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Abstract 
Due to transportation technologies having such heterogeneous impacts on different communities, 

there needs to be better tools to evaluate the deployment of emerging technologies with limited 

data. Microtransit is one such technology. We propose a novel framework based on existing 

methods to “upscale” the limited data available so that further decision-support analysis and 

forecast modeling can be achieved where none could prior. The framework involves expanding an 

initial day-to-day adjustment process to handle both first/last mile access trips and direct trips, 

updating a within-day microtransit simulator with a parametric design, and developing a synthetic 

scenario generation process. The framework is tested in a case study with data from Via for Salt 

Lake City, Austin, Cupertino, Sacramento, Columbus, and Jersey City showing an average 18% 

ridership error for the market equilibrium models. Data from four of those cities are upscaled to 

326 synthetic scenarios to estimate forecast models for ridership and fleet vehicle-miles-traveled 

using Lasso regularization. While the models have root mean squared error (RMSE) values 

between 37-45% of the averages, using only four cities’ data alone would not produce any forecast 

model at all. The results show that variables with statistically significant positive impact on 

ridership and negative impact on vehicle-miles-traveled (VMT) include zones with more transit 

stations, higher employment, but lower “employment density × fixed fare”. The models are then 

used to identify two alternative portfolios with similar fleet VMT as the original four cities but are 

forecast to have up to 1.9 times the ridership. 
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1. Introduction 
 

Transportation technologies are not “one-size-fits-all” solutions in general because their 

effectiveness depends on the deployment region. On-demand transit, i.e., “microtransit”, exhibits 

this characteristic. Microtransit can be defined as shared public or private sector transportation 

services that offer fixed or dynamically allocated routes and schedules in a demand-responsive 

manner i.e., in response to individual or aggregate consumer demand, using smaller vehicles 

(multi-passenger /pooled shuttles or vans) and capitalizing on widespread mobile GPS and internet 

connectivity (Volinski, 2019; Chow et al., 2020; Yoon et al., 2022). The broader market of 

demand-responsive transportation (e.g., shared taxis, ride-sourcing, carshare, micro mobility, 

microtransit) has gained significant interest in the global urban mobility sector because of these 

mobile technologies.  

Since these technologies are not one-size-fits-all, the reception for such technologies have 

been mixed. Some ventures have been successful. For example, Via Transportation, Inc. (founded 

in 2012) (Via, 2021) continues to operate at full capacity in over 35 countries in partnership with 

over 90 transit agencies (see Figure 1(a)). Their services include door-to-door, first-last mile trips 

to transit stations, and virtual stops, i.e., locations for pickups and drop-offs of riders within a 

walkable distance from their origins and destinations to improve service efficiency (Moovit, 2021). 

Transdev (2021), founded in 2011, operates multiple microtransit services (including first-last mile 

services) in the U.S, the Netherlands, France, and Australia. Shotl (2021), founded in 2017, 

provides on-demand bus and van services in collaboration with governments, municipalities, and 

businesses across Europe, Latin America, and Asia Pacific region improving accessibility in low-

density and underserved areas.  

On the other hand, there have been high profile failures as well: Kutsuplus in Helsinki 

(Haglund et al., 2019), Car2Go in North America (Krok, 2016), Bridj (Bliss, 2017), and Chariot 

(Marshall, 2019). Effectiveness of such service adoptions varies from city to city in terms of cost 

and benefit. Currie and Fournier (2020) provide a lifespan analysis of 120 demand-responsive 

transportation systems (including microtransit) from 19 countries over the period 1970-2019; their 

analysis highlights the failure rates in the UK is 67% while that in Europe and the USA/Canada is 

23% and 50%, respectively. 

 

 
(a)                                                                   (b) 

Figure 1. (a) Via deployments around the world (Via, 2021); (b) number of incorporated places in 2019 (Statista, 

2019). 
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The list of cities shown in Figure 1(a) represents an example of a “microtransit deployment 

portfolio”. A portfolio consists of a list of active projects developing a product sharing common 

resources that is continuously updated; new projects need to be evaluated and prioritized and 

existing projects may be accelerated, abandoned, or de-prioritized (Cooper et al., 1998; Chow et 

al., 2011). With microtransit deployment as the portfolio product, how can mobility providers 

decide which city agencies to work with for deploying new services? While the question is posed 

to mobility providers, the insights from this research can enable state and federal government 

agencies (e.g., Federal Transit Administration) to prioritize technology adoption efforts among 

their many cities. This question is also not restricted to just microtransit and can apply to any 

emerging transportation technology where deployment data are limited to just a few cities, i.e., a 

technology that operates in only 5 cities would only represent 5 statistical samples to extrapolate 

insights for hundreds of thousands more (see Figure 1(b)).  

To address this microtransit deployment portfolio problem, a solution is needed that can make 

the most of the data that may be available. We propose “upscaling” the available data using 

simulation, in a similar manner to how deep learning algorithms can be used to upscale low-quality 

images into high-quality ones. This topic of synthetic scenario generation has also been applied to 

generating test cases for machine learning models, particularly in testing autonomous vehicle 

algorithms (Rocklage et al., 2017; Tuncali et al., 2018; Nalic et al., 2020). Our framework is novel 

in several new ways.  

First, the market equilibrium model is extended from earlier works (Chow et al., 2020; 

Djavadian & Chow, 2017a; Djavadian & Chow, 2017b; Caros & Chow, 2021) to allow 

parameterizing the degree of virtual stop access distance and outputting the percent of microtransit 

riders using it as a first/last mile access mode.  

Second, a proposed synthetic scenario generator outputs data that is shown to fit the limited 

observed deployment data, extending a sample set of four city scenarios into 326 synthetic 

scenarios. This “upscaled data” is fit with a forecast model that reveals interesting insights relating 

a deployment’s ridership and fleet vehicle-miles-traveled (VMT) to service region design, pricing 

policy, and proximity of fixed route transit stations. Statistically significant public city attributes 

found using Lasso regularization include employment density, household density, mean income, 

street density, and transit station density, among others. 

Third, the fitted forecast models are demonstrated as tools to analyze and compare different 

portfolios to the existing Via deployments in the four cities studied. We show it is possible to 

identify alternative portfolios operating a similar amount of fleet VMT that can improve ridership 

by up to 90%. The method can be readily adapted to any emerging transportation technology 

deployment planning process in which the number of deployed cities remains limited.  

 

2. Literature review 
 

2.1 Forecast models for microtransit 

With emerging transportation technologies, the transportation planning perspective shifts from the 

perspective of a single city (conventional long range transportation planning conducted by a 

metropolitan planning organization for their own city) to a market of multiple cities. Forecasts 

need to be made for multiple different cities and for different operating modes. Conventional 

forecasting practices (Volinski, 2019; Chow et al., 2020; Yoon et al., 2022) only consider a local 

public agency’s perspective (i.e. city/region-centric), which are not applicable to the deployment 
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portfolio planning problem which requires an operator-centric view that covers a cross-section of 

cities. Models based on cross-sectional data for forecasting microtransit measures across multiple 

cities simply do not exist because there was no need for such in conventional city/region-centric 

practices (each city had their own data to work with), to the best of our knowledge. 

Forecast models for individual cities are also limited, and for good reason. Analytical models 

tend to resort to simplified operations and homogeneous conditions (Daganzo & Ouyang, 2019) 

or are used for explaining ex post conditions (Haglund et al., 2019; Pinto et al., 2020; Pantelidis et 

al., 2020; Bardaka et al., 2020; Ma et al., 2021). Microtransit can have many dimensions of 

complexity: routing, dispatch, pricing, rebalancing, fleet sizing, service region coverage, etc. (Fu 

and Chow, 2022; Dong et al., 2022). Four step models are not equipped to make predictions for 

users based on these complex factors mainly because that equilibrium cannot be easily captured in 

a static model that exhibits not only route and mode choice, but also transfers, wait time, and 

departure time choice from users, plus a host of choice dimensions from the operators. To 

overcome this drawback, city simulations draw on complex multi-agent simulations of activity 

behavior (Chow & Djavadian, 2015; Cich et al., 2017; Chow, 2018). However, these tools are 

computationally expensive and data hungry. Under a post-COVID era, there are further 

fluctuations in microtransit demand that make it harder to model (Zhou et al., 2021). 

In particular, forecasting potential microtransit ridership as a first/last mile access mode 

(Shaheen & Chan, 2016) is of great interest to local agencies but remains an active research gap. 

To date there are no forecast models that distinguish between microtransit as a direct service or as 

a first/last mile access mode as a subset of multiple modes available to commuters in a region. For 

example, Yan et al. (2019) only forecast multimodal trips using ride-sourcing strictly to access 

public transit.  

  

2.2 Simulation-based market equilibrium forecasting 

Simulation-based methods are proven to be effective for evaluating complex mobility systems 

(Horn, 2002; Jung & Chow, 2019; Ma et al., 2019; Markov et al., 2021). However, many such 

studies only consider fixed demand to simulate the supply side “within-day” dynamics without 

any equilibration, i.e., with no demand feedback.  

To capture the equilibrium between demand and mobility services, day-to-day adjustment 

mechanisms have been used to describe a transportation system through its dynamic evolution 

(Smith, 1984; Watling & Hazelton, 2003). Under such mechanisms, users in the system adjust 

their behavior iteratively each day according to past experiences. Such mechanisms can lead the 

system to evolve and converge to different states depending on the initial conditions and the 

behavior characteristics of the users (Smith et al., 2014). Day-to-day adjustment models have been 

used to model complex transportation systems because they explicitly capture the relationship 

between system state and the behavior of users (Horowitz, 1984; Mahmassani & Chang, 1986; 

Mahmassani, 1990; Cantarella & Cascetta, 1995). However, these earlier studies focus only on the 

road traffic network. 

Djavadian and Chow (2017a,b) proposed an agent-based day-to-day adjustment process of 

flexible transport service and showed that the sampling distribution of different agent populations 

reaches a stochastic user equilibrium (SUE). Users’ choices of mode and departure time are 

adjusted from day to day to maximize utility and minimize delay; operators’ decisions can be 

captured as part of a two-sided market. Caros and Chow (2021) extended that model to capture 

operator learning of optimal cost weights to anticipate elastic user demand in evaluating modular 

autonomous vehicle fleets in Dubai.  



5 

 

Similar mechanisms are adopted in this study to model the market equilibrium of a multimodal 

transportation system with a microtransit subsystem.  

 

3. Proposed methodology 
 

3.1 Problem statement 

In a market of cities 𝑃 saturated with deployment data in every city, there are enough city 

observations that insights (e.g., forecast model as shown in the top dashed box in Figure 2) can be 

drawn between public data available for any U.S. city and measures important to the portfolio. For 

example, there exists a model 𝑀 such that 𝑦𝑝 = 𝑀(𝑥𝑝; 𝜃), 𝑝 ∈ 𝑃, where 𝑦𝑝 may be aggregate daily 

microtransit ridership or the fleet’s VMT (along with derivative measures like greenhouse gas 

emissions, accidents, infrastructure cost depreciations, etc.) and 𝑥𝑝 include sociodemographic 

data. The problem is that for emerging transportation technologies like microtransit, especially 

from private operators, data needed for such an analysis or portfolio forecast model are limited in 

the number of city observations 𝑄, i.e., |𝑄| ≪ |𝑃|. For example, in our study we have only data 

from |𝑄| = 6 U.S. cities (of which only 4 are similar enough for generating consistent synthetic 

scenarios) based on a half-year effort from Via to request permission from their local agency 

partners to share this data from each of their deployments with us.  

To overcome this challenge, we propose to calibrate simulation-based market equilibrium 

models 𝑦𝑠 = 𝑚𝑠(𝑥𝑠; 𝜗), 𝑠 ∈ 𝑄, for the deployment city set 𝑄. Input variables of a set 𝑅 of 

independent synthetic scenarios, |𝑅| ≫ |𝑄|, are generated as 𝑥𝑖 , 𝑖 ∈ 𝑅𝑠, 𝑅 = ⋃ 𝑅𝑠𝑠∈𝑄 . These inputs 

feed into the 𝑚𝑠 to obtain 𝑦𝑖 , 𝑖 ∈ 𝑅𝑠, i.e., the “upscaled scenario data”. The forecast model 𝑀 can 

then be estimated for a portfolio of cities, i.e., 𝜃 = 𝑀−1(𝑦𝑖, 𝑥𝑖), 𝑖 ∈ 𝑅. The lower dashed box in 

Figure 2 highlights the upscaling process. The success of the framework depends on the design of 

the market equilibrium models 𝑚𝑠. 

 
Figure 2. Process diagram showing modeling needed to generate synthetic scenario data for a portfolio-level 

forecast model. 



6 

 

 

Market equilibrium model 𝒎𝒔 design criteria 

1) A market equilibrium model 𝑚𝑠 for each city 𝑠 ∈ 𝑄 requires a demand model to predict 

microtransit demand. While a microtransit provider might have detailed data of their 

customers, they do not typically have the same quality of data for the general public across all 

deployed cities, and thus rely on public data. Publicly available data is only available at an 

aggregate level, and generally missing microtransit trips which have only recently emerged. 

The demand model needs to be aggregate and include microtransit preference that is sensitive 

to trip performance including some or all of access time, wait time, in-vehicle time. 

2) Microtransit is provided for a defined service region. Pickups and drop-offs are only made 

within that service region. This design allows microtransit to serve direct trips as well as 

access/egress trips to transit stations. The demand model needs to account for at least two 

population segments: travelers making direct trips within the service region as well as trips 

to/from transit stations that could take travelers to locations outside the service region. Both 

segments depend on the service region design while the latter also depends on transit network 

proximity. 

3) The market equilibrium model needs to provide a stable set of performance measures for a 

dynamic, on-demand transit service system design in which the operator perceives travelers 

arriving randomly throughout the day and operate several functions dynamically: dispatch, 

routing, idle vehicle repositioning. 

4) The market equilibrium model needs to be designed to account for observed occupancy data 

that is available to the microtransit operator. 

5) The market equilibrium model needs to allow for calibration of different operating 

parameters, e.g., different pedestrian access distances, maximum wait time or detour time, 

etc., to differentiate operations at different cities. 

6) The synthetic scenario generator needs to be able to efficiently construct independent 

scenarios in which public zonal data are available as well as outputs of the calibrated 

simulation operated under those scenarios. 

Our market equilibrium model and synthetic scenario generator are designed to address these 

criteria as shown in Table 1. The model 𝑚𝑠 should output ridership, percent of riders that are 

first/last mile access, fleet size, fleet vehicle miles traveled, average traveler journey times (wait, 

access, in-vehicle), operation cost, revenue, and other derivative measures like greenhouse gas 

(GHG) emissions.  
 

Table 1. Components of the proposed method that addresses the methodology design criteria 

Components of the proposed framework  Design criteria 

Aggregate mode choice model (Section 3.2.1) #1 and #2 

Day-to-day adjustment process in the market equilibrium model 

(Section 3.2.2) 

#3 and #4  

Within day simulator in the market equilibrium model (Section 

3.2.3) 

#5 

Synthetic scenario generation design (Section 3.3) #6 

 

 

3.2 Day-to-day market equilibrium model 

A day-to-day adjustment process characterizes the dynamics in adjustments made by both travelers 

(users) and the operators each day as a dynamic system. Djavadian and Chow (2017a) showed that 
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such adjustment processes can reach a stochastic user equilibrium with an asymptotic number of 

sampled agent populations and can be used to model on-demand systems. However, it did not 

incorporate multiple population segments, nor did it account for certain observable data made 

available from an operator, namely the occupancy data. 

The process from Djavadian and Chow (2017b) is modified to address the requirements of 

this framework. In this process, travelers are split into two population segments: (1) travelers who 

wish to make a direct trip within the service region and (2) travelers who need to make an 

access/egress trip within the service region to connect to a public transit network that can extend 

to a greater region not covered by the microtransit service. The adjustment process is also modified 

to converge toward a similar average occupancy rate (number of passengers/vehicle/hour) as data 

provided from a microtransit operator. The model is shown in Figure 3.  

 

 
Figure 3. Day-to-day adjustment with oval functions, rectangles for data, and a diamond for decision. 

 

At the end of one simulated day, experienced microtransit in-vehicle time, passenger wait 

time, passenger walk time, and average occupancy for the vehicles, are computed. These values 

are used to update the mode choices, departure times, and fleet sizes for the next day (note that 

only microtransit is simulated, so the attributes for all the other modes—Auto, Transit, Bike, Walk, 

Others—are fixed). 

 

3.2.1 Aggregate mode choice model 

For a microtransit demand model, an aggregate mode choice model is used to capture sensitivity 

of transit riders to different operational attributes that can vary day by day. If data were available 

on travelers choosing microtransit among a set of modes between different zones, we would ideally 

estimate a binary logit model for simplicity. However, such data are not available. We have count 

data of microtransit trips that is not divided by zones within a service region, and we have public 

aggregate data for other modes by zone to zone (Census tracts).  

Furthermore, the only public aggregate data (as described in the Section 4.2 of the case study) 

provides some commute attributes but not all. For some attributes, we assume values of the 

parameters and estimate the rest of the parameters of the model relative to them.  Because of the 

need for an aggregate mode choice model, more complicated choice model structures than a 
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multinomial logit (MNL) are not feasible (as we only know market shares by origin destination 

pair, not individual choices) (see Anas, 1983, for a discussion of estimating aggregate MNL 

models from aggregate market share data). As a result, a MNL model is estimated for multiple 

mode choices and the utility function for microtransit (MT) assumes the coefficients of the 

attributes are the same as other similar modes. For example, the MT in-vehicle time coefficient is 

assumed the same as the auto travel time coefficient, and the MT access/egress time coefficient is 

assumed to be the same as that of walk mode. The utility functions are generally specified as shown 

in Eq. (1) – (6) (with statistically insignificant attributes for each city removed) as a mode choice 

model for a given agent 𝑛. 

 

𝑈𝑎𝑢𝑡𝑜,𝑛    = 𝑎𝑠𝑐𝑎𝑢𝑡𝑜 + 𝛽𝑡𝑡𝑎𝑢𝑡𝑜
 

× 𝑇𝑇𝑎𝑢𝑡𝑜,𝑛 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 × 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 + 𝜀𝑎𝑢𝑡𝑜,𝑛 (1) 

𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛 = 𝑎𝑠𝑐𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝛽 𝑡𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡
× 𝑇𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛 + 𝛽𝐴𝐸 × 𝐴𝐸𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛

+ 𝛽𝑤𝑎𝑖𝑡 × 𝑊𝑇𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛 +  𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑂𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛

+ 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 × 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 + 𝜀𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑛 

(2) 

𝑈𝑏𝑖𝑘𝑒,𝑛    =  𝑎𝑠𝑐𝑏𝑖𝑘𝑒 +  𝛽𝑡𝑡𝑏𝑖𝑘𝑒
× 𝑇𝑇𝑏𝑖𝑘𝑒,𝑛 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 × 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 + 𝜀𝑏𝑖𝑘𝑒,𝑛 (3) 

𝑈𝑤𝑎𝑙𝑘,𝑛   = 𝑎𝑠𝑐𝑤𝑎𝑙𝑘 + 𝛽𝑡𝑡𝑤𝑎𝑙𝑘
× 𝑇𝑇𝑤𝑎𝑙𝑘,𝑛 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 × 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 + 𝜀𝑤𝑎𝑙𝑘,𝑛 (4) 

𝑈𝑀𝑇,𝑛      = 𝑎𝑠𝑐𝑀𝑇 + 𝛽𝑡𝑡𝑎𝑢𝑡𝑜
 

× 𝑇𝑇𝑀𝑇,𝑛 +  𝛽𝑡𝑡𝑤𝑎𝑙𝑘
× 𝐴𝐸𝑇𝑀𝑇,𝑛 + 𝛽𝑀𝑇𝑤𝑎𝑖𝑡 × 𝑊𝑇𝑀𝑇,𝑛

+ 𝛽𝑐𝑜𝑠𝑡 × 𝐶𝑂𝑀𝑇,𝑛 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 × 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 + 𝜀𝑀𝑇,𝑛 
(5) 

𝑈𝑜𝑡ℎ𝑒𝑟𝑠,𝑛 = 𝜀𝑜𝑡ℎ𝑒𝑟𝑠,𝑛 (6) 

 

where 𝑎𝑠𝑐〈𝑚𝑜𝑑𝑒〉 denote the mode-specific-constant for 〈𝑚𝑜𝑑𝑒〉 ∈ {automobile (auto), transit, 

bike, walk, microtransit (MT), other}; 𝑇𝑇〈𝑚𝑜𝑑𝑒〉 is modal travel times from origin to destination; 

𝐶𝑂〈𝑚𝑜𝑑𝑒〉 denote the corresponding modal travel costs (treated as a generic coefficient since we 

assume it has constant effects (Train and McFadden, 1978)); 𝑊𝑇〈𝑚𝑜𝑑𝑒〉 refer to wait times for 

transit and microtransit modes; 𝐴𝐸𝑇〈𝑚𝑜𝑑𝑒〉 are the access/ egress time for transit and microtransit 

(by walking); and 𝐼𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒𝑛 is a categorical variable for interzonal trips i.e., 1 when a trip’s 

origin and destination are in different zones (census tracts in our case study) and 0 otherwise. The 

attributes are tracked with an index 𝑑 to represent the perceived value at the start of day 𝑑. The 

coefficients 𝛽𝑡𝑡〈𝑚𝑜𝑑𝑒〉

 

, 𝛽𝐴𝐸 , 𝛽𝑤𝑎𝑖𝑡, 𝛽𝑀𝑇𝑤𝑎𝑖𝑡, 𝛽𝑐𝑜𝑠𝑡, 𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒 need to be estimated for each city (in 

future research, we can estimate a model for a cluster of cities based on typology, see Oke et al., 

2019 and Rath and Chow, 2022). Note that no public data is available for the out-of-pocket costs 

of using the auto mode, so a cost is not included for that utility function. This only implies that 

cost effects from auto are incorporated into the alternative specific constant and are not directly 

controlled for. This is not a problem since the microtransit scenarios that we consider do not 

include changes in auto costs.  

One novel treatment of the demand model is that it includes agents from (1) direct door-to-

door trips within a designated service region 𝑆 as well as (2) first/last mile trips connecting with 
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transit stations located within the service region to other locations in the greater region 𝑍 ⊃ 𝑆. This 

is illustrated with Figure 4.  

 

 
Figure 4. Illustration of a designated service region in red (via direct trips) along with blue-highlighted zones in the 

greater region accessed by public transit (via first/last mile trips). 

 

Due to limited information, some parameters are assumed so that the others can be estimated in 

relation to them (details of specific assumed values provided in Section 4 case study).  

 The estimation process for the demand models is broken into four steps: 

1) Estimate a mode choice model for each city without the microtransit alternative. 

2) Take the parameters of the microtransit utility function attributes from other similar modes: 

MT cost from fixed route public transit cost (𝛽𝑐𝑜𝑠𝑡), MT in-vehicle time from auto travel time 

(𝛽𝑡𝑡𝑎𝑢𝑡𝑜
), and MT access/egress time from walk mode (𝛽𝑡𝑡𝑤𝑎𝑙𝑘

), and MT wait time (𝛽𝑀𝑇𝑤𝑎𝑖𝑡) 

from public transit wait time, or if not available due to non-statistical significance, this is 

derived as a multiplier of auto travel time  (Wardman, 2004). 

3) Estimate the alternative-specific constants of the microtransit alternative for each city to be 

relative to the assumed attribute parameters and to fit the microtransit trips summed over direct 

and first/last mile segments to the count data using least squares via a bisection method. 

4) When calibrating the day-to-day adjustment processes, i.e., after the system first reaches a 

steady state (as shown in Figure 3), use one feedback loop to re-estimate the demand model 

coefficients using the output attributes (i.e., population experienced time values for 

microtransit including in-vehicle time, wait time, and walk time) from the market equilibrium 

model. Note that with additional feedback rounds no significant change is observed in the 

estimated demand model attributes, hence one feedback loop is used for the update. 

 

3.2.2 Day-to-day adjustment process 

At the start of the simulation, the origin and destination coordinates of each user are generated 

randomly within their origin and destination zones. The adjustment of fleet size is based on average 

occupancy provided by the data. At the end of each day, fleet size is adjusted towards the ideal 

average occupancy based on the occupancy of the past day as shown in Eq. 7. The observed 

occupancies from the microtransit operator are assumed to be ideal values unless specified 
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otherwise. By comparison, Djavadian and Chow (2017b) did not have average occupancy data so 

it did not include this measure. This modification allows us to run the day-to-day adjustment 

process to converge toward an equilibrium that exhibits similar occupancy as what is observed. 

 

𝐹𝑆𝑑+1 =  𝐹𝑆𝑑 ×
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑜𝑓 𝑑𝑎𝑦 𝑑

𝐼𝑑𝑒𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
 (7) 

 

where 𝐹𝑆𝑑 stands for the microtransit fleet size on simulation day 𝑑. 

Microtransit in-vehicle time, wait time and walk time (to virtual stops) for each user are 

updated from day to day. A traveler who used microtransit on day 𝑑 for commute learns from their 

experience on day 𝑑 and updates their perceived in-vehicle time, wait time, and walk time with a 

learning rate 𝜃 (shown in Eqs. (8) – (10)).  

 

𝑇𝑇𝑀𝑇,𝑛
𝑑+1 = (1 − 𝜃)𝑇𝑇𝑀𝑇,𝑛

𝑑 + 𝜃 𝐸𝑇𝑇𝑀𝑇,𝑛
𝑑  (8) 

𝑊𝑇𝑀𝑇,𝑛
𝑑+1 = (1 − 𝜃)𝑊𝑇𝑀𝑇,𝑛

𝑑 + 𝜃 EW𝑇𝑀𝑇,𝑛
𝑑  (9) 

𝐴𝐸𝑇𝑀𝑇,𝑛
𝑑+1 = (1 − 𝜃)𝐴𝐸𝑇𝑀𝑇,𝑛

𝑑 + 𝜃 𝐸𝐴𝐸𝑇𝑀𝑇,𝑛
𝑑  (10) 

 

where 𝑇𝑇𝑀𝑇,𝑛
𝑑 , 𝑊𝑇𝑀𝑇,𝑛

𝑑 , and 𝐴𝐸𝑇𝑀𝑇,𝑛
𝑑  stand for perceived microtransit (𝑀𝑇) in-vehicle time, wait 

time, and walk time for user 𝑛 at the beginning of day 𝑑. 𝐸𝑇𝑇𝑀𝑇,𝑛
𝑑 , 𝐸𝑊𝑇𝑀𝑇,𝑛

𝑑 , and 𝐸𝐴𝐸𝑇𝑀𝑇,𝑛
𝑑  stand 

for experienced microtransit (𝑀𝑇) in-vehicle time, wait time, and walk time for user 𝑛 on day 𝑑.  

Having introduced the key attributes, let us adopt a generic symbol 𝑋 to represent each 

attribute for convenience. For a user 𝑛′ who did not use microtransit but used other modes on day 

𝑑 for their commute, their perceived times are updated with the population’s average perceived 

times 𝑋̅𝑀𝑇
𝑑  at the end of day 𝑑 (shown in Eq. (11)). 

 

𝑋𝑀𝑇,𝑛′
𝑑+1 = (1 − 𝜃)𝑋𝑀𝑇,𝑛′

𝑑 + 𝜃  𝑋̅𝑀𝑇
𝑑  (11) 

 

The population’s perceived in-vehicle time, wait time, and walk time represent the overall 

perception of the population in the service region, which is the successive average of average in-

vehicle, wait, and walk time of the past 𝑛 days (shown in Eq. (12)).  

 

𝑋̅𝑀𝑇
𝑑 = (1 −

1

𝑑
) 𝑋̅𝑀𝑇

𝑑−1 +
1

𝑑
𝐸𝑋̅𝑀𝑇

𝑑  (12) 

 

The departure time of each user is a continuous variable that is updated based on their expected 

arrival time. The departure time of a passenger on day (𝑑 + 1) is computed based on the 

experienced commute time of day 𝑑 as shown in Eq. (13). 
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𝐷𝑇𝑛
𝑑+1 =  𝐴𝑇𝑛 − 𝑃𝑇𝑛

𝑑 (13) 

 

where 𝐷𝑇𝑛
𝑑 stands for the departure time of user 𝑛 on simulation day 𝑑, 𝐴𝑇𝑛 stands for the desired 

arrival time of user 𝑛. 𝑃𝑇𝑛
𝑑 is the perceived commute time at the end of day 𝑑 for user 𝑛, which 

depends on the mode taken in Eq. (14).  

 

𝑃𝑇𝑛
𝑑 =  𝑇𝑇𝑀𝑇,𝑛

𝑑 + 𝑊𝑇𝑀𝑇,𝑛
𝑑 + 𝐴𝐸𝑇𝑀𝑇,𝑛

𝑑  (14) 

 

At the end of each day, we check if the system has reached a steady state. The adjustment 

stops when the daily microtransit ridership change keeps below 𝜖 ∈ [0,1] for 5 consecutive days. 

 

𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝𝑀𝑇
𝑑+1 − 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝𝑀𝑇

𝑑

𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝𝑀𝑇
𝑑 ≤ 𝜖 (15) 

 

We recall the proposition from Djavadian and Chow (2017a) where the agent-based day-to-day 

process converges almost surely to an agent-based stochastic user equilibrium (SUE), i.e., as the 

number of simulated populations increase, the deterministic day-to-day adjustment processes for 

each population is run with a Method of Successive Averages (MSA) such that the average over 

the populations approaches the theoretical SUE. In our case study, we generate 10 populations per 

city.  

 

3.2.3 Within-day simulator 

Within-day simulation of the microtransit system is a key part of the day-to-day adjustment. The 

main framework of this simulation (as illustrated in Figure 5) is newly extended from a “simulation 

sandbox” from Yoon, et al. (2021). It is a discrete-time simulation with a simulation length divided 

over discrete time steps. In each time step, vehicle states are updated according to the operating 

plan. For on-demand microtransit, the state includes the sequence of passengers being served. 

Passenger states are also updated: waiting to be assigned to a vehicle, walking to a stop, waiting 

for vehicle, on-board a vehicle, egressing from vehicle stop to the destination. The simulation 

length and time step can be adjusted.  

The simulation decides which vehicles to dispatch and transport passengers from their origins 

to their destinations. The system does not order vehicles to comply with fixed routes or drop by 

mandatory stops. Instead, when assigning a passenger to a vehicle the system also updates the 

vehicle state which includes the sequence of pickup and drop-off points of passengers assigned to 

it. These matches determine vehicles’ trajectories, passengers’ travel experiences, and system 

performances. For the routing, the simulation sandbox implements a simple insertion heuristic to 

update assigned routes for accepted passengers by searching for an updated sequence with the 

shortest incremental increase in travel time.  

 Modifications are made from Yoon et al. (2022) to be more parametric for calibration 

purposes. These modifications include:  
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• Virtual stops, meeting points other than actual origin and/or destination of users, and a  

• Feature of depot assignment, designating a depot of vehicles based on relocation cost and 

average wait time.  

 
Figure 5. Framework for the within-day simulator (source: Yoon et al., 2022). 

 

There are four categories of required inputs of this simulation as described below. Simulation 

parameters control the length and precision of simulations, regulating how long and often to collect 

generated data.  

• Simulation parameters: simulation length, time step length 

• Scenario parameter: walking speed, maximum walking distance, average vehicle running 

speed, weight for passenger in-vehicle/wait/access time, value of time,  

unit operation cost, weight of operator cost 

• System design parameter: vehicle capacity, fleet size, number of depots, average dwell time 

• Dataset: passenger request information, passenger arrival data, depot locations, virtual stop 

locations, vehicle allocation distribution among depots 

 

The code to the simulator can be accessed in a Zenodo repository (Rath et al., 2021). 

 

3.3 Synthetic scenario generator design 

Once the simulation-based market equilibrium models 𝑚𝑠 are calibrated, a process is used to 

generate additional synthetic scenario inputs 𝑥𝑖 , 𝑖 ∈ 𝑄, to upscale the existing data to obtain outputs 

𝑦𝑖. The generator should generate independent scenarios that would use the market equilibrium 

models calibrated for a sample of cities. In each synthetic scenario 𝑖, one of the calibrated cities is 

selected and the service region 𝑆 is redefined as 𝑆(𝑖). We define a region as constituting two or 

more contiguous zones where microtransit service operates both door-to-door and first-last mile 

services with a specific pricing policy. The selection of contiguous set of zones for scenario 

generation is mainly motivated by the Via service region structures in various cities e.g., Salt Lake 

City, Jersey City, New York City, Cupertino, Arlington, Birmingham, and others. Each synthetic 

scenario is generated using Algorithm 1, where we utilize the common (geographical) boundaries 

shared by a zone with its adjacent neighbors to efficiently generate service regions of different 
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sizes (within the limits of a larger geographical boundary). L2 and L3 boundaries are used to reflect 

similar service regions in scale to the sample cities.  

 
Algorithm 1. Synthetic scenario generation 

Given a city where a microtransit service operates (in a specific region), we generate multiple 

scenarios (regions) with the following steps: 

1. Obtain the list of census tracts (zones) and the (geographical) boundaries for all zones within 

the county/counties intersecting with the existing service region 𝑆.  

2. For each census tract (as obtained in step 1), store their neighboring census tracts (i.e., zones 

sharing common boundaries).  

3. Select a zone (let’s say x) and generate 3 scenarios: L1, L2, L3, where, L1 constitute the direct 

neighbors of zone x, then we add the neighbors of each zone in L1 to get L2, and for L3 we 

add neighbors of all zones in L2 to the existing L2 scenario. Figure 7 provides an illustration 

of service region scenario generation.  

4. Assume a pricing policy as shown below: 

o PP1 = fixed fare for door-to-door service and first last mile rides 

o PP2 = fixed fare for door-to-door service and free first last mile rides 

o PP3 = variable fare (fixed fare plus fare based on distance travelled) 

Apply the most common pricing policies PP1 and PP2 to each scenario 𝑆(𝑖) from step 3 

5. Cluster each city’s generated scenarios into 6-8 clusters (for both L2 and L3 scenarios) based 

on population characteristics using k-means clustering and randomly select sample scenarios 

from each cluster. 

6. Run the market equilibrium model using the input scenario data generated for each 

corresponding sample city to obtain microtransit performance data. 

 

 

 
 

Figure 7. Illustration of service region generation process. 

 

To provide a better idea on how the population data and simulated microtransit performance 

data for different synthetic scenarios look like, Figure 8 shows examples of four service regions 

generated in different U.S. counties using Algorithm 1. Each scenario 𝑖 ∈ 𝑄 is comprised of a set 
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of census tracts based on which we obtain the aggregate population data (as listed in the figure) 

(𝑥𝑖) for the scenario. Microtransit performance metrics (e.g., ridership, vehicle miles traveled, fleet 

size, and others) (𝑦𝑖) are obtained using the calibrated simulation model 𝑚𝑠(𝑥𝑖) for the associated 

pricing policy considered in the scenario.  

To ensure that the new data points obtained from the scenario generation process for the 

forecast models cover a diverse set of synthetic scenarios with a reasonable range of the population 

and region characteristics, 𝑆(𝑖) in step 5 of Algorithm 1 is selected (randomly) from different 

clusters. In particular, for multiple synthetic scenarios generated for a city (let’s say all L2 

scenarios), we categorize them into 6-8 clusters based on their population and built environment 

characteristics (using k-means clustering algorithm (MacQueen, 1967)). Then from each of these 

clusters, we randomly select 5-6 sample scenarios to obtain simulated microtransit performance 

data (based on pricing policies PP1 and PP2) for the selected scenarios using the calibrated market 

equilibrium day-to-day simulations.  

The scenario generation results in upscaled scenario data that are used for estimating forecast 

models for service portfolio design and deployment planning as demonstrated in the case study in 

Section 4.   

 
 

 
 

Figure 8. Examples of generated synthetic scenarios in different U.S. counties with population data and simulation 

data obtained for the scenarios. 

 

 

4. Case study: Via microtransit deployment portfolio analysis 
 

4.1 Study objectives 
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The case study is used to evaluate the methodology proposed in Section 3. Since the contribution 

focuses on simulating new data to supplement limited existing data for the purpose of evaluating 

deployments in different cities, our objective is to show that: 

1) Forecast models can be specified (having statistically meaningful relationships between public 

data and ridership/VMT) using the upscaled data; 

2) The models should adequately fit the limited data that we have. 

3) The models can be applied to evaluate different portfolio designs. 

 

The case study is conducted in collaboration with Via, who provided aggregate ridership data 

for five different U.S. cities: Salt Lake City, Austin, Cupertino, Sacramento, and Columbus. Public 

data from Jersey City is also available and included in the set of cities, as summarized in Table 2. 

The benchmark is a forecast model that is built using only the six cities’ data, which is not 

statistically viable since that would simply be an insufficient sample size.  

 
Table 2. Via service regions (obtained from Via) and pricing policies (defined based on Via (2021)) 

City (Via service region) Counties (transit demand considered 

for potential first last mile trips) 

Number of census tracts 

within service region 

boundary 

Pricing 

policy 

Salt Lake City, Utah Salt Lake County 26 PP2 

Austin, Texas Travis and Williamson County 28 PP2 

Cupertino, California Santa Clara County 21 PP2 

Sacramento, California Sacramento and Placer County 148 PP2 

Columbus, Ohio Franklin and Licking County 45 PP1 

Jersey City, New Jersey Hudson and New York County 68 PP3 

  

 

4.2 Data 

Table 3 presents the data used in our study, which includes public data for estimation of mode 

choice models, simulation model calibration, and design of deployment portfolio forecast model, 

along with data obtained from Via. For our case study, we focus on ridership during the peak 

period of the day i.e., 6AM-9AM so all outputs reflect that time period. All the synthetic scenario 

data are provided in the Zenodo repository (Rath et al., 2021). 

 
Table 3. Summary of data and data sources used in the study 

No. Data source Granularity Data 

1 

Census Transportation 

Planning Products 

(2012-2016) (CTPP, 

2016) 

Census Tracts 

Commute flows between census tracts 

(for various modes including auto, bike, transit, 

walk, and others) 

2 
American Community 

Survey (2019)  
Census Tracts Demographic, economic and household details 

3 

Open Mobility Data 

(GTFS) (Transitfeeds, 

2021) 

Transit network Transit station/stop locations  
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4 
Smart Location 

Database (EPA, 2021) 

Census Block Groups  

(aggregated to Census Tracts) 

Household auto ownership, unprotected area, 

street network (road density), trip equilibrium 

index (trip attractions and productions) 

5 
Open Street Map (OSM, 

2021) 
Street network 

Auto, Walk, and bike travel time between 

census tracts; walk and bike travel time to and 

from nearest transit stops in census tracts 

6 
Open trip planner (OTP, 

2021) 
Transit network 

Transit commute time including in-vehicle 

time, wait time, walk time (to/from the nearest 

stops) 

7 

Via data: weekly 

average during first 

week of 3/20 

Salt Lake City, Cupertino, 

Austin, Columbus, 

Sacramento, and Jersey City 

Via service region boundaries, average 

ridership, average wait time, vehicle utilization, 

pricing policy, fare structure  

 

 

4.3 Calibration of the market equilibrium model 

 

4.3.1. Estimation of the demand model parameters 

The calibration of the market equilibrium models involves two parts. The first is the estimation of 

the aggregate mode choice model, one for each of the six cities with provided data. Commute flow 

data for auto, transit, bike, walk, and others are obtained between census tracts within the region 

(CTPP, 2016) including transit flows from within service region to outside the service region 

(within the boundaries of the county/counties covered by the region) and vice-versa. Due to the 

limited aggregate data, the mode choice model initially led to poor fits in some cities. To address 

this, we assumed some of the parameters’ relationships: 𝛽𝑀𝑇𝑤𝑎𝑖𝑡 = 𝛽𝑤𝑎𝑖𝑡 (in transit if significant, 

else 𝛽𝑀𝑇𝑤𝑎𝑖𝑡 = 1.53𝛽𝑡𝑡𝑎𝑢𝑡𝑜
), 𝛽𝑤𝑎𝑖𝑡 = 1.59𝛽𝑡𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡

 

, 𝛽𝐴𝐸 = 1.78𝛽𝑡𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡
 

 (Wardman, 2004). Table 

4a presents the mode choice model estimation results that are calibrated after one round of 

feedback from the simulation model. The p-values and 𝜌2 are based on the initial estimation 

without microtransit. Some of the attributes are left out for some cities due to irregular fits or poor 

statistical significance. The microtransit alternative is then appended and estimated as shown in 

Table 4b.  

 
Table 4 (a). Mode choice model coefficient estimates and performance for Via cities (without microtransit mode) 

Coefficient Units 

Salt Lake 

City, 

Utah 

Austin, 

Texas 

Cupertino, 

California 

Sacramento, 

California 

Columbus, 

Ohio 

Jersey 

City,  

New Jersey 

𝒂𝒔𝒄𝒂𝒖𝒕𝒐 N/A 0.649*** -0.145* - 0.231*** 0.330*** - 

𝒂𝒔𝒄𝒃𝒊𝒌𝒆 N/A -3.318*** -4.393*** -3.934*** -2.494*** -6.555*** -4.004*** 

𝒂𝒔𝒄𝒕𝒓𝒂𝒏𝒔𝒊𝒕 N/A -1.510*** -1.956*** -0.707*** -0.682*** -1.329*** - 

𝒂𝒔𝒄𝒘𝒂𝒍𝒌 N/A -1.973*** -3.909*** -2.363*** -0.312*** -1.839*** 0.560*** 

𝜷𝒕𝒕𝒂𝒖𝒕𝒐
 

 1/min -0.204*** -0.049*** -0.131*** -0.109*** -0.009** -0.177*** 

𝜷𝒕𝒕𝒃𝒊𝒌𝒆
 1/min -0.129*** -0.051*** -0.098** -0.105*** - -0.251*** 

𝜷𝒕𝒕𝒕𝒓𝒂𝒏𝒔𝒊𝒕
 1/min -0.003 - - -0.012*** -0.009 -0.001 

𝛽𝐴𝐸
(a) 1/min -0.005 - - -0.021 -0.016 - 

𝛽𝑤𝑎𝑖𝑡
(a) 1/min -0.005 - - -0.019 -0.014 -0.002 

𝜷𝒕𝒕𝒘𝒂𝒍𝒌
 1/min 0.033*** -0.006*** -0.038*** -0.064*** -0.037*** -0.086*** 
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𝜷𝒄𝒐𝒔𝒕
 1/U.S. 

$ 
-1.851*** -2.062*** -1.768*** -1.058*** -0.998*** -0.930*** 

𝜷𝒊𝒏𝒕𝒆𝒓𝒛𝒐𝒏𝒆 N/A 8.326*** 12.895 7.403*** 6.987*** 6.356*** 5.429*** 

𝜌2 (w/o microtransit) 0.78 0.69 0.72 0.78 0.85 0.43 

*, **, *** refer to p-values from initial estimation without microtransit less than 0.05, 0.01, and 0.001 respectively. 
(a) Non-bolded parameters were not estimated but assumed relative to other estimated parameters as shown in text 

 
Table 4 (b). Mode choice model coefficient estimates and evaluation for the microtransit mode 

Coefficient Units 

Salt Lake 

City, 

Utah 

Austin, 

Texas 

Cupertino, 

California 

Sacramento, 

California 

Columbus, 

Ohio 

Jersey 

City,  

New 

Jersey 

𝒂𝒔𝒄𝑴𝑻 N/A 0.848 -1.096 2.089 -0.689 -7.354 -2.265 

𝛽𝑡𝑡𝑎𝑢𝑡𝑜
 

(a) 1/min -0.204 -0.049 -0.131 -0.109 -0.009 -0.177 

𝛽𝑡𝑡𝑤𝑎𝑙𝑘
(a) 1/min 0.033 -0.006 -0.038 -0.064 -0.037 -0.086 

𝛽𝑀𝑇𝑤𝑎𝑖𝑡
(a) 1/min -0.005 -0.075 -0.200 -0.019 -0.014 -0.002 

𝛽𝑐𝑜𝑠𝑡
(a) 1/U.S. $ -1.851 -2.062 -1.768 -1.058 -0.998 -0.930 

𝛽𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑒
(a) N/A 8.326 12.895 7.403 6.987 6.356 5.429 

Min. abs. error (pred. vs 

obs. Via ridership) with 

estimated 𝑎𝑠𝑐𝑉𝑖𝑎 0.004 0.008 0.003 0.008 0.001 0.002 

Min. abs. error (pred. vs 

obs. Via ridership) 

with 𝑎𝑠𝑐𝑉𝑖𝑎=0 75.56 244.11 42.91 182.83 1167.14 1908.97 
(a) Non-bolded parameters were not estimated for microtransit utility function but assumed relative to other estimated 

parameters as shown in text 

 

Table 4b compares the estimated error for each city’s model when using the optimal 𝑎𝑠𝑐𝑀𝑇 

compared to a model where the 𝑎𝑠𝑐𝑀𝑇 = 0. The error reduction is significant. The travel time and 

cost coefficients are negative in most cities, with Salt Lake City having a positive coefficient for 

walk time. Based on the commute flow data, the proportion of walk trips (i.e., between origin 

destination (OD) pairs in a service region) with respect to the total commute flows in Salt Lake 

City is 2-3%; this distribution is similar to Sacramento, Cupertino, Columbus and Austin. 

Compared to the average OD walk time in these cities, which is less than 15 minutes (average of 

the four cities being 7 minutes), the average walk time in Salt Lake City is 38 minutes, which is 

significantly higher. Therefore, this could be contributing towards the positive coefficient estimate 

for walk time in Salt Lake City. While this is attributed to data limitations, it has been noted in the 

literature that such behavior can be explained as well (Redmond and Mokhtarian, 2001). 

Moreover, positive 𝑎𝑠𝑐𝑀𝑇  values observed for Salt Lake City and Cupertino indicate a positive 

(average) effect of latent (unincluded) factors on the utility of the microtransit (Via) in these cities, 

while an opposite effect is noticed in the other 4 cities. This observation highlights the effects the 

city type (among other latent factors) may have on the utility of microtransit in a city.  
 

4.3.2. Calibration of the within-day simulator parameters 

The day-to-day adjustment parameters are calibrated as follows. Parameters include the walking 

limit of microtransit users, microtransit dwell time, and user/operator weights for the insertion 

heuristic in microtransit within-day simulation. The performance measure for finding the best 

insertion option in the within-day simulation is shown in Eq. (16), which is a combined measure 

of the users’ loss and the operator’s loss balanced by operator’s weight 𝛼𝑜𝑝𝑒𝑟 and user’s weight 
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(1 − 𝛼𝑜𝑝𝑒𝑟). Average operator cost per mile is estimated from the average operation cost per 

passenger provided by Volinski (2019) and the average trip length data provided by Via (Eq. (17)). 

 

Performance measure

=  (1 − 𝛼𝑜𝑝𝑒𝑟) × Value of time × User time increment

+ 𝛼𝑜𝑝𝑒𝑟 × Operator cost per mile × Distance traveled increment 
(16) 

Operator cost per mile =
Operator cost per passenger

Average trip length (miles)
 (17) 

 

For calibration, we assume three discrete levels for each of the three parameters:  

• Walking limit: 0.5 miles, 0.3 miles, 0.1 mile 

• Dwell time: 15 sec, 10 sec, 5 sec 

• Operator weight in insertion heuristic: 0.8, 0.5, 0.2  

 

Hence, 27 combinations are produced.  Learning rate is set to 0.1, consistent with prior studies 

(see Djavadian and Chow, 2017b) and 𝜖 is set to 1% for our case study. We run the simulation for 

each of the combinations to find the best combination for each city. The best combination is 

selected by comparing the output average in-vehicle time, average wait time, and ridership with 

the data from Via. For each city, the combination which lead to the smallest sum of squared error 

of average in-vehicle time, average wait time, and microtransit ridership is selected as the optimal 

combination. Example simulations conducted for four different cities (Salt Lake City, Austin, 

Cupertino, and Sacramento) are shown in Figure 6.  

The selected optimal combinations in the calibration process for the 6 cities are shown in Table 

5, along with the corresponding errors. Jersey City had less data available so the in-vehicle and 

wait time errors could not be computed. The results show that the cities can vary in their 

characteristics. For example, Salt Lake City and Jersey City suggest longer access via walking for 

travelers, while Austin and Salt Lake City tend to have longer dwell times for their vehicles. 

Cupertino has the highest weight for operator cost, which suggests that their travelers are the least 

elastic to the service quality. Generally, cities with smaller walking limit have smaller operator 

weight, since when the users are more reluctant to walk, user’s weight should be higher. In terms 

of error, the overall ridership error indicates fits with an average of 18.4% among the six cities. 

The results indicate that a market equilibrium model 𝑚𝑠 can indeed be calibrated to different cities 

𝑠 ∈ 𝑅, even with only an aggregate mode choice model for demand estimated for each city. 

The process of convergence for the 6 cities with the calibrated parameters are shown in Figure 

9. The average computation times for one run of Salt Lake City, Cupertino, Sacramento, 

Columbus, Austin, and Jersey City are respectively 10min 42s, 4min, 6min 24s, 36s, 4min 42s, 

and 13 min on a laptop with 2.3 GHz Quad-Core Intel Core i7 and 32 GB 3733 MHz LPDDR4X 

memory. The results indicate that steady states do exist for these cities and that the number of days 

to convergence can differ from city to city. 
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Figure 6. (a)-(d) Snapshots of within-day microtransit simulation for four cities in the U.S. 

 
Table 5. Summary of calibration results 

City Calibrated Parameters Opera-

tor cost 

per 

mile ($) 

Error 

Walking 

limit 

(mile) 

Dwell 

time 

(sec) 

Operator 

Weight 

In-

vehicle 

Time 

Error 

(min) 

% Wait 

Time 

Error 

(min) 

% Ridership 

Error 

% 

Salt Lake 

City 

0.5 15 0.5 5.3 2.2 20.8 4.3 32.5 56 41.5 

Austin 0.1 15 0.2 9.9 13.4 158.8 0.9 9.1 21 12.1 

Cupertino 0.3 5 0.8 8.5 1.6 16.5 5.8 46.7 1 2.0 

Sacramento 0.1 5 0.2 7.3 0.2 1.7 15.5 55.2 44 20.0 

Columbus 0.1 5 0.2 8.3 7.1 93.2 8.5 136.4 2 33.3 

Jersey City 0.5 5 0.5 7.9 - - - - 3 1.2 

AVG.          18.4 

 

 

 

(a) (b) 

(c) (d) 
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(a) Population Perceived Microtransit In-vehicle Time 

 

(b) Population Perceived Microtransit Wait Time 

 

  

(c) Population Perceived Microtransit Walk Time 

 

(d) Total Number of Microtransit Passengers 

     

 

 
(e) Microtransit Fleet Size 

Figure 9. Convergence of day-to-day adjustment for the 6 cities, with (a) in-vehicle time, (b) wait time, (c) walk 

time, (d) ridership, and (e) fleet size. 
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Table 6 shows the fleet size, fleet VMT, and ridership at convergence for the 6 cities obtained 

using the calibrated market equilibrium models. Both fleet VMT and fleet size are not known and 

are only inferred from the simulation models. Note that the VMT values in Table 6 include the 

vehicle miles with and without passengers as they pertain to the fleet. Going from depots to pick-

up points and going back to depots after drop-offs accounts for a significant proportion of the 

values. 

 
Table 6. Summary of microtransit performance in 6 U.S. cities based on the equilibrated outputs of calibrated 

market equilibrium model 

Cities No. of days  

to converge 

Fleet  

Size 

6-9AM fleet VMT  Microtransit (Via) ridership  

Total  % first/last mile access 

trips 

Salt Lake City 43 9 405 79 35% 

Cupertino 23 6 247 49 82% 

Sacramento 22 18 883 176 14% 

Columbus 10 7 298 8 100% 

Austin 15 27 1221 153 88% 

Jersey City 11 11 520 242 67% 

 

The model shows higher proportions of Via ridership as door-to-door trips within a service 

region for Salt Lake City and Sacramento, while for the other 4 cities, Via trips are predominantly 

first/last mile. This output is not included in the data shared but is inferred from the model. The 

results highlight the variable effects different operation strategies can have on microtransit 

ridership and consequently on other performance measures (like VMT and fleet size) in different 

groups of cities.   

 

4.4 Microtransit deployment portfolio forecast model development 

With the market equilibrium models calibrated, we proceed to upscale the scenario data to estimate 

forecast models for portfolio management. In this section, two objectives are set forth.  

First, we test whether we can effectively use the fitted market equilibrium models to generate 

new synthetic scenarios to use to upscale the data for inferring new insights for microtransit 

deployment. This can be effectively demonstrated by showing that the scenario data can be related 

to public data to find statistically significant relationships with a good fit when compared to the 

original data set. This is shown in Section 4.4.1. 

 Second, we demonstrate the use of the forecast models in portfolio management by 

constructing two alternative portfolios with similar fleet VMT as the original data set from Via 

and illustrate how we can characterize their ridership based on the selected service region designs 

in each city. This is shown in Section 4.4.2. 

 

4.4.1 Forecast model estimation and validation 

Two sets of models are estimated: one for predicting ridership and one for predicting fleet VMT. 

For the scenario generation, only four of the six cities are used for constructing the synthetic 

scenarios. This is because Jersey City operates under a very different operation and Columbus is 

such an outlier.  

For the scenario generation, only four of the six cities are used for constructing the synthetic 

scenarios. Jersey city operates under a very different operation from the other cities considered; 

the service area is divided into a central and an outer zone with different operation and pricing 

strategies for the inter and intra zone rides. Moreover, Columbus is such an outlier due to very low 
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ridership (100% of which are estimated to be first/last mile access trips as shown in Table 5) 

compared to the other cities. Synthetic scenarios generated from such outlier cities could mislead 

the training process of the forecast models and hence are not considered.  In practice, having 

diverse scenario data from different cities would help produce more accurate and generalized 

forecast models, however, more deployment data from multiple cities would be needed. In future 

research, with more city data available one should ideally classify clusters of city types (for 

example auto-heavy, transit-heavy cities etc. (Oke, et al., 2019; Rath, et al., 2022) that can be fitted 

to different forecast models. Having such category-wise data (based on city typologies or operation 

policies) can be useful in extending the generalizability of the different forecast models developed 

for application to multiple cities for portfolio design.  

The scenarios generated based on the cities considered above are assumed to cover a 

reasonable range of ridership and pricing policies. A set of 326 synthetic scenarios are generated, 

with characteristics shown in Table 7. Based on the ridership and VMT values derived from the 

market equilibrium of those 326 synthetic scenarios used as surrogate data, we develop 

microtransit portfolio forecast models using multiple linear regression with a set of features (see 

Table 8) and their first order interactions. As noted by Friedrich (1982), such interaction effects 

do not lead to multicollinearity issues. The dependent (target) variables for the two models are: 

• Average peak period ridership per region’s population (in thousands)  

• Via’s fleet VMT per region area in acres (in hundreds)  

 
Table 7. Summary of data samples from scenario generation process used in forecast models 

Number of synthetic scenarios 326 

Breakdown by city  Salt Lake City: 71, Austin: 79, Sacramento: 100, 

Cupertino: 76 

Breakdown of PP1/PP2 PP1: 174, PP2: 152 

Breakdown of L2/L3 scenarios LL2: 178, LL3:148 

Range of number of riders [0,2217] 

Breakdown of direct trips versus first/last mile direct: [1% - 88%]; first/last mile: [12%-99%] of total 

ridership 

 

We consider the following independent variables (pertaining to each service region) in our 

models as shown in Table 8, where the feature (variable) values of a region are computed as the 

aggregate of all census tracts in the region  

 
Table 8. Details of the independent variables considered in the forecast models 

Independent variable Description 

Employment density Total employed population in the region over total unprotected region area in 

acres 

Household density Total households in the region over total unprotected region area in acres (this 

is highly correlated to total population, and male/female population density 

features, hence we consider only one of these in our models). 

Mean income  Household weighted mean income in the region in U.S. dollars 

Street density Total road network in the region in miles over total unprotected region area in 

acres 

Transit station density Total number of transit station in the region over total unprotected region area 

in acres 

Ratio of households with one or 

more auto 

Sum of households with 1 or more auto ownership with respect to total 

households in the region 

Trip equilibrium index mean trip productions and trip attractions equilibrium index in the region; the 

closer to one, the more balanced the trip making 
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PP1 if pricing policy in the region is PP1 then 1 else 0 

PP2 if pricing policy in the region is PP2 then 1 else 0 

Microtransit fare value of fixed microtransit fare in the region in U.S. dollars (based on Via fare) 

 

We fit this model using the method of least squares and apply lasso regularization for feature 

elimination. We use the 326 upscaled scenario data for training the models and the 4 original cities’ 

data to regularize the estimation. The estimated coefficients of the two models are reported in the 

Appendix in Tables A.1 (ridership) and A.2 (fleet VMT). Due the abundance of first-order 

interaction terms, Lasso regularization is used to regularize and eliminate non-impactful features 

for a stable fit (see Tibshirani, 1996).  

The evaluation of goodness-of-fit is done over the four data points (i.e., Via operated service 

regions) for which we have the actual Via ridership data and corresponding VMT values from the 

simulation. We consider the root mean squared error (RMSE) and the coefficient of variation (CV) 

as evaluation metrics, where CV is calculated using Eq. (18). 

 

𝐶𝑉 =  
√∑ (𝑦𝑖 − 𝑦𝑖

′)2 𝑁
𝑖=1

𝑁
 𝑌̅

=  
𝑅𝑀𝑆𝐸 

𝑌̅
 

(18) 

 

where 𝑦𝑖 is the actual value and 𝑦′𝑖 is the predicted value of the target variable for a sample 𝑖 (in 

sample size 𝑁); 𝑌̅ is the mean of the actual values of the target variable across all samples. The 

comparison of the ridership and VMT models with the observed values and their goodness-of-fit 

performances are reported in Table 9. 

 
Table 9. Estimation results for the ridership and fleet VMT forecast model 

Model estimation 

City 
Ridership model (riders/peak period) VMT model (veh-mi / peak period) 

Observation Prediction Simulation Prediction 

Salt Lake City 135 211 405 779 

Cupertino 50 19 247 153 

Sacramento 220 225 883 1068 

Austin 174 277 1221 1505 

Model performance 

 Ridership model VMT model 

Training set R2 72% 90% 

Training set adj. R2 67% 89% 

Number of features 

(including intercept) 47 55 

Via cities RMSE 65.92 256.67 

Via cities mean 144.75 688.98 

Via cities CV (%) 45.54 37.25 

 

The estimation effort demonstrates that upscaling data from just four cities is viable, as we 

can fit models quite well with relatively high 𝑅2 values. The key question is whether upscaling 

improves over having no upscaling at all. When the model’s predictions are compared to the four 

data samples, the CV of ~ 37-45% is shown in Table 8. While this is not a significantly accurate 

forecast range for typical studies involving large data samples, we note that without upscaling, 
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data from only the four cities would not allow for even a forecast model to be estimated in the first 

place since there is insufficient data. As such, the validation based on only four observations 

indicates a significant improvement. 

 

4.4.2 Inference analysis 

Since the Lasso method does not output p-values for the parameters, the statistical significance of 

selected features is determined by re-estimating the selected features using ordinary least squares 

(OLS). For forecasting purposes, the coefficients from the Lasso method (as reported in Tables 

A.1 and A.2) are used. However, for inference analysis we refer to the p-values of the OLS models 

(which may vary in value slightly from the Lasso models but can provide some indication of 

significance) as reported in Tables A.3 (ridership) and A.4 (VMT). 

The OLS models suggest the ridership and VMT are indeed dependent on employment 

density, household density, mean income, street density, transit station density, and car ownership, 

by their statistical significances at 5% levels for the parameters of the standalone features 

(household density, transit station density, employment density, fixed fare) or as part of the first-

order interaction features (which covers the rest). In addition, the OLS models suggest a sensitivity 

to the pricing policy through the first-order interactions. This provides the microtransit operator 

and local city with a trade-off to consider when deciding which policy to implement in a city, as 

PP2 would increase ridership but also increase costs.  

In addition, the forecast models are clearly sensitive to the service region design as that 

determines the input variables used. The estimated models suggest that when designing a service 

region, a microtransit operator and local city agency can look to the zones with attributes that 

would increase ridership while minimizing VMT. Variables with statistically significant positive 

impact on ridership and negative impact on VMT include zones with higher transit station density, 

higher employment density, and lower “employment density × fixed fare”. This is quite interesting 

as it suggests that higher employment density increases ridership while decreasing VMT, but at 

the same time the employment density also falls within the interaction effect with fixed fare price. 

Since the fare policy varies from city to city instead of zone to zone in the same city in general, 

the first order effect suggests setting lower fares while selecting zones with a city with higher 

employment density. These features with statistically opposing signs are bolded in Tables A.1 – 

A.4. 

 

4.4.3 Forecast model application for deployment planning 

To provide a better idea of how the forecast models can be used for microtransit service portfolio 

design in different cities, we collect data from hundreds of 100K+ population cities in the U.S. and 

use the models to consider eight new cities (other than the cities considered in our study), i.e., 

Arlington (Texas), Birmingham (Alabama), Boston (Massachusetts), Chicago (Illinois), Detroit 

(Michigan), Seattle (Washington), St. Louis (Missouri), and Washington D.C. For these cities, we 

only have the public data gathered for the forecast models.  

Assuming a constraint on total VMT of ~ 2756 veh-miles/peak period (i.e., a budget constraint 

around the same value as the total VMT observed for the four Via cities considered in the case 

study), we present two alternative portfolios for service deployment in different cities. For each of 

the eight cities, we generate various L2 scenarios (service regions) and get their population and 

built environment characteristics. We apply PP1 and PP2 pricing policies to the cities. We use the 

fleet VMT forecast model and select service regions from different cities such that the total 

forecasted VMT of a portfolio matches the budget considered. We design two alternative service 
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portfolios, each with the two different fare pricing policies as shown in Figure 10, use the ridership 

forecast model to forecast the peak period ridership for the two portfolios.  

 

 
Figure 10. Two different portfolio designs under two different fare policies, where design #1 (a, b) includes 4 cities 

with PP1 (a) and PP2 (b); design #2 (c,d) includes 6 different cities with PP1 (c) and PP2 (d). Estimated ridership 

and VMT are visualized for each city, where the circle radius is peak period ridership (values in circles), and circle 

colors are VMT (in legend). 
 

 
Figure 11. Service regions of portfolio designs (a) #1 and (b) #2. 

 

For the PP1 cases (Figure 10 (a), (c)), the total forecasted ridership values in portfolios #1 and 

#2 are 1.4 times and 1.9 times higher, respectively, than the total ridership of the four Via cities 

for the same value of total VMT. In portfolio #1, Boston contributes to the highest proportion of 

total VMT as well as the total ridership. In portfolio #2, on the other hand, while the maximum 

(a) Portfolio Design #1, PP1 (b) Portfolio Design #1, PP2 

(c) Portfolio Design #2, PP1 (d) Portfolio Design #2, PP2 

(a) Portfolio Design #1 (b) Portfolio Design #2 
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ridership is observed in Boston, the estimated VMT in Arlington is relatively higher compared to 

the other cities.  

We apply the forecast models to estimate the ridership and VMT values for these same service 

regions in Figure 11 under a different pricing policy (i.e., PP2) as shown in Figure 10 (b, d). As 

shown in Figure 10(b) for cities in portfolio #1, the PP2 pricing results in increased ridership 

compared to PP1 across all 4 cities (maximum in Seattle) along with corresponding increment in 

VMT values (average VMT increment across 4 cities is 1.7 times the PP1 policy values). For each 

city, if we compare the ridership gain with respect to the increment in VMT under the new pricing 

policy, it is observed that the highest gain is estimated in Seattle with Birmingham being the 

lowest. Similarly, for cities in portfolio #2, using PP2 pricing policy (see Figure 10(d)) results in 

increased ridership and VMT in all 6 cities. Interestingly, in this case, although the maximum 

increment in ridership is observed in Detroit followed by Seattle, the highest gain in ridership with 

respect to the corresponding VMT increment is observed in St. Louis, followed by Washington 

D.C. and Arlington.  

Although we have presented only two alternative portfolio designs assuming similar pricing 

policies in all cities and a VMT constraint, microtransit operators can use such forecast models for 

comparing across multiple service portfolios by optimizing for ridership, considering additional 

operation cost constraint, applying different pricing and operating policy combinations to specific 

cities (e.g., based on city types), etc. Granted, the accuracy of the results above depends on the 

quality of the forecast models 𝑀 and should not be taken at face value. Rather, they illustrate that 

a seemingly nontrivial task of finding a portfolio from a market of hundreds of cities can be done, 

and with more reliability if more underlying deployment city observations are available (much as 

the quality of an upscaled image depends on the quality of the original image as well). To extend 

the generalizability of such forecast models to multiple cities in practice, with availability of 

detailed city deployment data for a greater number of cities, it might be relevant for operators and 

planners to categorize and cluster the data as per different city types such as auto-heavy, transit-

heavy cities etc. (Oke et al., 2019, Rath et al., 2022). This can be used to develop category-wise 

forecast models (using diverse set of scenarios generated per category) based on the proposed 

framework to better estimate service performances in different cities for portfolio design. 

Moreover, the input variables considered in these models can be designed based on the purpose of 

the mobility services and the category considered to achieve useful insights. 

Hence, this can be used as an effective decision-support tool for microtransit service 

deployment planning for strategizing resource-allocation and investment decisions, one that can 

help inform public agencies by providing quantitative results that can spur further local studies. 

Example application include comparing performances of free first/last mile microtransit ride 

policy to auto-heavy cities for improving transit ridership, evaluating equity benefits for different 

population groups in terms of improved accessibility in candidate service regions in one set of city 

deployments vs. another, and analyzing benefits and tradeoffs of alternative portfolio designs with 

different operation strategies to different city types in the portfolio within a given budget. This 

work is also of great importance to federal agencies like the Federal Transit Administration (FTA) 

in helping to identify priority areas for funding microtransit projects in different cities. With the 

increasing importance of using innovative analysis tools and interactive platforms by private 

companies (Mercer & Hewitt, 2021; Jacobs 2022) and public agencies (TransitCenter, 2021) to 

aid decision-making, the proposed method can be used to design a service portfolio dashboard and 

create an interface which private companies, public agencies and planners can use for city-level 

deployment planning of emerging mobility services. 



27 

 

 

4.4.4 Policy implications from empirical insights 

The results in Sections 4.4.1 to 4.4.3 reveal multiple original empirical insights that would serve 

both policymakers at state/federal agencies and microtransit/emerging transportation technology 

providers. The inference analysis finds that microtransit ridership (a proxy for benefits) and fleet 

VMT (a proxy for costs) are dependent on the following factors (aligned side-by-side) shown in 

Table 10. Common factors (highlighted in light green) between the two models are the transit 

station density and the employment density. These suggest that the most efficient deployments that 

maximize ridership while minimizing fleet VMT would have high transit station density and high 

employment density. HH density could have mixed effects as increasing ridership would also come 

at increasing fleet VMT. 

 

Table 10. Comparison of effects of different variables on ridership and fleet VMT 

Ridership model Fleet VMT model 

Significant variables Sign Significant variables Sign 

Mean income -   

HH density + HH density + 

Transit station density + Transit station density - 

Employment density + Employment density - 

  Fixed fare + 

 

These insights allow policymakers to sort a portfolio of cities and the zones within each to identify 

effective service region designs. The example portfolios shown in Section 4.4.3 highlight an effort 

that would be impossible for a policymaker to justify using existing methods and frameworks from 

the literature. Based on existing practices, a federal agency like FTA would collect data from 

hundreds of cities first (which we also did), but beyond that they would not have any models to 

quantify the performance of each city, let alone having different service regions in each city. But 

because of the availability of the forecast models estimated from the upscaled data, we can easily 

identify alternative portfolio options and forecast their collective performance.  

 

5. Conclusion 
 

Transportation technologies are not “one-size-fits-all” solutions; this point is clearly demonstrated 

by the 67%/23%/50% failure rates of demand-responsive transport services implemented in 

UK/Europe/North America. Emerging technologies like microtransit and state/federal agencies 

need to have effective decision-support tools, which are limited by the complexity of the decisions 

that need to be made, the limited availability due to the “emerging technology” aspect, and due to 

the myriad of operations that expand the dimensionality of the problem further. For example, even 

a success story like Via only operates in less than 40 U.S. cities while there are over 3000 U.S. 

cities with populations of 10,000 or more.  

 We propose a methodology to upscale data from the limited data available to microtransit 

operators (and to public agencies like the Federal Transit Administration in overseeing deployment 

regulations at the federal level). The method uses simulation to fit market equilibrium models to a 

small set of deployment cities 𝑅 so that those models 𝑚𝑠, 𝑠 ∈ 𝑅, can be used to generate scenario 

data 𝑦𝑖, 𝑖 ∈ 𝑄, 𝑄 ≫ 𝑅, at low cost. The resulting data can be used to fit forecast models 𝑦𝑖 =
𝑀(𝑥𝑖; 𝜃), 𝑖 ∈ 𝑄 so that they can be applied to the population of cities 𝑃, 𝑃 ≫ 𝑅. The overall 
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framework contributes to the literature by parameterizing the within-day simulator from Yoon et 

al. (2022), extending the day-to-day market equilibrium model from Djavadian and Chow 

(2017a,b) to consider travelers with first/last mile access trips as well as direct trips, and 

developing a scenario generation algorithm for feeding the market equilibrium simulation model. 

The models are shown to fit the six cities with an average ridership error of 18.4% while outputting 

latent attributes like fleet size, fleet VMT, % of riders by first/last mile, and breakdown of journey 

times to their components. Note that a conventional transportation planning study would entail 

estimating a travel demand model for one city, obtain similar accuracy (Flyvbjerg et al., 2006), 

and may not be able to output metrics like % of riders by first/last mile. 

The new upscaled scenario data proves to be useful; models fit to the data are adequately 

accurate compared to the original limited city deployment data set (CVs ~ 37-45% for only four 

observations, which is very statistically efficient due to the upscaling) whereas the original four 

observations would be insufficient to produce any meaningful model at all using any existing 

method or framework from the literature. In that sense, the framework successfully upscaled the 

limited samples to produce a synthetic data set of 326 synthetic scenarios. Furthermore, the 

forecast models identify meaningful relationships between ridership and fleet VMT with a host of 

independent public data (employment, households, car ownership, transit station density, income, 

street density) and microtransit operating policies (pricing, service region). Example variables with 

statistically significant positive impact on ridership and negative impact on VMT include zones 

with higher transit station density and higher employment density, not counting the first order 

interactions, as shown in Table 10. Application of the models illustrate how they can quantify the 

effectiveness of a given portfolio and quickly compare between different portfolio designs. We 

can nontrivially identify two alternative portfolios of city service regions with similar VMT as 

Via’s four cities but having up to 1.9 times the ridership, justifying them from a market of hundreds 

of cities with 100K+ populations. 

Future research should look at further collaboration with microtransit providers to classify 

cities into clusters (e.g., auto, bus transit, congested, hybrid, metro bike and mass transit dominant 

cities as per Oke et al. (2019) and to focus more on empirically capturing good fitting forecast 

models using this new methodology. This could include obtaining microtransit operation data for 

additional cities including disaggregate data broken down by categories such as service region 

type, city type or operation type e.g., first/last mile and door-to-door; such data can be used to 

build category-wise forecast models that can be effective for evaluating portfolio designs under 

different operating policies and service region designs. Other emerging technologies should also 

be considered, especially where data are limited: e.g., planning electric vehicle fleets and charging 

infrastructure, pilots for autonomous vehicle fleets. A portfolio dashboard can be implemented to 

help a microtransit provider or the FTA evaluate their portfolios and analyze alternative portfolio 

designs. 

 

Acknowledgments 
 

This research was conducted with the support of C2SMART University Transportation Center 

(USDOT award #69A3551747124). Data shared by Via Transportation is gratefully 

acknowledged. 

 

Author Statement 
 



29 

 

The authors confirm contribution to the paper as follows: study conception and design: SR, BL, 

GY, JYJC; data collection: SR, BL, GY; analysis and interpretation of results: SR, BL, GY, JYJC; 

draft manuscript preparation: SR, BL, GY, JYJC. 

 

References 
American Community Survey, 2019. Subject tables, United States Census Bureau. Available at: 

https://www.census.gov/acs/www/data/data-tables-and-tools/subject-tables/, Accessed 29 

July 2021. 

Anas, A. (1981). The estimation of multinomial logit models of joint location and travel mode 

choice from aggregated data. Journal of regional science, 21(2), 223-242. 

Bardaka, E., Hajibabai, L., & Singh, M. P. (2020). Reimagining ride sharing: Efficient, equitable, 

sustainable public microtransit. IEEE Internet Computing, 24(5), 38-44. 

Bliss, L., 2017. Bridj Is Dead, but Microtransit Isn’t, Bloomberg Citylab. 

Cantarella, G. & Cascetta, E., 1995. Dynamic processes and equilibrium in transportation 

networks: towards a unifying theory. Transportation Science 29(4), 305-329. 

Caros, N. & Chow, J. Y. J., 2021. Day-to-day market evaluation of modular autonomous vehicle 

fleet operations with en-route transfers. Transportmetrica B 9(1), 109-133. 

Chow, J. Y. J. (2018). Informed Urban transport systems: Classic and emerging mobility methods 

toward smart cities. Elsevier. 

Chow, J. Y. J. & Djavadian, S., 2015. Activity-based market equilibrium for capacitated 

multimodal transport systems. Transportation Research Part C 59, 2-18. 

Chow, J. Y. J., Rath, S., Yoon, G., Scalise, P., Alanis Saenz, S., 2020. Spectrum of Public Transit 

Operations: From Fixed Route to Microtransit. FTA Report NY-2019-069-01-00. 

https://c2smart.engineering.nyu.edu/wp-content/uploads/2020/04/Chow-FTA-Report-NY-

2019-069-01-00.pdf.   

Chow, J. Y. J., Regan, A., Ranaiefar, F. & Arkhipov, D., 2011. A network option portfolio 

management framework for adaptive transportation planning. Transportation Research Part 

A 45(8), 765-778. 

Cich, G., Knapen, L., Maciejewski, M., Bellemans, T., & Janssens, D., 2017. Modeling demand 

responsive transport using SARL and MATSim. Procedia Computer Science 109, 1074-1079. 

Cooper, R., Edgett, S. & Kleinschmidt, E., 1998. Portfolio management for new products. Addison 

Wesley Lgonman, Inc., Reading MA. 

CTPP, 2016. Census Data for Transportation Planning Applications, AASHTO. Available at: 

https://ctpp.transportation.org/, Accessed 29 July 2021. 

Currie, G. & Fournier, N., 2020. Why most DRT/Micro-Transits fail–What the survivors tell us 

about progress. Research in Transportation Economics 83, 100895. 

Daganzo, C. & Ouyang, Y., 2019. A general model of demand-responsive transportation services: 

From taxi to ridesharing to dial-a-ride. Transportation Research Part B 126, 213-224. 

Djavadian, S. & Chow, J. Y. J., 2017a. Agent-based day-to-day adjustment process to evaluate 

dynamic flexible transport service policies. Transportmetrica B 5(3), 281-306. 

Djavadian, S. & Chow, J. Y. J., 2017b. An agent-based day-to-day adjustment process for 

modeling ‘Mobility as a Service’ with a two-sided flexible transport market. Transportation 

Research Part B 104, 36-57. 

Dong, X., Chow, J. Y., Waller, S. T., & Rey, D. (2022). A chance-constrained dial-a-ride problem 

with utility-maximising demand and multiple pricing structures. Transportation Research 

Part E: Logistics and Transportation Review, 158, 102601. 

https://www.census.gov/acs/www/data/data-tables-and-tools/subject-tables/
https://c2smart.engineering.nyu.edu/wp-content/uploads/2020/04/Chow-FTA-Report-NY-2019-069-01-00.pdf
https://c2smart.engineering.nyu.edu/wp-content/uploads/2020/04/Chow-FTA-Report-NY-2019-069-01-00.pdf
https://ctpp.transportation.org/


30 

 

EPA, 2021. Smart location database. Available at: https://www.epa.gov/smartgrowth/smart-

location-mapping#SLD, Accessed 30 July 2021. 

Flyvbjerg, B., Skamris Holm, M. K., & Buhl, S. L. (2006). Inaccuracy in traffic 

forecasts. Transport Reviews, 26(1), 1-24. 

Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression 

equations. American Journal of Political Science, 797-833. 

Fu, Z., & Chow, J. Y. (2022). The pickup and delivery problem with synchronized en-route 

transfers for microtransit planning. Transportation Research Part E: Logistics and 

Transportation Review, 157, 102562. 

Haglund, N., Mladenović, M. N., Kujala, R., Weckström, C., & Saramäki, J., 2019. Where did 

Kutsuplus drive us? Ex post evaluation of on-demand micro-transit pilot in the Helsinki 

capital region. Research in Transportation Business & Management, 32, 100390. 

Horn, M., 2002. Fleet scheduling and dispatching for demand-responsive passenger services. 

Transportation Research Part C: Emerging Technologies 10(1), 35-63. 

Horowitz, J., 1984. The stability of stochastic equilibrium in a two-link transportation network. 

Transportation Research Part B 18(1), 13-28. 

Jacobs, 2022. Jacobs Acquires Mobility Analytics Leader StreetLight Data, Inc. Available at: 

www.prnewswire.com/news-releases/jacobs-acquires-mobility-analytics-leader-streetlight-

data-inc-301476275, Accessed 1 October, 2022. 

Jung, J. & Chow, J. Y. J., 2019. Effects of charging infrastructure and non-electric taxi competition 

on electric taxi adoption incentives in New York City. Transportation Research Record 

2673(4), 262-274. 

Krok, A., 2016. Car2Stop: Car2Go shuts down services in San Diego, CNET. 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. 

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 

1(14), 281-297. 

Mahmassani, H. S., 1990. Dynamic models of commuter behavior: Experimental investigation 

and application to the analysis of planned traffic disruptions. Transportation Research Part A 

24(6), 465-484. 

Mahmassani, H. S. & Chang, G., 1986. Experiments with departure time choice dynamics of urban 

commuters. Transportation Research Part B 20(4), 297-320. 

Markov, I., Guglielmetti, R., Laumanns, M., Fernández-Antolín, A. and de Souza, R., 2021. 

Simulation-based design and analysis of on-demand mobility services. Transportation 

Research Part A 149, 170-205. 

Marshall, A., 2019. Ford Axes Its Chariot Shuttles, Proves Mobility Is Hard., Wired. 

Ma, T., Chow, J. Y. J., Klein, S. & Ma, Z., 2021. A user-operator assignment game with 

heterogeneous user groups for empirical evaluation of a microtransit service in Luxembourg. 

Transportmetrica A 17(4), 946-973. 

Ma, T., Rasulkhani, S., Chow, J. Y. J. & Klein, S., 2019. A Dynamic Ridesharing Dispatch and 

Idle Vehicle Repositioning Strategy with Integrated Transit Transfers. Transportation 

Research Part E 128, 417–442. 

Mercer, T., & Hewitt, C., 2021. Introducing Remix by Via’s On-demand Planning. Available at: 

www.remix.com/blog/introducing-our-newest-product-on-demand-planning, Accessed 1 

October, 2022. 

https://www.epa.gov/smartgrowth/smart-location-mapping#SLD
https://www.epa.gov/smartgrowth/smart-location-mapping#SLD
http://www.prnewswire.com/news-releases/jacobs-acquires-mobility-analytics-leader-streetlight-data-inc-301476275
http://www.prnewswire.com/news-releases/jacobs-acquires-mobility-analytics-leader-streetlight-data-inc-301476275
http://www.remix.com/blog/introducing-our-newest-product-on-demand-planning


31 

 

Moovit, 2021. On-demand Microtransit Glossary. Available at: https://moovit.com/wp-

content/uploads/2021/08/01142135/Moovit-_-On-Demand-Microtransit-Glossary.pdf, 

Accessed 21 September, 2022. 

Mercer, T., & Hewitt, C., 2021. Introducing Remix by Via’s on-demand planning. Available at: 

www.remix.com/blog/introducing-our-newest-product-on-demand-planning, Accessed 1 

October, 2022. 

Nalic, D., Mihalj, T., Bäumler, M., Lehmann, M., Eichberger, A. and Bernsteiner, 2020. Scenario 

Based Testing of Automated Driving Systems: A Literature Survey. Proc. FISITA Web 

Congr., 30. 

Oke, J., Aboutaleb, Y.M., Akkinepally, A., Azevedo, C.L., Han, Y., Zegras, P.C., Ferreira, J. and 

Ben-Akiva, M.E., 2019. A novel global urban typology framework for sustainable mobility 

futures. Environmental Research Letters 14(9), 095006. 

OSM, 2021. Python OSMnx library (Open Street Map). Available at: 

https://github.com/gboeing/osmnx, Accessed 30 July 2021. 

OTP, 2021. Open Trip Planner API. Available at: https://www.opentripplanner.org/, Accessed 30 

July 2021. 

Pantelidis, T. P., Chow, J. Y. J. & Rasulkhani, S., 2020. A many-to-many assignment game and 

stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms. 

Transportation Research Part B 140, 79-100. 

Pinto, H., Hyland, M., Mahmassani, H. S. & Verbas, I., 2020. Joint design of multimodal transit 

networks and shared autonomous mobility fleets. Transportation Research Part C 113, 2-20. 

Rath, S. & Chow, J., 2022. Worldwide city transport typology prediction with sentence-BERT 

 based supervised learning via Wikipedia. Transportation Research Part C: Emerging 

 Technologies, Volume 139, p. 103661. 

Rath, S., Liu, B., Yoon, G., Chow, J. Y. J. (2021). Urban microtransit cross-sectional study for 

service portfolio design [supporting dataset and code], 

https://zenodo.org/record/5517983#.YVxrQ9rMKUl, last accessed Oct. 5, 2021. 

Redmond, L. S., & Mokhtarian, P. L. (2001). The positive utility of the commute: modeling ideal 

commute time and relative desired commute amount. Transportation, 28(2), 179-205. 

Rocklage, E., Kraft, H., Karatas, A. & Seewig, J., 2017. Automated scenario generation for 

regression testing of autonomous vehicles. IEEE 20th International conference on intelligent 

transportation systems, 476-483. 

Shaheen, S. & Chan, N., 2016. Mobility and the sharing economy: Potential to facilitate the first-

and last-mile public transit connections. Built Environment 42(4), 573-588. 

Shotl, 2021. Available at: https://shotl.com/, Accessed 7 October 2021. 

Smith, M. et al., 2014. The long term behaviour of day-to-day traffic assignment models. 

Transportmetrica A 10(7), pp. 647-660. 

Smith, M. J., 1984. The stability of a dynamic model of traffic assignment—an application of a 

method of Lyapunov. Transportation Science 18(3), 245-252. 

Statista, 2019. Number of cities, towns and villages (incorporated places) in the United States in 

2019, by population size. Available at: https://www.statista.com/statistics/241695/number-of-

us-cities-towns-villages-by-population-size/, Accessed 29 July 2021. 

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological), 58(1), pp.267-288. 

Train, K., & McFadden, D. (1978). The goods/leisure tradeoff and disaggregate work trip mode 

choice models. Transportation research, 12(5), 349-353. 

https://moovit.com/wp-content/uploads/2021/08/01142135/Moovit-_-On-Demand-Microtransit-Glossary.pdf
https://moovit.com/wp-content/uploads/2021/08/01142135/Moovit-_-On-Demand-Microtransit-Glossary.pdf
http://www.remix.com/blog/introducing-our-newest-product-on-demand-planning
https://github.com/gboeing/osmnx
https://www.opentripplanner.org/
https://zenodo.org/record/5517983#.YVxrQ9rMKUl
https://shotl.com/
https://www.statista.com/statistics/241695/number-of-us-cities-towns-villages-by-population-size/
https://www.statista.com/statistics/241695/number-of-us-cities-towns-villages-by-population-size/


32 

 

Transdev, 2021. Available at: https://transdevna.com/services-and-modes/microtransit/, Accessed 

29 July 2021. 

TransitCenter, 2021. Introducing the Transit Equity Dashboard. Available at: 

https://transitcenter.org/introducing-the-transit-equity-dashboard/, Accessed 1 October, 

2022. 

Transitfeeds, 2021. Available at: https://transitfeeds.com/, Accessed 30 July 2021. 

Tuncali, C., Fainekos, G., Ito, H. & Kapinski, J., 2018. Simulation-based adversarial test 

generation for autonomous vehicles with machine learning components. IEEE Intelligent 

Vehicles Symposium (IV), 1555-1562. 

Via, 2021. Available at: https://ridewithvia.com/, Accessed 29 July 2021. 

Volinski, J., 2019. Microtransit or General Public Demand–Response Transit Services: State of 

the Practice. TCRP Synthesis of Transit Practice Project J-7, Volume Topic SB-30. 

Wardman, M., 2004. Public transport values of time. Transport policy, 11(4), 363-377. 

Watling, D. & Hazelton, M., 2003. The dynamics and equilibria of day-to-day assignment models. 

Networks and Spatial Economics 3(3), 349-370. 

Yan, X., Levine, J. & Zhao, X., 2019. Integrating ridesourcing services with public transit: An 

evaluation of traveler responses combining revealed and stated preference data. 

Transportation Research Part C 105, 683-696. 

Yoon, G., Chow, J. Y. J. & Rath, S., 2022. A simulation sandbox to compare fixed-route, flexible-

route transit, and on-demand microtransit system designs, KSCE J Civ Eng 26, 3043–3062.  

Zhou, Y., Liu, X. C., & Grubesic, T. (2021). Unravel the impact of COVID-19 on the spatio-

temporal mobility patterns of microtransit. Journal of Transport Geography, 97, 103226. 

 

 

 

 

  

https://transdevna.com/services-and-modes/microtransit/
https://transitcenter.org/introducing-the-transit-equity-dashboard/
https://transitfeeds.com/
https://ridewithvia.com/


33 

 

Appendix 
 

The estimated feature coefficient values of the ridership and VMT forecast models using Lasso 

method are listed in Tables A.1 and A.2, respectively. The same parameters are estimated using 

OLS to report the p-values in Tables A.3 and A.4, respectively. Bolded features indicate 

statistically significant opposing signs between the ridership model and VMT model which can 

help identify best locations for expanding microtransit service. 

 

Table A.1. Ridership forecast model estimated feature coefficient values 

Feature 
Estimated 

coefficient  
Feature 

Estimated 

coefficient 
Feature 

Estimated 

coefficient 

Intercept 
2.21E-01 

mean income ($) × 

fixed fare 3.07E-06 
HH density × PP1 

1.19E-01 

mean income ($) 
-2.90E-06 

auto ownership per HH 

× street density -1.69E-01 
HH density × PP2 

1.70E-01 

auto ownership per HH 
3.75E+00 

auto ownership per HH 

× HH density -4.05E-04 
HH density × fixed fare 

-1.39E-01 

street density 
5.82E-02 

auto ownership per HH 

× transit station density -2.04E-02 

transit station density × 

mean TRIPEQ 1.27E+02 

HH density 
8.83E-02 

auto ownership per HH 

× employment density 4.17E-02 

transit station density × 

PP1 -2.76E+00 

transit station density 
3.30E+01 

auto ownership per HH 

× mean TRIPEQ 2.86E-01 

transit station density × 

PP2 9.87E+01 

employment density 
1.00E-01 

auto ownership per HH 

× PP1 3.63E-01 

transit station density × 

fixed fare -2.04E+01 

mean TRIPEQ 
2.29E+00 

auto ownership per HH 

× fixed fare -3.87E-01 

employment density × 

mean TRIPEQ 6.09E-01 

PP1 
-1.14E+00 

street density × HH 

density -1.63E-02 

employment density × 

PP1 -4.66E-02 

PP2 
2.34E-15 

street density × transit 

station density -1.56E-01 

employment density × 

PP2 4.41E-01 

fixed fare 
-6.25E-02 

street density × mean 

TRIPEQ 8.86E-02 

employment density × 

fixed fare -7.92E-02 

mean income ($) × 

street density 1.37E-07 
street density × PP1  

5.78E-02 
mean TRIPEQ × PP1 

-4.08E-01 

mean income ($) × 

transit station density 1.80E-04 
street density × PP2 

2.22E-03 
mean TRIPEQ × PP2 

1.05E-01 

mean income ($) × 

employment density 3.88E-07 

street density × fixed 

fare -2.70E-02 

mean TRIPEQ × fixed 

fare -4.12E-02 

mean income ($) × PP1  
-1.50E-05 

HH density × 

employment density 4.39E-03 
PP1 × fixed fare 

-2.67E-02 

mean income ($) × PP2 
7.53E-07 

HH density × mean 

TRIPEQ 6.54E-01     
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Table A.2. VMT forecast model estimated feature coefficient values 

Feature 
Estimated 

coefficient  
Feature 

Estimated 

coefficient 
Feature 

Estimated 

coefficient 

Intercept 
-3.26E+00 

mean income ($)  × 

fixed fare 1.78E-06 

HH density × mean 

TRIPEQ -1.10E+01 

mean income ($) 
2.86E-05 

auto ownership per HH 

× street density -7.74E-01 
HH density × PP1 

4.03E+00 

auto ownership per HH 
-1.62E+00 

auto ownership per HH 

× HH density -9.01E-01 
HH density × PP2 

9.38E-01 

street density 
2.71E-01 

auto ownership per HH 

× transit station density -3.04E+02 

HH density × fixed 

fare -5.65E-01 

HH density 

8.03E-01 

auto ownership per HH 

× employment density 
9.06E-01 

 transit station density 

× employment 

density -5.71E+01 

transit station density 
-1.36E+01 

auto ownership per HH 

× mean TRIPEQ 5.56E+01 

 transit station density 

× mean TRIPEQ 1.29E+01 

employment density 
-6.39E-01 

auto ownership per HH 

× PP1 4.48E+00 

 transit station density 

× PP1 3.97E+02 

mean TRIPEQ 
-3.25E+01 

auto ownership per HH 

× PP2 -5.53E-01 

 transit station density 

× PP2 4.44E+02 

PP1 
-4.43E-01 

auto ownership per HH 

× fixed fare -4.92E+00 

 transit station density 

× fixed fare -6.47E+01 

PP2 
2.57E-15 

street density × HH 

density -7.76E-02 

employment density 

× mean TRIPEQ 1.51E+00 

fixed fare 
3.42E+00 

street density × transit 

station density -5.68E+00 

employment density 

× PP1 -7.87E-01 

mean income ($) × auto 

ownership per HH -2.15E-05 

street density × 

employment density 8.80E-03 

employment density 

× PP2 1.82E+00 

mean income ($) × 

street density 5.17E-07 

street density × mean 

TRIPEQ 1.67E+00 

employment density 

× fixed fare 2.50E-01 

mean income ($) × HH 

density 9.61E-06 
street density × PP1  

2.23E-01 
mean TRIPEQ × PP1 

-6.83E+00 

mean income ($) × 

transit station density 7.90E-04 
street density × PP2 

4.61E-01 
mean TRIPEQ × PP2 

-2.44E+00 

mean income ($) ×  

employment density -6.38E-06 

street density × fixed 

fare -5.27E-02 

mean TRIPEQ × 

fixed fare -5.29E-01 

mean income ($) × 

mean TRIPEQ -1.08E-04 

HH density ×  transit 

station density 1.16E+02 
PP1 × fixed fare 

8.88E-01 

mean income ($) × PP1  
1.11E-05 

HH density × 

employment density 1.94E-01 
PP2 × fixed fare 

1.41E+00 

mean income ($) × PP2 1.72E-05         
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Table A.3. Ridership forecast model selected features p-values from linear least squares 

estimation 

Feature p value Feature p value Feature p value 

Intercept <0.001*** 
mean income ($) × fixed 

fare 
0.001*** HH density × PP1 0.015* 

mean income ($) <0.001*** 
auto ownership per HH × 

street density 
0.786 HH density × PP2 0.051* 

auto ownership per 

HH 
0.959 

auto ownership per HH × 

HH density 
0.053* 

HH density × fixed 

fare 
0.046* 

street density 0.352 
auto ownership per HH × 

transit station density 
0.074 

transit station density 

× mean TRIPEQ 
0.005** 

HH density 0.027* 
auto ownership per HH × 

employment density 
0.031* 

transit station density 

× PP1 
0.007** 

transit station 

density 
0.002** 

auto ownership per HH × 

mean TRIPEQ 
0.576 

transit station density 

× PP2 
<0.001*** 

employment 

density 
0.001*** 

auto ownership per HH × 

PP1 
0.333 

transit station density 

× fixed fare 
0.126 

mean TRIPEQ 0.751 
auto ownership per HH × 

fixed fare 
0.867 

employment density 

× mean TRIPEQ 
0.933 

PP1 0.877 
street density × HH 

density 
0.730 

employment density 

× PP1 
<0.001*** 

PP2 0.877 
street density × transit 

station density 
0.956 

employment density 

× PP2 
0.003** 

fixed fare 0.699 
street density × mean 

TRIPEQ 
0.928 

employment 

density × fixed fare 
<0.001*** 

mean income ($) × 

street density 
0.228 street density × PP1 0.344 

mean TRIPEQ × 

PP1 
0.017* 

mean income ($) × 

transit station 

density 

0.489 street density × PP2 0.369 
mean TRIPEQ × 

PP2 
0.053* 

mean income ($) × 

employment 

density 

0.421 street density × fixed fare 0.001*** 
mean TRIPEQ × 

fixed fare 
0.634 

mean income ($) × 

PP1 
<0.001*** 

HH density × employment 

density 
0.943 PP1 × fixed fare 0.048* 

mean income ($) × 

PP2 
0.235 

HH density × mean 

TRIPEQ 
0.655   

*, **, *** refer to p-values less than 0.05, 0.01, and 0.001 respectively  
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Table A.4. VMT forecast model selected features p-values from linear least squares estimation 

Feature p value Feature p value Feature p value 

Intercept <0.001*** 
mean income ($) × fixed 

fare 
0.329 

HH density × mean 

TRIPEQ 
0.746 

mean income ($) 0.096 
auto ownership per HH × 

street density 
0.279 HH density × PP1 0.002** 

auto ownership per 

HH 
0.549 

auto ownership per HH × 

HH density 
0.026* HH density × PP2 0.018* 

street density 0.775 
auto ownership per HH × 

transit station density 
0.301 

HH density × fixed 

fare 
0.014** 

HH density 0.006** 
auto ownership per HH × 

employment density 
0.077 

transit station density 

× employment density 
0.001*** 

transit station 

density 
0.041* 

auto ownership per HH × 

mean TRIPEQ 
0.168 

transit station density 

× mean TRIPEQ 
0.082 

employment 

density 
0.006** 

auto ownership per HH × 

PP1 
0.044* 

transit station density 

× PP1 
0.058 

mean TRIPEQ 0.173 
auto ownership per HH × 

PP2 
0.057 

transit station density 

× PP2 
0.027* 

PP1 0.806 
auto ownership per HH × 

fixed fare 
0.012** 

transit station density 

× fixed fare 
0.042* 

PP2 0.806 street density × HH density 0.029* 
employment density × 

mean TRIPEQ 
0.804 

fixed fare 0.025* 
street density × transit 

station density 
0.539 

employment density × 

PP1 
0.001*** 

mean income ($) × 

auto ownership per 

HH 

0.233 
street density × 

employment density 
0.264 

employment density × 

PP2 
0.030* 

mean income ($) × 

street density 
0.370 

street density × mean 

TRIPEQ 
0.266 

employment density 

× fixed fare 
0.002** 

mean income ($) × 

HH density 
0.188 street density × PP1  0.607 mean TRIPEQ × PP1 0.022* 

mean income ($) × 

transit station 

density 

0.258 street density × PP2 0.983 mean TRIPEQ × PP2 0.731 

mean income ($) × 

employment density 
0.323 street density × fixed fare 0.117 

mean TRIPEQ × fixed 

fare 
0.221 

mean income ($) × 

mean TRIPEQ 
0.041* 

HH density × transit station 

density 
0.001*** PP1 × fixed fare 0.197 

mean income ($) × 

PP1  
0.206 

HH density × employment 

density 
0.109 PP2 × fixed fare 0.003** 

mean income ($) × 

PP2 
0.048*       

*, **, *** refer to p-values less than 0.05, 0.01, and 0.001 respectively  

 

 


