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ABSTRACT

We propose an agent-based mixed-logit model (AMXL) that is estimated with inverse optimization
(IO) estimation, an agent-level machine learning method theoretically consistent with a utility-
maximizing mixed logit model framework. The method provides joint, individual-specific, and
deterministic estimation, which overcomes the limitations of discrete choice models (DCMs) given
ubiquitous datasets. A case study of the CBD in Shanghai is conducted with mobile phone data of
26,149 anonymous commuters whose whole-day activity schedule on weekdays contains three sub-
choices and 1,470 alternatives. AMXL is built to estimate individual tastes and predict the activity
scheduling choice in different scenarios. Multinomial logit model (MNL), mixed logit model (MXL),
and their dynamic forms (DMNL, DMXL) are built as benchmarks. Prediction accuracies are
calculated as the percentage consistency of observed choices and predicted choices, both at
individual level (to each commuter) and aggregated level (to each alternative in the choice set). The
results show that empirical coefficient distributions in AMXL are neither Gumbel nor Gaussian, i.e.
capturing inter-individual heterogeneities in space that are hard for DCMs to capture. The prediction
accuracy of AMXL is significantly higher than the best model (DMXL) in benchmarks, improving
from 8.66% to 61.68% at aggregated level and from 1.69% to 4.33% at individual level. In a
comparison scenario, AMXL predicts different while reasonable change of choices compared with
benchmark models. In an optimization scenario, AMXL can be directly integrated into a binary
programming (BP) problem, which optimally allocates 10 blocks to send restaurant coupons to
increase population consumer surplus by 19%.
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machine learning
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1. Introduction

Joint activity scheduling choice is taking on greater importance in transportation planning, given
that travel demand is derived from the need to perform activities (Hégerstrand, 1970; Ben-Akiva
and Lerman, 1985; Recker et al., 1986a,b; Kitamura, 1988; Bowman and Ben-Akiva, 2001; Pinjari
and Bhat, 2011; Chow and Nurumbetova, 2015). Most existing studies postulate that agents derive
a (dis)utility from traveling and performing activities, and they schedule them to maximize the utility
in total (Adler & Ben-Akiva, 1979; Ettema et al., 2007; Habib, 2018). With the emergence of
information and communications technology (ICT), it is now possible to model and predict activity
scheduling choice with quite a large sample size at the city or state level (Aguiléra, 2018; He et al.,
2020).

Whereas discrete choice models (DCMs) were traditionally used to analyze choice behavior,
their application to activity scheduling behavior under the big data context is hindered by at least
three problems. First, since the scheduling of daily activities is a complicated process that covers
multiple choice dimensions (e.g., which activities to perform, activity timings, locations, durations,
and mode-of-travel between activities), it is hard to maximize the likelihood function for DCMs with
a huge choice set comprised of all possible schedule combinations (Charypar and Nagel, 2005;
Danalet et al., 2015; Pougala et al., 2021). Second, though flexible DCMs structures enable modelers
to capture individual preference, the results are defined by a specific distribution of coefficients, for
example, Gaussian-distributed coefficients in a mixed logit model (MXL). Many researchers have
already pointed out the risk of failing to choose adequate distributions for random coefficients (Hess,
2010; Sarrias, 2020). Third, DCMs are stochastic estimation approaches, generating demand
functions that are non-linear and non-convex in the explanatory variables (Ljubi¢ and Moreno, 2018;
Pacheco et al., 2021). Complex expressions restrict their further integration to optimization problems
for congestion management, system design, and demand management policies. There have been a
growing number of studies using dynamic DCMs (Hasnine and Habib, 2018; Vistberg et al., 2020)
or machine learning models (Lizana et al., 2021; Tanwanichkul et al., 2019; Wang et al., 2020a) to
analyze individual decisions and reporting higher prediction accuracy than conventional DCMs.
Although these models allow more complex relationships between explanatory variables and
individual choices, it is at the cost of sacrificing interpretability and increasing the non-linearity of
demand functions (LeCun et al., 2015; Liao and Poggio, 2018). Therefore, innovative methods
dealing with these three limitations are theoretically essential and empirically critical to estimate
agents’ joint activity scheduling choice.

These limitations can be addressed if coefficients can be specified deterministically for each
individual within a DCM framework resulting in a heterogeneous population of coefficients. We call
this an agent-based mixed logit model (AMXL). Under most circumstances, an AMXL model does
not make sense because estimating it from a sample data set would not be transferable to a population.
However, such an approach would still be valid under a ubiquitous data (smartphone data) or
synthetic population (e.g. He et al. (2020) or Replica (2022)) setting where attributes from the whole
population (or segments of it) can be obtained or monitored instead of just from a sample. Under
such settings, an AMXL model can be used to predict the outcome of alternative scenarios for the
same population. We assume such a setting, where data for a population is sufficient to estimate the
coefficients for each individual resulting in a random utility model with heterogeneous but
deterministic coefficients.

The significance of AMXL is as follows. First, difficulties in estimating coefficients for high
choice dimensions requiring high-dimensional integrals for random coefficients can be addressed
with constrained optimization. Second, population distributions for the coefficients are based on
non-parametric aggregation of the individual coefficients instead of having to assume a
distributional fit. Third, since each individual’s representative utility function is fully specified,
AMXL can be directly integrated into system design optimization models as constraints instead of
dealing with simulation-based approaches needed for MXL (see Pacheco et al., 2021).



As for the proposed methodology, we first decompose individuals’ whole-day activity
scheduling choices into a series of inter-related sub-choices, from which a series of utilities are
derived accordingly. By ensuring shared coefficients to be the same among these sub-choices, we
reduce the choice set while still modeling different choice dimensions jointly. We then formulate a
unique inverse optimization (IO) problem for the set of choices of each individual, in which a
Gumbel-distributed random utility and a safe boundary are added to each alternative for each sub-
choice. This insight keeps the theoretical consistency with DCMs and avoids overfitting the
individual-specific estimation. A Method of Self-Regulated Average (MSRA) (Liu et al., 2007) is
applied to smooth the iterative convergence and obtain stable solutions, in which demand functions
are linearly related to the explanatory variables.

We test the estimated AMXL model against multinomial logit (MNL), mixed logit (MXL),
dynamic multinomial logit (DMNL), and dynamic mixed logit (DM XL) to model activity scheduling
choice using a mobile-phone-derived dataset, referred to as SHC in this study. The SHC dataset was
collected in 2019, containing two weekdays activity information of 26,149 anonymous commuters
working in the CBD of Shanghai. Based on the experimental results, AMXL presents three key
advantages over benchmark models: (1) For the whole-day activity schedule, AMXL provides
higher prediction accuracy both at individual level (to each commuter) and aggregated level (to each
alternative in the choice set); (2) AMXL produces an empirical distribution of individual preference
in space which is hard for benchmark models to capture; (3) utility functions retrieved from AMXL
can be directly integrated into system design optimization models. While the AMXL model is
applied to the activity scheduling choice use case in this study, it can also be applied to other high
dimensional choice problems where ubiquitous data are available. To facilitate future research, we
uploaded the algorithms and the 1,000 randomly-selected samples to a Github repository:
https://github.com/xr2006/AMXL . git.

The remainder of the paper is organized as follows. Section 2 reviews studies on DCMs for
activity scheduling choice and emerging machine learning approaches for individual choice. Section
3 describes the general framework of the AMXL model, including utility derived from whole-day
activity scheduling behavior, inverse optimization algorithm with random utility, and architecture
of AMXL. Section 4 sets up a concrete experiment that compares the performance of MNL, MXL,
DMNL, DMXL and AMXL. The experimental results, including prediction accuracy, distribution
of coefficients, and scenario application, are presented in Section 5. Section 6 concludes the findings
and points out future work.

2. Literature review
2.1 DCMs for activity scheduling choice

As econometric models, DCMs assume individuals to schedule activities by maximizing the overall
utility they can expect to gain (Becker, 1965; Bowman and Ben-Akiva, 2001). Typically, decisions
related to activity scheduling behavior include the choice of activity pattern (staying at home,
working, or shopping), the destination, time-of-day, duration for each activity, and mode-of-travel
between activities (Ben-Akiva & Lerman, 1985; Miller and Roorda, 2003; Ding et al., 2017; Ettema
et al., 2007; Habib, 2018). Skeleton schedules, referring to schedules with fixed attributes pre-
defined by modelers such as specific activity types (e.g., commuters’ working activity on weekdays),
start time (e.g., 9 a.m. for work, 12 a.m. for lunch), duration (e.g., a half-hour exercise), or destination
locations (e.g., home and workplace), are widely used to control the model complexity and
emphasize the research scopes (Ettema et al., 2007; Habib and Miller, 2006; Habib, 2018).
Existing studies using activity-based DCMs can be divided into two categories. The first
category treats choice dimensions with a nested structure, in the sequence from primary activities to
secondary activities, from time frames to travel modes, and according to time series (Horni et al.,
2016; Bowman and Ben-Akiva, 2001). A basic form is the nested logit model (NL) while a more
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advanced one follows a Markov decision process (MDP) and models activity scheduling choices as
dynamic DCMs (Aguirregabiria and Mira, 2010; Véstberg et al., 2020). Dynamic DCMs assume
that individual i € P acts to maximizes the utility function defined by Eq. (1).

Uije = xijt/}jt + &je + 1, EV(i,j, 1), Vie P,VjEJ VtET (1)

where t denotes the choice situation or time period. x;;; denotes a set of observed variables of
individual i choosing alternative j in situation t. S it is a set of coefficients reflecting preferences.
Xijt ﬂjt and &;j; denotes the deterministic and random utility, which is aligned with conventional
DCMs. EV(i, ], t) is the expected utility of all possible alternatives in the remainder of the day,

usually calculated using multi-dimensional integrals or backward induction with a relatively high
computational cost (Vastberg et al., 2020). y, is a coefficient defining the weight of expected utility

in choice situation t. Accordingly, the probability of individual i choosing alternative j in situation
t is defined as Eq. (2).

exijrﬁ,-t+€ijr+#EV(i.f.f)

Py = VieP,VjEJVLET )

Yite) e Xij'tPjetéijttHEV(J'E)

The second category focus on stochastic individual level models, considering that preference
may vary across different choice situations of different individuals. Up to this point, logit mixtures
incorporating inter- and intra-individual heterogeneity are estimated with maximum likelihood
procedure (Becker et al., 2018; Krueger et al., 2021). For example, a mixed logit model (MXL)
assumes that each individual i faces a choice among J alternatives. Then, the utility associated with
each alternative j = 1, ..., J for individual i is defined as Eq. (3).

Uij=xijﬂ+eij, VieP, V]E] (3)

where x;; denotes a set of observed variables of individual i choosing alternative j. &; is the random
utility. The vector of tastes Jis assumed to be a variate that varies across individuals according to
g (B2, where g(.) is usually the Gaussian distribution with the mean and covariance included in
Q). More recent studies have captured both inter- and intra-individual tastes based on conditional
estimations (Becker et al., 2018; Krueger et al., 2021; Sarrias, 2020). Accordingly, the probability
of individual i choosing alternative j is defined as Eq. (4).

eXijf ] .
P, = f—xn,ﬂg(ﬁIQ)dﬂ, ViEP, Vj€]J )
Zj’e]e Y

Despite a growing number of empirical studies, at least three issues are not perfectly addressed,
which hinder the application of DCMs to activity scheduling behavior under a Big Data context.

First, most of the choice scenarios in DCMs involve a small number of alternatives. However,
the choice set in the case of activity scheduling behavior will be quite large if we include all possible
schedule combinations (Pougala et al., 2021). For example, a single activity starts in ¢ possible time
blocks, at / possible locations, and with m available mode-of-travel will generate (t X I X m)
possible alternatives. Existing computational tools (e.g., MATLAB, R, Status) are generally unable
to maximize a likelihood function associated with hundreds of coefficients and alternatives (Chen et
al., 2005; Lemp and Kockelman, 2012). Though dynamic DCMs decompose the whole-day



scheduling choice into a sequence of sub-choices and calibrating them jointly, it is hard to calculate
multi-dimensional integrals especially when alternatives vary across choice situations. Also,
conditional probability can only capture general dependencies among sub-choices. It remains
understudied whether a conditional probability is valid from an individual perspective.

Second, just knowing that a coefficient varies across individuals is not enough in the case of
activity scheduling choices, which combines segments of individuals (Richter and Pollitt, 2018),
disaggregated willingness-to-pay (WTP) (Dumont et al., 2015), spatial dependence of tastes
(Budzinski et al., 2018), and individual-specific strategies (Hess and Hensher, 2010). Logit mixtures
incorporating inter- and intra-individual heterogeneity might be a good attempt to estimate
individual level models. However, the complex assumption of conditional distribution also has
limitations. Hess (2010) has argued that failing to choose adequate distributions for random
coefficients might lead to misleading conclusions. Sarrias (2020) has stated that the better fit in terms
of signs and values might be an artifact of the statistical behavior of the conditional estimations when
the number of choice scenarios is not large enough. Under the context of location-based Big Data,
attributes from the whole population can be obtained instead of just from a sample (Ahas et al.,
2009), and the individual tastes might not be normally distributed due to lacking personal
information (Zhao et al., 2018). To this end, modelers should consider individual-specific
estimations without complex assumptions of the conditional distribution.

Third, stochastic estimations in DCMs result in non-linear or even non-convex mathematical
formulations, particularly for more advanced variations like MXL or dynamic DCMs, which are
difficult to embed in optimization models governing the supply-related decisions (Ljubi¢ and
Moreno, 2018; Pacheco et al., 2021; Robenek et al., 2018). For instance, mixed-integer linear
programming (MILP) models have been widely used in congestion management (Qiu and Wang,
2015), transit timetabling (Cordone and Redaelli, 2011), toll setting (Gilbert et al., 2015), and vehicle
routing (Kancharla and Ramadurai, 2020; Dong et al., 2022), among others. Unfortunately, MILP
models require linearity and convexity of the involved functions, which is generally not the case in
DCMs. Whereas Pacheco et al. (2021) have presented the feasibility of integrating mixed logit
models into MILP models via a simulation-based linearization approach, longer computational time
compared with conventional MILP still hinders the interaction between individual choices (demand)
and operational strategies (supply). Given a ubiquitous dataset, the key idea is to develop a
deterministic approach that overcomes the stochastic nature of the random component and thus
expresses the demand in terms of linear, convex functions.

2.2 General-purpose machine learning methods for individual choice

In recent years, there has been an emerging trend of using general-purpose machine learning models
(MLs) to analyze individual choices (Wang et al., 2020b). In the transportation field, existing studies
have applied support-vector machines (SVMs), classification trees (CTs), random forests (RFs), and
deep neural networks (DNNs) to analyze many choice scenarios such as automobile ownership,
travel mode, vehicle route, and parking location (Lizana et al., 2021; Shaaban and Pande, 2016;
Tanwanichkul et al., 2019; Tribby et al., 2017; Chow, 2018; Ma et al., 2017). General-purpose MLs
for individual choice have both pros and cons. The pros are that these models allow flexible
relationships between individuals’ choices and explanatory variables, resulting in higher prediction
accuracy than classical DCMs (Hagenauer and Helbich, 2017; Omrani, 2015; Pulugurta et al., 2013).
The cons are that MLs are often criticized as “black-boxes” that are sensitive to hyperparameters
and lack interpretability for modelers to explain the behavioral mechanism (Liao and Poggio, 2018;
Sun et al., 2019; Wang et al., 2020b).

Besides these pros and cons widely discussed in existing studies, we would like to emphasize
that general-purpose machine learning models do not generally address the three mentioned
limitations of DCMs. On the one side, MLs treat individual choices as a classification task, in which
cross-entropy is often used to formulate the cost functions (Kline and Berardi, 2005). Similar to the



likelihood functions in DCMs, cross-entropy-based cost functions in MLs are also inefficient to
optimize, given a huge choice set of all possible schedule combinations. Hence, the performance of
general-purpose MLs might decrease with the increase in size of choice sets. On the other side,
though the powerful automatic learning of MLs can capture complex behavior realism, it is at the
cost of local irregularity and non-linearity of demand functions (LeCun et al., 2015; Liao and Poggio,
2018). Wang et al. (2020a) have pointed out the impacts of local irregularity on individual tastes.
They found that the exploding and vanishing gradients in neural networks can result in extremely
high or low sensitivities at the individual level that are opposite to domain knowledge. Moreover,
with hundreds of parameters in deep learning models, it is almost infeasible to formulate the utility
function, let alone generate demand functions and integrate them into optimization models. An
innovative, domain-specific machine learning approach is necessary to deal with the large choice
set, capture individual-level tastes, and build the link between demand and supply.

2.3 Inverse optimization (10) for individual choice

Inverse optimization (IO) is initially used to impute missing optimization model coefficients from
data that represents sub-optimal solutions of that optimization problem (Ahuja and Orlin, 2001;
Burton and Toint, 1992). Given an optimization problem, an IO can be formulated to impute its left-
hand-side constraint parameters and feasible regions (Chan and Kaw, 2020; Ghobadi and
Mahmoudzadeh, 2021). A typical 10 problem is defined as follows: for a given prior €, of missing
coefficients and observed decision variables x*, determine an updated coefficient set &such that x*
is optimal while minimizing its L; norm from the prior, as shown in Eq. (5).

mgn|00—0|:x*=argmin{9Tx:Abe,x20} (%)

where A is the constraint matrix b is the vector of side constraint values. Ax < b are constraints
ensuring x* is optimal (or the best choice). L; norm is used to regularize what would otherwise be
an ill-posed problem with infinite solutions. Ahuja and Orlin (2001) proved that Eq. (5) can be
reformulated as a linear programming (LP) problem.

Since 10 imputes coefficient values from data, it can be viewed as a machine learning approach
(Iraj and Terekhov, 2021; Tan et al., 2019) and shares similarities with inverse reinforcement
learning (IRL) (Iskhakov et al., 2020). Though IO is less popular than general-purpose machine
learning models, it has already been applied to traffic assignment, route choice, and activity
scheduling problems (Chow and Recker, 2012; Hong et al., 2017; Chow, 2018; Xu et al., 2018). For
instance, Chow and Recker (2012) proposed a multiagent framework for IO where a sample of
individuals’ trip scheduling data is obtained and used to infer parameters of individual activity
scheduling. Xu et al. (2018) formulated the multiagent inverse transportation problem to estimate
heterogeneous route preferences, and proved that the 10 approach could obtain heterogeneous link
cost coefficients even when multinomial or mixed logit models would not be meaningfully estimated.
Moreover, the potential of IO in modeling individual choice has been noticed by existing studies.
Iraj and Terekhov (2021) emphasized the need for stochastic IO models in scenarios where
constraints, objective, and prior parameters can be defined with domain knowledge. This holds in
the problem of activity scheduling choice, given existing results obtained through econometric
models (e.g., DCMs).

We propose a hybrid machine learning/econometric approach designed to estimate agents’ joint
activity scheduling choice from a ubiquitous data set. The approach is based on the 10 method of
estimating a random utility model that considers different choice dimensions jointly and coefficients
that vary by individual. The utility function is linear, in order to ensure its compatibility with
optimization models.



3. Proposed model

The proposed Agent-based Mixed Logit model (AMXL) is a random utility model with individual-
specific coefficients resulting in a heterogeneous distribution of the population coefficients. The
AMXL is applied in this study to one use case (and other use cases can be explored in future research):
it represents individuals’ whole-day activity scheduling behavior based on a series of utility items
associated with decomposed sub-choices. Notations used in this section are shown in Table 1.

des,k k
0q;  ,desg;
Vi

Table 1

Notations used in the proposed model
1% Total utility derived from the activity schedule of an individual
Vs Total utility derived from participating activities in set A
Vr Total utility derived from conducting trips in set T
Vai Utility derived from activity a conducted by individual i
V,ff Utility item of activity a conducted by individual i, related to activity schedule delay
vorr Utility item of activity a conducted by individual i, related to activity duration
chfs Utility item of activity a conducted by individual i, related to activity destination
0, SDE, ; Coefficient and observed value of starting an activity earlier than schedule (min)
Gé”., SDL,; Coefficient and observed value of starting an activity later than schedule (min)
eri, PLg; Coefficient and observed value of starting activity late (binary)
pauration p. . Coefficient and observed value of activity duration (min)
pauration Coefficient of the interactive item of two activity durations

Coefficient and observed value of a specific feature k related to the activity location

Utility derived from trip t conducted by individual i

yLime Utility item of trip t conducted by individual i, related to trip time

Vt,ci"“ Utility item of trip t conducted by individual i, related to trip cost

Vt’,‘f ode Utility item of trip t conducted by individual i, related to trip mode

CcU The choice-utility incidence matrix

V' A vector containing decomposed utilities

&ijm Random utility for individual i choosing alternative j in sub-choice m

Oom Fixed-point prior of coefficients which can be divided into sub-choices m € M
Oim Individual specific coefficients which can be divided into sub-choices m € M

3.1 Architecture of Agent-based Mixed Logit model (AMXL)

The architecture of AMXL model is determined by how to derive a total utility from the whole-day
activity schedule and how to decompose it into several inter-linked subitems.

3.1.1 Utility derived from the whole-day activity schedule

A whole-day activity schedule can be divided into a sequence of activities and trips. In line with the
study of Ettema et al. (2007) and MATSim (Rieser et al., 2014), the AMXL model assumes
individuals in a population P maximize their total utility derived from the activity schedule by
solving Eq. (6).

max V = max(V, + V;) = max <Z Vo + Z Vt,i): VieP (6)

a€eA teT



where V, is the total utility derived from participation of activity set A (assumed positive) and Vy is
the total utility derived from trip set T (assumed negative). These two utilities are the sums of utilities
of individuals’ activities Y,ge4 Vy ; and trips Y,er Ve

The utility derived from an activity depends on three elements: (1) the duration of activities, (2)
the schedule deviation relative to a preferred or scheduled activity start time, and (3) the destination
of activity relative to a set of attributes of the location. To this end, if individual i has conducted an
activity p, the utility can be defined as Eq. (7).

Vai =VaP + VO + V285,  VieP,vaeA (7)
where V27, V2", and V2FS are utilities related to the schedule deviation, the activity duration, and
the activity destination. Utility linked to the activity category is not included since we mainly focus
on the activity scheduling, where the number and type of activities are pre-defined in skeleton
schedules (Habib and Miller, 2006).

The schedule deviation related utility of activity p conducted by individual i, Vasf , is defined
in Egs. (8) — (10).

VSP = ¢, SDE,; + 64,;SDLy; + 6h5PL,;, Vi€ P,Ya €A (8)
SDE,; = max (0,5,; — Sg,;), VieP,Va€eA 9)
SDLg; = max (0,54; —S.;), Vi€ P,Ya€A (10)

where SDE, ; and SDL, ; are the early and late schedule delay, s, ; is individual i’s targeted start
time for activity a, s, ; is individual i’s actual start time for activity a. PL, ; is an additional penalty
for starting an activity late (independent of the actual amount of ‘lateness’ (Lizana et al., 2021)),
which equals to 1 if SDLg; > 0, 0 otherwise. &5 ;, Hla,i, .93‘1 are coefficients for these items.

The activity duration related utility of activity a conducted by individual i, V(fiur, is defined in
Eq. (11).

ypur = giurationin(p, ) + 64 In(Dy;) In(Dyr;), Vi€ P,Va,a € A (11)

where Dg; is the duration of activity a performed by individual i, D ; is the duration of the related
activity a’. The implication of the former item is that marginal utility decreases with increasing
duration (%ﬁmti(m is assumed to be positive). The latter item allows the utility of different activities
to be dependent on each other. For instance, if one activity gains a higher utility with more time
spent on another activity, the coefficient 624%™ will have a positive sign.

The utility of activity a performed by individual i, V°#5, is defined in Eq. (12).

ai °

K
V(fies = Z e‘gﬁs'kdes;‘,i, ViEP,Va€E A (12)
k=1

where desg'i is the kM attribute related to the destination of activity a performed by individual i and

K - . .
tflleis is the corresponding coefficient.

In the AMXL model, the utility derived from a trip depends on three elements: (1) trip duration,
(2) trip cost, and (3) trip mode. To reduce the complexity, we do not include route choice in our



model, and we assume that individuals tend to choose the route with the shortest trip duration. Hence,
if individual i has made a trip t, the derived utility, Vgi, can be defined as Eq. (13).

d
i ime ost ode,d
Vi = vime + v st + Vt{‘f"de = 6" time,; + 6 cost; + Z A modegi ,
d=1

(13)
Vie P,VteT

where time, ;, cost, ; are the duration and cost of trip ¢ made by individual i. Trip mode is denoted
by mode;, which equals to 1 if the individual chooses the d*" mode, 0 otherwise. "¢, &%,
Hzli‘)de'd are the coefficients of these three items. Note that time,; and cost;; can be extended to
timegi and costgi, which adds mode specific time and cost to utility function for trips. However,
we do not recommend the extended form since we focus on the whole-day utility and want to keep
the number of coefficients in each utility item at the same level.

In general, the total utility derived from individual i’s whole day activity schedule can be
defined as Eq. (14). For an activity schedule containing |A| activities and |T| trips, there are (3|A| +
3|T|) items in total.

|4] IT|
V= Z(ij + VT V) + Z(Vtﬂime + VEPSt + vlode), (14)
a=1 t=1

Vie P,Va€AVteET

3.1.2 Whole-day scheduling choice decomposition

To control the size of the choice set, we decompose the whole-day scheduling choice into a series
of inter-related sub-choices, with each sub-choice containing at least one choice dimension of the
scheduling joint-choice. The choice-utility incidence matrix is introduced to fulfill this. To be
specific, the choice-utility incidence matrix, CU, has M rows and N columns, where M is the
number of sub-choices, N is the number of utility items, which equals to (3|4| + 3|T|) in our model.
The value in the mt"* row and nt" column equals to 1 if the nt" utility item is influenced by the m"
sub-choice, 0 otherwise. If we convert utility items in V to a vector YV, with V=
VP, .., VS VI™e, ., V€] (in the shape of (1,3|A| + 3|T|)), the total utility 1 can be
decomposed as a series of utility one-to-one associated with the sub-choices, as shown in Eq. (15).

— SD -
Vi
Cu1,1 Cul,z e Cule : Vl
Vv =cusv=|"2 Co Viaii |_ | v i ep
= x P = . * yrime [ =] | Vi € (15)
o :
CuM,l cee cee CuM,N ls vM
Mod
Vi
where V' is a vector containing decomposed utilities V1, V2, ..., VM. Each decomposed utility is

the total utility derived from a sub-choice, which individuals are assumed to maximize. The benefit
of decomposing the whole-day scheduling choice is that it separates different choice dimensions to
make the size of the total choice set equal to a summation of alternatives in each choice dimension
rather than a product.
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CU matrix in our study is a pre-defined binary matrix, determining if a sub-choice depends on
a utility item. However, CU matrix has the potential to be extended to a real-number matrix with a
range of 0 to 1. In that case, cu,,, denotes the degrees of dependencies between sub-choice m and
utility item n, and CU matrix should be estimated instead of pre-defined, which will introduce a
series of coefficients and complicate the model.

3.1.3 Observed variables, normal coefficients, and shared coefficients

To sumup, SDE,; ;, SDLg;, PLg;, Dy i, des('l‘,l-, timey ;, cost, ;, modegi are observed variables
calculated based on individuals® activity schedules, which are concatenated into a vector X;. 6 ;,
G HZ'IL-, ghyration - giuration - giesk - gime | gfost g% are a series of individual-specific
coefficients one-to-one related to observed variables, which are concatenated into a vector 6;. Due
to the co-impacts of different choice dimensions (e.g., the duration of an activity is influenced by its
start time and the start time of the next activity), some observed variables might be influenced by
more than one sub-choice. In other words, some of the column-summations of the choice-utility
incidence matrix CU should be larger than 1 in order to include all related utility items into the total
utility derived from each sub-choice. To this end, coefficients in the AMXL model can be divided
into normal parameters and shared coefficients. For observed variables influenced by only one sub-
choice (related column-summations of CU equals to 1), we define their associated coefficients as

normal coefficients. For observed variables influenced by more than one sub-choice, we define their

hared
G

associated coefficients as shared coefficients. &'°"™* and are used to differentiate normal

and shared coefficients.

By keeping &™"*"? to be the same in all sub-choices, we can jointly estimate the whole model
while dealing with a much smaller choice set. Compared with nested structure in dynamic DCMs
(Vistberg et al., 2020), our method get rid of complex conditional probabilities by adding an
additional constraint that ensures shared coefficients are fixed among sub-choice situations. There
are several benefits: (1) we avoid calculating high-dimensional integrals for random coefficients; (2)
dependencies among sub-choice situations are captured at individual level since & hared g
individual-specific; (3) pre-defined choice sequence is not required since sub-choice situations can
be modeled in parallel. Also, we suggest a balanced number of coefficients among each sub-choice
considering the parallel structure.

3.2 Multiagent 10 estimation framework for AMXL

To estimate the AMXL model, we propose to formulate a multiagent inverse utility maximization
problem for each sub-choice scenario and solve them jointly with additional constraints related to
shared coefficients.

3.2.1 Multiagent inverse utility maximization (MIUM) problem for coefficient estimation

Inspired by the works of Chow and Recker (2012) and Xu et al. (2018), our study formalizes the
multiagent inverse utility maximization (MIUM) problem to estimate individual level coefficients
in each sub-choice situation. Consider a choice set / from which a population P of agents
behaviorally seek to select to maximize their overall utilities. The AMXL model decomposes the
whole-day scheduling choice into a series of inter-related sub-choices M, i.e. /,,,, m € M. Each agent
i € P has a specific preference for a sub-choice m € M reflected by a coefficient set &,,, and
chooses an alternative j € J based on the principle of utility maximization. In line with discrete
choice models (DCMs), the total utility derived from agent i choosing alternative j is defined in Eq.
(16).
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where Ujjp, is the total utility, which is composed of a deterministic utility V;j,, and a Gumbel-
distributed random utility &;j;,. X;jm 18 a set of observed variables related to individual i choosing
alternative j for sub-choice m € M. The set of attributes is defined as K, which are divided into
attributes that vary by sub-choice, K,,,, with corresponding coefficients &'°"™®, and attributes that
have shared common coefficients 6% across sub-choices, K,. The individual-level coefficient
set &, can be jointly estimated by solving a MIUM problem under L,-norm as a convex quadratic
programming (QP) problem, as illustrated in Eq. (17) — (20).

gor;ln}ng(HOm = Om)? (17)

iepP

Subject to
Vijm*(eim)‘i'&'ijm* ZVijm(Him)+gijm+b, j;"j*,VjEI,i EPmeM (18)
1

90’”:@2 O, VmEM (19)

ieP
Himk = Him'k' Vi € P,k € Ko,m,m’ EM (20)

where 6, is a common prior corresponding to a sub-choice m € M. The objective is quadratic
while the constraints are linear. Compared with Ahuja and Orlin (2001)’s study, we replace L;-norm
with L,-norm since L,-norm results in a smaller variance of individual-level coefficients (by making
O closer to By,y,), which is ideal for inverse optimization at a large scale. For Eq. (18), &;jp,+ and
&;jm are random utilities that should be randomly generated for each agent. This is a bit different
from DCMs, in which the random utility is used to calculate the cumulative density function (CDF),
but is not really drawn for each individual. In case g;j, is much larger than g;j, in a single draw
(making the comparison of deterministic utilities meaningless), we add a safe boundary b (b = 0)
to the linear inequalities. In general, the safe boundary b acts as a hyperparameter in the MIUM.
From a machine learning perspective, this is similar to adding noise when training the model and
thus helps to avoid overfitting. A proposed value of b around 75th quantile of (g —g;;) is
recommended, which ensures the utility of chosen alternative should at least be larger than 75% of
the rest of the alternatives. The proposed value is based on a series of experiments focusing on the
balance between feasible solutions and prediction accuracy. It is noted that few studies have included
random items (g&;;+ and &;) into 10 problems. Eq. (19) makes sure that the estimated individual
coefficients have a fixed point consistency with the common priors. For the attributes that are meant
to have shared coefficient, Eq. (20) ensures that the estimated coefficient is identical across all sub-
choices where it’s present.

Solving the model in Egs. (17) — (20) as a single QP would be computationally costly as it
would lead to highly diagonal sparse matrix. Instead, the model is decomposed. In each iteration,
we first break down our sub-choices into |M| independent MIUM,, problems to obtain |M]|
posteriors, which includes both normal and shared coefficients at the individual level. Then we
calculate the mean values of shared coefficients in these posteriors, fix these shared coefficients, and
re-solve the MIUM,,, problems, which can be fulfilled by adding a constraint ensuring the shared
coefficients are equal to the fixed values (let us denote the new MIUM,, problem as MIUM,,).
Finally, we update the fixed-point prior using a convergent iterative algorithm, and check if the
stopping criteria has been reached. If reached, then we concatenate posteriors obtained by MIUMj,
problems and output the estimated individual-specific coefficient &;,,. Otherwise, we use the
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updated fixed-point prior and go to the next iteration. The iterations continue until a set of
coefficients 6, stabilizes (see Xu et al. (2018) for an example of this kind of decomposition for the
M| = 1 case). The MIUM,,, problem can be solved using any optimizer software or package that
can handle QP like Gurobi, CVXPY, etc. The estimation process is illustrated in Fig. 1.

In Fig. 1, boxes in light-green color represent MIUM,, problems, one for each sub-choice.
Boxes in light-red color represent the procedures related to the joint estimation. Based on the
illustrated architecture, coefficients in different sub-choices can be estimated in parallel (horizontal
structure) while shared coefficients that are invariant among these sub-choices ensure the inter-
relationship (vertical structure). The MIUM is a QP and thus the whole structure can reach a unique
solution. Given an initial guess of a fixed-point prior &,, a convergent iterative algorithm (e.g.,
method of successive averages (MSA)) would reach a unique and statistically consistent fixed point
with respect to that guess (see Chow and Recker 2012).
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Fig. 1. Illustration of joint estimating several MIUM problems

Note that AMXL in this study can only capture inter-individual heterogeneity, since it models
activity scheduling choice based on one observation per individual. To deal with intra-individual
heterogeneity with multiple observations per individual, multiday inverse utility maximization
problems should be formulated and solved before multiagent inverse utility maximization problems.
In that case, there would be multiple levels of priors (population priors from which individual priors
are drawn, and then individual and time-specific parameters that are drawn from those individual
priors. Future research will explore this further.

3.2.2 Proposed algorithm

The convergent iterative algorithm used in our study is the Method of Self-Regulated Average
(MSRA). Compared with the conventional Method of Successive Average (MSA), MSRA adjusts
the weight of optimal solution in each iteration to speed up the convergence rate (see Liu et al.
(2007)). The MSRA algorithm is specified in Algorithm 1, in which x(™ is equivalent to the fixed-
point prior in the n" iteration (6?(()") )y and y™ is equivalent to the averaged posterior coefficients of
|P| individuals (y(™=F (an)) = F}lziép ngn))_ We adopt the value of some hyperparameters from
Liu et al. (2007)’s study, including I', vy, and [3(0). Using these parameters, we found that the
algorithm reduced the convergence time by 35% relative to using MSA for the examples in the study.
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Algorithm 1. Method of Self-Regulated Averages (Liu et al., 2007)
1. Set the initial point xO n=1, r>1, 0<y<1, ﬂ(0)=0, and the stop criteria &>0
2. Calculate y(@=F(x(©), xW= (x(D+y0))/2 and yD=F(x1))
3. Do while ||x™ — y®|| > & .
i 0 =y > [y
B(n) — B(n_l) +T
else:
B(Tl) — B(n—l) +y
Ot(n) — 1/,3(”)
x(n+1) = x(n) + a(n) (y(n) — x(n))
y(n+1) — F(x(n+1))
n=n+1
4. Output x(™

An additional issue is that if we use different initial points or different standard deviations of
&;jm» it would lead to a different fixed-point solution set (Xu et al., 2018). This is similar to DCMs,
in which the estimated coefficients are only unique relative to each other, but the overall values can
be scaled up or down. To ensure comparable results between different scenarios, we normalize the
observed variables and set the std. of the Gumbel error &, to 1. In that case, b=11is a
recommended value of safe boundary, which equals to the 75% quantile of (&;;+ — ;). The whole
estimation approach is summarized in Algorithm 2. The stopping rule is set to €'=0.001 considering
time to converge.

Algorithm 2. Proposed multiagent IO estimation for the AMXL model

1. Given observed variables X;; and the choice-utility incident matrix CU, initialize with n=1,

b=1, and the fixed-point prior Bg)n)I[O,O, ...,0]

2. Solve |M| decomposed MIUM,,, problems with the fixed-point priors 6'(1)(”), 6?(2)(”), s 6’0M|(n):
min {0 — GOV st VE+ L 2V A+ b, j5 V™), VieP,ymeM

g g b
Y
3. Set average to 6; hared(n)_——l Al,” Ymem & Shared(m)

4. Solve |M| MIUM’,,, problems, with an additional constraint fixing coefficients thamd(n):

i (™ = gy st v+ 2 VI + &0+ b, j=7,Yj ™}, VieP,YmeM
0 [

Subject to H;n,shared(n)zeishared(n)

5. Concatenate 6711 (n), 6?12 ) Py él-Ml(n) to eﬁn), set average to y (™ :ﬁ Liep Hgn)

6. MSRA: set T=1.8, y=0.3, =0, £'=0.001, calculate ¢+

7. If MSRA stopping criteria reached, stop and output 9§n) , else let n=n+1 and go to step 2

The computational time is proportional to the total number of iterations and the time spent at
each iteration. In each iteration, (2 X |[M|) MIUM,,, problems are estimated in parallel with |P|
individuals in each MIUM,,,. For each 10 problem in a MIUM,,, problem m eM, the computational
time is proportional to the number of constraints decided by the size of the choice set |[S™|. Hence,
the computational time of Algorithm 2 would increase proportionally by (|P| x (|S*| + [S?| + - +
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|S M| |)) As a comparison, the computational time without schedule decomposition would increase
proportionally by (|P]| X [S1] X |S?] X ... X |5IM||)‘

3.3 Hllustrative example

We built a simple example with 10 individuals, 2 home locations, 3 shopping malls, and 4 dinner
spots to illustrate how the AMXL model and the multiagent 1O estimation algorithm works. In this
example, each individual departs from a home location, conducts a shopping activity and a dinner
activity in sequence, and finally goes back home. Only two choice dimensions are considered:
location of shopping activity and location of dinner activity. For the shopping choice, the alternatives
are 3 shopping malls, and the derived utility is related to the number of stores in the shopping mall
and the travel distance between the home location and the shopping mall. For the dinner choice, the
alternatives are 4 dinner spots, and the derived utility is related to the number of restaurants in the
dinner spot, the travel distance between the shopping mall and the dinner spot, and the travel distance
between the dinner spot and the home location. The coordinates of the locations and synthetic
schedules of the first three individuals are shown in Fig. 2. The synthetic schedule of the 10
individuals are listed in Table 2. The derived utilities of two sub-choices are defined in Egs. (21) —
(22).

V;hgppmg = /S'n_swre *n_store + .., * dist_hs, VieP,Vjel,2,3 (21)
vgmner = g xnrest+ B, (dist_sd + dist_dh), )
VieP,Vjel,2,3,4 (22)

where Vi;howmg and Vi‘}m"er are utilities derived from shopping and dinner activities. n_store and

n_rest are the number of stores in the shopping mall and number of restaurants in the dinner spot.
dist_hs, dist_sd, dist_dh are the travel distance from home to shopping mall, from shopping mall

to dinner spot, and from dinner spot to home. g, .. . and S . are normal coefficients. S, . is

a shared coefficient.

N ) ® home location
Dinner spot 1 % shopping mall
14+ % dinner spot
(2.14) \ individual 1
n_restaurant=10 Shopping mall 1 — — individual 2
* individual 3
12
\ / (8.12)
Home location | _ 7 "—510;76240 Dinner spot 2
104 e "
|
@i | (14,10)
/ . n_restaurant=350)
T—‘\ \\ | Home location 2 =
8 _f NN | [ ]
/ -\ N\ \|/ (10.8)
{ ‘s, Dinner spot 3
6 / %
[ - (8.6)
; aurant=2
Shopping mall 2 e n_restaurant=20
-~
44 2
2.4)
n_store=30 Dinner spot 4 Shopping mall 3
o =
(6.2) (12,2)
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Fig. 2. Locations and activity schedules for illustration.
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Table 2
Synthetic activity schedules of 10 individuals
Individual id Synthetic activity schedule
Individual 1 Home location 1--Shopping mall 1--Dinner spot 1--Home location 1

Individual 2~ Home location 1--Shopping mall 1--Dinner spot 3--Home location 1
Individual 3 Home location 1--Shopping mall 2--Dinner spot 3--Home location 1
Individual 4 ~ Home location 1--Shopping mall 2--Dinner spot 4--Home location 1
Individual 5 Home location 1--Shopping mall 3--Dinner spot 3--Home location 1
Individual 6 ~ Home location 2--Shopping mall 1--Dinner spot 2--Home location 2
Individual 7 Home location 2--Shopping mall 1--Dinner spot 3--Home location 2
Individual 8 ~ Home location 2--Shopping mall 2--Dinner spot 3--Home location 2
Individual 9~ Home location 2--Shopping mall 3--Dinner spot 2--Home location 2
Individual 10 Home location 2--Shopping mall 3--Dinner spot 3--Home location 2

We run Algorithm 2 with the above settings. The algorithm converged after 9 seconds at the
78™ iteration under the average coefficient change tolerance of 0.001. The final results are shown in
Table 3. The mean values of A . and S are positive, indicating that on average,

individuals prefer larger shopping malls and dinner spots. The mean value of S, , is negative,

_rest

indicating that travel distance on average has negative effects on the utility. Moreover, the results

reflect diverse tastes at the individual level: (1) individuals {1,3,8} have negative 8, ., values,

while the others have positive ones; (2) individual 2 has the shortest total travel distance.
Accordingly, the 8. . value of individual 2 is the lowest (—1.297); and (3) the total utility derived
from the synthetic schedule has a large standard deviation (6.048) compared to its mean value
(—3.886), though each individual has already made the best choice assumed in our model.

Table 3

Results obtained from Algorithm 2
Individual id ﬂn store ﬂn rost ﬂdist Vshopping Vdinner VTotal
Individual 1 0.025 -0.042  -0.673 -2.270 -7.683 -9.953
Individual 2 0.127 0.162 -1.297 -2.006 -11.890 -13.897
Individual 3 0.221 -0.052  -0.654 4.710 -8.876 -4.166
Individual 4 0.220 0.148  -0.647 4.702 -3.799 0.903
Individual 5 0.399 0.046  -0.599 13.165 -5.861 7.305
Individual 6 0.011 0.077 -0.664 -2.624 -3.322 -5.946
Individual 7 0.012 0.010 -0.666 -2.628 -5.672 -8.299
Individual 8 0.051 -0.052  -0.189 0.335 -2.772 -2.437
Individual 9 0.127 0.126  -0.654 2.190 -2.036 0.154
Individual 10 0.127 0.046  -0.659 2.155 -4.679 -2.525
Mean value 0.132 0.047  -0.670 1.773 -5.659 -3.886
Standard deviation 0.122 0.081 0.265 4.930 3.067 6.048

4. Setup of experiments
4.1 Datasets

Our experiments are based on the SHC dataset, a processed mobile phone dataset containing two
weekdays activity information of 26,149 anonymous commuters working in the CBD of Shanghai.
The original mobile phone data were provided by Wisdom Footprint Data Technology Co., LTD.,
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generated by China Telecom mobile subscribers from May 1% to 31% in 2019. We use a processed
SHC dataset, which contains the activity schedule of each commuter on two weekdays. The two
weekdays are May 7" and May 14", both on Tuesday. Table 4 shows a sample of the SHC dataset
containing four activity schedules of two commuters on two weekdays. Each row contains several
fields: id (a unique number to differentiate a commuter), date (to differentiate a weekday), home
(commuter’s home place id, in 500m*500m grids), work (commuter’s workplace id, in street blocks),
lunch (commuter’s lunch spot id, in 500m*500m grids), c_mode (trip mode for commute), time_lh
(timestamp when leaving home, in minutes), time_aw (timestamp when arriving workplace, in
minutes), time_sl (the start time of lunch activity), time_el (the end time of lunch activity), time lw
(timestamp when leaving workplace), and time_ah (timestamp when arriving home). We aggregate
home and work location of commuters before mapping them in space so that there will not be any
privacy issue.

Table 4
A sample of the SHC dataset

. ti ti ti ti ti ti
id date home work lunch c¢_mode me me me me me me

_lh _aw _sl _el _lw _ah
26 0507 1342 79 6789  transit 8:03 9:05 12:15  13:13  17:50 18:54
26 0514 1342 79 539 driving  8:35 9:02 12:00 12:30 17:23  21:25
78 0507 945 14 345 driving ~ 7:25 8:48 11:47 12:56  18:32  20:01

78 0514 945 14 345 driving  7:37 9:02 12:05  12:52 18:22  20:05

To understand the impacts of different sample sizes and contexts, we construct three datasets
from the SHC dataset for our experiments: (1) the dataset with randomly sampled 1,000 observations
on May 7" (1K-SHCO07), (2) the dataset with full observations on May 7" (26K-SHC07), and (3) the
dataset with full observations on May 14" (SHC14). Fig. 3 visualizes the study area and the
commuting origin-destination matrix of these datasets. We use the 1K-SHCO07 and 26K-SHCO07
datasets to build models and the SHC14 dataset to check their performance. The comparison between
the 1K-SHCO7 and 26K-SHCO7 datasets reveals the effect of the sample size, and the comparison
between the 26K-SHCO07 and SHC14 reveals the transferability of our models to the same population
on a different day scenario.

UL ETRICTN

Study area .
—— 1K-SHCO7 dataset Study area
—— 26K-SHCO7 dataset —— SHC14 dataset

Fig. 3. Visualization of the study area and the datasets.
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4.2 Model specification

Based on the dataset, our experiments consider five choice dimensions in commuters’ whole-day
activity schedule: time to leave home for work, commute mode, time to have lunch, lunch location,
and time to finish work. To control the size of the choice set, we use 30-minute discrete time periods.
Table 5 lists the five choice dimensions and the alternatives in them. In general, there are 1,470
(7 X 2 X 5 X 3 x 7)possible activity schedules for each individual. Our experiments do not consider
the trips and activities after work since they vary from individual to individual. Instead, only the
total duration of afterwork activity is included. Focusing on such a skeleton schedule make sense
because: (1) it is hard to model all possible activities, especially those performed randomly; (2) travel
demands during non-peak hours contribute less to congestion (compared with commuting).

Table 5
Five choice dimensions and related alternatives

Time to leave Commute Time to have Lunch Time to finish
home for work mode lunch location work
6:30-7:00 Transit 11:00-11:30 Inside the CBD 17:30-18:00
7:00-7:30 Driving 11:30-12:00 Outside the CBD  18:00-18:30
7:30-8:00 12:00-12:30 In workplace 18:30-19:00
8:00-8:30 12:30-13:00 19:00-19:30
8:30-9:00 13:00-13:30 19:30-20:00
9:00-9:30 20:00-20:30
9:30-10:00 20:30-21:00

In the operational AMXL model, the total utility of a whole-day activity schedule consists of
utilities related to work activity, lunch activity, afterwork activity, and the trips between them, as
shown in Egs. (23) — (28), which differs from conventional DCMs in that each coefficient is indexed
by individual, e.g. &, ok ;-

A A T T .
V= VWOT'kl + Vlunchi + Vafterwork,i + Vcommute,i + Vwork—lunch,i' VieP (23)
Dur
Vwork i Vwork i Vwork i
l
= work iSDEworki + dwork,iSDLwork,i + work,iPLwork,i (24)
+ WOTkl ln(DWOTkl) VieP
A _ es,1 es,2
Vlunch,i - lunch,iSDElunch,i + H%unch,iSDLlunch,i + lunchtdeslunchl + lunchldeslunchu (25)
VieP
_ ur
Vafterworkz — Vafterwork,i ln(Dafterwork l) + Lnterl ln(Dwork l) ln(Dafterwork L) (26)
VieP
Vcommutez = Hgommute,itcommute,i + egommute,iccommute,i + chl)mmute,imcommute,ir (27)
VieP
T _ .
Vwork—lunch,i - eltzvork—lunch,itwork—lunch,i: VieP (28)

where V is utility of individual i derived from the whole-day activity schedule; Vi, ; is work
activity utility, depending on schedule deviation V, Workl (schedule early SDE,,,, ;, schedule delay
SDLy,rk,i» and additional late-for-work penalty PLy,,, ;), and log-formed work duration ybu work,i>
Vzﬁnch,i is lunch activity utility, depending on schedule deviation (schedule early SDEy,;,cp ; and
schedule delay SDLjycp,i), and two dummy variables reflecting lunch spot (desllunch’fl denotes

inside the CBD, desf,,c, ;=1 denotes outside the CBD, having lunch in workplace is the reference
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group); V,ffterwork_i is afterwork activity utility, here we only consider its total duration in log form,
ln(Dafterwork,i) , and an interaction item with work duration, ln(Dwork,i) ln(Dafterwork_i) ;
VCTommute_i is commute utility, depending on travel time t.ommute,i» travel cost Ccommute i> and trip
mode Meommute,; (0 for driving; 1 for public transit); V‘},"ork_lunch,i is the utility of traveling
between workplace and lunch spot, here we only consider the travel time t,ork—yncn,i- All these

observed variables can be calculated from the SHC dataset and Gaode Direction API, and %Ork,i,

Hl l ur 6f: el es,1 es,2 6ﬂur ur Ht
work,i> Ywork,i> Ywork,i> Ylunch,i> Ylunch,i> Ylunch,i> Ylunch,i> Yafterwork,i>» Vinter,i> Ycommute,i>

G ommute,i> Ooommute.i> Owork—tunch,i are 14 coefficients per individual to be calibrated as a mixed
logit model with deterministic individual tastes.

I t t f } t t t } t f } —> timeline
0:00 4:00 8:00 12:00 16:00 20:00 24:00
Whole-day activity scheduling choice 7*2*5%3*7 = 1,470 alternatives
H [T] w [ LI W [T] aw | H: home activity
Commute choice (14 alternatives) W: work activity
1.Time to leave home for work (7) Lunch thoice (15 alternatives) L: lunch activity
2 Commute mode (2 anch choice (15 alternatives o .
| = (2) i 4+ 3Time o have lunch (5) AW: afterwork activity
4.Lunch location (3) T: trips
Related coefficients: TL ] kT
Géommule.l"ei'ommure,!*e:"émnmtci' a!orkj' : Afterwork choice (7 alternatives)
1 pl Ena Related coefficients: i finish work (7
Bvorkis Ovort oo Owork.t ae al gdes:1 5.Time to finish work (7)
edgsjé s unch,t unch, iju,- AW
lunch,i* “work—lunchi> Sworkl  pelated coefficients:
dur d;
eﬂ?;erwark.f' e:‘;:‘t;r: ew!::r.'k.t

Fig. 4. An illustration of whole-day activity schedule and its decomposition

We decompose the whole-day scheduling choice into three sub-choices (Fig. 4): (1) joint-choice
of time to leave home for work and commute mode (Commute choice), (2) joint-choice of time to
have lunch and lunch location (Lunch choice), and (3) choice of time to finish work (Afterwork
choice). Table 6 lists their related coefficients, in which the work duration related coefficient, 9‘%;,{_1-,
is the shared coefficient (since work duration is co-influenced by time to leave home for work, time
spent on lunch, and time to finish work). By doing this, we reduce the choice set from 1,470

alternatives to 14, 15, and 7 alternatives, respectively, with an additional constraint ensuring that the

shared coefficient &gy« ; should be the same (and hence, jointly estimated).

Table 6
Five choice dimensions and related alternatives
Choice dimension Alternatives Related coefficients
Time to leave home for 0. > 0 > 0 ;
Commute Ch01ce 14 (7*2) commute,i » commute,L b commute,L )

e l pl dur
work & Commute mode work,i» ework,ia ewo‘rk,i> ework,i

: e l des,1 des,2
Lunch choice Time to have lunch & (5*3) Ouncni» Otuneni > Owuncni> Orunchi»
Lunch location ot . pdur .
work—lunch,i> Ywork,i
Afterwork choice  Time to finish work 7(7) Oafterwork,i» Ointer,i» Owork,i

4.3 Benchmarking and scenario design

Our experiments are divided into two major parts. The first part builds the AMXL model and
compares it with benchmark models, including multinomial logit model (MNL), mixed logit model
(MXL), dynamic multinomial logit model (DMNL), and dynamic mixed logit model (DMXL). Since
the choice set of the whole-day schedules is quite large, we build MNL and MXL for each sub-
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choice. The utility functions for each sub-choice are defined as Egs. (29) — (31). We assume the

utility of work duration Vvlv);‘:k,i is considered in all sub-choice situations.

Uicjommute = Vg)mmute,i,j + V\As;grk,i + Vvegfk,i + &ij, Vi € P,Vj € jeommute (29)
et = Vi ; D ' ;= rlunch

Ui}lnc - Vlunch,i,j + Vwork—lunch,i,j + sz#ﬁk,i + gi]-, Vi € p’ v] € ] unc (30)
afterwork _ ;A D ' ] . .

Uij - Vafterwork,i,j + ngrrk,i + &ij» Vi e P, Vj € ]af erwor (31)

DMNL and DMXL are in line with the basic idea of dynamic DCMs (Véstberg et al., 2020), in
which the utilities of work duration in commute and lunch choices are modified to include expected
utilities of downstream choice situations, as illustrated in Eqgs. (32) — (34). The only difference is
that the expected utility in our study is defined as the log-sum of utilities of choosing all possible
alternatives in downstream choice situations. To be more specific, for DMNL, we first build a MNL
for afterwork choice and get estimated coefficients. Then we calculate the log-sum of utilities of
choosing alternatives in the afterwork choice set, and build another MNL for lunch choice with a
new variable called EV (j,lunch). Finally, we calculate the log-sum of utilities of choosing
alternatives in the lunch and afterwork choice set and build a MNL for commuting choice with a
new variable EV (j, commute). Similarly, we replace MNL with MXL in each stage to build DMXL.
The reason for doing so is that the choice set varies across choice scenarios, making it hard to
calculate multi-dimensional integrals. Though the Vistberg et al. (2020)’s study overcomes this
issue by approximating expected utility with backward induction, it’s at the cost of complicating the
algorithm and it’s unnecessary in our case since the choice set in each sub-choice has been pre-
defined.

commute _ y;T sD .
Uij = Vcommute,i,j + Vwork,i + 'ulunchEV(]' commute) + &ij

VieP v] E]commute (32)
l h _ yA T .
Ul_}mc = Vlunch,i,j + Vwork—lunch,i,j + IuafterworkEV(]’ lunch) + Eij» (33)
Vi € P,Vj € Jhunch
t k . .
Usf TWOTE = V:}‘terwork,i,j + V\Bgfk,i + Eij, VieP, V] € ]afterwork (34)

Comparisons of AMXL and benchmark models are conducted in several ways: (1) basic
statistics of model results; (2) distribution of estimated coefficients, and; (3) prediction accuracy.
1K-SHCO07 and 26K-SHCO7 datasets are used as training data to build models. SHC07 is used as
test dataset. Prediction accuracy is calculated both at individual level and aggregated level.
Individual level accuracy is defined as the percentage of commuters whose predicted choices are the
same as observed choices. Aggregated level accuracy is defined as the percentage overlap between
observed alternative share and predicted alternative share.

In the second part, we applied these models to two scenarios. The first one is a scenario for
comparison, in which driving durations from 7:30 a.m. to 9:30 a.m. are reduced by 10% and 20% to
reflect the relief of peak-hour congestion. AMXL and all of the benchmark models can be used to
predict the choice shift. The second scenario is unique to AMXL, in which utility functions derived
from the AMXL are directly integrated into a BP problem for a restaurant to select which blocks to
give coupons to commuters to maximize profits. The aim of this scenario is to showcase the benefits
of deterministic estimation in AMXL in integrating with optimization models.
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5. Experimental results

This section presents the model results and scenario applications of AMXL and benchmark models.
All of the experiments are conducted on a local machine with Intel(R) Core(TM) i7-10875H CPU
and 32GB installed RAM. The Gurobi package is used to solve the QP problems. The Xlogit package
is used to estimate discrete choice models. Codes are written in Python.

5.1 Model results

We present the model results from three aspects: (1) basic statistics; (2) coefficient distribution; and
(3) prediction accuracy.

5.1.1 Basic statistics

Table 7 and Table 8 summarize the basic statistics of models built with 1K-SHCO07 and 26K-
SHCO07, from which we can compare our AMXL model to benchmark models under the same
context. Several interesting points were found.

(1) The results of AMXL and benchmark models show great consistency in signs: most of the
activity duration-related coefficients (work duration, afterwork-activity duration) have positive signs,
and most of the trip-related coefficients (commuting time, commuting cost, work-lunch travel time)
and activity schedule delay related coefficients (work schedule early and delay, lunch schedule early
and delay) have negative signs.

(2) The shared coefficient estimated by MNL and MXL varies greatly in three choice scenarios,
while DMNL, DMXL, and AMXL gets rid of such a problem. DMNL and DMXL conduct joint
estimation by including expected utilities of downstream choices. AMXL conduct joint estimation
by fixing the shared coefficient in each iteration.

(3) Although the AMXL model cannot report the standard error and significance level of coefficients
due to its deterministic feature, it ensures coefficients that are insignificant in MNL and MXL are
also close to O (the initial value), implying that these coefficients are relatively useless in utility
maximization.

(4) The means of coefficients in AMXL change slightly from 1K sample to 26K sample, similar to
benchmark models. This indicates the stability of AMXL given a relatively small sample size,
though AMXL is designed for ubiquitous datasets.

(5) AMXL took 28.9 hours to converge given the 26K-SHCO07 dataset, which is obviously higher
than DMXL (14.1 hours in total), DMNL (13.5 hours in total), MXL (2.0 hours in total), MNL (17
seconds in total). The longer computational time of AMXL is partly due to “for” loops solving the
QP problems in our codes, which can be parallelized in the future.

Table 7
Basic statistics of models built with 1K-SHCO07 (each entry represents the average value of one
estimated coefficient, and the number in the parenthesis is the standard error)

Commute choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K)  AMXL (1K)
Commuting time -8.608%** -12.956%** -7.373%%* -8.912%%** 4537
(Giommute,i) (0.561) (2.091) (0.469) (0.739) o
Commuting cost -2.756%*

- - -- -0.314
(egommut.e,i) ) (1.257)
C?nmmutmg trip mode B B B B 0.301
(ecommute,i)
Work schedule early -6.340%** -11.124%** -9.214%%* -10.573%** 3707
O%orki) (0.841) (2.097) (1.570) (1.682) e
Work schedule delay -4.566%** -7.262* -7.766* 6.460
(0 orkci) (1.187) ) (2.891) (3.299) -
Late-for-work penalty -- -- -- -- -0.354
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(ealork,i
Shared coefficient: 20.860%** 37.962%%* S ol4
Work duration (6%4r ;) (3.261) (7.838) - - ‘
Expected utility
(/ulunch)
Converging time ls 2 min 27 min 29 min 54 min
Log-likelihood value -2348.5 -2311.1 -23453 -2340.2 --
Lunch choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K) AMXL (1K)
Lunch schedule early -0.867*** -1.164%%* -0.840%** -1.227%%%* 3722
(Blunch.i (0.105) (0.193) (0.020) (0.044) :
Lunch schedule delay -1.759%%:* D120k _1.802%%* _1.972%%x 2103
(Gﬁunch,i) (0.129) (0.224) (0.025) (0.030) ’
Eating inside the CBD -1.900 %% _1.880%% 22.060%** 1180
(O ) (0.257) - (0.049) (0.323) -
Eating outside the CBD

des,2 - -- - - -0.182
(elunch,i)
Work-lunch travel time -0.474%%* -1.179%* -0.330%%* 20.324%%x 1165
(Oﬁmrk_lunch,i) (0.073) (0.434) (0.018) (0.045) ’
Shared coefficient: 1.661%* 433k S 014
Work duration (B%Trk,i) (0.533) (0.083) - - )
Expected utility 3 3 0.854%%:* 1.008** 3
('uafterwork) (0~1 1 1) (0-321)
Converging time ls 2 min 4 min 5 min 54 min
Log-likelihood value -1841.6 -1807.6 -1836.2 -1820.1 --
Afterwork choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K) AMXL (1K)
Afterwork-activity 5. 568% %% 6.398% % 6.289% ks 1
duration (04 Fferwork.i) (0.476) - (0.096) (0.656) :
Work-afterwork 10.393%*%* 4.5]1 5% 11.892%#* 16.429%* 3568
interaction (Gf,ftzr,i (0.903) (0.500) (0.182) (1.399) ’
Shared coefficient: 1.973%%% -0.497**x 2277 1.758%%* 7014
Work duration (G%rrk,i) (0.164) (0.024) (0.033) (0.212) ’
Converging time ls 1 min ls 1 min 54 min
Log-likelihood value -1817.2 -1797.7 -1817.2 -1792.5 --

Note: ***p-value<0.001, **p-value<0.01, *p-value<0.05, all of the observed variables were normalized
before modeling

Table 8
Basic statistics of models build with 26K-SHCO07 (each entry represents the average value of one
estimated coefficient, and the number in the parenthesis is the standard error)

Commute choice MNL (26K)  MXL (26K) DMNL (26K) DMXL (26K) AMXL (26K)

Commuting time -8.877H%* -8.852%** -9.650%%* -10.399%**

(0 pmmute.s) (0.110) (0.192) (0.116) (0.148) -3.:407

Commuting cost -1.005%** -4.212%%* -0.581** -1.230%**

(0 ommute,i) (0.185) (0.368) (0.188) (0.214) -0.296

Commuting trip mode 0.374* -2.124%%** 0.678%** . 0.246

(O mute.i (0.156) (0.295) (0.159) :

Work schedule early -6.933%%* -10.9]13%** _11.228%%x _12.139%%* 4315

(Cn (0.165) (0.366) (0.323) (0.344) :

Work schedule delay -5.324% % -5.233% %% -10.836%** -11.673%%%

(Gf,mrk,i) (0.335) (0.500) (0.693) (0.779) 7691

Late-for-work penalty

(epl ) - - - - —0322
work,i

Shared coefficient: 22 364 % %% 36.327%%*

Work duration (G%rrk‘i (0.632) (1.357) - - 9.269

Expected utility 3.494%** 1.983*#*

(Hymen) B - (0.140) (0.077) N

Converging time 7s 89 min 13.0 hours 13.5 hours 28.9 hours
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Log-likelihood value -61184 -60585 -60862 -60293 -
Lunch choice MNL 26K)  MXL (26K) DMNL 26K) DMXL (26K) AMXL (26K)
Lunch schedule early -0.840%* -1.23 4k -0.8407%** -1.227%k* 3761
(0%uncn,i) (0.020) (0.065) (0.020) (0.044) -
Lunch schedule delay -1.802%** -2.068%** -1.802%** -1.972%%* 7147
(Oluncn.) (0.025) (0.079) (0.025) (0.030) o
Eating inside the CBD -1.927%** 2.719%** -1.882%%* -2.060%** 1107
(O (0.048) (0.747) (0.049) (0.323) o
Eating outside the CBD

gdes? - - - - -0.012
( lunch,i)
Work-lunch travel time -0.429%** -2.776%%% -0.330%** -0.324%% 1002
(0% 0rk—tunch.i) (0.014) (0.805) (0.018) (0.045) '

Shared coefficient: 1.42] %k 12.129%* 0,269
Work duration (%27, ) (0.099) (3.912) - - :
Expected utility 0.854*** 1.008**

(#4 frerwort) 0.111) (0.321)

Converging time 7s 26 min 30 min 35 min 28.9 hours
Log-likelihood value -48875 -48283 -48844 -48185 --
Afterwork choice MNL (26K)  MXL (26K) DMNL 26K) DMXL (26K) AMXL (26K)
Afterwork-activity 6.398%** 8.415%%% 6.398%%* 6.289%** 4,50
duration (02 erwork.i) (0.096) (0.005) (0.096) (0.656) '
Work-afterwork 11.892%%*x* 16.450%** 11.892%%*x* 16.429%** 3,106
interaction (O{atey. ) (0.182) (0.019) (0.182) (1.399) :

Shared coefficient: 2277 2,908+ 2277 1.758%%* 9269
Work duration (6327, ) (0.033) (0.001) (0.033) (0.212) :
Converging time 3s 7 min 3s 7 min 28.9 hours
Log-likelihood value -46156 -45753 -46156 -45540 --

Note: ***p-value<0.001, **p-value<0.01, *p-value<0.05, all of the observed variables were normalized
before modeling

5.1.2 Distribution of individual-specific coefficients

The AMXL model with 26K-SHC07 dataset converged at the 84™ iteration of Algorithm 2 (Fig. 5
(a)-(c)), resulting in calibrated coefficients per individual that are empirically derived, revealing
them to be neither Gumbel nor Gaussian. Instead, the empirical distribution seems to be a
combination of a constant (assumed in MNL, DMNL) and Gaussian distribution (assumed in MXL,
DMXL).

According to Fig. 5 (d)-(f), coefficients can be divided into three categories: (1) highly-
concentrated coefficients with non-zero mean values, such as commuting time (t_commute), work
schedule delay (1_work), lunch schedule delay (1 _lunch). These coefficients are concentrated around
their mean values with small variations, reflecting homogeneous tastes among individuals; (2) even-
distributed coefficients, such as work duration (dur _work), afterwork-activity duration
(dur_afterwork), work schedule early (e work), lunch schedule early (e lunch). These coefficients
have larger variations, reflecting heterogeneous tastes among individuals, and; (3) highly-
concentrated coefficients with mean values close to zero, such as late-for-work penalty (pl_work),
eating outside the CBD (des2_lunch). These coefficients imply that individuals are insensitive to
related variables, and they are also insignificant in benchmark models. To this end, AMXL provides
a flexible approach for modelers to capture inter-individual homogeneities and heterogeneities,
which are infeasible in DCMs and dynamic DCMs.
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Fig. 5. Fixed-point prior in each iteration and distribution of estimated coefficients. In (a)-(c), x-
axis is the number of iterations, y-axis is the value of fixed-point prior 6. In (d)-(f), x-axis is the
value of estimated coefficients, y-axis is the probability density.

Specifically, Fig.6 presents the probability density function (PDF) of three selected coefficients:
(1) a highly-concentrated coefficient, commuting time, (2) an even-distributed coefficient, work
schedule early, and (3) the shared coefficient, work duration. Interestingly, MXL reported three
different PDFs of work duration in commute, lunch, and afterwork choice, while the PDF of work
duration obtained by AMXL is in the middle of them. One intuition from the results is that the shared
coefficient might be a combination of coefficients in a series of models estimated separately.

0s0 Probability density function 040 Probability density function a0 Probability density function
‘ | MNL ’ 1 — MNL ’ —— MXL-commute
DMNL DMNL MXL-lunch
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(commuting time) (work schedule early) (work duration)

Fig. 6. Probability density function (PDF) of selected coefficients. In (a)-(c), x-axis is the value of
estimated coefficients, y-axis is the probability density.

Moreover, for these even-distributed coefficients, we aggregate individuals into community
tracts according to their home location and calculate the mean values of the estimated coefficients
in each tract. Fig. 7 presents the spatial distribution of selected coefficients, which is infeasible for
DCMs and dynamic DCMs to capture. The spatial distribution of coefficients reveals the impacts
of the transit system and jobs-housing balance on individual tastes:

(1) The coefficient of mode preference is positive (prefer transit) in communities with better transit
accessibility, and negative (prefer driving) in suburbs where metro lines cannot cover.

(2) The negative utilities of starting work earlier than schedule are larger in communities closer to
the CBD, indicating that individuals living nearby the CBD dislike arriving early for work while
individuals living in suburbs can better accept it considering the uncertainty of the travel time.
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(3) The positive utilities of work duration are larger in communities farther way from the CBD,
indicating that individuals living in suburbs put greater emphases on their working time, probably
due to the longer time spent on commuting.

Legend

(a) Mode preference (m_commute) (b) Work schedule early (e work) (c) Work duration (dur_work)

Fig. 7. Spatial distribution of selected coefficients.

5.1.3 Prediction accuracy

We compare the prediction accuracy of AMXL and benchmark models at the aggregated level and
individual level. Aggregated-level predictions of each alternative are made by summing up
individuals’ probabilities of choosing that alternative (for AMXL we obtain probabilities by
applying softmax function to retrieved utilities). Individual-level predictions are made by selecting
the alternative with the highest utility retrieved from the models. Moreover, we use 26K-SHC07
datasets to calculate in-sample accuracy and use SHC14 dataset to calculate out-of-sample accuracy.
Table 9 shows a comparison of prediction accuracy. We find that the in-sample accuracy of AMXL
is generally higher than DCMs and dynamic DCMs, especially at the individual level. This is
because DCMs and dynamic DCMs find coefficients to maximize the overall likelihood function,
while AMXL is fitted via IO to each individual. Moreover, the accuracy of MNL and MXL drops
significantly when it comes to the whole-day schedule prediction, owing to the ignorance of inter-
relationship between sub-choice scenarios. Though DMNL and DMXL consider expected utilities
of downstream choices, the improvement on prediction accuracy is trivial. That is probably because
DMNL and DMXL link sub-choices through pre-assumed conditional probability, which is hard to
fit an empirical joint distribution. In contrast, AMXL considerably improves the in-sample accuracy
of whole-day schedule prediction, from 9.71% to 80.89% at the aggregated level and from 2.12% to
47.18% at the individual level.

Table 9

In-sample and out-of-sample prediction accuracy
Commute choice Lunch choice Afterwork choice Whole-day schedule
(14 alternatives) (15 alternatives) (7 alternatives) (1,470 alternatives)

In-sample, aggregated-level accuracy

MNL 81.40% 85.53% 92.88% 7.50%
MXL 82.05% 89.68% 91.55% 7.37%
DMNL 82.81% 85.53% 92.90% 7.47%
DMXL 82.61% 85.97% 91.55% 9.71%
AMXL 89.61% 86.71% 98.87% 80.89%
In-sample, individual-level accuracy

MNL 13.70% 31.16% 35.76% 1.37%

MXL 13.69% 32.75% 35.76% 1.65%
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DMNL 18.21% 32.21% 35.76% 1.97%
DMXL 17.85% 34.45% 34.66% 2.12%
AMXL 77.16% 78.43% 80.93% 47.18%
Out-of-sample, aggregated-level accuracy

MNL 82.50% 89.92% 89.75% 5.21%
MXL 81.72% 93.08% 94.81% 5.87%
DMNL 83.89% 89.90% 89.68% 5.62%
DMXL 83.51% 90.11% 93.16% 8.66%
AMXL 75.79% 86.73% 96.07% 61.68%
Out-of-sample, individual-level accuracy

MNL 13.53% 27.93% 28.99% 1.06%
MXL 13.62% 32.02% 28.99% 1.39%
DMNL 18.63% 27.93% 28.99% 1.60%
DMXL 18.30% 32.02% 28.90% 1.69%
AMXL 30.74% 24.25% 37.71% 4.33%

Note: In-sample accuracy is calculated using 26K-SHCO7 dataset. Out-of-sample accuracy is calculated
using SHC14 dataset.

When it comes to out-of-sample accuracy, however, the performance of AMXL at the
individual level drops significantly, indicating a high risk of overfitting though we have already
added random items to avoid it. Also, AMXL does not outperform benchmark models in all sub-
choice scenarios. For instance, AMXL obtains an out-of-sample accuracy of 86.73% at the
aggregated level and 24.25% at the individual level, which is lower than the best performance in
benchmark models (93.08% and 32.02%, respectively). To further examine how overfitting happens
in our experiments, we first check individual’s schedule change from SHCO07 dataset to SHC14
dataset, and then plot the prediction results of commute choice and lunch choice. Fig. 8 presents
change of commute and lunch choice between two different weekdays. A relatively clear diagonal
only exists in Fig.8 (a), indicating that commute choice is more stable than lunch choice among
different weekdays. In general, 51.51% individuals changed their commute choice while 77.87%
individuals changed their lunch choice, where a majority of them set their activity schedule half an
hour earlier/later. Considering traffic conditions and restaurants are unlikely to change greatly
between two adjacent Tuesdays, the changed choice indicates the variability of individual
preferences among different days, which brings high overfitting risk to models fitting one
observation per individual. Fig.9 and Fig.10 show more details of commute and lunch choice
prediction, from which we can find a more obvious overfitting in lunch choice than commute choice,
probably because individuals’ preference for lunch activities are more flexible.
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normalized by row.
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Fig. 9. Commute choice predicted by MNL, DMXL, and AMXL. In (a)-(c), x-axis is the
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matrixes.
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Fig. 10. Lunch choice predicted by MNL, DMXL, and AMXL. In (a)-(c), x-axis is the alternative,
y-axis is the percentage of individuals choosing the alternative. (d)-(f) are confusion matrixes.
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Notwithstanding overfitting issues at the individual level, AMXL also presents several
advantages. (1) AMXL brings a considerable improvement on predicting choice dimensions with
stable preferences such as mode choice. For instance, if an individual chose to drive and depart
during 7:00 a.m.-7:30 a.m., the most common mistake made by AMXL is to predict “Driving, 6:30-
7:00”. From Fig.9 (d)-(f) we can find a vague diagonal in the confusion matrix of AMXL, while
confusion matrixes of MXL and DMXL are chaotic. (2) AMXL provides more information than
MXL and DMXL in choice dimensions with flexible preferences. From Fig.10 (d)-(f) we can find
MXL and DMXL are similar to constant models, predicting that all individuals will choose
“Workplace, 12:00-12:30”, while AMXL gives a time period from 11:00 to 12:30. Though
additional information do not bring higher performance in our case, it might help given a dataset
with balanced label and personal attributes. (3) AMXL is meaningful in the whole-day activity
schedule prediction at least at the aggregated-level, considering its high accuracy of 61.68%
compared with 8.66% in DMXL. To this end, we should be careful about the practical applications
of AMXL.: (1) It can be applied to predicting whole-day activity schedule at the aggregated level;
(2) At the individual level, its current form is only valid in predicting choice dimensions with stable
preferences; and (3) To predict individual-level choice dimensions with flexible preferences, AMXL
should be extended to fit multi-day observations per individual. We share our thoughts of the
extended form in the final section.

5.2 Scenario applications

We design two scenarios in this section. The first scenario is to compare the predictions of AMXL
and benchmark models. The second scenario is to showcase the capability of AMXL in system
design and revenue management.

5.2.1 Scenariol: Peak-hour congestion

In this scenario, we decrease the driving time within 7:30 a.m.-9:30 a.m. by 10% and 20%,
simulating a relief of the peak-hour congestion. We compare the prediction of MXL (the worst model
in benchmarks), DMXL (the best model in benchmarks), and AMXL. Fig. 9 shows the results.
Generally, individuals changed their mode choice from transit to driving during peak hour. The
proportion of driving in peak-hour increased by 3% and 7% after the driving time decreased by 10%
and 20%.

Moreover, it is interesting to compare the prediction results of benchmark models and AMXL.:
time-schedule shift accounts for a larger proportion in the choice shift predicted by AMXL, mode
shift is larger in MNL, DMXL is in the middle of MNL and AMXL. To be specific, the choice shift
predicted by AMXL comes from individuals who previously departed slightly earlier or later than
the peak hour to avoid congestion. On the other hand, individuals choosing other alternatives
generally decreased in the prediction of MNL and DMXL. To this end, the prediction of AMXL is
slightly different from benchmark models, but is reasonable from a behavioral perspective.
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(a) Peak-hour driving time decreased by 10% (b) Peak-hour driving time decreased by 20%

Fig. 11. Percentage of choice shift after the peak-hour driving time decreased by 10% and 20%. In
(a)-(b), x-axis is the alternative, y-axis is the percentage change of commuters choosing the
alternative.

5.2.2 Scenario2: Sending lunch coupons to attract commuters

This scenario is to check the compatibility of AMXL with optimization models applicable to system
design and revenue management. Let us assume that a new restaurant will be built in a specific
street-block in the CBD, whose location is shown in Fig. 10. To attract commuters, the restaurant
manager tends to send lunch coupons to commuters in the CBD. The coupon is a kind of limited
resource, and they can only be sent to a finite number of street blocks in the CBD considering the
labor cost. The manager needs to decide which street blocks to send coupons to maximize profits.
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Fig. 12. A summary of optimal solutions given different K and B.

This is a typical binary programming (BP) problem in which the “profits” can be calculated

from our proposed AMXL model if the manager had access to this data. The BP problem can be
formulated as Egs. (35) — (39).

maxZ = ¢yXx1 + CyXx3 + -+ + CgoXgo (35)

subject to:

_ es,1 1 —
Cp = Z (Hlt/vork—lunch,iAtwork—lunch,i + lunch,iAdeSlunch,i) ’ b= 1""'80 (36)
iePy

|Py[xq + |Palxy + o+ |P3]xgo < B (37)
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x1+X2+"'+x80 <K (38)
X1, X2, ..., Xgo € {0,1} (39)

where x4, X5, ..., Xgo are binary decision variables indicating whether each of the 80 street-blocks in
total is selected to send coupons. The coefficients of these decision variables in the objective function
are directly calculated by an estimated AMXL. Specifically, Eq. (36) defines the profit obtained by
sending coupons to street block b, c;, which can be reflected by the summation of increased utilities
derived from commuters having lunch at the restaurant with coupons. For each commuter i working
in street-block b (i € Pp), we assume having lunch with coupons increases the utility from negative
to 0 (the same as the reference group, having lunch in the workplace), by setting Adesj,,qp ; to -1

(hence #jg;lh_izldesllunch'i is positive). In addition, having lunch outside the workplace will cost a
travel time distance between the workplace and the lunch spot, whose negative utility is denoted as
H‘t,,,ork_lunch’iAtwork_lunch,i. Eq. (37) ensures that the total coupons sent out is no more than a
budget B, and Eq. (38) ensures that the total selected street-blocks is no more than K.

Fig. 10 summarizes the optimal solutions of this BP problem given different K and B. When
K =5 and B = 2,000, five street blocks surround the restaurant are selected, and the total increased
utility equals 1931.27. When K = 10 and B = 5,000, the optimal solution suggested to select larger
street blocks in the south of the restaurant (limited by K), and the total increased utility equals
3620.65. When K = 20 and B = 5,000, the model chooses relatively small street blocks (limited by
B) and increases the objective value to 4317.54, which is a 19.25% increase on the base of the second
strategy.

6. Conclusion

Demand for agent-based modeling is on the rise, and understanding the joint activity scheduling
choice requires innovative methods to deal with big datasets and large choice sets. We propose an
agent-based mixed-logit model (AMXL) combined with an inverse optimization (IO) estimation
method, an agent-level machine learning method that is theoretically constituent with a utility-
maximizing mixed logit model framework. This method is designed for a ubiquitous dataset
representing a whole population which is possible with big data. It contributes to the study field by
overcoming three limitations of conventional DCMs given ubiquitous datasets.

The methodological contributions of this study are as follows. First, we decompose the whole-
day scheduling choice into a series of inter-related sub-choices and jointly estimated by the AMXL
model through fixing shared coefficients. By doing this, we reduce the size of the choice set from a
product of alternatives in each choice dimension to a summation of them. Second, AMXL provides
individual-specific estimation, allowing modelers to obtain empirical distributions of coefficients
given observation datasets. The experimental results based on 26,149 samples show that empirical
distributions of coefficients are neither fixed-point nor Gaussian. Instead, it seems to be a
combination of them. These two improvements increase the prediction accuracy from 8.66%
(DMXL) to 61.68% (AMXL). Third, the deterministic estimation in AMXL provides linear demand
functions that can be integrated into optimization models. Estimated coefficients in AMXL can be
directly used to calculate coefficients in an optimization problem, which is more efficient than
relying on simulation.

The overfitting issue is essential to the value of AMXL model. Our experimental results indeed
show evidence of overfitting, which is more obvious in choice dimensions with flexible preferences
(e.g., time to have lunch and lunch location). This is because AMXL cannot capture the intra-
individual heterogeneity on multiple days. Nevertheless, AMXL is still useful in predicting the
whole-day schedule at the aggregated level and predicting choice dimensions with stable preferences
at the individual level. Actually, the overfitting issue can be reduced by formulating multiday inverse
utility maximization problems, in which coefficients are no longer perturbed to fit one observation



30

per individual. Instead, multiday observations per individual can be grouped together to estimate
individual-specific coefficients. This can be fulfilled by modifying the formulation of 10 at the
beginning, such as relaxing the constraints of utility ranking and include a log-likelihood-formed
item into the objective function. Our future study will focus on the extended AMXL model that
considers both intra- and inter-individual heterogeneity.

Besides the overfitting issue, there are many new research opportunities and questions to be
addressed. While the study looks only at commuters’ work, lunch, and afterwork activities, the
model can be customized to examine more diverse activity schedules specific to population
segments. Also, information for economic interpretation obtained by AMXL and DCMs, such as
elasticity, marginal rate of substitution, and change of social welfare, should be compared in detail.
Last but not least, AMXL takes a much longer time to converge compared with MNL and MXL.
Though paralleling computation and pre-trained priors can help to reduce the time cost, a more
efficient way might be first categorizing individuals into groups and estimating a set of coefficients
for each group after that. As discussed in Section 3.2.1, agents can also represent segments of the
population, in which multiple observations from the same segment would share the same set of
coefficients. This can make the proposed method applicable to a much wider set of choice modeling
scenarios, such as simultaneously estimating a large set of segment models to represent a whole
population. Estimating coefficients at a segment level by constraining the agents sharing the same
segment will be another direction of our future study.
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