition or a singleton (every player on their 

own) structure. In this study, we will call them top-down and bottom-up solutions, respectively. 

Transportation applications of coalition formation models include shipper collaboration (e.g. 

Yilmaz and Savasaneril, 2012), connected vehicle infrastructure (Saad et al., 2010), and vehicle 

routing (Wang et al., 2018). 

Bacchetta and Espinosa (1995) researched information sharing between governments 

where tax collection competition exists. Governments can choose information sharing and tax 

levels. A two-stage non-cooperative game is proposed. Tosh et al. (2015) analyzed the cyber 

security information sharing among firms with non-cooperative game theory. The study of 

Bacchetta and Espinosa (1995) and Tosh et al. (2015) represent a type of data-sharing game in 

which data have direct and obvious effects on player utility. 

The idea of acting under uncertainty also appears in non-cooperative games under the name 

Bayesian game (Osborne and Rubinstein, 1994). Players’ preferences are influenced by the 

unknown system state. Players can make partial observations and then choose actions 

depending on their posterior speculations. A Nash equilibrium arising from such a game 

consists of a set of actions corresponding to each pair (player, observation) such that no player 

has the incentive to choose other actions given the observations and other players’ strategies. 

Bayesian games have been used in the literature to address cybersecurity in intelligent 

transportation systems under uncertainty (see Sedjelmaci et al., 2019), traffic route assignment 

under uncertainty (Gairing et al., 2008), and electric vehicle charging demand management 

(Liu et al., 2017). To date, information sharing action has not been studied using these games. 

The knowledge structure for each player is assumed and fixed. Bayesian games capture the 

competition among operators under uncertainty well, but they lack the data sharing cooperation 

strategy. 

2.3 Coopetition 

Coopetition is one kind of game in which both cooperation and competition exist. Coopetition 

is a subject on which the management literature has increasingly focused since Nalebuff and 

Brandenburger (1996). When data-sharing happens between competing companies, it is a 

common form of coopetition. “There is a paradox that the knowledge shared for cooperation 

may also be used for competition” (Loebecke et al., 1999). This situation is also called the 

coopetition dilemma. Loebecke et al. (1999) proposed a normal form game to study knowledge 

transfer actions between companies. The gains from the cooperation and the losses from 

competition are values assumed to be known. Smichowski (2018) analyzed the willingness of 

transit operators to participate in a MaaS platform which requires data-sharing. He described 

two effects: “losing rides through MaaS” effect due to competition from the operators on the 

platform and “winning rides through MaaS” effect since cooperation helps draw more users to 

the MaaS platform. They illustrated how the two effects change with the number of operators 

participating (Figure 1). They conclude that an operator is willing to join a platform once the 

size of the platform is over a threshold: a “minimum number of cooperating players that justify 

sharing data”. The setup of the initial MaaS platform assumes simultaneous actions by 
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operators. Again, a normal form game is used to model this like in Loebecke et al. (1999). 

Smichowski’s (2018) threshold assumes that more players involved in data sharing is always 

better for each player. 

 Carfì (2012, 2015)  proposed another formulation of coopetition. The action profile in their 

games is (𝑥, 𝑦, 𝑧), where 𝑥 and 𝑦 are the independent actions of the first and second players 

respectively; 𝑧 is an action to be chosen by players jointly. For a fixed 𝑧, the game is reduced 

to a normal form game, 𝐺𝑧, with solution set 𝑆𝑧. 𝑆𝑧 is a set-valued function of 𝑧 in the feasible 

solution space. A Nash bargaining model is then applied to find the setting of 𝑧. 

 

 
Figure 1. The choice of data sharing in the context of MaaS from the perspective of a single transportation 

operator, which assumes that larger data sharing coalitions are always better for all players. (Smichowski, 2018) 

For a transit market, there is a popular belief that more data sharing means better services, 

as suggested by Smichowski (2018) and reflected by the efforts of Mobility Data Specification 

(LADOT, 2018), Open Mobility Foundation (Smart City Dive 2022), Open City Network 

(Pembleton, 2019). Should city authorities enforce compulsory data-sharing or setup voluntary 

data-sharing platforms? Our intuition is that competitive operators are not willing to share 

while complementary operators tend to cooperate. In practice, some parties are not willing to 

participate in data-sharing and it remains a question what kind of policy is needed. Many 

factors may influence data-sharing coopetition, like the network structure, user/operator cost 

settings, the distribution of lines between operators, the degree of complementarity between 

transport operators’ lines, etc. Currently, there is no model to support policy-making decisions 

and factors like these. 

2.4 Summary 

To sum up, the main research gap is that there lacks an oligopolistic transit market coopetition 

model with cooperative data-sharing and noncooperative frequency setting under uncertainty 

that depends on the coalition. This model needs to handle externality effects. This study 

benefits from the ideas of Slikker et al. (2003), Bayesian games (Osborne and Rubinstein, 

1994), Ray (2007), and Carfì (2012). In our coopetitive transit game, operators have two types 

of actions: information sharing decisions and transit operational decisions. As shown above, 

information sharing can be modeled using coalition formation to define partitions for players 

that choose to share information with one another. Meanwhile, the outcome equilibrium needs 

to consider the availability of incomplete information in a noncooperative game setting; this is 

typically modeled using Bayesian games. For each data sharing structure, there is an associated 

Bayesian game to capture the market competition. Nash equilibria are found for these Bayesian 

games. Then coalition formation theory is used to determine stable data-sharing decisions and 
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payoffs in which no operator has incentive to switch from. This type of coopetition is similar 

to that of Carfì (2012) but with the added complexities of the oligopolistic transit market. The 

Nash bargining model is also replaced with a coalition formation model extended from Slikker 

et al. (2003) to determine stable coalitions for data sharing. The contributions of this paper are 

summarized below: 

• Various forms of data sharing are axiomatized; 

• A new way of studying coopetition, especially data-sharing coopetition, is proposed; 

• A Bayesian game with signal dependence on actions is observed and a method to 

handle such dependence is proposed; 

• A method to remedy coalition formation with market efficiency is proposed; 

• Two alternative models—discrete and continuous—are proposed to analyze the data-

sharing coopetition for a transit market; 

• Test results on transportation networks provide insights on transportation market 

policy making. 

While the intent of this research is to study the transit market data-sharing, many of the ideas 

presented extend beyond this scope. For example, the data-sharing axiomatization scheme, the 

way we study coopetition, the method to handle Bayesian games with signal dependence on 

actions, and the idea of coalition composition are all generally applicable. 

3 Proposed methodology 

Before getting started, we make, to the best of our knowledge, a first attempt in the literature 

to define properties of various forms of data sharing. 

 

Definition 1: A data sharing relation is a set of ordered pairs where (𝑖, 𝑗) belongs to this set 

if and only if 𝑖 shares data to 𝑗. The data sharing relation is said to be: 

- reflexive, if (𝑖, 𝑖) belongs to this relation; 

- symmetric, if (𝑖, 𝑗) belongs to this relation, then (𝑗, 𝑖) also belongs to this relation; 

- transitive, if (𝑖, 𝑗) and (𝑗, 𝑘) belong to this relation, then (𝑖, 𝑘) also belongs to this 

relation; 

- nonexclusive, if (𝑖, 𝑗) belongs to this relation for some 𝑗 ≠ 𝑖 then (𝑖, 𝑘) belongs to this 

relation for any 𝑘. 

 

The first three are commonly seen definitions in mathematics. Reflexivity is introduced for 

convenience. We define nonexclusive to mean that operator 𝑖 can only choose to publish data 

or not. In this way, it’s easier to see the connections between various forms of data sharing and 

to do the proofs. It opens a gateway to new forms of data sharing that have not been proposed 

in the literature or used in practice. New forms of data sharing can be identified by changing 

the set of axioms. 

A freely constrained data-sharing form requires the data sharing relation to be reflexive, 

which we define as “free mode data sharing”. Any operator 𝑖 can choose whether or not to 

share data to any other 𝑗. One common form of data sharing is to require the relation to be 

reflexive and symmetric. This relation is like “is-a-friend-of” relation (“friend mode data 

sharing”). For example, operator A and B are friends; B and C are friends; but A and C are not. 

So, A and B share their own data with each other; B and C also share with each other. But A 

and C don’t. A very constrained form of data sharing is to require the relation to satisfy the 

nonexclusive property (“publishing mode data sharing”). Another commonly seen form is to 

require the relation to be reflexive, symmetric, and transitive. Namely, the data sharing relation 

is an equivalence relation (“equivalence relation mode data sharing”). It defines a partition. 
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Existing studies focus on either “free mode”, equivalence relation, or “publishing” types of 

data sharing. In this study, we focus on the equivalence relation. 

Consider the bilevel formulation (Fernandez and Marcotte, 1992, Zubieta, 1998) for an 

oligopolistic transit market. Let 𝑁 be the set of transit operators, indexed by 𝑖 =1, …, 𝑛. This 

market is defined by a graph 𝐽 where different operators own subgraphs 𝐽𝑖, where 𝑖 = 1,… , 𝑛 

and 𝐽 = ⋃ 𝐽𝑖
𝑛
𝑖=1 . The market is assumed to have a deterministic, fixed origin-destination (OD) 

demand (ℎ𝜃)𝜃∈Θ, for OD set Θ, known by all the operators. In the upper level, given the user 

hyperpath flow 𝒇 ∈ 𝐷, where 𝐷 is the set of feasible hyperpath flows, operators optimize line 

frequencies 𝝓 independently of each other to maximize their own profits. In the lower level, 

given the frequency settings 𝝓, user equilibrium hyperpath flows 𝒇 are generated. The payoff 

𝑟𝑖  of operator 𝑖 is a differentiable function of frequency settings 𝜙𝑖 ∈ ℝ≥0
𝐿𝑖 , where 𝐿𝑖  is the 

number of lines per operator, and passenger flow vector 𝒇. The upper-level maximization 

problem is shown in Eq. (1), where 𝜙𝑖−  refers to the frequencies set by operators other than 𝑖. 
We assume that operators are privately-owned and offer fixed-route transit services. This 

framework can be applied to other types of operators and objectives as well without loss of 

generality. 

 

max
𝜙𝑖≥0

𝑟𝑖(𝜙𝑖; 𝜙𝑖− , 𝒇) , ∀𝑖 ∈ 𝑁 (1) 

 

The KKT conditions of Eq. (1) are shown in Eqs. (2) to (4).  

 

𝜙𝑖
∗ ≥ 0, ∀𝑖 ∈ 𝑁 (2) 

𝐻𝑖(𝜙𝑖
∗; 𝜙𝑖−

∗ , 𝒇∗) ≔ −
∂𝑟𝑖(𝜙𝑖; 𝜙𝑖− , 𝒇)

𝜕𝜙𝑖
|𝝓∗,𝒇∗ ≥ 0, ∀𝑖 ∈ 𝑁 (3) 

𝜙𝑖
∗ ∙ 𝐻𝑖(𝜙𝑖

∗; 𝜙𝑖−
∗ , 𝒇∗) = 0, ∀𝑖 ∈ 𝑁 (4) 

 

This is a nonlinear complementarity problem. We can transform it to a VI problem as shown 

in Eq. (5) (Karamardian, 1972). In Zubieta (1998) it is assumed that each operator has only one 

line. Here, this constraint is relaxed. The products in Eqs. (4) and (5) are inner products. 

 

𝐻𝑖(𝜙𝑖
∗; 𝜙𝑖−

∗ , 𝒇∗) ∙ (𝜙𝑖 − 𝜙𝑖
∗) ≥ 0,  ∀𝜙𝑖 ≥ 0 (5) 

 

Combining Eq. (5) for all operators leads to a VI in Eq. (6). The lower level user equilibrium 

model as formulated in Spiess and Florian (1989) is written as a VI in Eq. (7). Other types of 

transit user assignment models can be adopted so long as they can be formulated as VI. For 

example, stochastic user equilibrium models (Fisk, 1980) can be transformed from an 

optimization problem to a VI in the same way as described above. Eqs. (6) and (7) form a 

system of VIs that represent the equilibrium condition of an oligopolistic transit market under 

deterministic demand and perfect information. 

 

𝑯(𝝓∗; 𝒇∗) ∙ (𝝓 − 𝝓∗) ≥ 0,  ∀𝝓 ≥ 𝟎 (6) 

𝑪(𝒇∗; 𝝓∗) ∙ (𝒇 − 𝒇∗) ≥ 0,  ∀𝒇 ∈ 𝐷 (7) 

where 
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𝑯(𝜙; 𝑓) = −

[
 
 
 
 
∂𝑟1
𝜕𝜙1…
∂𝑟𝑛
𝜕𝜙𝑛]

 
 
 
 

 

𝜙 = [
𝜙1
…
𝜙𝑛

] 

𝝓∗: equilibrium frequency setting of all operators; 

𝒇∗: the equilibrium hyperpath flow vector on the network; 

𝑪: the vector-valued hyperpath cost function; 

𝐷: the feasible set of hyperpath flows that satisfies demand ℎ𝜃 given OD pair 𝜃 ∈ Θ; Θ is the 

set of all OD pairs. 

 

On top of the oligopolistic market described by the VIs in Eqs. (6) – (7), we now assume 

there are some unknown information that may influence operator payoffs. Let the unknown 

state be the origin-destination (OD) demand ℎ𝜃(𝜔), 𝜃 ∈ Θ . Other types of unknown 

information such as user preferences can be handled in the same way in principle. Now we 

allow operators to form data sharing coalitions with each other. Note that players in the same 

coalition may share data but still act noncooperatively in frequency setting. The standard 

cooperative game theory starts with a characteristic function 𝑣 . However, we encounter a 

problem with defining the worth, 𝑣(𝑆), of a data-sharing coalition 𝑆. This is because the profit 

of coalition 𝑆 also depends on the data-sharing and frequency setting actions of players in 𝑁\𝑆 

since travelers choose routes on the whole transit network - the externality effect. 

We study this problem by using the idea of a partition function form (Kóczy, 2018). We 

make assumptions on how 𝑁\𝑆 would break into further sub-data-sharing-coalitions. Formally, 

a partition 𝒫 of 𝑁 defines a collection of subcoalitions formed by the players. Given a partition 

𝒫 of 𝑁, we use a partition function 𝒖𝑆|𝒫  to represent the payoff vector of all operators in 

coalition 𝑆 under 𝒫 (𝑆 ∈ 𝒫), where 𝑢𝑖,𝑆|𝒫 refers to the element corresponding to operator 𝑖 in 

the vector. The knowledge of each operator is determined by 𝒫. Operators set frequencies 

independently under an uncertain state. This is modeled by a Bayesian game in Section 3.1. 

For each coalition structure, which we call a partition, we can find a Bayesian game equilibrium. 

Then we turn to coalition formation and coalition composition theory in Section 3.2 to evaluate 

the data-sharing decisions. The output is a composite coalition structure, which we characterize 

as 𝓠 = [𝒫1, 𝒫2, … , 𝒫𝐾]. The main assumptions are summarized below and the steps are shown 

in Algorithm 1. 

 

(Rationality assumption) Transit operators are selfish and rational; 

(Data sharing partition assumption) Data sharing relation is an equivalence relation; 

(Bayesian assumption) The system has an unknown state that affects transit operators’ 

payoffs; operators share a common prior of the state; operators can gain partial information 

by observing link flows from their coalition (the signal); 

(Data-sharing cooperation assumption) Transit operators can write binding agreements at 

no cost to form data-sharing coalitions; 

(Competitive market assumption) All transit operators (even those sharing the same data 

sharing coalition) set transit frequencies independently. 

 

Algorithm 1: Data-sharing coopetition 

1: Initiate transit network 𝐽; 
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2: For each partition 𝒫: 

3:     Apply Algorithm 2 (discrete) or Algorithm 3 (continuous) to find the Nash equilibrium  

        expected payoffs 𝒖𝑆|𝒫 of the Bayesian game 𝐺∗ under 𝒫; 

4: End for 

5: Apply Algorithm 4 to find the composite coalition structure 𝓠 = [𝒫1, 𝒫2, … , 𝒫𝐾] and the  

    corresponding action profile and payoffs 𝒖𝑆|𝒫𝐾. 

 

3.1 Bayesian game model for frequency settings 

3.1.1 Discrete setting 

First, we briefly explain the Aumann (1999)’s representation of knowledge. Let Ω denote the 

set of possible states of the world. The true state 𝜔 ∈ Ω is unknown. Assume that there is a 

common prior on Ω, described by probability space (Ω, ℱ, 𝜇), where ℱ is the 𝜎-algebra, i.e. the 

elements of ℱ are events – subsets of Ω, and 𝜇 is the probability measure defined on ℱ. The 

information owned by a player 𝑖 ∈ 𝑁 is represented by a partition 𝑰𝒊 of Ω. A partition 𝑰 of set 

Ω is a collection of non-overlapping subsets whose union is Ω. Each element in 𝑰𝒊 should be a 

measurable set representing a possible observation by player 𝑖 ∈ 𝑁. A new partition 𝑰𝒊 ∨ 𝑰𝒋 can 

be generated by the intersections of elements from 𝑰𝒊 and 𝑰𝒋. This idea can be extended to a 

coalition such that 𝑰𝑺 =∨𝑖∈𝑆 𝑰𝒊. 
Operators set frequencies depending on their collected data, which would be transit link 

flows in this study, which can be used to infer OD demand (e.g. Liu and Chow (2022)). 𝑇𝑖, the 

set of possible observations for operator 𝑖, is called the signals of operator 𝑖. Every operator 𝑖 
has a signal function 𝜏𝑖: Ω → 𝑇𝑖 . 𝑰𝒊: = {𝜏𝑖

−1(𝑡𝑖)|𝑡𝑖 ∈ 𝑇𝑖}  is the information of operator 𝑖 . 

Throughout Section 3.1.1, we assume that Ω and 𝑇𝑖 are finite sets. For a data sharing coalition 

𝑆, each member has the same signal function 𝜏𝑠: Ω → ⨁ 𝑇𝑖𝑖∈𝑆 . For a Bayesian game, the set of 

players is the set of all (operator, observation) pairs (𝑖, 𝒕𝑖), where 𝒕𝑖 = 𝜏𝑖(𝜔). The action 

𝜙𝑖,𝑡𝑖  of each player (𝑖, 𝒕𝑖) refers to the frequency set under observation 𝒕𝑖. The action set of 𝑖 

is denoted by 𝐴𝑖. An action profile 𝝓 is an element of ×𝑖∈𝑁 (×𝒕𝑖∈𝑇𝑖 𝐴𝑖). Given 𝝓, we have a 

lottery ℒ𝑖(𝝓, 𝒕𝑖) over 𝐴 × Ω for each player (𝑖, 𝒕𝑖), where 𝐴 = ∏ 𝐴𝑖𝑖 . A lottery is a collection 

of (action-profile, state) pairs weighted by probabilities. We define player preference over 

lotteries instead of action profiles. The probability assigned by ℒ𝑖(𝜙, 𝒕𝑖) to ((𝜙
𝑗,𝜏𝑗(𝜔)

)
𝑗∈𝑁

, 𝜔) , 

denoted by 𝑝𝑖,𝜙(𝜔|𝒕𝑖), means player (𝑖, 𝒕𝑖)’s posterior belief of the state being 𝜔 and each 

operator 𝑗 acting with 𝜙𝑗,𝜏𝑗(𝜔). 

Unlike Aumann’s (1999) model, the signal functions also depend on the actions. The 

number (or proportion) of passengers that an operator observes depend on the frequency setting 

of all operators. In contrast, in a typical Bayesian game setting, the signal function is fixed and 

independent of the actions. We introduce the following definition of consistency. 

 

Definition 2: An observation vector 𝒕 is said to be consistent with frequency strategy 𝝓 under 

demand 𝒉(𝜔), 𝜔 ∈ Ω, if 𝜏𝑖(𝒉(𝜔),𝝓(𝒕)) = 𝒕𝑖  for each operator 𝑖 ∈ 𝑁 . The consistent set, 

𝐸(𝜔,𝝓), includes all observations that are consistent with 𝝓 under state 𝜔 ∈ Ω. 

 

Consistency means that if operators observe 𝒕 and then act with 𝝓(𝒕), then they will observe 𝒕 
as a result of traffic assignment under the same state 𝜔 ∈ Ω. 𝐸(𝜔,𝝓) can be found by making 

use of a transit assignment model (e.g. Eq. (7)) when the size of Ω and 𝑇  are small. Let 
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𝑝𝑖,𝝓(𝜔, 𝒕 | 𝒕𝑖) be the posterior probability of the state being 𝜔 ∈ Ω and the observation vector 

of all operators being 𝒕 (the i-th component of 𝒕 is 𝒕𝑖), for player (𝑖, 𝒕𝑖) given the frequency 

vector 𝝓. We compute 𝑝𝑖,𝝓(𝜔, 𝒕 | 𝒕𝑖) with Eq. (8). 

 

𝑝𝑖,𝝓(𝜔, 𝒕 | 𝒕𝑖) =
𝑝𝑖,𝝓(𝜔, 𝒕 )

𝑝𝑖,𝝓(𝒕𝑖)
 

=
𝑝𝑖,𝝓(𝒕 | 𝜔)𝑝𝑖,𝝓(𝜔)

∑ 𝑝𝑖,𝝓(𝒕𝑖 | 𝜔′)𝑝𝑖,𝝓(𝜔′)𝜔′
 

=

{
 
 

 
 

1
|𝐸(𝜔,𝝓)|

𝑝(𝜔)

∑
|{𝒕′| 𝒕𝑖

′ = 𝒕𝑖, 𝒕′ ∈ 𝐸(𝜔′, 𝝓)}|
|𝐸(𝜔′, 𝝓)|

𝑝(𝜔′)𝜔′

, 𝑖𝑓 𝒕 ∈ 𝐸(𝜔,𝝓)

0, otherwise

 

 

(8) 

where 𝑝(𝜔)  is the common prior and |𝐸|  means the cardinality of the set 𝐸 . The set 

{𝒕′| 𝒕𝑖
′ = 𝒕𝒊, 𝒕

′ ∈ 𝐸𝜔′,𝝓} is the set of observations 𝒕′ that is consistent with 𝝓 under 𝜔′ ∈ Ω and 

the 𝑖-th component being 𝒕𝑖. We assume that observations in 𝐸(𝜔,𝝓) are equally possible in 

Eq. (8). Now we redefine the probability assigned by lottery ℒ𝑖(𝝓, 𝒕𝑖)  to (𝜔, 𝒕) to be 

𝑝𝑖,𝝓(𝜔, 𝒕 | 𝒕𝑖). Assume that operators are risk-neutral. The von Neumann–Morgenstern utility 

function for a player (𝑖, 𝒕𝑖)is represented by an expected profit in Eq. (9). We assume that the 

operational cost of a transit line is proportional to its frequency. 

 

𝑢𝑖,𝑆|𝒫(ℒ𝑖(𝝓, 𝒕𝑖)) = 𝔼[𝑟𝑖(𝝓, 𝒇)|𝒕𝑖]

= ∑ (∑𝛼𝑙𝑣𝑙(𝜔,𝝓(𝒕)) − 𝛽𝑙𝜙𝑙
𝑙∈𝐿𝑖

)𝑝𝑖,𝜙(𝜔, 𝒕 | 𝒕𝑖)

𝜔∈Ω,𝒕∈𝐹(𝜔): 

 
(9) 

 

where 𝒕𝑖: the observation of operator 𝑖 ∈ 𝑁; 

𝒕: observation vector of all operators; 

𝐿𝑖: set of links (or lines) owned by 𝑖 ∈ 𝑁; 

𝜙𝑙: frequency of link (or line) 𝑙 ∈ 𝐿𝑖; 
𝛼𝑙: the transit fare of link (or line) 𝑙 ∈ 𝐿𝑖; 
𝑣𝑙: flow on link (or line) 𝑙 ∈ 𝐿𝑖; 
𝛽𝑙: operational cost coefficient of link (or line) 𝑙 ∈ 𝐿𝑖; 
𝐹(𝜔): the set of feasible observation vector under 𝜔. 

 

The transit flow 𝑣𝑙  is a function of OD demand 𝒉(𝜔)  and frequency settings 𝜙(𝒕) . The 

summation in Eq. (9) is over all possible 𝜔 and 𝒕 combinations weighted by the posterior 

probability 𝑝𝑖,𝝓(𝜔, 𝒕 |𝒕𝑖). The preference ordering ≽(𝑖,𝒕𝑖) of each player (𝑖, 𝒕𝑖) is defined as: 

 

𝝓 ≽(𝑖,𝑡𝑖) 𝝓
′      iff       𝑢𝑖,𝑆|𝒫(𝐿𝑖(𝝓, 𝒕𝑖)) ≥  𝑢𝑖,𝑆|𝒫(𝐿𝑖(𝝓

′, 𝒕𝑖)) 

 

This Bayesian game is denoted by the tuple 𝐺∗ = 〈𝑁,𝛺, (𝐴𝑖), (𝑇𝑖), (𝜏𝑖), 𝒑, (≽(𝑖,𝒕𝑖))〉.  

We use Eq. (10) and (11) to replace Eq. (6) and (7) to characterize the Nash equilibrium 

of Bayesian game 𝐺∗. Eq. (11) means that the user equilibrium holds under every 𝒉(𝜔) – 𝒕𝜔 

combination if 𝑡𝜔  is feasible under 𝜔 . Notice that we need both 𝜔  and 𝒕𝜔  to index the 
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equilibrium flow. Eq. (10) means that operator 𝑖  sets frequency at observation 𝒕𝑖  by 

maximizing its expected payoffs. This also holds under every feasible 𝒕. The total number of 

possible states and observations are finite. Eq. (10) and (11) are used in the proof of existence 

of a Nash equilibrium (see the Appendix). The steps to find a Nash equilibrium are shown in 

Algorithm 2 below. 

∑−
∂

𝜕𝜙𝑖
𝑢𝑖,𝑆|𝒫(ℒ𝑖(𝜙𝑖; 𝜙𝑖−, 𝒕𝑖))|𝝓∗,𝑡 ∙ (𝜙𝑖 − 𝜙𝑖

∗,𝒕)

𝑛

𝑖=1

≥ 0,  ∀𝜙𝑖 ≥ 0, ∀𝒕 ∈ 𝐹 (10) 

𝐶(𝒇∗,𝜔,𝒕
𝜔
; 𝝓∗,𝒕

𝜔
) ∙ (𝒇 − 𝒇∗,𝜔,𝒕

𝜔
) ≥ 0,  ∀𝒇 ∈ 𝐷(𝜔), ∀𝜔 ∈ Ω; 𝒕𝜔 ∈ 𝐹(𝜔) (11) 

 

where 𝝓∗,𝒕: the frequency vector under observation 𝒕 at equilibrium; 

𝒕𝜔: the observation vector of all operators under 𝜔; 

𝒇∗,𝜔,𝒕
𝜔

: the flow under state 𝜔 and 𝒕𝜔 at equilibrium; 

𝐷(𝜔): set of feasible transit flow vectors under 𝜔; 

𝐹(𝜔): the set of feasible observation vectors under 𝜔; 

𝐹: the set of feasible observation vectors; 𝐹 =∪𝜔 𝐹(𝜔); 
 

 

Algorithm 2: Computing the Nash equilibrium (discrete case) 

1: Initialize the strategy 𝜙𝑖
(0)

 for each operator 𝑖; 

2: While the difference of strategies |𝜙(𝑛) − 𝜙(𝑛−1)| ≥ 𝜖𝑑: 

3:     For operator 𝑖: 
4:         For each possible observation 𝒕𝑖; 
5:             Fix the strategies of players other than (𝑖, 𝒕𝑖), find arg max

𝜙𝑖
(𝑛)
(𝒕𝑖)
𝑢𝑖,𝑆|𝒫(ℒ𝑖(𝝓, 𝒕𝑖)); 

6:             Update the current strategy for operator 𝑖; 
7:         End for 

8:     End for 

9: End while 

 

The steps in Algorithm 2 correspond to players alternately updating their strategies. This is the 

usual way to find a pure-strategy Nash equilibrium if it exists. Unfortunately, the existence and 

uniqueness of such a solution cannot be guaranteed in general. In Algorithm 2, we stop iterating 

when the successive strategy change is smaller than 𝜖𝑑 . An alternative is to find a mixed 

strategy Nash equilibrium, whose existence is guaranteed. Implementation of that algorithm 

will be reserved for future research. 

Suppose there are 𝐴 levels of frequency settings and the observations are discretized into 

𝐾 levels. Also, suppose each operator 𝑖 has 𝑀𝑖 observations. There would be ∑ 𝐾𝑀𝑖𝑛
𝑖=1  players 

in the Bayesian game. This number increases exponentially as the network grows. We need to 

optimize frequencies for each such player based on its posterior perception. This is formidable 

work for a large network. The number of iterations is bounded by 𝐴∑ 𝐾𝑀𝑖𝑛
𝑖=1 , the number of 

entries in the normal form of the Bayesian game. 

3.1.2 Adaptations for large networks 

While the previous model is proven to have Bayesian Nash equilibria (Appendix), the 

assumption of discrete distribution for random OD pairs and link flows is not convenient for 

large networks. As such, we adopt an alternative model with continuous random variables to 
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represent the OD demands and link flows. The strategy for operator 𝑖 would be a vector-valued 

multivariate function 𝜙𝑖(𝒕𝑖). This has a polynomial complexity of the number of observations 

(namely, the number of transit links) and the number of transit lines, which is more 

computationally tractable for large-scale instances. For example, suppose operator 𝑖 has 𝐿𝑖 
lines. Operator 𝑖′𝑠  frequency setting is vector 𝝓𝑖 = [𝜙𝑖,1, … , 𝜙𝑖,𝑙 … ,𝜙𝑖,𝐿𝑖]′ . 𝑖 ’s observation 

vector is 𝒕𝒊  with dimension 𝑀𝑖 , so 𝒕𝒊 = [𝑡𝑖,1, … , 𝑡𝑖,𝑚, … , 𝑡𝑖,𝑀𝑖
]′ . Suppose we consider a 

polynomial of degree 𝑑. Then 𝑖’s line 𝑙 frequency as a function of 𝒕𝒊 has the following form 

(subscript “𝑖” in all these notations neglected for simplicity) in Eq. (12). The dimension of this 

polynomial space is a constant 𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
). 

 

𝜙𝑙(𝒕) = 𝑐
0 + ∑ 𝑐𝑚

1 𝑡𝑚

𝑀

𝑚=1

+ ∑ ∑ 𝑐𝑚1,𝑚2
2 𝑡𝑚1𝑡𝑚2

𝑀

𝑚2=𝑚1

+⋯+

𝑀

𝑚1=1

∑ … ∑ 𝑐
𝑚1,…,𝑚𝑑
𝑑 𝑡𝑚1 … 𝑡𝑚𝑑

𝑀

𝑚𝑑=𝑚𝑑−1

𝑀

𝑚1=1

 (12) 

 

We propose Algorithm 3 to determine the equilibrium. 

 

Algorithm 3: Computing the Nash equilibrium (continuous case) 

1: Initialize strategy (polynomial coefficients) 𝜙(0) for each operator 𝑖; 

2: While the difference of strategies |𝜙(𝑛) − 𝜙(𝑛−1)| ≥ 𝜖𝑐 : 

3.        Draw 𝑁𝑝𝑜𝑜𝑙 samples from (𝜔, 𝒕) distribution (‘sample pool’) based on current  

           strategies: 

3.a.          Simulate truncated multivariate normal 𝒉(𝜔) using combination of Choleski  

                transformation and accept-reject method; 

3.b.          Initialize observation 𝒕(𝟎), then obtain the initial assigned transit flow 𝒇(0); 

3.c.          While transit flow differences |𝒇(𝑘) − 𝒇(𝑘−1)| ≥ 𝜖𝑠: 
3.d.               Update the frequencies by evaluating polynomial 𝝓(𝑘) at observation 𝒕(𝑘) based  

                     on current strategies; 

3.e.               Assign 𝒉(𝜔) to network, update transit flow 𝒇(𝑘+1) and observation 𝒕(𝑘+1); 
3.f.           End while; 

 

4:       For operator 𝑖: 

5:              For 𝑘 in range(0, param1i) where param1i ≥ 𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
): 

6:                    Draw the 𝑘-th observation sample 𝒕𝑖,𝑘,by choosing one sample randomly from 

sample pool without replacement to simulate the marginal distribution 𝑝(𝒕𝑖); 
 

7:                    For player (𝑖, 𝒕𝑖,𝑘): 

8:                            Sample the conditional distribution 𝑝(𝜔,  𝒕|𝒕𝑖,𝑘) by choosing observations  

from the sample pool whose 𝑖-th part 𝒕𝑖
′ being close enough to 𝒕𝒊, namely  

|𝑡𝑖
′ − 𝑡𝑖| ≤ 𝜖𝑠

′ , or by choosing param2i closest samples; 

9:                            Find 𝜙𝑖,𝑘
∗ (𝑡𝑖,𝑘) by maximizing 𝑢𝑖,𝑆|𝒫(ℒ𝑖(𝝓, 𝒕𝑖,𝑘)) with sampled  

                               conditional distribution; 

10:                    End for 

11:             End for 

 

12:             Solve the new polynomial fitting coefficients using pairs  

                  {𝒕𝑖,𝑘,, 𝜙𝑖,𝑘
∗ (𝑡𝑖,𝑘)) |𝑘 = 1,… , 𝐶𝑖}  by linear regression; 
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13.              Use Method of Successive Averaging (MSA) step to update the strategy: 

                    𝜙𝑖
(𝑛+1)

= 𝜙𝑖
(𝑛)
+

1

𝑛
(𝜙𝑖

∗ − 𝜙𝑖
(𝑛)
); 

14:     End for 

15: End while 

 

Simulations are used in step 3 and 6 instead of exact posterior probabilities. Step 3 is about 

sampling the marginal distribution 𝑝(𝒕𝑖). We first simulate 𝑝(𝜔, 𝒕) to form a sample pool, then 

obtain the marginal distribution simulation. Step 6 is about sampling the conditional 

distribution 𝑝(𝜔, 𝒕|𝒕𝑖). Gibb’s sampling and Metropolis-Hastings are difficult to implement for 

𝑝(𝒕|𝒕𝑖, 𝜔) and 𝑝(𝜔|𝒕) because we do not know the density formula of 𝑝(𝜔, 𝒕|𝒕𝑖). It is also 

difficult to simulate 𝑝(𝜔, 𝒕|𝒕𝑖) from samples of the joint distribution 𝑝(𝜔, 𝒕) since it is not 

possible to find enough sample points as shown in Figure 2(c). In this study, we use the 

illustrated in Figure 2(d) to construct these distributions. The payoff outputs of the continuous 

model are random variables since simulations are involved. In Algorithm 3, there are two 

parameters: the size of the samples drawn from marginal distribution from step 5 (param1i) 

and the size of samples drawn from the conditional distribution from step 8 (param2i). The 

variance of payoffs are functions of these two parameters, 𝑣𝑎𝑟𝑝𝑎𝑟𝑎𝑚1𝑖,𝑝𝑎𝑟𝑎𝑚2𝑖[𝑝𝑎𝑦𝑜𝑓𝑓].  

 

 
Figure 2. (a) the joint distributions of observations of operators; (b) the distribution of operator j conditioning on 

the observation of operator i; (c) the desired simulation of the conditional distribution; (d) the approximation 

approach to simulate the conditional distribution. 

 

The coefficients of 𝝓𝑖(𝒕𝑖) polynomial can be estimated as a linear regression using pairs 

{𝒕𝑖,𝑘,, 𝜙𝑖,𝑘
∗ (𝑡𝑖,𝑘)) |𝑘 = 1,… , 𝐶𝑖}. The bottleneck of Algorithm 3 is step 9: finding optimal 𝜙𝑡𝑖,𝑘

∗  

given the simulated conditional distribution 𝑝(𝜔, 𝒕|𝒕𝑖,𝑘). Eq. (13) is the formula meant to find 

𝝓, where the integration is conducted over the probability distribution of ω, 𝒕|𝒕𝑖. Meanwhile, 

Eq. (14) is the simulated one that we use. 

 

𝜙𝑡𝑖,𝑘
∗ = argmax

𝜙
∫𝑟𝑖(𝜙|ω, 𝑡)𝑑𝐹(ω,𝒕|𝒕𝑖,𝑘) (13) 
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𝜙𝑡𝑖,𝑘
∗ ≈ argmax

𝜙

1

𝑀
 ∑ 𝑟𝑖(𝜙|ω

(𝑘,𝑚), 𝑡(𝑘,𝑚))

𝑀

𝑚=1

 (14) 

 

where 𝑀 is the number of samples simulated for 𝑝(𝜔, 𝒕|𝒕𝑖,𝑘); 

ω(𝑘,𝑚), 𝑡(𝑘,𝑚) are the 𝑚-th simulated demand and (complete) observation vector for the 𝑘-th 

simulation of 𝑝(𝒕𝒊). 
 

The profit function 𝑟𝑖(𝜙|ω, 𝑡) function is generally not guaranteed to be monotone nor convex. 

Many optimization sub-problems like this take time. If the dimension of a frequency vector is 

not large, we can divide the frequency domain into (
𝜙̅−𝜙

∆𝜙
)
𝐿𝑖

 parts and try only one point in each 

part. The error is guaranteed to be less than or equal to  ∆𝜙. This can speed up only if 𝐿𝑖 is 

small. 

We use MSA in step 13 of Algorithm 3, which is about updating the strategies. The 𝜙𝑖
∗ 

found from step 9 is like the optimal moving direction in optimization. The best step size is 

difficult to obtain, since strategy changes impact the posterior probabilities. Hence a sequence 

of pre-determined step sizes is adopted. The number of sample points in step 5 is 

𝑂 (𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
)) for operator 𝑖. This is the number of optimization programs (step 9) for 𝑖. 

The running time of each optimization is proportional to the number of samples used to 

simulate the posterior probabilities. The number of samples is determined by the threshold 𝜖𝑠
′ . 

𝜖𝑠
′  should not be too small, otherwise there will be not enough samples. Neither should it be 

too large or the simulated distribution in Figure 2(d) will be distorted. The number of samples 

is tested to be approximately inversely proportional to 𝜖𝑠
′ . The total running time of Algorithm 

3 has complexity 𝑂 (∑ 𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
)𝑛

𝑖=1 /𝜖𝑠
′) . 

 

3.2 Data-sharing decision making 

Now that we can compute the partition function 𝒖𝑆|𝒫 , our next step is to decide which 

partition(s) are stable. We turn to coalition formation theory (Ray, 2007). A blocking approach 

is adopted. The main idea is that larger coalitions may break into smaller pieces when some 

members seek their own benefits. However, when doing this they are aware of the avalanche 

of deviations that may occur. We want to find a partition, along with the strategy and payoff, 

that is stable from farsighted deviations. We try to find an Equilibrium Binding Agreement 

(EBA) set for every partition 𝒫. For some 𝒫, this set may be empty, which means that it is not 

stable. We can find EBA recursively, starting from the most basic structure. 

 

Definition 3: The partition that is composed of only sets with exactly one element is called a 

singleton structure. 

 

The singleton structure is written as 𝒫0 = {{1}, {2}, … , {𝑛}}. We refer to Chapter 12 of Ray 

(2007) for the recursive method. After having found the EBA sets for all partitions, we start 

from the grand coalition, 𝒫𝑛, to seek the solution. If EBA set of grand coalition is not empty, 

that means all operators are willing to share data. Otherwise, we look at the next lower level of 

partitions for non-empty EBA sets. The associated structure would be the stable partition that 

we expect to appear. We give this partition a name. 
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Definition 4: The partition 𝒫 with non-empty EBA that is closest to the grand coalition is 

called the top-down solution partition 𝒫∗ with payoffs 𝒖𝑆|𝒫∗ , where (𝒫∗, 𝒖𝑆|𝒫∗)  = 𝜋(𝒫0). 𝜋( ) 

represents the top-down method that depends on the singleton structure 𝒫0 and outputs a 

partition 𝒫∗ and its corresponding partition function 𝒖𝑆|𝒫∗. 

 

The non-empty EBA aspect of a top-down solution implies that it is a stable outcome. If utility 

is assumed to be non-transferrable, the top-down solution is the final result and the data sharing 

decisions emerge from the partition as a binary matrix 𝜉(𝒫∗) where 𝜉𝑖𝑗 = 1 means operator 𝑖 

shares data with 𝑗, determined as a coalition formed between them in partition 𝒫∗. 
The problem with the top-down solution method is that it does not necessarily ensure 

market efficiency (Ray, 2007) when utility is transferable. In fact, just as we expect of a Nash 

equilibrium, it is typically inefficient (i.e. an equilibrium might not generate the greatest value; 

players can cooperate to “beat” the market). However, the Coase theorem states that the market 

outcome should be efficient if a binding agreement can be written at no cost and all participants 

have complete and perfect information. As such, we propose an extension of the top-down 

solution method to achieve both stability and efficiency for a utility transferable (UT) case.  

 

(Utility transferable assumption) The utility of transit operators is transferable. 

 

The idea of the extension is that a coalition can be multi-leveled. For example, in the real world 

there exists multi-leveled coalitions in which some partners have prior binding agreements 

forming subcoalitions within a coalition: international trade agreements between a European 

bloc and the U.S., or material suppliers with transport providers, etc. We introduce a novel 

multi-level coalitional structure to capture this phenomenon. To the best of our knowledge this 

is a novel coalitional structure. 

 

Definition 5: A composite coalition structure is a sequence of partitions 𝒫1, 𝒫2, …𝒫𝐾 such 

that each 𝒫𝑘−1 is a refinement of 𝒫𝑘 for 𝑘 ≤ 𝐾, denoted as a tuple 𝓠 = [𝒫1, 𝒫2, … , 𝒫𝐾]. 𝐾 is 

called the dimension of 𝓠. Set 𝑆𝑘 ∈ 𝒬𝑘 = 𝒫
𝑘  is called a level-k coalition in the composite 

coalition structure 𝓠. 

 

A level-(𝑘 − 1) coalition is “stronger” than a level-𝑘 coalition. Each coalition 𝑆𝑘−1 ∈ 𝒫𝑘−1 

acts as a singleton in the formation of 𝒫𝑘. Algorithm 4 summarizes this process. If UT is not 

assumed, then the output is just the result of step 1, i.e. the top-down solution method from 

Ray (2007) is a special case. Let 𝒫0
(𝑘)

 be the partition consisting of singleton “players” at the 

start of k-th iteration. Also, let 𝒫𝑛
(𝑘)

 be the partition representing a single grand coalition of 

players at the k-th iteration. At the start of iteration 𝑘, we let the coalition structure from last 

iteration be the new singleton structure, 𝒫0
(𝑘)
≔ 𝒫∗(𝑘−1) (step 3), and apply coalition formation 

(𝒫∗(𝑘), 𝒖𝑆|𝒫𝑘) = 𝜋(𝒫0
(𝑘)
) (step 4). 

 

Definition 6: A composite coalition structure is said to be a grand structure if the last partition 

in 𝓠 is grand coalition, namely 𝒫∗(𝐾) = 𝒫𝑛
(𝐾)

 where 𝐾 is the dimension of 𝓠. 

 

We construct the composite coalition recursively in this manner until we either reach the grand 

structure or the current iteration’s top-down solution remains the singleton structure.  
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Algorithm 4: Data-sharing coalition formation 

1: Set 𝒫∗(0)={{1}, {2},…,{n}}; set k = 1; 

2: For each k, 

3:   𝒫0
(𝑘)
≔ 𝒫∗(𝑘−1); 

4:   (𝒫∗(𝑘), 𝒖𝑆|𝒫∗(𝑘)) = 𝜋(𝒫0
(𝑘)
); 

4.a: Each element in 𝒫0
(𝑘)

 is regarded as a single player in this subroutine; let 𝒫0 ≔

𝒫0
(𝑘)

 in this subroutine; 

4.b:   Find the equilibrium payoffs for each structure 𝒫 that may appear in the 

coalition formation process; 

4.c: For each structure 𝒫, find the EBA set – actions and payoffs that are not 

sequentially blocked by EBA set of refinement structures of 𝒫; return the 

resulting (𝒫∗, 𝒖𝑆|𝒫∗); 

5:  Stop if 𝒫(𝑘) = 𝒫𝑛
(𝑘)

 or 𝒫(𝑘) = 𝒫0
(𝑘)

and go to Step 6. Else, 𝑘 = 𝑘 + 1; go to Step 2. 

6. Output the final composite coalition structure 𝓠 = [𝒫∗(1), 𝒫∗(2), … , 𝒫∗(𝐾)], data sharing  

    decision matrix 𝜉(𝒫∗(𝐾)) and the payoff vector 𝒖𝑆|𝒫∗(𝐾) . 

 

Note that step 4.c in Algorithm 4 is recursive. The tasks are partially ordered by the partition 

refinement relation. Figure 3 shows the coalition formation process tasks’ precedence relation 

for a game with three players. Any task order that complies with the relation is fine, like ①②

③④⑤ or ①③④②⑤, etc. 

 

 
Figure 3. Algorithm 4 coalition formation process subroutine – task precedence relation illustration. 

 

Algorithm 4 and the grand structure stopping condition is illustrated in Figure 4 for a market 

with three operators. They form two sub-coalitions {i, j} and {k} after the first iteration and 

then further connecting into a grand coalition in the second iteration. Each iteration in Figure 

4 is resolved with a top-down method based on the updated singleton structure. 
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Figure 4. Illustration of singleton structures in each iteration of the coalition composition. 

 

Proposition 1: Algorithm 4 leads to a stable and efficient result (action profile and payoffs). 

 

Proof. The resulting 𝓠 with the actions and payoffs being not efficient means that some 

players in 𝒫∗(𝐾) can cooperate to form coalition structure (say 𝒫) such that everyone 

becomes better off. Then at the last iteration leading to 𝓠, the singleton structure should 

not be the equilibrium structure, since players are farsighted - they should not breach 

from 𝒫 to end up with the singleton structure that is less advantages to all of them. As 

a result, the iteration should not stop. This leads to contradiction. ∎ 

 

The composition process in Algorithm 4 can continue at most 𝑛 times, where 𝑛 is the number 

of operators. The extreme case happens only when two players form a coalition for each 

iteration. If 𝑇 is the runtime of Algorithm 2 or 3, then the runtime of Algorithm 4 is bounded 

by 𝑛𝑇. 

Algorithm 4 does not necessarily reach a grand structure. That means the grand structure 

is not necessarily efficient. We may care under what circumstances Algorithm 4 would indeed 

arrive at a grand structure. We give sufficient condition in proposition 2. Before that, we assert 

Lemma 1 and introduce the concept of grand-coalition super-additive. 

 

Lemma 1: If the payoff of a grand coalition 𝒫𝑛, ‖𝑢𝑁|𝒫𝑛‖1
, is larger than the sum of payoffs 

∑ 𝑢𝑖|𝒫0𝑖∈𝑁  of singleton structure 𝒫0, then the top-down solution is not the singleton structure, 

i.e. (𝒫0, 𝑢𝑆|𝒫0) ≠ 𝜋(𝒫0). 

 

Proof. Under these conditions and UT assumption, the payoffs of any player under the 

grand coalition 𝒫𝑛  could better off than in the singleton structure. If the singleton 

structure is the top-down solution, then players should not break from a grand coalition 

since they are far-sighted. Then the EBA set of grand coalition is non-empty. This is a 

contradiction to the fact that singleton structure is the top-down solution. ∎ 

 

Definition 7: A partition function 𝒖𝑆|𝒫 is said to be grand-coalition super-additive if it satisfies: 

‖𝒖𝑁|𝒫𝑛‖1
≥∑‖𝒖𝑆|𝒫‖1

𝑆∈𝒫

, ∀𝒫 

 

Proposition 2: The coalition composition process (Algorithm 4) results in a grand composite 
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coalition structure for a grand-coalition super-additive transferable-utility game. 

 

Proof: Grand-coalition super-additivity property ensures that the top-down solution is 

not a singleton structure at each step by Lemma 1. There are finitely many operators, 

so this process must stop. And it can stop only when 𝒫∗(𝐾) = 𝒫𝑛
(𝐾)

 for some 𝐾.∎ 

 

Given Proposition 2, we present a class of games for which it can be applied to. The partition 

function 𝑢𝑆|𝒫 is said to be derived from strategic form if we start with a strategic game. Let 

𝑢𝑖(𝑎) be the payoff of operator 𝑖  given the action profile 𝑎 . Then define 𝒖𝑆|𝒫  by 𝒖𝑆|𝒫 ≔

(𝑢𝑖(𝑎))𝑖∈𝑆 such that 𝒖𝑆|𝒫 satisfy the Nash equilibrium condition for every 𝑆 in 𝒫: 

𝒖𝑆|𝒫(𝑎𝑆
′ , 𝑎−𝑆) ≥ 𝒖𝑆|𝒫(𝑎), ∀𝑎𝑆

′ ∈ 𝐴𝑆 

 

Lemma 2. Partition function 𝒖𝑆|𝒫 derived from the strategic form satisfies grand-coalition 

super-additivity. 

 

Proof: The grand coalition can do everything a partition can do. Hence 𝑢𝑆|𝒫 is always 

smaller than or equal to ∑ 𝒖𝑖,𝑁|𝒫𝑛𝑖∈𝑆 . Summing over 𝑆  leads to ∑ ‖𝒖𝑆|𝒫‖1𝑆∈𝒫 ≤

‖𝒖𝑁|𝒫𝑛‖, which is the definition of grand-coalition super-additivity. ∎ 

 

Proposition 3. If partition function 𝒖𝑆|𝒫  is derived from the strategic form and utility is 

transferrable, then the coalition composition process (Algorithm 4) results in a grand structure. 

 

Proof: Combine Proposition 2 with Lemma 2.∎ 

 

We illustrate Algorithm 4 and Proposition 3 with Example 1 in which the grand coalition’s 

core in the traditional sense is empty but a stable outcome in a multi-level grand structure can 

be reached. 

 

Example 1: Suppose there is a market with three companies. Each company has the same 

action set 𝐴𝑖 = {𝑙,𝑚, ℎ} for “low”, “medium”, ”high”. The strategic form is shown in Table 1. 

This game is symmetric. When there is no cooperation of any kind (namely the singleton 

structure), the Nash equilibrium action profile is (l, l, l) and the corresponding payoff vector is 

(0.1, 0.1, 0.1). When a {i, j} coalition is formed, the partition becomes {i, j}, {k} (denoted by 

𝒫′ ). The corresponding strategic form is shown in Table 2. We can see that the Nash 

equilibrium becomes (m, m, l) with corresponding payoffs being (0.35, 0.35, 0.22). If a grand 

coalition is formed, the highest total payoff they can earn is 0.99 (= 0.33 + 0.33 + 0.33) and the 

action is (h, h, h). 

 
Table 1. Strategic form of the game if there is no cooperation 

Actions profile of i, j, k Payoffs of i, j, k 

l, l, l 0.1, 0.1, 0.1 

m, l, l 0.05, 0.4, 0.4 

m, m, l 0.35, 0.35, 0.22 

m, m, m 0.2, 0.2, 0.2 

h, l, l 0, 0.35, 0.35 

h, m, l 0, 0.3, 0.5 

h, m, m 0, 0.4, 0.4 

h, h, l 0.1, 0.1, 0.3 

h, h, m 0.15, 0.15, 0.55 
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h, h, h 0.33, 0.33, 0.33 

 
Table 2. Strategic form of the game if i and j cooperate 

k\(i, j) (l, l) (l, m) (m, m) (h, m) (h, h) 

l 0.1, (0.2) 0.4, (0.45) 0.22, (0.7) 0.5, (0.3) 0.3, (0.2) 

h 0, (0.7) 0, (0.8) 0, (0.8) 0.15, (0.7) 0.33, (0.66) 

Remark: the payoffs in parenthesis, like (0.7), is the summation of payoffs of i and j. 

 

The partition function is shown as follows. Since we assume UT, we use a single value for 

coalition payoff instead of a vector or a set of vectors. 

𝑢{𝑖}|𝒫0 = 0.1 

𝑢{𝑖,𝑗}|𝒫′ = 0.7 

𝑢{𝑖,𝑗,𝑘}|𝒫𝑁 = 0.99 

The grand coalition is not stable because {i, j} can form a coalition that can increase their 

payoffs from (0.33, 0.33) to (0.35, 0.35). Meanwhile, players {i} or {j} would not break from 

{i, j} since they would only earn (0.1, 0.1) if they do so. Therefore, the stable structure of the 

first-round coalition formation would be {i, j}, {k} with the action profile being (m, m, l) and 

payoff being (0.35, 0.35, 0.22). If utility transfer is not allowed, then we stop here and output 

this result; this is the top-down solution (corresponding to one iteration of Step 4 of Algorithm 

4, and on its own is not efficient in this example). 

We start the second-round coalition formation. {i, j}, as a single entity, could ask {k} to 

choose action h altogether – (h, h, h), and this results in a total payoff of 0.99 (= 0.33 + 0.33 + 

0.33), larger than 0.92 (= 0.35 + 0.35 + 0.22) of {i, j}, {k} under (m, m, l). As long as {i, j} can 

get more than 0.7 (= 0.35 + 0.35) and {k} get more than 0.22, this cooperation is feasible. 

Therefore, the resulting action profile is (h, h, h) and the payoff is (x, x, y) where x > 0.35, y > 

0.22 and 2x + y = 0.99. Note that 𝑖 or 𝑗 cannot break out of the first-round coalition {i, j}. This 

is why the final result is not stable under the non-hierarchical coalitional structure but is stable 

under the composite coalitional structure. Here the partition function is a result of strategic 

form. And we indeed reach a grand structure as asserted by Proposition 3. The final payoff is 

not Nash equilibrium of the original strategic form game nor is it in the core. We cannot get 

this result from traditional game theory. But it is justified as the result of a dynamic coalition 

formation process. 

The set of partition functions derived from a strategic form includes a large class of games. 

However, the proposed transit coopetition game is not derived from strategic form as defined 

above because of the existence of the always-competing frequency setting action. As such, a 

grand data-sharing structure may not always do better, i.e. a grand data-sharing coalition may 

not be efficient. 

4 Numerical tests 

In this section, we apply our previous models to some example networks. All the example data 

and code are shared in https://github.com/BUILTNYU/transit-data-game. We propose an index 

to evaluate the data-sharing level of a transit market. 

 

Definition 8: Data sharing index 𝛾(𝒫) is a function mapping the set of data-sharing 

partitions to ℝ≥0, defined by Eq. (15). 

 

𝛾(𝒫) = ln
|𝑁|!

∏ |𝑆|!𝑆∈𝒫
 (15) 

 

https://github.com/BUILTNYU/transit-data-game
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The grand data-sharing coalition, namely 𝒫 = {𝑁}, has 𝛾({𝑁}) = ln
|𝑁|!

|𝑁|!
= 0. The singleton 

coalition has 𝛾({1}, {2}, … , {𝑛}}) = ln|𝑁|!, a larger number. The smaller the 𝛾(𝒫), the higher 

the data-sharing level. 

 

Example 2: For the two partitions in Figure 5, we have |N| = 6; 𝛾(𝒫(a)) = ln
6!

1!2!2!1!
≈ 5.1; 

𝛾(𝒫(b)) = ln
6!

4!2!
≈ 2.7 < 𝛾(𝒫a). The degree of data sharing in (b) is higher. 

 

 
Figure 5. Partitions for example 2, where (b) has higher degree of data sharing than (a). 

 

4.1 Discrete model example 

4.1.1 Competitive services 

In this section, we test our discrete game model from section 3.1.1 on simple networks. We 

consider a case shown in Figure 6. This example represents three identical operators providing 

perfectly competitive services. The parameters settings are shown in Table 3. The precision of 

measurement means the resolution of observations. Operators can only observe that the flow 

is within certain interval like [1000,2000). The interval [1000(𝑛 − 1), 1000𝑛) is denoted by 

“nK” below. 

 

 
Figure 6. Example network with competitive services. 

 
Table 3. The parameters settings 

Parameter Value 

Demand 6000 (high) with probability ½; 

3000 (low) with probability ½; 

Transit price $2 

Operational cost $24000 * frequency; 

Frequency interval [0, 0.2] per min 

User Logit choice model dispersion 

parameter 

0.3 
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Transit travel time 20 min 

Expected utility of  

no-entry 
−30 (unit: min) 

Precision of measurement 1000 vehicle units 

Iteration difference threshold 𝜖𝑑 0.005 

 

There is only one OD pair (A-B) on this network. We have five possible partitions. We assume 

operators’ roles being symmetric, hence we only need to consider three of them due to 

symmetry: {{1}, {2}, {3}}, {{i, j}, {k}} and {{1, 2, 3}}. 

Each user can choose to take transit services or not to use transit at all. Users’ choices are 

modeled by a MNL model. The payoffs at Nash equilibrium for the three types of partitions 

are shown in Table 4. Operator 𝑖’s posterior probabilities 𝑝(𝜔, 𝑡𝑗 , 𝑡𝑘|𝑡𝑖) and the strategy (a 

vector) under singleton structure are shown in Table 5 and Table 6 respectively. The frequency 

“0.1000” in the tables is the initial frequency setting of the algorithm. Some observation 

combinations turn out to be inconsistent under the final strategy; hence their frequencies are 

not updated and left with the initial one. Operator 𝑗  and 𝑘  have the same results due to 

symmetry. For partition {{i, j}, {k}}, operator 𝑖 ’s posterior probabilities 𝑝(𝜔, 𝑡𝑘|𝑡𝑖, 𝑡𝑗) and 

strategy (a matrix) are shown in Table 7 and Table 8 respectively. Operator 𝑗 has the same 

results due to symmetry; Operator 𝑘 has posterior probabilities similar to a singleton structure 

since its knowledge level remains the same. We can see that 𝑖 and 𝑗′𝑠 posterior distributions 

are less dispersed when they share data. When i and j share data, their expected payoff would 

increase; the leftover operator k would become worse off. Operator i and j know the true 

demand level better and cater to the high demand more effectively. At high demand level, i and 

j set frequencies at 0.1255 (Table 8), so high that k will stop serving by setting frequency at 0. 

At low demand level, their frequencies 0.0819 are much lower than operator k’s 0.1294. 

Under a grand data-sharing coalition, they have perfect information of the demand level 

and each other’s observations. Operators have the same strategy as shown in  

Table 10. Their payoffs are a bit less than the case they don’t share data at all. This is 

because they compete too fiercely when the demand is high: they all set frequency at 0.1037 ( 

Table 10), and they care less about low demand, resulting in user loss. The solution is 𝒫 =
{{𝑖, 𝑗}, {𝑘}}. Namely, only a proper subset of operators will share data with each other. The data 

sharing index is 𝛾(𝒫) = − ln (
1!2!

3!
) = 0.4. To realize a grand-coalition, a subsidy of 1590-

1572 = 18 is needed. 
Table 4. Nash equilibrium for three partitions 

Partition {1},   {2},     {3} {i,        j},        {k} {1,        2,       3} 

Expected payoffs 571    571    571 593     593       404 524     524    524 

Sum of payoffs 1713 1590 1572 

 
Table 5. Operator 𝑖’s posterior probability of (𝜔, 𝑣𝑗 , 𝑣𝑘) conditioning on observing 𝑡𝑖 under singleton structure; 

the same is true for operator 𝑗 and 𝑘. 

Observation Estimation Posterior prob 

𝑡𝑗 𝜔 𝑡𝑗 𝑡𝑘 𝑝(𝜔, 𝑣𝑗 , 𝑣𝑘|𝑣𝑖) 

1K 3K 1K 1K 1/6 

1K 3K 1K 2K 1/6 

1K 3K 2K 1K 1/6 

1K 3K 1K 3K 1/6 

1K 3K 3K 1K 1/6 

1K 6K 1K 1K 1/6 

2K 3K 1K 1K 1/6 

2K 3K 1K 1K 1/6 

2K 3K 2K 1K 1/6 
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2K 6K 2K 2K 1/6 

2K 6K 3K 2K 1/6 

2K 6K 2K 3K 1/6 

3K 6K 3K 1K 1/3 

3K 6K 2K 2K 1/3 

3K 6K 1K 3K 1/3 

 
Table 6. The strategy (frequency setting) of each operator when observing 𝑡𝑖 under singleton structure. 

Observation 𝑡𝑖 1K 2K 3K 

Frequency 0.1000 0.1022 0.1194 

 
Table 7. Operator 𝑖’s posterior probability of (𝜔, 𝑣𝑘) conditioning on observing (𝑡𝑖 , 𝑡𝑗) under partition {{i, j}, 

{k}}; the same is true for operator 𝑗. 
Observation Estimation Posterior prob 

𝑡𝑖 𝑡𝑗 𝜔 𝑡𝑘 𝑝(𝜔, 𝑣𝑘|𝑣𝑖 , 𝑣𝑗) 

1K 1K 3K 1K 1/3 

1K 1K 3K 1K 1/3 

1K 1K 3K 2K 1/3 

2K 2K 3K 1K 1/2 

2K 2K 6K 3K 1/2 

3K 3K 6K 1K 1.0 

 
Table 8. The strategy (frequency setting) of operator i when observing (𝑡𝑖 , 𝑡𝑗) under partition {{i, j}, {k}}; the 

same is true for operator 𝑗. 
Observation 𝑡𝑖\𝑡𝑗 1K 2K 3K 

1K 0.0000 0.1000 0.1000 

2K 0.1000 0.0819 0.1000 

3K 0.1000 0.1000 0.1255 

 
Table 9. The strategy of operator k under partition {{i, j}, {k}} 

Observation 𝑡𝑘 1K 2K 3K 

Frequency 0.0000 0.1294 0.1162 

 
 

Table 10. The strategy of each operator under grand data-sharing coalition 

Demand level 𝜔 3K 6K 

Frequency 0.0602 0.1037 

 

This is an example of the fact that perfect knowledge may lead to perfect selfishness. Since we 

do not assume frequency setting cooperation, the act of selfishness offsets the benefits gained 

by the ability of efficient frequency setting with more knowledge. Therefore, if operators plan 

to share data, we suggest them to strengthen their cooperation to another level by setting transit 

frequencies and fares under coordination. This result contrasts with the popular belief that more 

data sharing means better services for all operators and occurs because frequency setting 

remains noncooperative. It implies that policymakers wanting market-wide data sharing should 

also encourage operators to cooperate in their operations as well. 

Sensitivity tests are conducted with respect to the ratio of operator cost coefficient 𝛽 and 

transit fare coefficient 𝛼. The results are shown in Figure 7. The x-axes are the ratios: operator 

cost per minute frequency ($) divided by (1000 × transit fare per ride ($)). The y-axis in (a), 

(b), (c) are Bayesian equilibrium payoffs ($). As the ratio increases, the general trends of 

payoffs are decreasing for all structures and all operators as we would expect. But we can see 

that the curves are not monotone and fluctuations do exist. The fluctuations get larger as data 

sharing levels become lower ((c) → (b) → (a)). That means the Bayesian equilibrium is more 

difficult to estimate. This result makes sense. It is like when people interact in a very dark space, 
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everyone is less predictable of the others’ actions as well as his or her own action (reaction). 

Figure 7(d) shows the results of a one-step coalition formation (green solid dots) and coalition 

composition process (black hollow dots). We don’t see any easy trend due to the existence of 

payoff fluctuations. But we can make out three regions (surrounded by dashed lines) where the 

resulting data-sharing levels are relatively homogenous. The left and right regions have high 

data-sharing levels and the middle region has a low level. Our previous results in Table 4 to  

Table 10 belong to this middle area. 

 

 
Figure 7. Sensitivity test with respect to operator cost / transit fare. 

 

4.1.2 Complementary services 

In this example, we consider a network with complementary services as shown in Figure 8. 

There are six OD pairs (A-B, A-C, A-D, B-C, B-D, C-D) on this small network. Compared to 

the parameter settings in Table 3, the demands change from “6000 (high)” and “3000 (low)” 

to “2000 (high)” and “1000 (low)”; the operator cost is changed from 24000 to 30000. Now 

the roles of operators are not symmetric. We need to consider all five possibilities of 

partitions. The payoffs are shown in  

Table 11. Because of the fact that there are more OD pairs and the game is asymmetric, the 

detailed results in this case are much lengthier than before. We only list operator 1’s strategy 

under singleton structure (Table 12) and structure {{1,2}, {3}} (Table 13). “0.1” is still the 

default setting. 

 

 
Figure 8. Example network with complementary services 
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Table 11. Nash equilibrium for each of the five coalition structures 

Structure\Operator Payoffs 

Operator 1 Operator 2 Operator 3 

{{1}, {2}, {3}} 1155 1792 1155 

{{1, 2}, {3}} 2803 3878 804 

{{1, 3}, {2}} 5322 1057 5324 

{{2, 3}, {1}} 629 5937 3461 

{{1, 2, 3}} 1136 1827 1136 

 

Table 12. The strategy (frequency setting) of operator 1 when observing 𝑡𝑖 under singleton structure 

Observation 𝑡1 1K 2K 3K 4K 5K 6K 7K 8K 

Strategy 0.0000 0.0000 0.0000 0.1224 0.1282 0.1329 0.1000 0.1000 

 
 

Table 13. The strategy (frequency setting) of operator 1 when observing (𝑡𝑖, 𝑡𝑗) under structure {{1, 2}, {3}} 

𝑡1\𝑡2 1K 2K 3K 4K 5K 6K 7K 8K 

1K 0.0000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

2K 0.1000 0.0000 0.0000 0.0000 0.1000 0.1000 0.1000 0.1000 

3K 0.1000 0.0000 0.0000 0.0000 0.0960 0.1000 0.1000 0.1000 

4K 0.1000 0.1000 0.1000 0.0000 0.1255 0.1000 0.1430 0.1000 

5K 0.1000 0.1000 0.1000 0.1000 0.1327 0.1313 0.1180 0.1000 

6K 0.1000 0.1000 0.1000 0.1000 0.1000 0.1364 0.1000 0.1636 

7K 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

8K 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 

 

 

When two operators 𝑖 and 𝑗 share data, their payoffs both increase significantly. The payoff of 

the remaining operator decreases slightly. This is explained by the two operators efficiently 

exploiting high demands and leaving out low demands although all three operators services are 

complementary. Each operator caters to demands they like most and know well, resulting in 

loss of potential transit users. This is verified by the actions of operator 1 under two structures. 

The demand that operator 1 cares about is from OD pairs A-B, A-C and A-D. Operator 1’s 

frequency settings under singleton structure (Table 12) do not vary as drastically as under 

structure {{1,2}, {3}} (Table 13) when it knows more. In the latter case, it sets frequency as 

high as 0.1636 when the demands it cares for are high and decays to zero more quickly when 

demands are low. Structure {{1,2}, {3}} is the final output. A grand coalition does not form. 

This is quite counter-intuitive: a sharing-data grand coalition does not necessarily make 

operators’ situations much better-off under perfectly complimentary services. Here we verified 

again the fact that perfect knowledge may lead to perfect selfishness. These results depend on 

parameter settings. There are other settings under which complementary operators do form 

grand data sharing coalitions. 

There are still many other factors that can potentially influence data-sharing, like other 

types of network structures, the number of operators, the distribution of lines between 

operators, the degree of complementarity between transport operators’ lines, etc. We leave the 
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testing of those factors for future work. 

 

4.2 Continuous model example 

The continuous model in Section 3.1.2 is tested on a new transit line version of the Nguyen 

Dupuis network. This network has two origin nodes, two destination nodes and nine 

intermediate nodes. There are four OD pairs (1-2, 1-3, 4-2, 4-3). The network is modified to 

include three operators with six lines, as shown in Figure 9(a). This physical network is 

converted to a transit network with boarding and alighting links as in Spiess and Florian (1989). 

The expanded network has 44 nodes and 75 links (25 traveling links, 25 boarding links and 25 

alighting links). Line 1 in the expanded network is shown in Figure 9(b). Other lines follow 

the same pattern. 

 

 
Figure 9. (a) Transit lines on Nguyen Dupuis network (b) line 1 in expanded transit network 

The OD demands are i.i.d. normal random variables with μ = σ = 100, truncated at zero 

to make sure that they are non-negative. Operators 1, 2 and 3 have 8, 10, and 7 directional links, 

respectively. The operators’ services are more competitive than complementary and operator 

2 has greater market power than the other two.  

The degree of the polynomial is chosen to be 1 (linear approximation of 𝜙𝑖(𝑡𝑖)). MSA 

style step-size is employed as indicated in Algorithm 3. We refer to the GitHub files for detailed 

settings of the network characteristics and operational parameters. 

The payoffs over iterations are illustrated in Figure 10. The payoffs for five possible 

partitions are shown in Table 14. The results show that the top-down solution (after first-round 

of Step 4 of Algorithm 4) is: 𝒫∗ = {{1, 3}, {2}}. Namely, the two weaker operators would share 

data with each other; their payoffs both get better compared to the singleton structure. It’s 

interesting to see that the payoff of operator 2 also gets slightly better (+2.5%). A grand 

coalition is not formed because operator 2 will break from this partition. Simulation results, 

including OD demands and frequency configurations, for 𝒫∗ are shown in Table 15. The OD 

demands, link flows, and frequency settings corresponding to simulation #1 in Table 15 are 

shown in Figure 11. 
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Figure 10. Simulated payoffs changing over iterations (partition: {{1}, {23}}) 

Table 14. Payoffs under various data sharing coalitions. 

Partition {{1}, {2}, {3}} {{1, 2}, {3}} 

Operator 1 2 3 1 2 3 

# links 8 10 7 8 10 7 

# measurements 8 10 7 18 18 7 

Poly space dim 9 11 8 19 19 8 

Expected payoff 149.47 277.03 89.87 109.25 259.67 157.32 

       

Partition {{1, 3}, {2}} {{1}, {2, 3}} 

Operator 1 2 3 1 2 3 

# links 8 10 7 8 17 17 

# measurements 15 10 15 8 17 17 

Poly space dim 16 10 16 9 18 18 

Expected payoff 165.66 285.53 149.84 149.30 279.88 119.55 

       

Partition {{1, 2, 3}}  

Operator 1 2 3    

# links 8 10 7    

# measurements 25 25 25    

Poly space dim 26 26 26    

Expected payoff 156.46 225.57 123.82    

 

If UT is assumed, then Algorithm 4 would compare ‖𝑢{1,2}|𝒫∗‖1
+ ‖𝑢{3}|𝒫∗‖1

 with ‖𝑢𝑁|𝒫𝑛‖1
. 

The latter is smaller; hence a grand structure is not formed in this case, i.e. the final solution 

𝓠 = [𝒫∗] coincides with the top-down solution 𝒫∗. In other words, in this case the level 1 top-

down structure is already an efficient structure and cannot be improved further with higher 

compositions of coalitions. We output the 1-dimensional [𝒫∗]  along with the actions and 

payoffs. 

 
Table 15. Eight simulated demands and frequency settings for partition {{1,3}, {2}}. 

# simulation 1 2 3 4 5 6 7 8 

OD 

Demands 

1→2 114.4 200.0 57.0 66.5 188.1 66.7 0.0 36.7 

4→2 171.3 176.7 0.0 95.5 90.3 75.0 149.4 190.0 

1→3 23.9 123.3 145.4 141.8 108.0 121.7 121.5 210.0 

4→3 200.0 83.1 93.5 200.0 153.6 177.6 195.4 130.1 

frequency f1 0.02 0.17 0.02 0.01 0.08 0.20 0.01 0.02 
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settings f2 0.01 0.18 0.06 0.08 0.07 0.15 0.03 0.07 

f3 0.07 0.12 0.09 0.05 0.09 0.09 0.11 0.14 

f4 0.06 0.12 0.05 0.04 0.07 0.06 0.08 0.12 

f5 0.10 0.01 0.08 0.11 0.08 0.20 0.10 0.10 

f6 0.12 0.01 0.05 0.08 0.08 0.01 0.11 0.06 

 

 
Figure 11. OD flows, link flows, and frequency settings of simulation #1 from Table 15. 

The simulated relationships between var[payoff] with param1 and param2 are shown in 

Figure 12 using the coalitional structure {{1,3}, {2}}. Var[payoff] values are estimated using 

sample variance from 10 simulations. For Figure 12(a), the x-axis is the ratio of param1i over 

𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
) . We can see that the var[payoff] tends to decrease quickly as 𝑝𝑎𝑟𝑎𝑚1𝑖/

𝐿𝑖 (
𝑑 +𝑀𝑖

𝑑
) increases from 1 to 4 and stabilize as it increases to 8. For Figure 12(b), the x-axis 

is param2i similarly shows Var[payoff] decreasing and stabilizing even as the runtimes 

increase in Figures 12(c) and 12(d), respectively. The runtime increases linearly with param1i 

and param2i. 
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Figure 12. Payoff variances under different (a) param1 and (b) param2 settings; Runtimes under different (c) 

param1 and (d) param2 settings. 

 

The solution has several implications for a policymaker in charge of this network. A stable 

grand coalition is not achievable if the policymaker does not also require cooperation in setting 

frequencies. A requirement for all three providers to share data with each other could alienate 

the larger provider, operator #2, as they can break from the coalition and do better. The payoff 

difference provides the policymaker with suggestions for subsidies that they might make to 

operator #2 to keep them in the data sharing coalition. If there is no data sharing at all, the 

policymaker can convince operators #1 and #3 to contribute some investment to setup the 

infrastructure for sharing data with each other, as long as the amount does not exceed their 

gains. In a MaaS environment with multiple operators, operators may not necessarily cooperate 

in providing bundled fares. An example is the pilot MaaS platform in Pittsburgh (Move PGH, 

2022), which allows travelers to see all the mobility services (Port Authority transit, Spin e-

scooters, Scoobi e-mopeds, Healthy Ride bikeshare, Zipcar carshare, and Waze carpool) but 

only the transit and bikeshare are integrated together. The different operators are not sharing 

data with each other. In those cases, the design of the platform architecture should not only 

allow for privacy for an operator but also make it possible for subgroups of operators to share 

data internally. 
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5 Conclusion 

Data-sharing is a most common form of coopetition in which companies may choose to 

cooperate with data-sharing while simultaneously competing in other decisions. However, this 

data-sharing coopetition game has never been studied in the complex context of public transit 

oligopolies. These markets are unique in that coalitional values depend on a non-cooperative 

game between each of the operators regardless of whether they are in a coalition together.  

This study proposes a new type of coopetition model to study the data-sharing of 

oligopolistic market with multiple transit operators when such an externality effect exists. It 

assumes multiple transit operators compete in frequency setting for an underlying population 

of travelers (assigned using a model like that of Spiess and Florian, 1989). The solution method 

obtains a partition initially based on a top-down rule that is extended to a multi-level composite 

coalition structure to ensure efficiency. Each coalition determines the data sharing which 

informs the signal functions of each player within a Bayesian game; each operator makes 

frequency setting decisions to achieve a Nash equilibrium in that game. We prove that the 

coalition composition process results in an efficient solution for a super-additive transferable 

utility market. 

Computational tests are conducted on several instances. A simple 3-link network with a 

single OD pair is used to illustrate the mechanics of the model and solution algorithm. It shows 

that the best solution with three operators can result in only two of them sharing data with each 

other, even as all three compete for passengers. This underlines the need to study such games 

because the grand coalition may not be stable. A transit-customized version of the Nguyen-

Dupuis network reinforces this point using a continuous model. Assuming three operators 

owning two lines each, the top-down partition results in having {1,3} teaming up and leaving 

out operator 2. The example illustrates how operators can use the model to identify data-sharing 

strategies under competition which can also quantify the opportunity costs of not cooperating 

on operations like frequency setting. 

Our results can provide insights for policy making. The results of our models can be used 

to evaluate the degree of data sharing. Perfect knowledge may lead to perfect selfishness. 

Sharing more data does not necessarily improve transit service for all groups if operators 

remain noncooperative. Service complementarity may not necessarily guarantee a grand 

coalition of data-sharing. For example, some city authorities may consider issuing laws to 

enforce data-sharing. In some cases, a voluntary data sharing platform is recommended instead 

of mandatory data-sharing with noncooperative operators, or to encourage cooperative 

operations if data sharing is enforced.  

For future research, this model can be extended to include frequency setting coalitions or 

other forms of cooperation. Other forms of data sharing can be discussed. Sensitivity to other 

factors (e.g. network structure, the number of operators, the distribution of lines between 

operators) can be investigated. Data-sharing can be studied under the context of MaaS 

platforms, where operators and users form two-sided markets and stable matching are sought 

(Pantelidis et al., 2020b). 
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Appendix: Existence of Bayesian game Nash equilibrium for finite state game 

The first way to ensure the existence of a Bayesian Nash equilibrium is by allowing a mixed 

strategy. Suppose that the possible frequency settings for each link is within compact interval 

of ℝ, [𝜙, 𝜙]. By discretizing [𝜙, 𝜙], this game 𝐺∗ becomes a finite game. Then we can assert 

the existence of equilibrium mixed strategy. 

 

Proposition A1: If the set of feasible frequencies 𝐴 is finite, then there exists a mixed 

strategy Nash equilibrium of the game 𝐺∗. 
 

Proof: every finite game has a mixed strategy Nash equilibrium (Nash, 1950).∎ 

 

 

The second approach is to impose some additional constraints to ensure the existence of a pure 

strategy. Given the formulation by Eqs. (10) and (11), it’s natural to attempt to achieve this by 

requiring 𝔼[𝑟𝑖(𝝓, 𝒇)|𝑡𝑖]  and 𝐶(𝒇;𝝓)  to be continuously differentiable. 𝔼[𝑟𝑖(𝝓, 𝒇)|𝑡𝑖]  is 

composed of products of posterior probability terms 𝑝𝑖,𝝓(𝜔, 𝒕| 𝑡𝑖) and link flows 𝑣𝑙(𝜔,𝝓(𝒕))). 

They have poor smoothness properties generally. First we look at 𝑣𝑙(𝜔,𝝓(𝒕))), link flow as a 

function of 𝝓 given fixed OD demand 𝜔. For most transit assignment models, this function is 

not continuous. 

 

Example A1. For the simple network Figure A1(a), we apply the assignment model from 

Spiess and Florian (1989) to assign unit flow from A to C. If 𝜙𝐵𝐶 <
1

20
, link AB is not included 

in the attractive set; hence 𝑣𝐵𝐶 = 0. If 𝜙𝐵𝐶 ≥
1

20
, all links are included in the attractive set. The 

relations between links flows and 𝜙𝐵𝐶  are plotted in Figure (b). 

 

 
Figure A1. (Example 3) link flow – frequency relation under Spiess assignment model; (a) the network settings; 

(b1) AB flow – BC frequency relation; (b2) BC flow – BC frequency relation; (b3) AC flow – BC frequency 

relation. 

We can see that link flow is discontinuous when one link on the network drops out or joins in 

the attractive set as its frequency varies. Hence, link 𝑎 flow as a function of link 𝑏 frequency, 

𝑣𝑎(𝜙𝑏), is generally not continuous. It is right- or left-continuous depending on whether or not 

a link is added to the attractive set when the expected costs draw. In our case, it’s right 

continuous. Semi-continuity is a concept used frequently in proving Nash equilibrium 

existence. We note that when link 𝑎 and 𝑏 are complementary, like link AB and BC in our case, 
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𝑣𝑎(𝜙𝑏) is increasing and upper semi-continuous; when 𝑎 and 𝑏 are competitive, like link AC 

and BC in our case, 𝑣𝑎(𝜙𝑏)  is decreasing and lower semi-continuous. We introduce the 

following definition of smooth assignment. 

 

Definition A1: A transit assignment model is said to be a smooth assignment if any link flow 

is a smooth (𝐶∞) function of any link frequency on the feasible interval. 

 

A common way to realize smoothness is through stochastic assignment. For example, if we 

assume that users comply with a Logit model to select hyperpaths, then we can obtain the 

hyperpaths and probabilities as in Table A1 for Example A1. The resulting link flows are 

obviously smooth functions of 𝜙𝐵𝐶 . 

 
Table A1. (Example 3) Hyperpaths and probabilities of stochastic assignment 

 
 

There are some studies on applying Logit model to transit assignment, like Nguyen et al. (1998) 

and Florian and Constantin (2012). They apply the idea of Dial’s algorithm to transit and hence 

their algorithms don’t need hyperpath enumeration. However, we noticed that these 

assignments don’t satisfy our previous definition. This is because a hyperpath may still appear 

or disappear from user choice set when link frequency varies, thus leading to discontinuous 

link flows. We give the following sufficient condition for smooth assignment. 

 

Lemma A1: Suppose a stochastic (Logit or Probit) model is used for transit user choice, and 

if the hyperpath choice set 𝐻𝜃 for each OD pair 𝜃 is independent of frequencies 𝜙, then the 

resulting assignment map is smooth. 

 

Proof: Take Logit for example; Probit case can be proved similarly. The hyperpath ℎ 

expected travel time 𝔼[𝑇ℎ(𝝓)] is continuous function of 𝝓. When the hyperpath choice 

set 𝐻 for each user is fixed, the hyperpath choice probability is: 

𝑝ℎ(𝝓) =
𝑒−𝔼[𝑇ℎ(𝝓)]

∑ 𝑒−𝔼[𝑇ℎ′(𝝓)]ℎ′∈𝐻

 

This is obviously a smooth function of 𝝓.∎ 

 

The difficulty part of finding a smooth assignment algorithm is to about how to avoid hyperpath 

enumeration. We don’t provide one in this study. Next, we look at the properties of 

𝑝𝑖,𝝓(𝜔, 𝒕 | 𝑡𝑖). It may be discontinuous as 𝝓 varies (Figure A2 (a)). Note that although we write 
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𝝓 as a subscript in 𝑝𝑖,𝝓(𝜔, 𝒕 | 𝒕𝑖), it is a variable. We can smooth it by using bump functions 

(Eq. (A1)) or smooth kernels like a Gaussian kernel. 

 

𝛹(𝑥) = {exp
(−

1

1 − 𝑥2
) , if 𝑥 ∈ (−1, 1) 

0, otherwise
 (A1) 

 

Take a one-dimensional case for example. Let there be two posterior functions 𝑝𝜙(𝑡) and 

𝑝𝜙(𝑡′) . Suppose discontinuity happens at point 𝜙0 . We smooth them on interval 

(𝜙0 − 𝜖, 𝜙0 + 𝜖). We first construct 𝑔1 and 𝑔2 to be defined by Eq. (A2) and (A3). Then we 

define 𝜓1and 𝜓2  as in Eq. (A3). The resulting 𝜓1and 𝜓2  are the smooth partitions of unity on 

interval (𝜙0 − 𝜖, 𝜙0 + 𝜖) as we desired. The result is illustrated in Figure A2(b). Another way 

of using a smooth kernel is similar. The variables 𝑔1 and 𝑔2 are obtained by convolution of a 

smooth kernel with characteristic functions at the end of intervals, then 𝜓1and 𝜓2 are obtained 

again by Eq. (A3). 

 

𝑔1(𝜙) =

{
 
 

 
 

1, 𝑖𝑓 𝜙 ≤ 𝜙0 − 𝜖

𝑒𝑥𝑝(1 −
1

1 −
(𝜙 − 𝜙0 + 𝜖)2

4𝜖2

)

0, 𝑖𝑓 𝜙 ≥ 𝜙0 + 𝜖

, 𝑖𝑓 𝜙0 − 𝜖 < 𝜙 <  𝜙0 + 𝜖 (A2) 

𝑔2(𝜙) =

{
 
 

 
 

𝑒 ∗

0, 𝑖𝑓 𝜙 ≤ 𝜙0 − 𝜖

𝑒𝑥𝑝(1 −
1

1 −
(𝜙0 + 𝜖 − 𝜙)2

4𝜖2

)

1, 𝑖𝑓 𝜙 ≥ 𝜙0 + 𝜖

, 𝑖𝑓 𝜙0 − 𝜖 < 𝜙 <  𝜙0 + 𝜖 (A2) 

𝜓1 =
𝑔1

𝑔1 + 𝑔2
, 𝜓2 =

𝑔2
𝑔1 + 𝑔2

 (A3) 
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Figure A2. Posterior probability- frequency relation (1-dimensional case). 

 

Proposition A2: If the set of feasible transit frequency is compact, the transit assignment is 

smooth, and the posterior probabilities are smooth functions of frequencies, then there exists 

a pure strategy Nash equilibrium of game 𝐺∗. 
 

Proof: The problem can be formulated as VIs described by Eq. (10) and (11). They 

require that the state set to be finite; but there is no loss of generality in this assumption 

since traffic flows can be considered discrete. The gradient is continuous and defined 

on compact set under our assumption of finite OD demand. Hence there exist at least 

one solution by Theorem 3.1 from Kinderlehrer and Stampacchia (2000). ∎ 

 

We do not really need such strong 𝐶∞ condition to prove the existence of Nash equilibrium. 

A 𝐶1 assignment map would suffice. 
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