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Abstract

Due to transportation technologies having such heterogeneous impacts on different communities,
there needs to be better tools to evaluate the deployment of emerging technologies with limited
data. Microtransit is one such technology. We propose a novel framework based on existing
methods to “upscale” the limited data available so that further decision-support analysis and
forecast modeling can be achieved where none could prior. The framework involves expanding an
initial day-to-day adjustment process to handle both first/last mile access trips and direct trips,
updating a within-day microtransit simulator with a parametric design, and developing a synthetic
scenario generation process. The framework is tested in a case study with data from Via for Salt
Lake City, Austin, Cupertino, Sacramento, Columbus, and Jersey City showing an average 18%
ridership error for the market equilibrium models. Data from four of those cities are upscaled to
326 synthetic scenarios to estimate forecast models for ridership and fleet vehicle-miles-traveled
using Lasso regularization. While the models have root mean squared error (RMSE) values
between 37-45% of the averages, using only four cities’ data alone would not produce any forecast
model at all. The results show that variables with statistically significant positive impact on
ridership and negative impact on vehicle-miles-traveled (VMT) include zones with more transit
stations, higher employment, but lower “employment density X fixed fare”. The models are then
used to identify two alternative portfolios with similar fleet VMT as the original four cities but are
forecast to have up to 1.9 times the ridership.

Keywords: microtransit, portfolio management, scenario generation, simulation, emerging
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1. Introduction

Transportation technologies are not “one-size-fits-all” solutions in general because their
effectiveness depends on the deployment region. On-demand transit, i.e., “microtransit”, exhibits
this characteristic. Microtransit can be defined as shared public or private sector transportation
services that offer fixed or dynamically allocated routes and schedules in a demand-responsive
manner i.e., in response to individual or aggregate consumer demand, using smaller vehicles
(multi-passenger /pooled shuttles or vans) and capitalizing on widespread mobile GPS and internet
connectivity (Volinski, 2019; Chow et al., 2020; Yoon et al., 2022). The broader market of
demand-responsive transportation (e.g., shared taxis, ride-sourcing, carshare, micro mobility,
microtransit) has gained significant interest in the global urban mobility sector because of these
mobile technologies.

Since these technologies are not one-size-fits-all, the reception for such technologies have
been mixed. Some ventures have been successful. For example, Via Transportation, Inc. (founded
in 2012) (Via, 2021) continues to operate at full capacity in over 35 countries in partnership with
over 90 transit agencies (see Figure 1(a)). Their services include door-to-door, first-last mile trips
to transit stations, and virtual stops, i.e., locations for pickups and drop-offs of riders within a
walkable distance from their origins and destinations to improve service efficiency (Moovit, 2021).
Transdev (2021), founded in 2011, operates multiple microtransit services (including first-last mile
services) in the U.S, the Netherlands, France, and Australia. Shotl (2021), founded in 2017,
provides on-demand bus and van services in collaboration with governments, municipalities, and
businesses across Europe, Latin America, and Asia Pacific region improving accessibility in low-
density and underserved areas.

On the other hand, there have been high profile failures as well: Kutsuplus in Helsinki
(Haglund et al., 2019), Car2Go in North America (Krok, 2016), Bridj (Bliss, 2017), and Chariot
(Marshall, 2019). Effectiveness of such service adoptions varies from city to city in terms of cost
and benefit. Currie and Fournier (2020) provide a lifespan analysis of 120 demand-responsive
transportation systems (including microtransit) from 19 countries over the period 1970-2019; their
analysis highlights the failure rates in the UK is 67% while that in Europe and the USA/Canada is
23% and 50%, respectively.

Existing 36 U.S. and other deployments from Via
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Figure 1. (a) Via deployments around the world (Via, 2021), (b) number of incorporated places in 2019 (Statista,
2019).
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The list of cities shown in Figure 1(a) represents an example of a “microtransit deployment
portfolio”. A portfolio consists of a list of active projects developing a product sharing common
resources that is continuously updated; new projects need to be evaluated and prioritized and
existing projects may be accelerated, abandoned, or de-prioritized (Cooper et al., 1998; Chow et
al., 2011). With microtransit deployment as the portfolio product, how can mobility providers
decide which city agencies to work with for deploying new services? While the question is posed
to mobility providers, the insights from this research can enable state and federal government
agencies (e.g., Federal Transit Administration) to prioritize technology adoption efforts among
their many cities. This question is also not restricted to just microtransit and can apply to any
emerging transportation technology where deployment data are limited to just a few cities, i.e., a
technology that operates in only 5 cities would only represent 5 statistical samples to extrapolate
insights for hundreds of thousands more (see Figure 1(b)).

To address this microtransit deployment portfolio problem, a solution is needed that can make
the most of the data that may be available. We propose “upscaling” the available data using
simulation, in a similar manner to how deep learning algorithms can be used to upscale low-quality
images into high-quality ones. This topic of synthetic scenario generation has also been applied to
generating test cases for machine learning models, particularly in testing autonomous vehicle
algorithms (Rocklage et al., 2017; Tuncali et al., 2018; Nalic et al., 2020). Our framework is novel
in several new ways.

First, the market equilibrium model is extended from earlier works (Chow et al., 2020;
Djavadian & Chow, 2017a; Djavadian & Chow, 2017b; Caros & Chow, 2021) to allow
parameterizing the degree of virtual stop access distance and outputting the percent of microtransit
riders using it as a first/last mile access mode.

Second, a proposed synthetic scenario generator outputs data that is shown to fit the limited
observed deployment data, extending a sample set of four city scenarios into 326 synthetic
scenarios. This “upscaled data” is fit with a forecast model that reveals interesting insights relating
a deployment’s ridership and fleet vehicle-miles-traveled (VMT) to service region design, pricing
policy, and proximity of fixed route transit stations. Statistically significant public city attributes
found using Lasso regularization include employment density, household density, mean income,
street density, and transit station density, among others.

Third, the fitted forecast models are demonstrated as tools to analyze and compare different
portfolios to the existing Via deployments in the four cities studied. We show it is possible to
identify alternative portfolios operating a similar amount of fleet VMT that can improve ridership
by up to 90%. The method can be readily adapted to any emerging transportation technology
deployment planning process in which the number of deployed cities remains limited.

2. Literature review

2.1 Forecast models for microtransit

With emerging transportation technologies, the transportation planning perspective shifts from the
perspective of a single city (conventional long range transportation planning conducted by a
metropolitan planning organization for their own city) to a market of multiple cities. Forecasts
need to be made for multiple different cities and for different operating modes. Conventional
forecasting practices (Volinski, 2019; Chow et al., 2020; Yoon et al., 2022) only consider a local
public agency’s perspective (i.e. city/region-centric), which are not applicable to the deployment



portfolio planning problem which requires an operator-centric view that covers a cross-section of
cities. Models based on cross-sectional data for forecasting microtransit measures across multiple
cities simply do not exist because there was no need for such in conventional city/region-centric
practices (each city had their own data to work with), to the best of our knowledge.

Forecast models for individual cities are also limited, and for good reason. Analytical models
tend to resort to simplified operations and homogeneous conditions (Daganzo & Ouyang, 2019)
or are used for explaining ex post conditions (Haglund et al., 2019; Pinto et al., 2020; Pantelidis et
al., 2020; Bardaka et al., 2020; Ma et al., 2021). Microtransit can have many dimensions of
complexity: routing, dispatch, pricing, rebalancing, fleet sizing, service region coverage, etc. (Fu
and Chow, 2022; Dong et al., 2022). Four step models are not equipped to make predictions for
users based on these complex factors mainly because that equilibrium cannot be easily captured in
a static model that exhibits not only route and mode choice, but also transfers, wait time, and
departure time choice from users, plus a host of choice dimensions from the operators. To
overcome this drawback, city simulations draw on complex multi-agent simulations of activity
behavior (Chow & Djavadian, 2015; Cich et al., 2017; Chow, 2018). However, these tools are
computationally expensive and data hungry. Under a post-COVID era, there are further
fluctuations in microtransit demand that make it harder to model (Zhou et al., 2021).

In particular, forecasting potential microtransit ridership as a first/last mile access mode
(Shaheen & Chan, 2016) is of great interest to local agencies but remains an active research gap.
To date there are no forecast models that distinguish between microtransit as a direct service or as
a first/last mile access mode as a subset of multiple modes available to commuters in a region. For
example, Yan et al. (2019) only forecast multimodal trips using ride-sourcing strictly to access
public transit.

2.2 Simulation-based market equilibrium forecasting

Simulation-based methods are proven to be effective for evaluating complex mobility systems
(Horn, 2002; Jung & Chow, 2019; Ma et al., 2019; Markov et al., 2021). However, many such
studies only consider fixed demand to simulate the supply side “within-day” dynamics without
any equilibration, i.e., with no demand feedback.

To capture the equilibrium between demand and mobility services, day-to-day adjustment
mechanisms have been used to describe a transportation system through its dynamic evolution
(Smith, 1984; Watling & Hazelton, 2003). Under such mechanisms, users in the system adjust
their behavior iteratively each day according to past experiences. Such mechanisms can lead the
system to evolve and converge to different states depending on the initial conditions and the
behavior characteristics of the users (Smith et al., 2014). Day-to-day adjustment models have been
used to model complex transportation systems because they explicitly capture the relationship
between system state and the behavior of users (Horowitz, 1984; Mahmassani & Chang, 1986;
Mahmassani, 1990; Cantarella & Cascetta, 1995). However, these earlier studies focus only on the
road traffic network.

Djavadian and Chow (2017a,b) proposed an agent-based day-to-day adjustment process of
flexible transport service and showed that the sampling distribution of different agent populations
reaches a stochastic user equilibrium (SUE). Users’ choices of mode and departure time are
adjusted from day to day to maximize utility and minimize delay; operators’ decisions can be
captured as part of a two-sided market. Caros and Chow (2021) extended that model to capture
operator learning of optimal cost weights to anticipate elastic user demand in evaluating modular
autonomous vehicle fleets in Dubai.



Similar mechanisms are adopted in this study to model the market equilibrium of a multimodal
transportation system with a microtransit subsystem.

3. Proposed methodology

3.1 Problem statement

In a market of cities P saturated with deployment data in every city, there are enough city
observations that insights (e.g., forecast model as shown in the top dashed box in Figure 2) can be
drawn between public data available for any U.S. city and measures important to the portfolio. For
example, there exists a model M such thaty, = M (xp ; 6), p € P, where y, may be aggregate daily
microtransit ridership or the fleet’s VMT (along with derivative measures like greenhouse gas
emissions, accidents, infrastructure cost depreciations, etc.) and x,, include sociodemographic
data. The problem is that for emerging transportation technologies like microtransit, especially
from private operators, data needed for such an analysis or portfolio forecast model are limited in
the number of city observations Q, i.e., |Q| < |P|. For example, in our study we have only data
from |Q| = 6 U.S. cities (of which only 4 are similar enough for generating consistent synthetic
scenarios) based on a half-year effort from Via to request permission from their local agency
partners to share this data from each of their deployments with us.

To overcome this challenge, we propose to calibrate simulation-based market equilibrium
models y; = ms(xg;9),s € Q, for the deployment city set Q. Input variables of a set R of
independent synthetic scenarios, |R| > |Q|, are generated as x;,i € Rs, R = Useq Rs. These inputs
feed into the mg to obtain y;, i € Ry, i.e., the “upscaled scenario data”. The forecast model M can
then be estimated for a portfolio of cities, i.e., 8 = M~(y;, x;),i € R. The lower dashed box in
Figure 2 highlights the upscaling process. The success of the framework depends on the design of
the market equilibrium models m.
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Figure 2. Process diagram showing modeling needed to generate synthetic scenario data for a portfolio-level
forecast model.



Market equilibrium model m¢ design criteria

1)

2)

3)

4)

5)

6)

A market equilibrium model m, for each city s € Q requires a demand model to predict
microtransit demand. While a microtransit provider might have detailed data of their
customers, they do not typically have the same quality of data for the general public across all
deployed cities, and thus rely on public data. Publicly available data is only available at an
aggregate level, and generally missing microtransit trips which have only recently emerged.
The demand model needs to be aggregate and include microtransit preference that is sensitive
to trip performance including some or all of access time, wait time, in-vehicle time.
Microtransit is provided for a defined service region. Pickups and drop-offs are only made
within that service region. This design allows microtransit to serve direct trips as well as
access/egress trips to transit stations. The demand model needs to account for at least two
population segments: travelers making direct trips within the service region as well as trips
to/from transit stations that could take travelers to locations outside the service region. Both
segments depend on the service region design while the latter also depends on transit network
proximity.

The market equilibrium model needs to provide a stable set of performance measures for a
dynamic, on-demand transit service system design in which the operator perceives travelers
arriving randomly throughout the day and operate several functions dynamically: dispatch,
routing, idle vehicle repositioning.

The market equilibrium model needs to be designed to account for observed occupancy data
that is available to the microtransit operator.

The market equilibrium model needs to allow for calibration of different operating
parameters, ¢.g., different pedestrian access distances, maximum wait time or detour time,
etc., to differentiate operations at different cities.

The synthetic scenario generator needs to be able to efficiently construct independent
scenarios in which public zonal data are available as well as outputs of the calibrated
simulation operated under those scenarios.

Our market equilibrium model and synthetic scenario generator are designed to address these

criteria as shown in Table 1. The model mg should output ridership, percent of riders that are
first/last mile access, fleet size, fleet vehicle miles traveled, average traveler journey times (wait,
access, in-vehicle), operation cost, revenue, and other derivative measures like greenhouse gas
(GHG) emissions.

Table 1. Components of the proposed method that addresses the methodology design criteria

Components of the proposed framework Design criteria

Aggregate mode choice model (Section 3.2.1) #1 and #2

Day-to-day adjustment process in the market equilibrium model | #3 and #4

(Section 3.2.2)

Within day simulator in the market equilibrium model (Section | #5

3.2.3)

Synthetic scenario generation design (Section 3.3) #6

3.2 Day-to-day market equilibrium model
A day-to-day adjustment process characterizes the dynamics in adjustments made by both travelers
(users) and the operators each day as a dynamic system. Djavadian and Chow (2017a) showed that
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such adjustment processes can reach a stochastic user equilibrium with an asymptotic number of
sampled agent populations and can be used to model on-demand systems. However, it did not
incorporate multiple population segments, nor did it account for certain observable data made
available from an operator, namely the occupancy data.

The process from Djavadian and Chow (2017b) is modified to address the requirements of
this framework. In this process, travelers are split into two population segments: (1) travelers who
wish to make a direct trip within the service region and (2) travelers who need to make an
access/egress trip within the service region to connect to a public transit network that can extend
to a greater region not covered by the microtransit service. The adjustment process is also modified
to converge toward a similar average occupancy rate (number of passengers/vehicle/hour) as data
provided from a microtransit operator. The model is shown in Figure 3.
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Figure 3. Day-to-day adjustment with oval functions, rectangles for data, and a diamond for decision.

At the end of one simulated day, experienced microtransit in-vehicle time, passenger wait
time, passenger walk time, and average occupancy for the vehicles, are computed. These values
are used to update the mode choices, departure times, and fleet sizes for the next day (note that
only microtransit is simulated, so the attributes for all the other modes—Auto, Transit, Bike, Walk,
Others—are fixed).

3.2.1 Aggregate mode choice model

For a microtransit demand model, an aggregate mode choice model is used to capture sensitivity
of transit riders to different operational attributes that can vary day by day. If data were available
on travelers choosing microtransit among a set of modes between different zones, we would ideally
estimate a binary logit model for simplicity. However, such data are not available. We have count
data of microtransit trips that is not divided by zones within a service region, and we have public
aggregate data for other modes by zone to zone (Census tracts).

Furthermore, the only public aggregate data (as described in the Section 4.2 of the case study)
provides some commute attributes but not all. For some attributes, we assume values of the
parameters and estimate the rest of the parameters of the model relative to them. Because of the
need for an aggregate mode choice model, more complicated choice model structures than a



multinomial logit (MNL) are not feasible (as we only know market shares by origin destination
pair, not individual choices) (see Anas, 1983, for a discussion of estimating aggregate MNL
models from aggregate market share data). As a result, a MNL model is estimated for multiple
mode choices and the utility function for microtransit (MT) assumes the coefficients of the
attributes are the same as other similar modes. For example, the MT in-vehicle time coefficient is
assumed the same as the auto travel time coefficient, and the MT access/egress time coefficient is
assumed to be the same as that of walk mode. The utility functions are generally specified as shown
in Eq. (1) — (6) (with statistically insignificant attributes for each city removed) as a mode choice
model for a given agent n.

Uauto,n = aSCquto T Pttauto X TTauto,n + Binterzone X Interzone, + Eauto,n (1)

Utransit,n = aSCtransit T ﬁtttmnsit X TTtransit,n + ﬁAE X AETtransit,n

+ Bwait X WTtransit,n + ﬁcost X COtransit,n (2)
+ Binterzone X Interzonen + gtransit,n

Ubike,n = AaSCpike + ﬁttbike X TTbike,n + ﬁinterzone X Interzonen + Epiken (3)
Uwalk,n = ASCyqik + .Bttwalk X TTwalk,n + ﬁinterzone X Interzonen + Ewalkn (4)
Uurn = ascyr + Btaueo X TTurn + Betyor X AETvrn + Burwaic X WTurn )

+ Bcost X COMT,n + ﬁinterzone X Interzonen + EMT,n

Uothers,n = Eothers,n (6)

where ascimoqey denote the mode-specific-constant for (mode) € {automobile (auto), transit,
bike, walk, microtransit (MT), other}; TT;;0q¢) is modal travel times from origin to destination;
COmoaey denote the corresponding modal travel costs (treated as a generic coefficient since we
assume it has constant effects (Train and McFadden, 1978)); WT;,;0q4¢) refer to wait times for
transit and microtransit modes; AET(;,4¢) are the access/ egress time for transit and microtransit
(by walking); and Interzone, is a categorical variable for interzonal trips i.e., 1 when a trip’s
origin and destination are in different zones (census tracts in our case study) and 0 otherwise. The
attributes are tracked with an index d to represent the perceived value at the start of day d. The
coefficients Btt noaey Bars Bwaits BuTwait Beosts Binterzone N€€d to be estimated for each city (in

future research, we can estimate a model for a cluster of cities based on typology, see Oke et al.,
2019 and Rath and Chow, 2022). Note that no public data is available for the out-of-pocket costs
of using the auto mode, so a cost is not included for that utility function. This only implies that
cost effects from auto are incorporated into the alternative specific constant and are not directly
controlled for. This is not a problem since the microtransit scenarios that we consider do not
include changes in auto costs.

One novel treatment of the demand model is that it includes agents from (1) direct door-to-
door trips within a designated service region S as well as (2) first/last mile trips connecting with



transit stations located within the service region to other locations in the greater region Z O S. This
is illustrated with Figure 4.
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Figure 4. Illustration of a designated service region in red (via direct trips) along with blue-highlighted zones in the
greater region accessed by public transit (via first/last mile trips).

Due to limited information, some parameters are assumed so that the others can be estimated in
relation to them (details of specific assumed values provided in Section 4 case study).
The estimation process for the demand models is broken into four steps:

1) Estimate a mode choice model for each city without the microtransit alternative.

2) Take the parameters of the microtransit utility function attributes from other similar modes:
MT cost from fixed route public transit cost (S.,s¢), MT in-vehicle time from auto travel time
(Bttyro)» and MT access/egress time from walk mode (Byy, ., ), and MT wait time (Byrwair)
from public transit wait time, or if not available due to non-statistical significance, this is
derived as a multiplier of auto travel time (Wardman, 2004).

3) Estimate the alternative-specific constants of the microtransit alternative for each city to be
relative to the assumed attribute parameters and to fit the microtransit trips summed over direct
and first/last mile segments to the count data using least squares via a bisection method.

4) When calibrating the day-to-day adjustment processes, i.e., after the system first reaches a
steady state (as shown in Figure 3), use one feedback loop to re-estimate the demand model
coefficients using the output attributes (i.e., population experienced time values for
microtransit including in-vehicle time, wait time, and walk time) from the market equilibrium
model. Note that with additional feedback rounds no significant change is observed in the
estimated demand model attributes, hence one feedback loop is used for the update.

3.2.2 Day-to-day adjustment process

At the start of the simulation, the origin and destination coordinates of each user are generated
randomly within their origin and destination zones. The adjustment of fleet size is based on average
occupancy provided by the data. At the end of each day, fleet size is adjusted towards the ideal
average occupancy based on the occupancy of the past day as shown in Eq. 7. The observed
occupancies from the microtransit operator are assumed to be ideal values unless specified



otherwise. By comparison, Djavadian and Chow (2017b) did not have average occupancy data so
it did not include this measure. This modification allows us to run the day-to-day adjustment
process to converge toward an equilibrium that exhibits similar occupancy as what is observed.

FSd+l = psd Average Occupancy of day d N
Ideal Average Occupancy

where FS9 stands for the microtransit fleet size on simulation day d.

Microtransit in-vehicle time, wait time and walk time (to virtual stops) for each user are
updated from day to day. A traveler who used microtransit on day d for commute learns from their
experience on day d and updates their perceived in-vehicle time, wait time, and walk time with a
learning rate 8 (shown in Egs. (8) — (10)).

Tt = (1 — ) TTgrn + 60 ETTir p (8)
WThih = (1 — OWTr + 0 EWlfir )
AET3 S = (1 — 0)AET S + 0 EAET 1 (10)

where TTIST,n, WTIST,n, and AE T,\‘,l,T,n stand for perceived microtransit (MT) in-vehicle time, wait
time, and walk time for user n at the beginning of day d. E TT,ST,n, E WT,f,i,T,n, and EAE T,f,i,T'n stand
for experienced microtransit (MT) in-vehicle time, wait time, and walk time for user n on day d.

Having introduced the key attributes, let us adopt a generic symbol X to represent each
attribute for convenience. For a user n’ who did not use microtransit but used other modes on day
d for their commute, their perceived times are updated with the population’s average perceived
times X%, at the end of day d (shown in Eq. (11)).

Xort =1 —0)Xy o+ 6 Xifr (11)

The population’s perceived in-vehicle time, wait time, and walk time represent the overall
perception of the population in the service region, which is the successive average of average in-
vehicle, wait, and walk time of the past n days (shown in Eq. (12)).

_ 1\ _ 1 _
Xd. = (1 - 3) Xa-t+ EEX,"’V,T (12)

The departure time of each user is a continuous variable that is updated based on their expected
arrival time. The departure time of a passenger on day (d + 1) is computed based on the
experienced commute time of day d as shown in Eq. (13).
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DT&*! = AT, — PTZ (13)

where DT,¢ stands for the departure time of user n on simulation day d, AT, stands for the desired
arrival time of user n. PT,¢ is the perceived commute time at the end of day d for user n, which
depends on the mode taken in Eq. (14).

PTd = TTfirn + WTfirn + AETSr (14)

At the end of each day, we check if the system has reached a steady state. The adjustment
stops when the daily microtransit ridership change keeps below € € [0,1] for 5 consecutive days.

Ridership$t! — Ridershipg, -
<e

(15)

Ridershipg,

We recall the proposition from Djavadian and Chow (2017a) where the agent-based day-to-day
process converges almost surely to an agent-based stochastic user equilibrium (SUE), i.e., as the
number of simulated populations increase, the deterministic day-to-day adjustment processes for
each population is run with a Method of Successive Averages (MSA) such that the average over
the populations approaches the theoretical SUE. In our case study, we generate 10 populations per
city.

3.2.3 Within-day simulator

Within-day simulation of the microtransit system is a key part of the day-to-day adjustment. The
main framework of this simulation (as illustrated in Figure 5) is newly extended from a “simulation
sandbox” from Yoon, et al. (2021). It is a discrete-time simulation with a simulation length divided
over discrete time steps. In each time step, vehicle states are updated according to the operating
plan. For on-demand microtransit, the state includes the sequence of passengers being served.
Passenger states are also updated: waiting to be assigned to a vehicle, walking to a stop, waiting
for vehicle, on-board a vehicle, egressing from vehicle stop to the destination. The simulation
length and time step can be adjusted.

The simulation decides which vehicles to dispatch and transport passengers from their origins
to their destinations. The system does not order vehicles to comply with fixed routes or drop by
mandatory stops. Instead, when assigning a passenger to a vehicle the system also updates the
vehicle state which includes the sequence of pickup and drop-off points of passengers assigned to
it. These matches determine vehicles’ trajectories, passengers’ travel experiences, and system
performances. For the routing, the simulation sandbox implements a simple insertion heuristic to
update assigned routes for accepted passengers by searching for an updated sequence with the
shortest incremental increase in travel time.

Modifications are made from Yoon et al. (2022) to be more parametric for calibration
purposes. These modifications include:
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e Virtual stops, meeting points other than actual origin and/or destination of users, and a
e Feature of depot assignment, designating a depot of vehicles based on relocation cost and
average wait time.
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Figure 5. Framework for the within-day simulator (source: Yoon et al., 2022).

There are four categories of required inputs of this simulation as described below. Simulation
parameters control the length and precision of simulations, regulating how long and often to collect
generated data.

e Simulation parameters: simulation length, time step length

e Scenario parameter: walking speed, maximum walking distance, average vehicle running
speed, weight for passenger in-vehicle/wait/access time, value of time,
unit operation cost, weight of operator cost

e System design parameter: vehicle capacity, fleet size, number of depots, average dwell time

e Dataset: passenger request information, passenger arrival data, depot locations, virtual stop
locations, vehicle allocation distribution among depots

The code to the simulator can be accessed in a Zenodo repository (Rath et al., 2021).

3.3 Synthetic scenario generator design

Once the simulation-based market equilibrium models m are calibrated, a process is used to
generate additional synthetic scenario inputs x;, i € Q, to upscale the existing data to obtain outputs
y;. The generator should generate independent scenarios that would use the market equilibrium
models calibrated for a sample of cities. In each synthetic scenario i, one of the calibrated cities is
selected and the service region S is redefined as S(i). We define a region as constituting two or
more contiguous zones where microtransit service operates both door-to-door and first-last mile
services with a specific pricing policy. The selection of contiguous set of zones for scenario
generation is mainly motivated by the Via service region structures in various cities e.g., Salt Lake
City, Jersey City, New York City, Cupertino, Arlington, Birmingham, and others. Each synthetic
scenario is generated using Algorithm 1, where we utilize the common (geographical) boundaries
shared by a zone with its adjacent neighbors to efficiently generate service regions of different
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sizes (within the limits of a larger geographical boundary). L2 and L3 boundaries are used to reflect
similar service regions in scale to the sample cities.

Algorithm 1. Synthetic scenario generation

Given a city where a microtransit service operates (in a specific region), we generate multiple
scenarios (regions) with the following steps:

1.

2.

Obtain the list of census tracts (zones) and the (geographical) boundaries for all zones within
the county/counties intersecting with the existing service region S.
For each census tract (as obtained in step 1), store their neighboring census tracts (i.e., zones
sharing common boundaries).
Select a zone (let’s say x) and generate 3 scenarios: L1, L2, L3, where, L1 constitute the direct
neighbors of zone x, then we add the neighbors of each zone in L1 to get L2, and for L3 we
add neighbors of all zones in L2 to the existing L2 scenario. Figure 7 provides an illustration
of service region scenario generation.
Assume a pricing policy as shown below:

o PPI1 = fixed fare for door-to-door service and first last mile rides

o PP2 = fixed fare for door-to-door service and free first last mile rides

o PP3 =variable fare (fixed fare plus fare based on distance travelled)
Apply the most common pricing policies PP1 and PP2 to each scenario S(i) from step 3
Cluster each city’s generated scenarios into 6-8 clusters (for both L2 and L3 scenarios) based
on population characteristics using k-means clustering and randomly select sample scenarios
from each cluster.
Run the market equilibrium model using the input scenario data generated for each
corresponding sample city to obtain microtransit performance data.

212 census tracts in \ -
Salt Lake County

Adjacent neighbors of
selected census tract:

2 11,12, 13

L1 V2 13
Generated scenarios for the selected Sample scenarios for service regions in Salt Lake County
census tract

Figure 7. Illustration of service region generation process.

To provide a better idea on how the population data and simulated microtransit performance

data for different synthetic scenarios look like, Figure 8 shows examples of four service regions
generated in different U.S. counties using Algorithm 1. Each scenario i € Q is comprised of a set
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of census tracts based on which we obtain the aggregate population data (as listed in the figure)
(x;) for the scenario. Microtransit performance metrics (e.g., ridership, vehicle miles traveled, fleet
size, and others) (y;) are obtained using the calibrated simulation model m(x;) for the associated
pricing policy considered in the scenario.

To ensure that the new data points obtained from the scenario generation process for the
forecast models cover a diverse set of synthetic scenarios with a reasonable range of the population
and region characteristics, S(i) in step 5 of Algorithm 1 is selected (randomly) from different
clusters. In particular, for multiple synthetic scenarios generated for a city (let’s say all L2
scenarios), we categorize them into 6-8 clusters based on their population and built environment
characteristics (using k-means clustering algorithm (MacQueen, 1967)). Then from each of these
clusters, we randomly select 5-6 sample scenarios to obtain simulated microtransit performance
data (based on pricing policies PP1 and PP2) for the selected scenarios using the calibrated market
equilibrium day-to-day simulations.

The scenario generation results in upscaled scenario data that are used for estimating forecast
models for service portfolio design and deployment planning as demonstrated in the case study in
Section 4.

Population 145570 Population 154988
Unprotected area (acre) 34577.08 Unprotected area (acre) 25247.78
Transit stop density 0.001 Transit stop density 0.005
== Street density 10.963 Street density 15.691
g Williamson County Population density 4.210 SralCHIULUREY Population density 6.139
Employment density 2.236 Employment density 2.946
Household (HH) density 1.405 Household {HH) density 2.395
Auto ownership per household 0.914 pamces. Auto ownership per household 0.980
4 Rock HH weighted mean income ik HH weighted mean income
(dollars) 115566 (dollars) 106630
Microtransit ridership 549 Microtransit ridership 92
Fleet size 45 o Fleet size 9
Vehicle miles traveled 2054.88 J Vehicle miles traveled 424.52
s WA BEIE povenue estimated (dollars) 203 Revenue estimated (dollars) 322

Operation cost Operation cost

# Cen.Sl.'IS tracT.:S =22;12, estimated(dollars) 10292 # Cen.Sl.‘ISUaCFS =4L13, estimated(dollars) 1721
Pricing policy: PP2 Pricing policy: PP1
Population 85223 Population 165336
Unprotected area (acre) 10630.45 Unprotected area (acre) 22040.15
Salt Lake County Transit stop density 0.042 Santa Clara Transit stop density 0.014
™ Street density 19.542 County Street d.en5|ty ] 17.791
Population density 8.017 Population dEﬂSlt\f 7.502
Employment density 4.616 Employment density ) 3.795
Household (HH) density 3.312 Household “‘".") density 2.768
Auto ownership per household 0.875 Auto cr,vnersmp per_hcusehcld 1.003
HH weighted mean income HH weighted mean income
{dollars) 80421 (dollars) 186384
I Microtransit ridership 457 Microtransit ridership 1085
Valley Fleet size 19 Fleet size 31
— Vehicle miles traveled 804.98 Vehicle miles traveled 1501.18
#censustracts=21;12, Revenue estimated (dollars) 1143 #censustracts = 28; 13, Revenue estimated (dollars) 294
Pricing policy: PP1 Operation cost Pricing policy: PP2 Op.eratlon cost
estimated(dollars) 1914 estimated(dollars) 5746

Figure 8. Examples of generated synthetic scenarios in different U.S. counties with population data and simulation
data obtained for the scenarios.

4. Case study: Via microtransit deployment portfolio analysis

4.1 Study objectives
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The case study is used to evaluate the methodology proposed in Section 3. Since the contribution

focuses on simulating new data to supplement limited existing data for the purpose of evaluating

deployments in different cities, our objective is to show that:

1) Forecast models can be specified (having statistically meaningful relationships between public
data and ridership/VMT) using the upscaled data;

2) The models should adequately fit the limited data that we have.

3) The models can be applied to evaluate different portfolio designs.

The case study is conducted in collaboration with Via, who provided aggregate ridership data
for five different U.S. cities: Salt Lake City, Austin, Cupertino, Sacramento, and Columbus. Public
data from Jersey City is also available and included in the set of cities, as summarized in Table 2.
The benchmark is a forecast model that is built using only the six cities’ data, which is not
statistically viable since that would simply be an insufficient sample size.

Table 2. Via service regions (obtained from Via) and pricing policies (defined based on Via (2021))

City (Via service region) | Counties (transit demand considered | Number of census tracts Pricing
for potential first last mile trips) within service region policy
boundary
Salt Lake City, Utah Salt Lake County 26 PP2
Austin, Texas Travis and Williamson County 28 PP2
Cupertino, California Santa Clara County 21 PP2
Sacramento, California Sacramento and Placer County 148 PP2
Columbus, Ohio Franklin and Licking County 45 PP1
Jersey City, New Jersey Hudson and New York County 68 PP3
4.2 Data

Table 3 presents the data used in our study, which includes public data for estimation of mode
choice models, simulation model calibration, and design of deployment portfolio forecast model,
along with data obtained from Via. For our case study, we focus on ridership during the peak
period of the day i.e., 6AM-9AM so all outputs reflect that time period. All the synthetic scenario
data are provided in the Zenodo repository (Rath et al., 2021).

Table 3. Summary of data and data sources used in the study

No. | Data source Granularity Data

Census Transportation
Planning Products
(2012-2016) (CTPP,
2016)

American Community
Survey (2019)

Open Mobility Data
3 (GTFS) (Transitfeeds, Transit network Transit station/stop locations
2021)

Commute flows between census tracts
Census Tracts (for various modes including auto, bike, transit,
walk, and others)

Census Tracts Demographic, economic and household details
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. Household auto ownership, unprotected area,
Smart Location Census Block Groups . . o
4 Database (EPA, 2021) (agaregated to Census Tracts) street network (road density), trip equilibrium
’ geree index (trip attractions and productions)
Auto, Walk, and bike travel time between
5 ?g’; il) Street Map (OSM, Street network census tracts; walk and bike travel time to and
from nearest transit stops in census tracts
. Transit commute time including in-vehicle
6 205326 1n) trip planner (OTP, Transit network time, wait time, walk time (to/from the nearest
stops)
Via data: weekly Salt Lake City, Cupertino, Via service region boundaries, average
7 average during first Austin, Columbus, ridership, average wait time, vehicle utilization,
week of 3/20 Sacramento, and Jersey City | pricing policy, fare structure

4.3 Calibration of the market equilibrium model

4.3.1. Estimation of the demand model parameters

The calibration of the market equilibrium models involves two parts. The first is the estimation of
the aggregate mode choice model, one for each of the six cities with provided data. Commute flow
data for auto, transit, bike, walk, and others are obtained between census tracts within the region
(CTPP, 2016) including transit flows from within service region to outside the service region
(within the boundaries of the county/counties covered by the region) and vice-versa. Due to the
limited aggregate data, the mode choice model initially led to poor fits in some cities. To address
this, we assumed some of the parameters’ relationships: Syrwait = Pwair (In transit if significant,
else Burwait = 1.53Bttgyeo)> Bwait = 1.59Bttransies Bag = 1.78Pttiransi (Wardman, 2004). Table

4a presents the mode choice model estimation results that are calibrated after one round of
feedback from the simulation model. The p-values and p? are based on the initial estimation
without microtransit. Some of the attributes are left out for some cities due to irregular fits or poor
statistical significance. The microtransit alternative is then appended and estimated as shown in
Table 4b.

Table 4 (a). Mode choice model coefficient estimates and performance for Via cities (without microtransit mode)

Salt Lake Jersey
City, Austin, Cupertino, | Sacramento, | Columbus, | City,
Coefficient Units | Utah Texas California | California Ohio New Jersey
ascauto N/A 0.649*** | -0.145%* - 0.231%** 0.330%** -
ascCpike N/A -3.318%%* | -4 393%%* -3.934%%* -2.494%** -6.555%** -4.004***
aSCiransit N/A -1.510%%* | -1.956%** -0.707%%* -0.682%** -1.329%** -
ascCyaik N/A -1.973%%* | .3.909%** -2.363%** -0.312%** -1.839%** 0.560%**
Bttaueo I/min | -0.204%%% | -0.049%*** -0.131*** -0.109*** -0.009%*%* -0.177%%*
Bityie I/min | -0.129%*** | -0.051*** -0.098%** -0.105%** - -0.251%%*
Bty ansic I/min | -0.003 - - -0.012%** -0.009 -0.001
Barg™ 1/min | -0.005 - - -0.021 -0.016 -
Buwait™® I/min | -0.005 - - -0.019 -0.014 -0.002
Bty I/min | 0.033*** | -0.006*** -0.038*** -0.064%** -0.037%%* -0.086***
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Bost é/U'S' SLL8SIHF* | 2.062%** | -1.768%** | -1.058%** -0.998*** -0.930***
Binterzone N/A 8.326*** | 12.895 7.403%%* 6.987*** 6.356%** 5.429%**
p? (w/o microtransit) 0.78 0.69 0.72 0.78 0.85 0.43

* ) Hx % refer to p-values from initial estimation without microtransit less than 0.05, 0.01, and 0.001 respectively.
@ Non-bolded parameters were not estimated but assumed relative to other estimated parameters as shown in text

Table 4 (b). Mode choice model coefficient estimates and evaluation for the microtransit mode

Jersey
Salt Lake City,
City, Austin, Cupertino, | Sacramento, | Columbus, | New
Coefficient | Units Utah Texas California | California Ohio Jersey
ascyr N/A 0.848 -1.096 2.089 -0.689 -7.354 -2.265
Bttauro™ | 1/min -0.204 -0.049 -0.131 -0.109 -0.009 -0.177
Bet,or™ | /min 0.033 -0.006 -0.038 -0.064 -0.037 -0.086
Burwai® | 1/min -0.005 -0.075 -0.200 -0.019 -0.014 -0.002
Beost™® 1/US.$ | -1.851 -2.062 -1.768 -1.058 -0.998 -0.930
Binterzone™. | N/A 8.326 12.895 7.403 6.987 6.356 5.429
Min. abs. error (pred. vs
obs. Via ridership) with
estimated ascy;q 0.004 0.008 0.003 0.008 0.001 0.002
Min. abs. error (pred. vs
obs. Via ridership)
with ascy;,=0 75.56 244.11 42.91 182.83 1167.14 1908.97

@ Non-bolded parameters were not estimated for microtransit utility function but assumed relative to other estimated
parameters as shown in text

Table 4b compares the estimated error for each city’s model when using the optimal ascyr
compared to a model where the ascyr = 0. The error reduction is significant. The travel time and
cost coefficients are negative in most cities, with Salt Lake City having a positive coefficient for
walk time. Based on the commute flow data, the proportion of walk trips (i.e., between origin
destination (OD) pairs in a service region) with respect to the total commute flows in Salt Lake
City is 2-3%; this distribution is similar to Sacramento, Cupertino, Columbus and Austin.
Compared to the average OD walk time in these cities, which is less than 15 minutes (average of
the four cities being 7 minutes), the average walk time in Salt Lake City is 38 minutes, which is
significantly higher. Therefore, this could be contributing towards the positive coefficient estimate
for walk time in Salt Lake City. While this is attributed to data limitations, it has been noted in the
literature that such behavior can be explained as well (Redmond and Mokhtarian, 2001).
Moreover, positive ascyr values observed for Salt Lake City and Cupertino indicate a positive
(average) effect of latent (unincluded) factors on the utility of the microtransit (Via) in these cities,
while an opposite effect is noticed in the other 4 cities. This observation highlights the effects the
city type (among other latent factors) may have on the utility of microtransit in a city.

4.3.2. Calibration of the within-day simulator parameters

The day-to-day adjustment parameters are calibrated as follows. Parameters include the walking
limit of microtransit users, microtransit dwell time, and user/operator weights for the insertion
heuristic in microtransit within-day simulation. The performance measure for finding the best
insertion option in the within-day simulation is shown in Eq. (16), which is a combined measure
of the users’ loss and the operator’s loss balanced by operator’s weight @,pe, and user’s weight
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(1 — aoper). Average operator cost per mile is estimated from the average operation cost per
passenger provided by Volinski (2019) and the average trip length data provided by Via (Eq. (17)).

Performance measure
= (1 — ayper) X Value of time x User time increment (16)
+ apper X Operator cost per mile X Distance traveled increment

Operator cost per passenger

(17)

0 t t ile =
perator cost per miie Average trip length (miles)

For calibration, we assume three discrete levels for each of the three parameters:
e Walking limit: 0.5 miles, 0.3 miles, 0.1 mile

e Dwell time: 15 sec, 10 sec, 5 sec

e Operator weight in insertion heuristic: 0.8, 0.5, 0.2

Hence, 27 combinations are produced. Learning rate is set to 0.1, consistent with prior studies
(see Djavadian and Chow, 2017b) and € is set to 1% for our case study. We run the simulation for
each of the combinations to find the best combination for each city. The best combination is
selected by comparing the output average in-vehicle time, average wait time, and ridership with
the data from Via. For each city, the combination which lead to the smallest sum of squared error
of average in-vehicle time, average wait time, and microtransit ridership is selected as the optimal
combination. Example simulations conducted for four different cities (Salt Lake City, Austin,
Cupertino, and Sacramento) are shown in Figure 6.

The selected optimal combinations in the calibration process for the 6 cities are shown in Table
5, along with the corresponding errors. Jersey City had less data available so the in-vehicle and
wait time errors could not be computed. The results show that the cities can vary in their
characteristics. For example, Salt Lake City and Jersey City suggest longer access via walking for
travelers, while Austin and Salt Lake City tend to have longer dwell times for their vehicles.
Cupertino has the highest weight for operator cost, which suggests that their travelers are the least
elastic to the service quality. Generally, cities with smaller walking limit have smaller operator
weight, since when the users are more reluctant to walk, user’s weight should be higher. In terms
of error, the overall ridership error indicates fits with an average of 18.4% among the six cities.
The results indicate that a market equilibrium model mg can indeed be calibrated to different cities
s € R, even with only an aggregate mode choice model for demand estimated for each city.

The process of convergence for the 6 cities with the calibrated parameters are shown in Figure
9. The average computation times for one run of Salt Lake City, Cupertino, Sacramento,
Columbus, Austin, and Jersey City are respectively 10min 42s, 4min, 6min 24s, 36s, 4min 42s,
and 13 min on a laptop with 2.3 GHz Quad-Core Intel Core 17 and 32 GB 3733 MHz LPDDR4X
memory. The results indicate that steady states do exist for these cities and that the number of days
to convergence can differ from city to city.
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Salt Lake City

Days to convergence: 33
Simulation time: 6-9 AM
Fleet Size: 5

Vehicle Capacity: 6

(©)

Number of Via Passengers: 80
Average In-vehicle Time: 10.3 min
Average Wait Time: 10.4 min
Average Walk Time: 0.1 min
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Cupertino

Days to convergence: 51
Simulation time: 6-9 AM
Fleet Size: 8

Vehicle Capacity: 6

2020-12-01 08:04:41

Number of Via Passengers: 69
Average In-vehicle Time: 10.9 min
Average Wait Time: 6.1 min
Average Walk Time: 0.1 min
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Austin

Days to convergence: 21
Simulation time: 6-9 AM
Fleet Size: 20

Vehicle Capacity: 6

Sacramento
Days to convergence: 48
Simulation time: 6-9 AM
Fleet Size: 2

Vehicle Capacity: 6

Number of Via Passengers: 103
Average In-vehicle Time: 22.0 min
Average Wait Time: 8.5 min
Average Walk Time: 0.2 min

(d)

2020-12-01 08:11:01

Number of Via Passengers: 48
Average In-vehicle Time: 9.1 min
Average Wait Time: 32.5 min
Average Walk Time: 1.7 min

Figure 6. (2)-(d) Snapshots of within-day microtransit simulation for four cities in the U.S.

Table 5. Summary of calibration results

City Calibrated Parameters Opera- Error
Walking Dwell Operator (0F €Ot~y %  Wait %  Ridership %
limit time Weight per vehicle Time Error
(mile) (sec) mile () Time Error
Error (min)
(min)
Salt Lake 0.5 15 0.5 53 22 20.8 43 325 56 41.5
City
Austin 0.1 15 0.2 9.9 13.4 158.8 0.9 9.1 21 12.1
Cupertino 0.3 5 0.8 8.5 1.6 16.5 5.8 46.7 1 2.0
Sacramento 0.1 5 0.2 73 0.2 1.7 15.5 55.2 44 20.0
Columbus 0.1 5 0.2 8.3 7.1 93.2 8.5 136.4 2 333
Jersey City 0.5 5 0.5 7.9 - - - - 3 1.2
AVG. 18.4
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Figure 9. Convergence of day-to-day adjustment for the 6 cities, with (a) in-vehicle time, (b) wait time, (c) walk
time, (d) ridership, and (e) fleet size.
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Table 6 shows the fleet size, fleet VMT, and ridership at convergence for the 6 cities obtained
using the calibrated market equilibrium models. Both fleet VMT and fleet size are not known and
are only inferred from the simulation models. Note that the VMT values in Table 6 include the
vehicle miles with and without passengers as they pertain to the fleet. Going from depots to pick-
up points and going back to depots after drop-offs accounts for a significant proportion of the
values.

Table 6. Summary of microtransit performance in 6 U.S. cities based on the equilibrated outputs of calibrated
market equilibrium model

Cities No. of days Fleet | 6-9AM fleet VMT Microtransit (Via) ridership
to converge Size Total % first/last mile access

trips
Salt Lake City 43 9 405 79 35%
Cupertino 23 6 247 49 82%
Sacramento 22 18 883 176 14%
Columbus 10 7 298 8 100%
Austin 15 27 1221 153 88%
Jersey City 11 11 520 242 67%

The model shows higher proportions of Via ridership as door-to-door trips within a service
region for Salt Lake City and Sacramento, while for the other 4 cities, Via trips are predominantly
first/last mile. This output is not included in the data shared but is inferred from the model. The
results highlight the variable effects different operation strategies can have on microtransit
ridership and consequently on other performance measures (like VMT and fleet size) in different
groups of cities.

4.4 Microtransit deployment portfolio forecast model development
With the market equilibrium models calibrated, we proceed to upscale the scenario data to estimate
forecast models for portfolio management. In this section, two objectives are set forth.

First, we test whether we can effectively use the fitted market equilibrium models to generate
new synthetic scenarios to use to upscale the data for inferring new insights for microtransit
deployment. This can be effectively demonstrated by showing that the scenario data can be related
to public data to find statistically significant relationships with a good fit when compared to the
original data set. This is shown in Section 4.4.1.

Second, we demonstrate the use of the forecast models in portfolio management by
constructing two alternative portfolios with similar fleet VMT as the original data set from Via
and illustrate how we can characterize their ridership based on the selected service region designs
in each city. This is shown in Section 4.4.2.

4.4.1 Forecast model estimation and validation

Two sets of models are estimated: one for predicting ridership and one for predicting fleet VMT.
For the scenario generation, only four of the six cities are used for constructing the synthetic
scenarios. This is because Jersey City operates under a very different operation and Columbus is
such an outlier.

For the scenario generation, only four of the six cities are used for constructing the synthetic
scenarios. Jersey city operates under a very different operation from the other cities considered,
the service area is divided into a central and an outer zone with different operation and pricing
strategies for the inter and intra zone rides. Moreover, Columbus is such an outlier due to very low
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ridership (100% of which are estimated to be first/last mile access trips as shown in Table 5)
compared to the other cities. Synthetic scenarios generated from such outlier cities could mislead
the training process of the forecast models and hence are not considered. In practice, having
diverse scenario data from different cities would help produce more accurate and generalized
forecast models, however, more deployment data from multiple cities would be needed. In future
research, with more city data available one should ideally classify clusters of city types (for
example auto-heavy, transit-heavy cities etc. (Oke, et al., 2019; Rath, et al., 2022) that can be fitted
to different forecast models. Having such category-wise data (based on city typologies or operation
policies) can be useful in extending the generalizability of the different forecast models developed
for application to multiple cities for portfolio design.

The scenarios generated based on the cities considered above are assumed to cover a
reasonable range of ridership and pricing policies. A set of 326 synthetic scenarios are generated,
with characteristics shown in Table 7. Based on the ridership and VMT values derived from the
market equilibrium of those 326 synthetic scenarios used as surrogate data, we develop
microtransit portfolio forecast models using multiple linear regression with a set of features (see
Table 8) and their first order interactions. As noted by Friedrich (1982), such interaction effects
do not lead to multicollinearity issues. The dependent (target) variables for the two models are:

e Average peak period ridership per region’s population (in thousands)
e Via’s fleet VMT per region area in acres (in hundreds)

Table 7. Summary of data samples from scenario generation process used in forecast models

Number of synthetic scenarios 326

Breakdown by city Salt Lake City: 71, Austin: 79, Sacramento: 100,
Cupertino: 76

Breakdown of PP1/PP2 PP1: 174, PP2: 152

Breakdown of L.2/L3 scenarios LL2:178,11L3:148

Range of number of riders [0,2217]

Breakdown of direct trips versus first/last mile direct: [1% - 88%]; first/last mile: [12%-99%] of total
ridership

We consider the following independent variables (pertaining to each service region) in our
models as shown in Table 8, where the feature (variable) values of a region are computed as the
aggregate of all census tracts in the region

Table 8. Details of the independent variables considered in the forecast models

Independent variable Description

Employment density Total employed population in the region over total unprotected region area in
acres

Household density Total households in the region over total unprotected region area in acres (this

is highly correlated to total population, and male/female population density
features, hence we consider only one of these in our models).

Mean income Household weighted mean income in the region in U.S. dollars

Street density Total road network in the region in miles over total unprotected region area in
acres

Transit station density Total number of transit station in the region over total unprotected region area
in acres

Ratio of households with one or | Sum of households with 1 or more auto ownership with respect to total

more auto households in the region

Trip equilibrium index mean trip productions and trip attractions equilibrium index in the region; the

closer to one, the more balanced the trip making
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PP1 if pricing policy in the region is PP1 then 1 else 0
PP2 if pricing policy in the region is PP2 then 1 else 0
Microtransit fare value of fixed microtransit fare in the region in U.S. dollars (based on Via fare)

We fit this model using the method of least squares and apply lasso regularization for feature
elimination. We use the 326 upscaled scenario data for training the models and the 4 original cities’
data to regularize the estimation. The estimated coefficients of the two models are reported in the
Appendix in Tables A.1 (ridership) and A.2 (fleet VMT). Due the abundance of first-order
interaction terms, Lasso regularization is used to regularize and eliminate non-impactful features
for a stable fit (see Tibshirani, 1996).

The evaluation of goodness-of-fit is done over the four data points (i.e., Via operated service
regions) for which we have the actual Via ridership data and corresponding VMT values from the
simulation. We consider the root mean squared error (RMSE) and the coefficient of variation (CV)
as evaluation metrics, where CV is calculated using Eq. (18).

\/Zliv=1(yi —yi)?
v - N _ RMSE (18)

Y Y

where y; is the actual value and y'; is the predicted value of the target variable for a sample i (in
sample size N); Y is the mean of the actual values of the target variable across all samples. The
comparison of the ridership and VMT models with the observed values and their goodness-of-fit
performances are reported in Table 9.

Table 9. Estimation results for the ridership and fleet VMT forecast model

Model estimation

Cit Ridership model (riders/peak period) VMT model (veh-mi / peak period)
i
y Observation Prediction Simulation Prediction
Salt Lake City 135 211 405 779
Cupertino 50 19 247 153
Sacramento 220 225 883 1068
Austin 174 277 1221 1505
Model performance
Ridership model VMT model
Training set R? 72% 90%
Training set adj. R? 67% 89%
Number of features
(including intercept) 47 55
Via cities RMSE 65.92 256.67
Via cities mean 144.75 688.98
Via cities CV (%) 45.54 37.25

The estimation effort demonstrates that upscaling data from just four cities is viable, as we
can fit models quite well with relatively high R? values. The key question is whether upscaling
improves over having no upscaling at all. When the model’s predictions are compared to the four
data samples, the CV of ~ 37-45% is shown in Table 8. While this is not a significantly accurate
forecast range for typical studies involving large data samples, we note that without upscaling,
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data from only the four cities would not allow for even a forecast model to be estimated in the first
place since there is insufficient data. As such, the validation based on only four observations
indicates a significant improvement.

4.4.2 Inference analysis

Since the Lasso method does not output p-values for the parameters, the statistical significance of
selected features is determined by re-estimating the selected features using ordinary least squares
(OLS). For forecasting purposes, the coefficients from the Lasso method (as reported in Tables
A.1 and A.2) are used. However, for inference analysis we refer to the p-values of the OLS models
(which may vary in value slightly from the Lasso models but can provide some indication of
significance) as reported in Tables A.3 (ridership) and A.4 (VMT).

The OLS models suggest the ridership and VMT are indeed dependent on employment
density, household density, mean income, street density, transit station density, and car ownership,
by their statistical significances at 5% levels for the parameters of the standalone features
(household density, transit station density, employment density, fixed fare) or as part of the first-
order interaction features (which covers the rest). In addition, the OLS models suggest a sensitivity
to the pricing policy through the first-order interactions. This provides the microtransit operator
and local city with a trade-off to consider when deciding which policy to implement in a city, as
PP2 would increase ridership but also increase costs.

In addition, the forecast models are clearly sensitive to the service region design as that
determines the input variables used. The estimated models suggest that when designing a service
region, a microtransit operator and local city agency can look to the zones with attributes that
would increase ridership while minimizing VMT. Variables with statistically significant positive
impact on ridership and negative impact on VMT include zones with higher transit station density,
higher employment density, and lower “employment density X fixed fare”. This is quite interesting
as it suggests that higher employment density increases ridership while decreasing VMT, but at
the same time the employment density also falls within the interaction effect with fixed fare price.
Since the fare policy varies from city to city instead of zone to zone in the same city in general,
the first order effect suggests setting lower fares while selecting zones with a city with higher
employment density. These features with statistically opposing signs are bolded in Tables A.1 —
A4

4.4.3 Forecast model application for deployment planning

To provide a better idea of how the forecast models can be used for microtransit service portfolio
design in different cities, we collect data from hundreds of 100K+ population cities in the U.S. and
use the models to consider eight new cities (other than the cities considered in our study), i.e.,
Arlington (Texas), Birmingham (Alabama), Boston (Massachusetts), Chicago (Illinois), Detroit
(Michigan), Seattle (Washington), St. Louis (Missouri), and Washington D.C. For these cities, we
only have the public data gathered for the forecast models.

Assuming a constraint on total VMT of ~ 2756 veh-miles/peak period (i.e., a budget constraint
around the same value as the total VMT observed for the four Via cities considered in the case
study), we present two alternative portfolios for service deployment in different cities. For each of
the eight cities, we generate various L2 scenarios (service regions) and get their population and
built environment characteristics. We apply PP1 and PP2 pricing policies to the cities. We use the
fleet VMT forecast model and select service regions from different cities such that the total
forecasted VMT of a portfolio matches the budget considered. We design two alternative service
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portfolios, each with the two different fare pricing policies as shown in Figure 10, use the ridership
forecast model to forecast the peak period ridership for the two portfolios.

Seattle Seattle
@ Chicago . Boston @ Chicago . Boston
Birmingham

@ Birmingham
(b) Portfolio Design #1, PP2

(a) Portfolio Design #1, PP1
Seattle
. Boston

!Ilg

Seattle
. Detroit . Boston @ Detroit
St.Louis D.C.

@ St.Louis @ b.c.
. Arlington

(d) Portfolio Design #2, PP2

. Arlington

(c) Portfolio Design #2, PP1
Figure 10. Two different portfolio designs under two different fare policies, where design #1 (a, b) includes 4 cities
with PP1 (a) and PP2 (b); design #2 (c,d) includes 6 different cities with PP1 (c) and PP2 (d). Estimated ridership
and VMT are visualized for each city, where the circle radius is peak period ridership (values in circles), and circle

colors are VMT (in legend).
2 s 9/
Y - ‘r : ﬂ'f“ . = 7
© T : i) '
Boston ~ Seattle > Boston * Seattle Washington D.C.
J; e o ?;;“ i
- i ; ' .
Chicago | Birmingham Detroit St. Louis Arlington
(a) Portfolio Design #1 (b) Portfolio Design #2
Figure 11. Service regions of portfolio designs (a) #1 and (b) #2.

For the PP1 cases (Figure 10 (a), (c)), the total forecasted ridership values in portfolios #1 and
#2 are 1.4 times and 1.9 times higher, respectively, than the total ridership of the four Via cities
for the same value of total VMT. In portfolio #1, Boston contributes to the highest proportion of
total VMT as well as the total ridership. In portfolio #2, on the other hand, while the maximum
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ridership is observed in Boston, the estimated VMT in Arlington is relatively higher compared to
the other cities.

We apply the forecast models to estimate the ridership and VMT values for these same service
regions in Figure 11 under a different pricing policy (i.e., PP2) as shown in Figure 10 (b, d). As
shown in Figure 10(b) for cities in portfolio #1, the PP2 pricing results in increased ridership
compared to PP1 across all 4 cities (maximum in Seattle) along with corresponding increment in
VMT values (average VMT increment across 4 cities is 1.7 times the PP1 policy values). For each
city, if we compare the ridership gain with respect to the increment in VMT under the new pricing
policy, it is observed that the highest gain is estimated in Seattle with Birmingham being the
lowest. Similarly, for cities in portfolio #2, using PP2 pricing policy (see Figure 10(d)) results in
increased ridership and VMT in all 6 cities. Interestingly, in this case, although the maximum
increment in ridership is observed in Detroit followed by Seattle, the highest gain in ridership with
respect to the corresponding VMT increment is observed in St. Louis, followed by Washington
D.C. and Arlington.

Although we have presented only two alternative portfolio designs assuming similar pricing
policies in all cities and a VMT constraint, microtransit operators can use such forecast models for
comparing across multiple service portfolios by optimizing for ridership, considering additional
operation cost constraint, applying different pricing and operating policy combinations to specific
cities (e.g., based on city types), etc. Granted, the accuracy of the results above depends on the
quality of the forecast models M and should not be taken at face value. Rather, they illustrate that
a seemingly nontrivial task of finding a portfolio from a market of hundreds of cities can be done,
and with more reliability if more underlying deployment city observations are available (much as
the quality of an upscaled image depends on the quality of the original image as well). To extend
the generalizability of such forecast models to multiple cities in practice, with availability of
detailed city deployment data for a greater number of cities, it might be relevant for operators and
planners to categorize and cluster the data as per different city types such as auto-heavy, transit-
heavy cities etc. (Oke et al., 2019, Rath et al., 2022). This can be used to develop category-wise
forecast models (using diverse set of scenarios generated per category) based on the proposed
framework to better estimate service performances in different cities for portfolio design.
Moreover, the input variables considered in these models can be designed based on the purpose of
the mobility services and the category considered to achieve useful insights.

Hence, this can be used as an effective decision-support tool for microtransit service
deployment planning for strategizing resource-allocation and investment decisions, one that can
help inform public agencies by providing quantitative results that can spur further local studies.
Example application include comparing performances of free first/last mile microtransit ride
policy to auto-heavy cities for improving transit ridership, evaluating equity benefits for different
population groups in terms of improved accessibility in candidate service regions in one set of city
deployments vs. another, and analyzing benefits and tradeoffs of alternative portfolio designs with
different operation strategies to different city types in the portfolio within a given budget. This
work is also of great importance to federal agencies like the Federal Transit Administration (FTA)
in helping to identify priority areas for funding microtransit projects in different cities. With the
increasing importance of using innovative analysis tools and interactive platforms by private
companies (Mercer & Hewitt, 2021; Jacobs 2022) and public agencies (TransitCenter, 2021) to
aid decision-making, the proposed method can be used to design a service portfolio dashboard and
create an interface which private companies, public agencies and planners can use for city-level
deployment planning of emerging mobility services.
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4.4.4 Policy implications from empirical insights

The results in Sections 4.4.1 to 4.4.3 reveal multiple original empirical insights that would serve
both policymakers at state/federal agencies and microtransit/emerging transportation technology
providers. The inference analysis finds that microtransit ridership (a proxy for benefits) and fleet
VMT (a proxy for costs) are dependent on the following factors (aligned side-by-side) shown in
Table 10. Common factors (highlighted in light green) between the two models are the transit
station density and the employment density. These suggest that the most efficient deployments that
maximize ridership while minimizing fleet VMT would have high transit station density and high
employment density. HH density could have mixed effects as increasing ridership would also come
at increasing fleet VMT.

Table 10. Comparison of effects of different variables on ridership and fleet VMT

Ridership model Fleet VMT model
Significant variables Sign Significant variables Sign
Mean income -
HH density + HH density +
Transit station density + Transit station density -
Employment density + Employment density -
Fixed fare +

These insights allow policymakers to sort a portfolio of cities and the zones within each to identify
effective service region designs. The example portfolios shown in Section 4.4.3 highlight an effort
that would be impossible for a policymaker to justify using existing methods and frameworks from
the literature. Based on existing practices, a federal agency like FTA would collect data from
hundreds of cities first (which we also did), but beyond that they would not have any models to
quantify the performance of each city, let alone having different service regions in each city. But
because of the availability of the forecast models estimated from the upscaled data, we can easily
identify alternative portfolio options and forecast their collective performance.

5. Conclusion

Transportation technologies are not “one-size-fits-all” solutions; this point is clearly demonstrated
by the 67%/23%/50% failure rates of demand-responsive transport services implemented in
UK/Europe/North America. Emerging technologies like microtransit and state/federal agencies
need to have effective decision-support tools, which are limited by the complexity of the decisions
that need to be made, the limited availability due to the “emerging technology” aspect, and due to
the myriad of operations that expand the dimensionality of the problem further. For example, even
a success story like Via only operates in less than 40 U.S. cities while there are over 3000 U.S.
cities with populations of 10,000 or more.

We propose a methodology to upscale data from the limited data available to microtransit
operators (and to public agencies like the Federal Transit Administration in overseeing deployment
regulations at the federal level). The method uses simulation to fit market equilibrium models to a
small set of deployment cities R so that those models mg, s € R, can be used to generate scenario
data y;,i € Q,Q > R, at low cost. The resulting data can be used to fit forecast models y; =
M(x;;0),i € Q so that they can be applied to the population of cities P,P > R. The overall
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framework contributes to the literature by parameterizing the within-day simulator from Yoon et
al. (2022), extending the day-to-day market equilibrium model from Djavadian and Chow
(2017a,b) to consider travelers with first/last mile access trips as well as direct trips, and
developing a scenario generation algorithm for feeding the market equilibrium simulation model.
The models are shown to fit the six cities with an average ridership error of 18.4% while outputting
latent attributes like fleet size, fleet VMT, % of riders by first/last mile, and breakdown of journey
times to their components. Note that a conventional transportation planning study would entail
estimating a travel demand model for one city, obtain similar accuracy (Flyvbjerg et al., 2006),
and may not be able to output metrics like % of riders by first/last mile.

The new upscaled scenario data proves to be useful; models fit to the data are adequately
accurate compared to the original limited city deployment data set (CVs ~ 37-45% for only four
observations, which is very statistically efficient due to the upscaling) whereas the original four
observations would be insufficient to produce any meaningful model at all using any existing
method or framework from the literature. In that sense, the framework successfully upscaled the
limited samples to produce a synthetic data set of 326 synthetic scenarios. Furthermore, the
forecast models identify meaningful relationships between ridership and fleet VMT with a host of
independent public data (employment, households, car ownership, transit station density, income,
street density) and microtransit operating policies (pricing, service region). Example variables with
statistically significant positive impact on ridership and negative impact on VMT include zones
with higher transit station density and higher employment density, not counting the first order
interactions, as shown in Table 10. Application of the models illustrate how they can quantify the
effectiveness of a given portfolio and quickly compare between different portfolio designs. We
can nontrivially identify two alternative portfolios of city service regions with similar VMT as
Via’s four cities but having up to 1.9 times the ridership, justifying them from a market of hundreds
of cities with 100K+ populations.

Future research should look at further collaboration with microtransit providers to classify
cities into clusters (e.g., auto, bus transit, congested, hybrid, metro bike and mass transit dominant
cities as per Oke et al. (2019) and to focus more on empirically capturing good fitting forecast
models using this new methodology. This could include obtaining microtransit operation data for
additional cities including disaggregate data broken down by categories such as service region
type, city type or operation type e.g., first/last mile and door-to-door; such data can be used to
build category-wise forecast models that can be effective for evaluating portfolio designs under
different operating policies and service region designs. Other emerging technologies should also
be considered, especially where data are limited: e.g., planning electric vehicle fleets and charging
infrastructure, pilots for autonomous vehicle fleets. A portfolio dashboard can be implemented to
help a microtransit provider or the FTA evaluate their portfolios and analyze alternative portfolio
designs.
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Appendix

The estimated feature coefficient values of the ridership and VMT forecast models using Lasso
method are listed in Tables A.1 and A.2, respectively. The same parameters are estimated using
OLS to report the p-values in Tables A.3 and A.4, respectively. Bolded features indicate
statistically significant opposing signs between the ridership model and VMT model which can
help identify best locations for expanding microtransit service.

Table A.1. Ridership forecast model estimated feature coefficient values

Feature Estimated Feature Estimated Feature Estimated
coefficient coefficient coefficient
mean income ($) X .
Intercept 2.21E-01 | fixed fare 3.07E-06 | HH density x PP1 1.19E-01
. auto ownership per HH .
mean income ($) -2.90B-06 | X street density _1.698-01 | HH density X PP2 1.70E-01
. auto ownership per HH .
auto ownership per HH 375400 | x HH density 4.05E-04 HH density X fixed fare -1.39E-01
street densit auto ownership per HH transit station density X
Y 5.82E-02 X transit station density | -2.04E-02 | mean TRIPEQ 1.27E+02
. auto ownership per HH transit station density X
HH density 8.83E-02 | X employment density | 4.17E-02 | PPI -2 76E+00
. . . auto ownership per HH transit station density X
transit station density | ; 300161 | » mean TRIPEQ 2.86E-01 | PP2 9.87E+01
emplovment densit auto ownership per HH transit station density X
poy Y | 1.00E-01 | x PP1 3.63E-01 | fixed fare -2.04E+01
auto ownership per HH employment density X
mean TRIPEQ 2.29E+00 | x fixed fare -3.87E-01 | mean TRIPEQ 6.09E-01
PP1 street density X HH employment density X
-1.14E+00 | density -1.63E-02 | PP1 -4.66E-02
PP2 street density X transit employment density X
2.34E-15 station density -1.56E-01 | PP2 4.41E-01
fixed fare street density X mean employment density X
-6.25E-02 | TRIPEQ 8.86E-02 fixed fare -7.92E-02
mean income ($) X .
street density 1.37E-07 | Street density X PP s78E-02 | mean TRIPEQ X PP, ep o1
mean income ($) X .
transit station density | 1.80E-04 | StTeetdensity XPP2 )5 5yp 3 | mean TRIPEQ XPP2 1) 5p )
mean income ($) X street density X fixed mean TRIPEQ X fixed
employment density 3.88E-07 fare -2.70E-02 | fare -4.12E-02
. HH density X
mean income (8) X PP | | b 5 | employment density | 4.39E-03 | PP 1 % fixed fare -2.67E-02
. HH density X mean
mean income ($) X PP2 | 5 53 7 | tRipEQ 6.54E-01
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Table A.2. VMT forecast model estimated feature coefficient values

Feat Estimated Feat Estimated Feat Estimated
cature coefficient | © o Ur¢ coefficient | © cure coefficient
Intercent mean income ($) X HH density X mean
p -3.26E+00 | fixed fare 1.78E-06 | TRIPEQ _1.10E+01
. auto ownership per HH .
mean income () 2.86E-05 | X street density 774501 | HH density X PP1 4.03E+00
. auto ownership per HH .
auto ownership per HH | | 7000 | « HH density 9.01E-01 | TH density XPP2 1 30p )
street densit auto ownership per HH HH density X fixed
Y 2.71E-01 X transit station density | -3.04E+02 | fare -5.65E-01
. transit station density
HH density iuznovlvgle;fg;f (Il)eerjinL:H X employment
8.03E-01 ploy Y 1 9.06E-01 | density _5.71E+01
transit station densit auto ownership per HH transit station density
Y | -1.36E+01 | x mean TRIPEQ 5.56E+01 | X mean TRIPEQ 1.29E+01
emplovment densit auto ownership per HH transit station density
ploy Y | -6.39E-01 | x PPI 4.48E+00 | x PP1 3.97E+02
auto ownership per HH transit station density
mean TRIPEQ -3.25E+01 | x PP2 -5.53E-01 | x PP2 4.44E+02
PP1 auto ownership per HH transit station density
-4.43E-01 | X fixed fare -4.92E+00 | X fixed fare -6.47E+01
PP2 street density X HH employment density
2.57E-15 | density -7.76E-02 | X mean TRIPEQ 1.51E+00
street density X transit employment density
fixed fare 3.42E+00 | station density -5.68E+00 | x PP1 -7.87E-01
mean income ($) X auto street density X employment density
ownership per HH -2.15E-05 | employment density 8.80E-03 X PP2 1.82E+00
mean income ($) X street density X mean employment density
street density 5.17E-07 TRIPEQ 1.67E+00 | X fixed fare 2.50E-01
mean income ($) X HH .
density 9 61E-06 street density X PP1 2 93E-01 mean TRIPEQ X PP1 _6.83E-00
mean income ($) X .
ransit station density | 7.90E-04 | Streetdensity XPP2 ) 0 | mean TRIPEQ XPP2 | ) 44100
mean income ($) X street density X fixed mean TRIPEQ X
employment density -6.38E-06 | fare -5.27E-02 | fixed fare -5.29E-01
mean income ($) X HH density X transit
mean TRIPEQ -1.08E-04 | station density 1.16E+02 | PP1 X fixed fare 8.88E-01
. HH density X
mean income (8) X PP |\ 41 o5 | employment density 1.948-01 | PP2 X fixed fare 1.41E+00
mean income ($) X PP2 | 1.72E-05
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Table A.3. Ridership forecast model selected features p-values from linear least squares

estimation
Feature p value Feature p value Feature p value
Intercept <0.001 s | AR TRCOME () xfixed | go1#++ | HH density x PP1 | 0.015*
mean income ($) | <0.001%*** :t‘iz(;:’(l‘;‘;ﬁ;lp per HH X 706 HH density x PP2 | 0.051*
auto ownership per auto ownership per HH X % HH density x fixed %
HH 0.959 HH density 0.053 fare 0.046
. auto ownership per HH X transit station density s
strect density 0.352 transit station density 0.074 X mean TRIPEQ 0.005
HH densit 0.027% auto ownership per HH x 0.031% transit station density 0.007%*
Y ) employment density ) X PP1 )

transit station sk auto ownership per HH X transit station density sk
density 0.002 mean TRIPEQ 0.576 x PP2 <0.001
empl.oyment 0.00]%** auto ownership per HH X 0333 transit station density 0126
density PP1 X fixed fare

auto ownership per HH X employment density
mean TRIPEQ 0.751 fixed fare 0.867 » mean TRIPEQ 0.933
PP1 0.877 street density X HH 0.730 employment density 20,00 *#*

density X PP1

street density X transit employment density -
PP2 0.877 station density 0.956 % PP2 0.003

street density X mean employment s
fixed fare 0.699 TRIPEQ 0.928 density x fixed fare <0.001
mean g:;‘;?;; ®) X | 0228 street density X PP1 0.344 moun TRIPEQ X | ¢ 17+
mean income ($) X
transit station 0.489 street density X PP2 0.369 g‘;;n TRIPEQ 0.053*
density
mean income ($) X
employment 0.421 street density X fixed fare | 0.001%** mean TRIPEQ X 0.634

! fixed fare

density
D income $) X | 0 0o e gle}rlls‘iifyns“y x employment |, o3 PP1 x fixed fare 0.048*
mean income ($) X 0.235 HH density X mean 0.655

PP2

TRIPEQ

* kE wEk refer to p-values less than 0.05, 0.01, and 0.001 respectively
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Table A.4. VMT forecast model selected features p-values from linear least squares estimation

Feature p value Feature p value Feature p value
wx% | Mean income ($) X fixed HH density x mean

Intercept <0.001 fare 0.329 TRIPEQ 0.746

mean income ($) | 0.096 auto ownership per HH X1 579 | 1y density x PP1 0.002%*
street density

auto ownership per auto ownership per HH X " . "

HH 0.549 HH density 0.026 HH density x PP2 0.018

street density 0.775 auto ownership per HH X1 3| HH density xfixed ) ) 1
transit station density fare

HH density 0.006** auto ownership per HH X 0.077 transit station dens1ty 0.00] %%
employment density X employment density

transit station % auto ownership per HH X transit station density

density 0.041 mean TRIPEQ 0.168 X mean TRIPEQ 0.082

employment . auto ownership per HH X % transit station density

density 0.006 PP1 0.044 % PPl 0.058

mean TRIPEQ 0173 ;;t; ownership per HH X 0.057 zalr)lls)lé station density 0.027*

PP1 0.806 auto ownership per HH X 0.012%* transit station density 0.042%
fixed fare X fixed fare

. . % employment density X

PP2 0.806 street density X HH density | 0.029 mean TRIPEQ 0.804

fixed fare 0.005% stre‘et densﬁy X transit 0.539 employment density X 0.00]%**
station density PP1

mean income ($) X . .

auto ownership per | 0.233 strect density X 0264 | Smploymentdensity X | 5

HH employment density PP2

mean income ($) X street density X mean employment density oo

street density 0.370 TRIPEQ 0.266 X fixed fare 0.002

Eﬁagéggl‘t’;ne $)x 10188 street density x PP1 0.607 | mean TRIPEQ x PP1 | 0.022%

mean income ($) X

transit station 0.258 street density X PP2 0.983 mean TRIPEQ x PP2 | 0.731

density

mean income ($) >< 0.323 street density X fixed fare 0.117 mean TRIPEQ X fixed 0.221

employment density fare

mean income ($) X " HH density X transit station sk

mean TRIPEQ 0.041 density 0.001 PP1 x fixed fare 0.197

mean income (8) X | ¢ HH density x employment | 159 | ppy x fixed fare 0.003%*

PP1 density

mean income ($) X 0.048*

PP2

* xE k% refer to p-values less than 0.05, 0.01, and 0.001 respectively
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