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ABSTRACT 

We propose an agent-based mixed-logit model (AMXL) that is estimated with inverse optimization 

(IO) estimation, an agent-level machine learning method theoretically consistent with a utility-

maximizing mixed logit model framework. The method provides joint, individual-specific, and 

deterministic estimation, which overcomes the limitations of discrete choice models (DCMs) given 

ubiquitous datasets. A case study of the CBD in Shanghai is conducted with mobile phone data of 

26,149 anonymous commuters whose whole-day activity schedule on weekdays contains three sub-

choices and 1,470 alternatives. AMXL is built to estimate individual tastes and predict the activity 

scheduling choice in different scenarios. Multinomial logit model (MNL), mixed logit model (MXL), 

and their dynamic forms (DMNL, DMXL) are built as benchmarks. Prediction accuracies are 

calculated as the percentage consistency of observed choices and predicted choices, both at 

individual level (to each commuter) and aggregated level (to each alternative in the choice set). The 

results show that empirical coefficient distributions in AMXL are neither Gumbel nor Gaussian, i.e. 

capturing inter-individual heterogeneities in space that are hard for DCMs to capture. The prediction 

accuracy of AMXL is significantly higher than the best model (DMXL) in benchmarks, improving 

from 8.66% to 61.68% at aggregated level and from 1.69% to 4.33% at individual level. In a 

comparison scenario, AMXL predicts different while reasonable change of choices compared with 

benchmark models. In an optimization scenario, AMXL can be directly integrated into a binary 

programming (BP) problem, which optimally allocates 10 blocks to send restaurant coupons to 

increase population consumer surplus by 19%. 
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1. Introduction 

Joint activity scheduling choice is taking on greater importance in transportation planning, given 

that travel demand is derived from the need to perform activities (Hägerstrand, 1970; Ben-Akiva 

and Lerman, 1985; Recker et al., 1986a,b; Kitamura, 1988; Bowman and Ben-Akiva, 2001; Pinjari 

and Bhat, 2011; Chow and Nurumbetova, 2015). Most existing studies postulate that agents derive 

a (dis)utility from traveling and performing activities, and they schedule them to maximize the utility 

in total (Adler & Ben-Akiva, 1979; Ettema et al., 2007; Habib, 2018). With the emergence of 

information and communications technology (ICT), it is now possible to model and predict activity 

scheduling choice with quite a large sample size at the city or state level (Aguiléra, 2018; He et al., 

2020). 

Whereas discrete choice models (DCMs) were traditionally used to analyze choice behavior, 

their application to activity scheduling behavior under the big data context is hindered by at least 

three problems. First, since the scheduling of daily activities is a complicated process that covers 

multiple choice dimensions (e.g., which activities to perform, activity timings, locations, durations, 

and mode-of-travel between activities), it is hard to maximize the likelihood function for DCMs with 

a huge choice set comprised of all possible schedule combinations (Charypar and Nagel, 2005; 

Danalet et al., 2015; Pougala et al., 2021). Second, though flexible DCMs structures enable modelers 

to capture individual preference, the results are defined by a specific distribution of coefficients, for 

example, Gaussian-distributed coefficients in a mixed logit model (MXL). Many researchers have 

already pointed out the risk of failing to choose adequate distributions for random coefficients (Hess, 

2010; Sarrias, 2020). Third, DCMs are stochastic estimation approaches, generating demand 

functions that are non-linear and non-convex in the explanatory variables (Ljubić and Moreno, 2018; 

Pacheco et al., 2021). Complex expressions restrict their further integration to optimization problems 

for congestion management, system design, and demand management policies. There have been a 

growing number of studies using dynamic DCMs (Hasnine and Habib, 2018; Västberg et al., 2020) 

or machine learning models (Lizana et al., 2021; Tanwanichkul et al., 2019; Wang et al., 2020a) to 

analyze individual decisions and reporting higher prediction accuracy than conventional DCMs. 

Although these models allow more complex relationships between explanatory variables and 

individual choices, it is at the cost of sacrificing interpretability and increasing the non-linearity of 

demand functions (LeCun et al., 2015; Liao and Poggio, 2018). Therefore, innovative methods 

dealing with these three limitations are theoretically essential and empirically critical to estimate 

agents’ joint activity scheduling choice. 

These limitations can be addressed if coefficients can be specified deterministically for each 

individual within a DCM framework resulting in a heterogeneous population of coefficients. We call 

this an agent-based mixed logit model (AMXL). Under most circumstances, an AMXL model does 

not make sense because estimating it from a sample data set would not be transferable to a population. 

However, such an approach would still be valid under a ubiquitous data (smartphone data) or 

synthetic population (e.g. He et al. (2020) or Replica (2022)) setting where attributes from the whole 

population (or segments of it) can be obtained or monitored instead of just from a sample. Under 

such settings, an AMXL model can be used to predict the outcome of alternative scenarios for the 

same population. We assume such a setting, where data for a population is sufficient to estimate the 

coefficients for each individual resulting in a random utility model with heterogeneous but 

deterministic coefficients. 

The significance of AMXL is as follows. First, difficulties in estimating coefficients for high 

choice dimensions requiring high-dimensional integrals for random coefficients can be addressed 

with constrained optimization. Second, population distributions for the coefficients are based on 

non-parametric aggregation of the individual coefficients instead of having to assume a 

distributional fit. Third, since each individual’s representative utility function is fully specified, 

AMXL can be directly integrated into system design optimization models as constraints instead of 

dealing with simulation-based approaches needed for MXL (see Pacheco et al., 2021).  
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As for the proposed methodology, we first decompose individuals’ whole-day activity 

scheduling choices into a series of inter-related sub-choices, from which a series of utilities are 

derived accordingly. By ensuring shared coefficients to be the same among these sub-choices, we 

reduce the choice set while still modeling different choice dimensions jointly. We then formulate a 

unique inverse optimization (IO) problem for the set of choices of each individual, in which a 

Gumbel-distributed random utility and a safe boundary are added to each alternative for each sub-

choice. This insight keeps the theoretical consistency with DCMs and avoids overfitting the 

individual-specific estimation. A Method of Self-Regulated Average (MSRA) (Liu et al., 2007) is 

applied to smooth the iterative convergence and obtain stable solutions, in which demand functions 

are linearly related to the explanatory variables.  

We test the estimated AMXL model against multinomial logit (MNL), mixed logit (MXL), 

dynamic multinomial logit (DMNL), and dynamic mixed logit (DMXL) to model activity scheduling 

choice using a mobile-phone-derived dataset, referred to as SHC in this study. The SHC dataset was 

collected in 2019, containing two weekdays activity information of 26,149 anonymous commuters 

working in the CBD of Shanghai. Based on the experimental results, AMXL presents three key 

advantages over benchmark models: (1) For the whole-day activity schedule, AMXL provides 

higher prediction accuracy both at individual level (to each commuter) and aggregated level (to each 

alternative in the choice set); (2) AMXL produces an empirical distribution of individual preference 

in space which is hard for benchmark models to capture; (3) utility functions retrieved from AMXL 

can be directly integrated into system design optimization models. While the AMXL model is 

applied to the activity scheduling choice use case in this study, it can also be applied to other high 

dimensional choice problems where ubiquitous data are available. To facilitate future research, we 

uploaded the algorithms and the 1,000 randomly-selected samples to a Github repository: 

https://github.com/xr2006/AMXL.git. 

The remainder of the paper is organized as follows. Section 2 reviews studies on DCMs for 

activity scheduling choice and emerging machine learning approaches for individual choice. Section 

3 describes the general framework of the AMXL model, including utility derived from whole-day 

activity scheduling behavior, inverse optimization algorithm with random utility, and architecture 

of AMXL. Section 4 sets up a concrete experiment that compares the performance of MNL, MXL, 

DMNL, DMXL and AMXL. The experimental results, including prediction accuracy, distribution 

of coefficients, and scenario application, are presented in Section 5. Section 6 concludes the findings 

and points out future work. 

 

2. Literature review 

2.1 DCMs for activity scheduling choice 

As econometric models, DCMs assume individuals to schedule activities by maximizing the overall 

utility they can expect to gain (Becker, 1965; Bowman and Ben-Akiva, 2001). Typically, decisions 

related to activity scheduling behavior include the choice of activity pattern (staying at home, 

working, or shopping), the destination, time-of-day, duration for each activity, and mode-of-travel 

between activities (Ben-Akiva & Lerman, 1985; Miller and Roorda, 2003; Ding et al., 2017; Ettema 

et al., 2007; Habib, 2018). Skeleton schedules, referring to schedules with fixed attributes pre-

defined by modelers such as specific activity types (e.g., commuters’ working activity on weekdays), 

start time (e.g., 9 a.m. for work, 12 a.m. for lunch), duration (e.g., a half-hour exercise), or destination 

locations (e.g., home and workplace), are widely used to control the model complexity and 

emphasize the research scopes (Ettema et al., 2007; Habib and Miller, 2006; Habib, 2018).  

Existing studies using activity-based DCMs can be divided into two categories. The first 

category treats choice dimensions with a nested structure, in the sequence from primary activities to 

secondary activities, from time frames to travel modes, and according to time series (Horni et al., 

2016; Bowman and Ben-Akiva, 2001). A basic form is the nested logit model (NL) while a more 

https://github.com/xr2006/AMXL.git
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advanced one follows a Markov decision process (MDP) and models activity scheduling choices as 

dynamic DCMs (Aguirregabiria and Mira, 2010; Västberg et al., 2020). Dynamic DCMs assume 

that individual 𝑖 ∈ 𝑃 acts to maximizes the utility function defined by Eq. (1). 

 

 𝑈𝑖𝑗𝑡 = 𝑥𝑖𝑗𝑡𝑗𝑡
+ 𝑖𝑗𝑡 + 

𝑡
𝐸𝑉(𝑖, 𝑗, 𝑡) , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (1) 

 

where 𝑡 denotes the choice situation or time period. 𝑥𝑖𝑗𝑡  denotes a set of observed variables of 

individual 𝑖 choosing alternative 𝑗 in situation 𝑡. 
𝑗𝑡

 is a set of coefficients reflecting preferences. 

𝑥𝑖𝑗𝑡𝑗𝑡
 and 𝑖𝑗𝑡 denotes the deterministic and random utility, which is aligned with conventional 

DCMs. 𝐸𝑉(𝑖, 𝑗, 𝑡) is the expected utility of all possible alternatives in the remainder of the day, 

usually calculated using multi-dimensional integrals or backward induction with a relatively high 

computational cost (Västberg et al., 2020). 
𝑡
 is a coefficient defining the weight of expected utility 

in choice situation 𝑡. Accordingly, the probability of individual 𝑖 choosing alternative 𝑗 in situation 

𝑡 is defined as Eq. (2). 

 

 

𝑃𝑖𝑗𝑡 =
𝑒

𝑥𝑖𝑗𝑡𝑗𝑡+𝑖𝑗𝑡+𝐸𝑉(𝑖,𝑗,𝑡)

∑ 𝑒
𝑥𝑖𝑗′𝑡𝑗𝑡+𝑖𝑗′𝑡+𝐸𝑉(𝑖,𝑗′,𝑡)

𝑗′𝐽

 ,    ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (2) 

 

The second category focus on stochastic individual level models, considering that preference 

may vary across different choice situations of different individuals. Up to this point, logit mixtures 

incorporating inter- and intra-individual heterogeneity are estimated with maximum likelihood 

procedure (Becker et al., 2018; Krueger et al., 2021). For example, a mixed logit model (MXL) 

assumes that each individual 𝑖 faces a choice among 𝐽 alternatives. Then, the utility associated with 

each alternative 𝑗 = 1,… , 𝐽 for individual 𝑖 is defined as Eq. (3). 

 

 𝑈𝑖𝑗 = 𝑥𝑖𝑗+ 𝑖𝑗  , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽 (3) 

 

where 𝑥𝑖𝑗 denotes a set of observed variables of individual 𝑖 choosing alternative 𝑗. 𝑖𝑗 is the random 

utility. The vector of tastes  is assumed to be a variate that varies across individuals according to 

𝑔(|), where 𝑔(. ) is usually the Gaussian distribution with the mean and covariance included in 

. More recent studies have captured both inter- and intra-individual tastes based on conditional 

estimations (Becker et al., 2018; Krueger et al., 2021; Sarrias, 2020). Accordingly, the probability 

of individual 𝑖 choosing alternative 𝑗 is defined as Eq. (4). 

 

 

𝑃𝑖𝑗 = ∫
𝑒𝑥𝑖𝑗

∑ 𝑒
𝑥𝑖𝑗′

𝑗′𝐽

𝑔(|)𝑑 ,    ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽 (4) 

 

Despite a growing number of empirical studies, at least three issues are not perfectly addressed, 

which hinder the application of DCMs to activity scheduling behavior under a Big Data context.  

First, most of the choice scenarios in DCMs involve a small number of alternatives. However, 

the choice set in the case of activity scheduling behavior will be quite large if we include all possible 

schedule combinations (Pougala et al., 2021). For example, a single activity starts in t possible time 

blocks, at l possible locations, and with m available mode-of-travel will generate (𝑡 × 𝑙 × 𝑚) 

possible alternatives. Existing computational tools (e.g., MATLAB, R, Status) are generally unable 

to maximize a likelihood function associated with hundreds of coefficients and alternatives (Chen et 

al., 2005; Lemp and Kockelman, 2012). Though dynamic DCMs decompose the whole-day 



   5 

 

scheduling choice into a sequence of sub-choices and calibrating them jointly, it is hard to calculate 

multi-dimensional integrals especially when alternatives vary across choice situations. Also, 

conditional probability can only capture general dependencies among sub-choices. It remains 

understudied whether a conditional probability is valid from an individual perspective. 

Second, just knowing that a coefficient varies across individuals is not enough in the case of 

activity scheduling choices, which combines segments of individuals (Richter and Pollitt, 2018), 

disaggregated willingness-to-pay (WTP) (Dumont et al., 2015), spatial dependence of tastes 

(Budziński et al., 2018), and individual-specific strategies (Hess and Hensher, 2010). Logit mixtures 

incorporating inter- and intra-individual heterogeneity might be a good attempt to estimate 

individual level models. However, the complex assumption of conditional distribution also has 

limitations. Hess (2010) has argued that failing to choose adequate distributions for random 

coefficients might lead to misleading conclusions. Sarrias (2020) has stated that the better fit in terms 

of signs and values might be an artifact of the statistical behavior of the conditional estimations when 

the number of choice scenarios is not large enough. Under the context of location-based Big Data, 

attributes from the whole population can be obtained instead of just from a sample (Ahas et al., 

2009), and the individual tastes might not be normally distributed due to lacking personal 

information (Zhao et al., 2018). To this end, modelers should consider individual-specific 

estimations without complex assumptions of the conditional distribution. 

Third, stochastic estimations in DCMs result in non-linear or even non-convex mathematical 

formulations, particularly for more advanced variations like MXL or dynamic DCMs, which are 

difficult to embed in optimization models governing the supply-related decisions (Ljubić and 

Moreno, 2018; Pacheco et al., 2021; Robenek et al., 2018). For instance, mixed-integer linear 

programming (MILP) models have been widely used in congestion management (Qiu and Wang, 

2015), transit timetabling (Cordone and Redaelli, 2011), toll setting (Gilbert et al., 2015), and vehicle 

routing (Kancharla and Ramadurai, 2020; Dong et al., 2022), among others. Unfortunately, MILP 

models require linearity and convexity of the involved functions, which is generally not the case in 

DCMs. Whereas Pacheco et al. (2021) have presented the feasibility of integrating mixed logit 

models into MILP models via a simulation-based linearization approach, longer computational time 

compared with conventional MILP still hinders the interaction between individual choices (demand) 

and operational strategies (supply). Given a ubiquitous dataset, the key idea is to develop a 

deterministic approach that overcomes the stochastic nature of the random component and thus 

expresses the demand in terms of linear, convex functions. 

 

2.2 General-purpose machine learning methods for individual choice  

In recent years, there has been an emerging trend of using general-purpose machine learning models 

(MLs) to analyze individual choices (Wang et al., 2020b). In the transportation field, existing studies 

have applied support-vector machines (SVMs), classification trees (CTs), random forests (RFs), and 

deep neural networks (DNNs) to analyze many choice scenarios such as automobile ownership, 

travel mode, vehicle route, and parking location (Lizana et al., 2021; Shaaban and Pande, 2016; 

Tanwanichkul et al., 2019; Tribby et al., 2017; Chow, 2018; Ma et al., 2017). General-purpose MLs 

for individual choice have both pros and cons. The pros are that these models allow flexible 

relationships between individuals’ choices and explanatory variables, resulting in higher prediction 

accuracy than classical DCMs (Hagenauer and Helbich, 2017; Omrani, 2015; Pulugurta et al., 2013). 

The cons are that MLs are often criticized as “black-boxes” that are sensitive to hyperparameters 

and lack interpretability for modelers to explain the behavioral mechanism (Liao and Poggio, 2018; 

Sun et al., 2019; Wang et al., 2020b). 

Besides these pros and cons widely discussed in existing studies, we would like to emphasize 

that general-purpose machine learning models do not generally address the three mentioned 

limitations of DCMs. On the one side, MLs treat individual choices as a classification task, in which 

cross-entropy is often used to formulate the cost functions (Kline and Berardi, 2005). Similar to the 
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likelihood functions in DCMs, cross-entropy-based cost functions in MLs are also inefficient to 

optimize, given a huge choice set of all possible schedule combinations. Hence, the performance of 

general-purpose MLs might decrease with the increase in size of choice sets. On the other side, 

though the powerful automatic learning of MLs can capture complex behavior realism, it is at the 

cost of local irregularity and non-linearity of demand functions (LeCun et al., 2015; Liao and Poggio, 

2018). Wang et al. (2020a) have pointed out the impacts of local irregularity on individual tastes. 

They found that the exploding and vanishing gradients in neural networks can result in extremely 

high or low sensitivities at the individual level that are opposite to domain knowledge. Moreover, 

with hundreds of parameters in deep learning models, it is almost infeasible to formulate the utility 

function, let alone generate demand functions and integrate them into optimization models. An 

innovative, domain-specific machine learning approach is necessary to deal with the large choice 

set, capture individual-level tastes, and build the link between demand and supply. 

 

2.3 Inverse optimization (IO) for individual choice 

Inverse optimization (IO) is initially used to impute missing optimization model coefficients from 

data that represents sub-optimal solutions of that optimization problem (Ahuja and Orlin, 2001; 

Burton and Toint, 1992). Given an optimization problem, an IO can be formulated to impute its left-

hand-side constraint parameters and feasible regions (Chan and Kaw, 2020; Ghobadi and 

Mahmoudzadeh, 2021). A typical IO problem is defined as follows: for a given prior 0 of missing 

coefficients and observed decision variables 𝑥∗, determine an updated coefficient set  such that 𝑥∗ 

is optimal while minimizing its 𝐿1 norm from the prior, as shown in Eq. (5). 

 

 
min


|0 −  | : 𝑥∗ = arg min {𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} (5) 

 

where 𝐴 is the constraint matrix 𝑏 is the vector of side constraint values. 𝐴𝑥 ≤ 𝑏 are constraints 

ensuring 𝑥∗ is optimal (or the best choice). 𝐿1 norm is used to regularize what would otherwise be 

an ill-posed problem with infinite solutions. Ahuja and Orlin (2001) proved that Eq. (5) can be 

reformulated as a linear programming (LP) problem. 

Since IO imputes coefficient values from data, it can be viewed as a machine learning approach 

(Iraj and Terekhov, 2021; Tan et al., 2019) and shares similarities with inverse reinforcement 

learning (IRL) (Iskhakov et al., 2020). Though IO is less popular than general-purpose machine 

learning models, it has already been applied to traffic assignment, route choice, and activity 

scheduling problems (Chow and Recker, 2012; Hong et al., 2017; Chow, 2018; Xu et al., 2018). For 

instance, Chow and Recker (2012) proposed a multiagent framework for IO where a sample of 

individuals’ trip scheduling data is obtained and used to infer parameters of individual activity 

scheduling. Xu et al. (2018) formulated the multiagent inverse transportation problem to estimate 

heterogeneous route preferences, and proved that the IO approach could obtain heterogeneous link 

cost coefficients even when multinomial or mixed logit models would not be meaningfully estimated. 

Moreover, the potential of IO in modeling individual choice has been noticed by existing studies. 

Iraj and Terekhov (2021) emphasized the need for stochastic IO models in scenarios where 

constraints, objective, and prior parameters can be defined with domain knowledge. This holds in 

the problem of activity scheduling choice, given existing results obtained through econometric 

models (e.g., DCMs). 

We propose a hybrid machine learning/econometric approach designed to estimate agents’ joint 

activity scheduling choice from a ubiquitous data set. The approach is based on the IO method of 

estimating a random utility model that considers different choice dimensions jointly and coefficients 

that vary by individual. The utility function is linear, in order to ensure its compatibility with 

optimization models. 
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3. Proposed model 

The proposed Agent-based Mixed Logit model (AMXL) is a random utility model with individual-

specific coefficients resulting in a heterogeneous distribution of the population coefficients. The 

AMXL is applied in this study to one use case (and other use cases can be explored in future research): 

it represents individuals’ whole-day activity scheduling behavior based on a series of utility items 

associated with decomposed sub-choices. Notations used in this section are shown in Table 1. 

 

Table 1 

Notations used in the proposed model 

𝒱 Total utility derived from the activity schedule of an individual 

𝒱𝐴 Total utility derived from participating activities in set 𝐴 

𝒱𝑇  Total utility derived from conducting trips in set 𝑇 

𝑉𝑎,𝑖 Utility derived from activity 𝑎 conducted by individual 𝑖 

𝑉𝑎,𝑖
𝑆𝐷 Utility item of activity 𝑎 conducted by individual 𝑖, related to activity schedule delay 

𝑉𝑎,𝑖
𝐷𝑢𝑟 Utility item of activity 𝑎 conducted by individual 𝑖, related to activity duration 

𝑉𝑎,𝑖
𝐷𝑒𝑠 Utility item of activity 𝑎 conducted by individual 𝑖, related to activity destination 

𝑎,𝑖
𝑒 , 𝑆𝐷𝐸𝑎,𝑖 Coefficient and observed value of starting an activity earlier than schedule (min) 

𝑎,𝑖
𝑙 , 𝑆𝐷𝐿𝑎,𝑖 Coefficient and observed value of starting an activity later than schedule (min) 

𝑎,𝑖
𝑝𝑙

, 𝑃𝐿𝑎,𝑖 Coefficient and observed value of starting activity late (binary) 

𝑎,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 , 𝐷𝑎,𝑖 Coefficient and observed value of activity duration (min) 

𝑎_𝑎′,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 Coefficient of the interactive item of two activity durations 

𝑎,𝑖
𝑑𝑒𝑠,𝑘, 𝑑𝑒𝑠𝑎,𝑖

𝑘  Coefficient and observed value of a specific feature 𝑘 related to the activity location 

𝑉𝑡,𝑖 Utility derived from trip 𝑡 conducted by individual 𝑖 

𝑉𝑡,𝑖
𝑇𝑖𝑚𝑒 Utility item of trip 𝑡 conducted by individual 𝑖, related to trip time 

𝑉𝑡,𝑖
𝐶𝑜𝑠𝑡 Utility item of trip 𝑡 conducted by individual 𝑖, related to trip cost 

𝑉𝑡,𝑖
𝑀𝑜𝑑𝑒  Utility item of trip 𝑡 conducted by individual 𝑖, related to trip mode 

𝐶𝑈 The choice-utility incidence matrix 

𝒱′ A vector containing decomposed utilities 

𝑖𝑗𝑚 Random utility for individual 𝑖 choosing alternative 𝑗 in sub-choice 𝑚 

0m Fixed-point prior of coefficients which can be divided into sub-choices 𝑚 ∈ 𝑀 

𝑖𝑚 Individual specific coefficients which can be divided into sub-choices 𝑚 ∈ 𝑀 

 

3.1 Architecture of Agent-based Mixed Logit model (AMXL) 

The architecture of AMXL model is determined by how to derive a total utility from the whole-day 

activity schedule and how to decompose it into several inter-linked subitems. 

3.1.1 Utility derived from the whole-day activity schedule 

A whole-day activity schedule can be divided into a sequence of activities and trips. In line with the 

study of Ettema et al. (2007) and MATSim (Rieser et al., 2014), the AMXL model assumes 

individuals in a population 𝑃  maximize their total utility derived from the activity schedule by 

solving Eq. (6).   
 

 

max𝒱 = max(𝒱𝐴 + 𝒱𝑇) = max(∑ 𝑉𝑎,𝑖

𝑎∈𝐴

+ ∑𝑉𝑡,𝑖

𝑡∈𝑇

) , ∀𝑖 ∈ 𝑃 (6) 
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where 𝒱𝐴 is the total utility derived from participation of activity set 𝐴 (assumed positive) and 𝒱𝑇 is 

the total utility derived from trip set 𝑇 (assumed negative). These two utilities are the sums of utilities 

of individuals’ activities ∑ 𝑉𝑎,𝑖𝑎∈𝐴  and trips ∑ 𝑉𝑡,𝑖𝑡∈𝑇 . 

The utility derived from an activity depends on three elements: (1) the duration of activities, (2) 

the schedule deviation relative to a preferred or scheduled activity start time, and (3) the destination 

of activity relative to a set of attributes of the location. To this end, if individual 𝑖 has conducted an 

activity 𝑝, the utility can be defined as Eq. (7). 

 

 𝑉𝑎,𝑖 = 𝑉𝑎,𝑖
𝑆𝐷 + 𝑉𝑎,𝑖

𝐷𝑢𝑟 + 𝑉𝑎,𝑖
𝐷𝑒𝑠, ∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴 (7) 

 

where 𝑉𝑎,𝑖
𝑆𝐷, 𝑉𝑎,𝑖

𝐷𝑢𝑟, and 𝑉𝑎,𝑖
𝐷𝑒𝑠 are utilities related to the schedule deviation, the activity duration, and 

the activity destination. Utility linked to the activity category is not included since we mainly focus 

on the activity scheduling, where the number and type of activities are pre-defined in skeleton 

schedules (Habib and Miller, 2006).  

The schedule deviation related utility of activity 𝑝 conducted by individual 𝑖, 𝑉𝑎,𝑖
𝑆𝐷, is defined 

in Eqs. (8) – (10). 

 

 
𝑉𝑎,𝑖

𝑆𝐷 = 𝑎,𝑖
𝑒 𝑆𝐷𝐸𝑎,𝑖 + 𝑎,𝑖

𝑙 𝑆𝐷𝐿𝑎,𝑖 + 𝑎,𝑖
𝑝𝑙

𝑃𝐿𝑎,𝑖 , ∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴 (8) 

 𝑆𝐷𝐸𝑎,𝑖 = max (0, 𝑠𝑎,𝑖
∗ − 𝑠𝑎,𝑖), ∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴 (9) 

 𝑆𝐷𝐿𝑎,𝑖 = max (0, 𝑠𝑎,𝑖 − 𝑠𝑎,𝑖
∗ ), ∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴 (10) 

 

where 𝑆𝐷𝐸𝑎,𝑖 and 𝑆𝐷𝐿𝑎,𝑖 are the early and late schedule delay,  𝑠𝑎,𝑖
∗  is individual 𝑖’s targeted start 

time for activity 𝑎, 𝑠𝑎,𝑖 is individual 𝑖’s actual start time for activity 𝑎. 𝑃𝐿𝑎,𝑖 is an additional penalty 

for starting an activity late (independent of the actual amount of ‘lateness’ (Lizana et al., 2021)), 

which equals to 1 if 𝑆𝐷𝐿𝑎,𝑖 > 0, 0 otherwise. 𝑎,𝑖
𝑒

, 𝑎,𝑖
𝑙

, 𝑎,𝑖
𝑝𝑙

 are coefficients for these items.  

 The activity duration related utility of activity 𝑎 conducted by individual 𝑖, 𝑉𝑎,𝑖
𝐷𝑢𝑟, is defined in 

Eq. (11). 

 

 𝑉𝑎,𝑖
𝐷𝑢𝑟 = 𝑎,𝑖

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ln(𝐷𝑎,𝑖) + 𝑎_𝑎′,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ln(𝐷𝑎,𝑖) ln(𝐷𝑎′,𝑖) , ∀𝑖 ∈ 𝑃, ∀𝑎, 𝑎′ ∈ 𝐴 (11) 

 

where 𝐷𝑎,𝑖 is the duration of activity 𝑎 performed by individual 𝑖, 𝐷𝑎′,𝑖 is the duration of the related 

activity 𝑎′. The implication of the former item is that marginal utility decreases with increasing 

duration (𝑎,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 is assumed to be positive). The latter item allows the utility of different activities 

to be dependent on each other. For instance, if one activity gains a higher utility with more time 

spent on another activity, the coefficient 𝑎_𝑎′,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 will have a positive sign. 

The utility of activity 𝑎 performed by individual 𝑖, 𝑉𝑎,𝑖
𝐷𝑒𝑠, is defined in Eq. (12). 

 

 

𝑉𝑎,𝑖
𝐷𝑒𝑠 = ∑ 𝑎,𝑖

𝑑𝑒𝑠,𝑘𝑑𝑒𝑠𝑎,𝑖
𝑘

𝐾

𝑘=1

, ∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴 (12) 

 

where 𝑑𝑒𝑠𝑎,𝑖
𝑘  is the 𝑘𝑡ℎattribute related to the destination of activity 𝑎 performed by individual 𝑖 and 

𝑎,𝑖
𝑑𝑒𝑠,𝑘

 is the corresponding coefficient. 

In the AMXL model, the utility derived from a trip depends on three elements: (1) trip duration, 

(2) trip cost, and (3) trip mode. To reduce the complexity, we do not include route choice in our 
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model, and we assume that individuals tend to choose the route with the shortest trip duration. Hence, 

if individual 𝑖 has made a trip 𝑡, the derived utility, 𝑉𝑡,𝑖
𝑇 , can be defined as Eq. (13). 

 

 

𝑉𝑡,𝑖
𝑇 = 𝑉𝑡,𝑖

𝑇𝑖𝑚𝑒 + 𝑉𝑡,𝑖
𝐶𝑜𝑠𝑡 + 𝑉𝑡,𝑖

𝑀𝑜𝑑𝑒 = 𝑡,𝑖
𝑡𝑖𝑚𝑒𝑡𝑖𝑚𝑒𝑡,𝑖 + 𝑡,𝑖

𝑐𝑜𝑠𝑡𝑐𝑜𝑠𝑡𝑡,𝑖 + ∑ 𝑡,𝑖
𝑚𝑜𝑑𝑒,𝑑

𝑚𝑜𝑑𝑒𝑡,𝑖
𝑑

𝑑

𝑑=1

,

∀𝑖 ∈ 𝑃, ∀𝑡 ∈ 𝑇 

(13) 

 

where 𝑡𝑖𝑚𝑒𝑡,𝑖, 𝑐𝑜𝑠𝑡𝑡,𝑖 are the duration and cost of trip 𝑡 made by individual 𝑖. Trip mode is denoted 

by 𝑚𝑜𝑑𝑒𝑡,𝑖
𝑑 , which equals to 1 if the individual chooses the 𝑑𝑡ℎ mode, 0 otherwise. 𝑡,𝑖

𝑡𝑖𝑚𝑒
, 𝑡,𝑖

𝑐𝑜𝑠𝑡
, 

𝑡,𝑖
𝑚𝑜𝑑𝑒,𝑑

 are the coefficients of these three items. Note that 𝑡𝑖𝑚𝑒𝑡,𝑖 and 𝑐𝑜𝑠𝑡𝑡,𝑖 can be extended to 

𝑡𝑖𝑚𝑒𝑡,𝑖
𝑑  and 𝑐𝑜𝑠𝑡𝑡,𝑖

𝑑 , which adds mode specific time and cost to utility function for trips. However, 

we do not recommend the extended form since we focus on the whole-day utility and want to keep 

the number of coefficients in each utility item at the same level. 

 In general, the total utility derived from individual 𝑖’s whole day activity schedule can be 

defined as Eq. (14). For an activity schedule containing |𝐴| activities and |𝑇| trips, there are (3|𝐴| +

3|𝑇|) items in total.  

 

 

𝒱 = ∑(𝑉𝑎,𝑖
𝑆𝐷 + 𝑉𝑎,𝑖

𝐷𝑢𝑟 + 𝑉𝑎,𝑖
𝐷𝑒𝑠)

|𝐴|

𝑎=1

+ ∑(𝑉𝑡,𝑖
𝑇𝑖𝑚𝑒 + 𝑉𝑡,𝑖

𝐶𝑜𝑠𝑡 + 𝑉𝑡,𝑖
𝑀𝑜𝑑𝑒)

|𝑇|

𝑡=1

,

∀𝑖 ∈ 𝑃, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇 

(14) 

 

 

3.1.2 Whole-day scheduling choice decomposition 

To control the size of the choice set, we decompose the whole-day scheduling choice into a series 

of inter-related sub-choices, with each sub-choice containing at least one choice dimension of the 

scheduling joint-choice. The choice-utility incidence matrix is introduced to fulfill this. To be 

specific, the choice-utility incidence matrix,  𝐶𝑈 , has 𝑀  rows and 𝑁  columns, where 𝑀  is the 

number of sub-choices, 𝑁 is the number of utility items, which equals to (3|𝐴| + 3|𝑇|) in our model. 

The value in the 𝑚𝑡ℎ row and 𝑛𝑡ℎ column equals to 1 if the 𝑛𝑡ℎ utility item is influenced by the 𝑚𝑡ℎ 

sub-choice, 0 otherwise. If we convert utility items in 𝒱  to a vector 𝓥 , with 𝓥 =

[𝑉1,𝑖
𝑆𝐷 , … , 𝑉|𝐴|,𝑖

𝐷𝑒𝑠, 𝑉1,𝑖
𝑇𝑖𝑚𝑒 , … , 𝑉|𝑇|,𝑖

𝑀𝑜𝑑𝑒]  (in the shape of (1, 3|𝐴| + 3|𝑇| )), the total utility 𝒱  can be 

decomposed as a series of utility one-to-one associated with the sub-choices, as shown in Eq. (15). 

 

 

𝓥′ = 𝐶𝑈 ∗  𝓥 = [

𝑐𝑢1,1 𝑐𝑢1,2 ⋯ 𝑐𝑢1,𝑁

𝑐𝑢2,1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮

𝑐𝑢𝑀,1 ⋯ ⋯ 𝑐𝑢𝑀,𝑁

]  ∗  

[
 
 
 
 
 
 

𝑉1,𝑖
𝑆𝐷

⋮
𝑉|𝐴|,𝑖

𝐷𝑒𝑠

𝑉1,𝑖
𝑇𝑖𝑚𝑒

⋮
𝑉|𝑇|,𝑖

𝑀𝑜𝑑𝑒
]
 
 
 
 
 
 

= [

𝒱1

𝒱2

⋮
𝒱𝑀

] , ∀𝑖 ∈ 𝑃 (15) 

 

where 𝓥′  is a vector containing decomposed utilities 𝒱1, 𝒱2, …, 𝒱𝑀. Each decomposed utility is 

the total utility derived from a sub-choice, which individuals are assumed to maximize. The benefit 

of decomposing the whole-day scheduling choice is that it separates different choice dimensions to 

make the size of the total choice set equal to a summation of alternatives in each choice dimension 

rather than a product. 
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 𝐶𝑈 matrix in our study is a pre-defined binary matrix, determining if a sub-choice depends on 

a utility item. However, 𝐶𝑈 matrix has the potential to be extended to a real-number matrix with a 

range of 0 to 1. In that case, 𝑐𝑢𝑚,𝑛 denotes the degrees of dependencies between sub-choice 𝑚 and 

utility item 𝑛, and 𝐶𝑈 matrix should be estimated instead of pre-defined, which will introduce a 

series of coefficients and complicate the model. 

 

3.1.3 Observed variables, normal coefficients, and shared coefficients 

To sum up, 𝑆𝐷𝐸𝑎,𝑖, 𝑆𝐷𝐿𝑎,𝑖, 𝑃𝐿𝑎,𝑖, 𝐷𝑎,𝑖, 𝑑𝑒𝑠𝑎,𝑖
𝑘 , 𝑡𝑖𝑚𝑒𝑡,𝑖, 𝑐𝑜𝑠𝑡𝑡,𝑖, 𝑚𝑜𝑑𝑒𝑡,𝑖

𝑑  are observed variables 

calculated based on individuals’ activity schedules, which are concatenated into a vector 𝑋𝑖. 𝑎,𝑖
𝑒

, 

𝑎,𝑖
𝑙

, 𝑎,𝑖
𝑝𝑙

, 𝑎,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

, 𝑎_𝑎′,𝑖
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

, 𝑎,𝑖
𝑑𝑒𝑠,𝑘

, 𝑡,𝑖
𝑡𝑖𝑚𝑒

, 𝑡,𝑖
𝑐𝑜𝑠𝑡

, 𝑡,𝑖
𝑚𝑜𝑑𝑒,𝑑

 are a series of individual-specific 

coefficients one-to-one related to observed variables, which are concatenated into a vector 𝑖. Due 

to the co-impacts of different choice dimensions (e.g., the duration of an activity is influenced by its 

start time and the start time of the next activity), some observed variables might be influenced by 

more than one sub-choice. In other words, some of the column-summations of the choice-utility 

incidence matrix 𝐶𝑈 should be larger than 1 in order to include all related utility items into the total 

utility derived from each sub-choice. To this end, coefficients in the AMXL model can be divided 

into normal parameters and shared coefficients. For observed variables influenced by only one sub-

choice (related column-summations of 𝐶𝑈 equals to 1), we define their associated coefficients as 

normal coefficients. For observed variables influenced by more than one sub-choice, we define their 

associated coefficients as shared coefficients. 𝑖
𝑛𝑜𝑟𝑚𝑎𝑙

 and 𝑖
𝑠ℎ𝑎𝑟𝑒𝑑

 are used to differentiate normal 

and shared coefficients.  

By keeping 𝑖
𝑠ℎ𝑎𝑟𝑒𝑑

 to be the same in all sub-choices, we can jointly estimate the whole model 

while dealing with a much smaller choice set. Compared with nested structure in dynamic DCMs 

(Västberg et al., 2020), our method get rid of complex conditional probabilities by adding an 

additional constraint that ensures shared coefficients are fixed among sub-choice situations. There 

are several benefits: (1) we avoid calculating high-dimensional integrals for random coefficients; (2) 

dependencies among sub-choice situations are captured at individual level since 𝑖
𝑠ℎ𝑎𝑟𝑒𝑑

 is 

individual-specific; (3) pre-defined choice sequence is not required since sub-choice situations can 

be modeled in parallel. Also, we suggest a balanced number of coefficients among each sub-choice 

considering the parallel structure.  

 

3.2 Multiagent IO estimation framework for AMXL 

To estimate the AMXL model, we propose to formulate a multiagent inverse utility maximization 

problem for each sub-choice scenario and solve them jointly with additional constraints related to 

shared coefficients. 

3.2.1 Multiagent inverse utility maximization (MIUM) problem for coefficient estimation 

Inspired by the works of Chow and Recker (2012) and Xu et al. (2018), our study formalizes the 

multiagent inverse utility maximization (MIUM) problem to estimate individual level coefficients 

in each sub-choice situation. Consider a choice set 𝐽  from which a population 𝑃  of agents 

behaviorally seek to select to maximize their overall utilities. The AMXL model decomposes the 

whole-day scheduling choice into a series of inter-related sub-choices 𝑀, i.e. 𝐽𝑚,𝑚 ∈ 𝑀. Each agent 

𝑖 ∈ 𝑃  has a specific preference for a sub-choice 𝑚 ∈ 𝑀  reflected by a coefficient set 𝑖𝑚 , and 

chooses an alternative 𝑗 ∈ 𝐽 based on the principle of utility maximization. In line with discrete 

choice models (DCMs), the total utility derived from agent 𝑖 choosing alternative 𝑗 is defined in Eq. 

(16). 
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 𝑈𝑖𝑗𝑚 = 𝑉𝑖𝑗𝑚 + 𝑖𝑗𝑚 = 𝑖𝑚𝑋𝑖𝑗𝑚 + 𝑖𝑗𝑚 , ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝐽,𝑚 ∈ 𝑀 (16) 

 

where 𝑈𝑖𝑗𝑚  is the total utility, which is composed of a deterministic utility 𝑉𝑖𝑗𝑚 and a Gumbel-

distributed random utility 𝑖𝑗𝑚. 𝑋𝑖𝑗𝑚 is a set of observed variables related to individual 𝑖 choosing 

alternative 𝑗 for sub-choice 𝑚 ∈ 𝑀. The set of attributes is defined as 𝐾, which are divided into 

attributes that vary by sub-choice, 𝐾𝑚, with corresponding coefficients 𝑖
𝑛𝑜𝑟𝑚𝑎𝑙

, and attributes that 

have shared common coefficients 𝑖
𝑠ℎ𝑎𝑟𝑒𝑑

 across sub-choices, 𝐾0. The individual-level coefficient 

set 𝑖𝑚 can be jointly estimated by solving a MIUM problem under 𝐿2-norm as a convex quadratic 

programming (QP) problem, as illustrated in Eq. (17) – (20). 

 

 
min

𝜃0𝑚,𝑖𝑚

∑(0𝑚 − 𝑖𝑚)2

𝑖∈𝑃

 (17) 

 Subject to  

 𝑉𝑖𝑗𝑚∗(𝑖𝑚) + 𝑖𝑗𝑚∗ ≥ 𝑉𝑖𝑗𝑚(𝑖𝑚) + 𝑖𝑗𝑚 + 𝑏, 𝑗𝑗∗, ∀𝑗 ∈ 𝐽, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀 (18) 

 
0𝑚 =

1

|𝑃|
∑𝑖𝑚

𝑖𝑃

, ∀𝑚 ∈ 𝑀 (19) 

 𝜃𝑖𝑚𝑘 = 𝜃𝑖𝑚′𝑘, ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾0,𝑚,𝑚′ ∈ 𝑀  (20) 

 

where 0𝑚 is a common prior corresponding to a sub-choice 𝑚 ∈ 𝑀. The objective is quadratic 

while the constraints are linear. Compared with Ahuja and Orlin (2001)’s study, we replace 𝐿1-norm 

with 𝐿2-norm since 𝐿2-norm results in a smaller variance of individual-level coefficients (by making 

𝑖𝑚 closer to 0𝑚), which is ideal for inverse optimization at a large scale. For Eq. (18), 𝑖𝑗𝑚∗ and 

𝑖𝑗𝑚 are random utilities that should be randomly generated for each agent. This is a bit different 

from DCMs, in which the random utility is used to calculate the cumulative density function (CDF), 

but is not really drawn for each individual. In case 𝑖𝑗𝑚∗  is much larger than 𝑖𝑗𝑚 in a single draw 

(making the comparison of deterministic utilities meaningless), we add a safe boundary 𝑏 (𝑏 ≥ 0) 

to the linear inequalities. In general, the safe boundary 𝑏 acts as a hyperparameter in the MIUM. 

From a machine learning perspective, this is similar to adding noise when training the model and 

thus helps to avoid overfitting. A proposed value of 𝑏  around 75th quantile of (𝑖𝑗∗ − 𝑖𝑗 ) is 

recommended, which ensures the utility of chosen alternative should at least be larger than 75% of 

the rest of the alternatives. The proposed value is based on a series of experiments focusing on the 

balance between feasible solutions and prediction accuracy. It is noted that few studies have included 

random items (𝑖𝑗∗  and 𝑖𝑗) into IO problems. Eq. (19) makes sure that the estimated individual 

coefficients have a fixed point consistency with the common priors. For the attributes that are meant 

to have shared coefficient, Eq. (20) ensures that the estimated coefficient is identical across all sub-

choices where it’s present. 

Solving the model in Eqs. (17) – (20) as a single QP would be computationally costly as it 

would lead to highly diagonal sparse matrix. Instead, the model is decomposed. In each iteration, 

we first break down our sub-choices into |𝑀|  independent 𝑀𝐼𝑈𝑀𝑚  problems to obtain |𝑀| 
posteriors, which includes both normal and shared coefficients at the individual level. Then we 

calculate the mean values of shared coefficients in these posteriors, fix these shared coefficients, and 

re-solve the 𝑀𝐼𝑈𝑀𝑚 problems, which can be fulfilled by adding a constraint ensuring the shared 

coefficients are equal to the fixed values (let us denote the new 𝑀𝐼𝑈𝑀𝑚  problem as 𝑀𝐼𝑈𝑀𝑚
′ ). 

Finally, we update the fixed-point prior using a convergent iterative algorithm, and check if the 

stopping criteria has been reached. If reached, then we concatenate posteriors obtained by 𝑀𝐼𝑈𝑀𝑚
′  

problems and output the estimated individual-specific coefficient 𝑖𝑚 . Otherwise, we use the 



   12 

 

updated fixed-point prior and go to the next iteration. The iterations continue until a set of 

coefficients 0𝑚 stabilizes (see Xu et al. (2018) for an example of this kind of decomposition for the 

|𝑀| = 1 case). The 𝑀𝐼𝑈𝑀𝑚 problem can be solved using any optimizer software or package that 

can handle QP like Gurobi, CVXPY, etc. The estimation process is illustrated in Fig. 1. 

In Fig. 1, boxes in light-green color represent 𝑀𝐼𝑈𝑀𝑚  problems, one for each sub-choice. 

Boxes in light-red color represent the procedures related to the joint estimation. Based on the 

illustrated architecture, coefficients in different sub-choices can be estimated in parallel (horizontal 

structure) while shared coefficients that are invariant among these sub-choices ensure the inter-

relationship (vertical structure). The MIUM is a QP and thus the whole structure can reach a unique 

solution. Given an initial guess of a fixed-point prior 0, a convergent iterative algorithm (e.g., 

method of successive averages (MSA)) would reach a unique and statistically consistent fixed point 

with respect to that guess (see Chow and Recker 2012).  

 

 
Fig. 1. Illustration of joint estimating several MIUM problems 

 

Note that AMXL in this study can only capture inter-individual heterogeneity, since it models 

activity scheduling choice based on one observation per individual. To deal with intra-individual 

heterogeneity with multiple observations per individual, multiday inverse utility maximization 

problems should be formulated and solved before multiagent inverse utility maximization problems. 

In that case, there would be multiple levels of priors (population priors from which individual priors 

are drawn, and then individual and time-specific parameters that are drawn from those individual 

priors. Future research will explore this further. 

 

3.2.2 Proposed algorithm 

The convergent iterative algorithm used in our study is the Method of Self-Regulated Average 

(MSRA). Compared with the conventional Method of Successive Average (MSA), MSRA adjusts 

the weight of optimal solution in each iteration to speed up the convergence rate (see Liu et al. 

(2007)). The MSRA algorithm is specified in Algorithm 1, in which 𝑥(𝑛) is equivalent to the fixed-

point prior in the 𝑛𝑡ℎ iteration (0
(𝑛)

) and 𝑦(𝑛) is equivalent to the averaged posterior coefficients of 

|𝑃| individuals (𝑦(𝑛)= F(0
(𝑛)

) = 
1

|𝑃|
∑ 𝑖

(𝑛)
𝑖𝑃 ). We adopt the value of some hyperparameters from 

Liu et al. (2007)’s study, including , , and  (0)
. Using these parameters, we found that the 

algorithm reduced the convergence time by 35% relative to using MSA for the examples in the study.  
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Algorithm 1. Method of Self-Regulated Averages (Liu et al., 2007) 

1. Set the initial point 𝑥(0), 𝑛=1, >1, 0<<1, (0)
=0, and the stop criteria ′>0 

2. Calculate 𝑦(0)= F(𝑥(0)), 𝑥(1)= (𝑥(0)+𝑦(0))/2, and 𝑦(1)=F(𝑥(1)) 

3. Do while ‖𝑥(𝑛) − 𝑦(𝑛)‖ ≥ ′  : 

        if ‖𝑥(𝑛) − 𝑦(𝑛)‖ ≥ ‖𝑥(𝑛−1) − 𝑦(𝑛−1)‖: 

              
(𝑛) = 

(𝑛−1) +  

        else: 

              
(𝑛) = 

(𝑛−1) +  

              (𝑛) = 1/(𝑛)
 

              𝑥(𝑛+1) = 𝑥(𝑛) + (𝑛). (𝑦(𝑛) − 𝑥(𝑛)) 

              𝑦(𝑛+1) = F(𝑥(𝑛+1)) 

              n= 𝑛 + 1 

4. Output 𝑥(𝑛) 

 

An additional issue is that if we use different initial points or different standard deviations of 

𝑖𝑗𝑚, it would lead to a different fixed-point solution set (Xu et al., 2018). This is similar to DCMs, 

in which the estimated coefficients are only unique relative to each other, but the overall values can 

be scaled up or down. To ensure comparable results between different scenarios, we normalize the 

observed variables and set the std. of the Gumbel error 𝑖𝑗𝑚  to 1. In that case, 𝑏 = 1  is a 

recommended value of safe boundary, which equals to the 75% quantile of (𝑖𝑗∗ − 𝑖𝑗). The whole 

estimation approach is summarized in Algorithm 2. The stopping rule is set to ′=0.001 considering 

time to converge.  

 

Algorithm 2. Proposed multiagent IO estimation for the AMXL model  

1. Given observed variables 𝑋𝑖𝑗  and the choice-utility incident matrix 𝐶𝑈, initialize with n=1, 

b=1, and the fixed-point prior 0
(𝑛)

=[0,0, …,0] 

2. Solve |𝑀| decomposed 𝑀𝐼𝑈𝑀𝑚 problems with the fixed-point priors 0
1(𝑛)

,0
2(𝑛)

, … , 0
|𝑀|(𝑛)

: 

    𝑚𝑖𝑛
0
𝑚(𝑛)

,𝑖
𝑚(𝑛)

{(0
𝑚(𝑛)

− 𝑖
𝑚(𝑛)

)2 𝑠. 𝑡.  𝑉𝑖𝑗∗
𝑚 + 𝑖𝑗∗

𝑚 ≥ 𝑉𝑖𝑗
𝑚 + 𝑖𝑗

𝑚 + 𝑏,   𝑗𝑗∗, ∀𝑗𝐽𝑚},    ∀𝑖𝑃, ∀𝑚𝑀  

3. Set average to  𝑖
𝑠ℎ𝑎𝑟𝑒𝑑(𝑛)

=
1

|𝑀|
∑ 𝑖

𝑚,𝑠ℎ𝑎𝑟𝑒𝑑(𝑛)
𝑚𝑀  

4. Solve |𝑀| 𝑀𝐼𝑈𝑀’𝑚 problems, with an additional constraint fixing coefficients 𝑖
𝑠ℎ𝑎𝑟𝑒𝑑(𝑛)

: 

     𝑚𝑖𝑛
0
𝑚(𝑛)

,𝑖
𝑚(𝑛)

{(0
𝑚(𝑛)

− 𝑖
𝑚(𝑛)

)2 𝑠. 𝑡.  𝑉𝑖𝑗∗
𝑚 + 𝑖𝑗∗

𝑚 ≥ 𝑉𝑖𝑗
𝑚 + 𝑖𝑗

𝑚 + 𝑏,   𝑗𝑗∗, ∀𝑗𝐽𝑚},    ∀𝑖𝑃, ∀𝑚𝑀  

         subject to 𝑖
𝑚,𝑠ℎ𝑎𝑟𝑒𝑑(𝑛)

=𝑖
𝑠ℎ𝑎𝑟𝑒𝑑(𝑛)

 

5. Concatenate 𝑖
1(𝑛)

, 𝑖
2(𝑛)

, … , 𝑖
|𝑀|(𝑛)

 to 𝑖
(𝑛)

, set average to 𝑦(𝑛)=
1

|𝑃|
∑ 𝑖

(𝑛)
𝑖𝑃  

6. MSRA: set =1.8, =0.3, (0)
=0, ′=0.001, calculate 0

(𝑛+1)
  

7. If MSRA stopping criteria reached, stop and output 𝑖
(𝑛)

 , else let n = n+1 and go to step 2 

 

The computational time is proportional to the total number of iterations and the time spent at 

each iteration. In each iteration, (2 × |𝑀|) 𝑀𝐼𝑈𝑀𝑚  problems are estimated in parallel with |𝑃| 

individuals in each 𝑀𝐼𝑈𝑀𝑚. For each IO problem in a 𝑀𝐼𝑈𝑀𝑚 problem 𝑚𝑀, the computational 

time is proportional to the number of constraints decided by the size of the choice set |𝑆𝑚|. Hence, 

the computational time of Algorithm 2 would increase proportionally by (|𝑃| × (|𝑆1| + |𝑆2| + ⋯+
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|𝑆|𝑀||)). As a comparison, the computational time without schedule decomposition would increase 

proportionally by (|𝑃| × |𝑆1| × |𝑆2| × …× |𝑆|𝑀||). 

 

3.3 Illustrative example 

We built a simple example with 10 individuals, 2 home locations, 3 shopping malls, and 4 dinner 

spots to illustrate how the AMXL model and the multiagent IO estimation algorithm works. In this 

example, each individual departs from a home location, conducts a shopping activity and a dinner 

activity in sequence, and finally goes back home. Only two choice dimensions are considered: 

location of shopping activity and location of dinner activity. For the shopping choice, the alternatives 

are 3 shopping malls, and the derived utility is related to the number of stores in the shopping mall 

and the travel distance between the home location and the shopping mall. For the dinner choice, the 

alternatives are 4 dinner spots, and the derived utility is related to the number of restaurants in the 

dinner spot, the travel distance between the shopping mall and the dinner spot, and the travel distance 

between the dinner spot and the home location. The coordinates of the locations and synthetic 

schedules of the first three individuals are shown in Fig. 2. The synthetic schedule of the 10 

individuals are listed in Table 2. The derived utilities of two sub-choices are defined in Eqs. (21) – 

(22). 

 

 𝑉𝑖𝑗
𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔

= 
𝑛_𝑠𝑡𝑜𝑟𝑒

∗ 𝑛_𝑠𝑡𝑜𝑟𝑒 + 
𝑑𝑖𝑠𝑡

∗ 𝑑𝑖𝑠𝑡_ℎ𝑠, ∀𝑖𝑃, ∀𝑗1,2,3   (21) 

 𝑉𝑖𝑗
𝑑𝑖𝑛𝑛𝑒𝑟 = 

𝑛_𝑟𝑒𝑠𝑡
∗ 𝑛_𝑟𝑒𝑠𝑡 + 

𝑑𝑖𝑠𝑡
∗ (𝑑𝑖𝑠𝑡_𝑠𝑑 + 𝑑𝑖𝑠𝑡_𝑑ℎ),

∀𝑖𝑃, ∀𝑗1,2,3,4   
(22) 

 

where 𝑉𝑖𝑗
𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔

 and 𝑉𝑖𝑗
𝑑𝑖𝑛𝑛𝑒𝑟 are utilities derived from shopping and dinner activities. 𝑛_𝑠𝑡𝑜𝑟𝑒 and 

𝑛_𝑟𝑒𝑠𝑡 are the number of stores in the shopping mall and number of restaurants in the dinner spot.  

𝑑𝑖𝑠𝑡_ℎ𝑠, 𝑑𝑖𝑠𝑡_𝑠𝑑, 𝑑𝑖𝑠𝑡_𝑑ℎ are the travel distance from home to shopping mall, from shopping mall 

to dinner spot, and from dinner spot to home. 
𝑛_𝑠𝑡𝑜𝑟𝑒

 and  
𝑛_𝑟𝑒𝑠𝑡

 are normal coefficients. 
𝑑𝑖𝑠𝑡

 is 

a shared coefficient. 

 

 
Fig. 2. Locations and activity schedules for illustration. 
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Table 2 

Synthetic activity schedules of 10 individuals 

Individual id Synthetic activity schedule 

Individual 1 Home location 1--Shopping mall 1--Dinner spot 1--Home location 1 

Individual 2 Home location 1--Shopping mall 1--Dinner spot 3--Home location 1 

Individual 3 Home location 1--Shopping mall 2--Dinner spot 3--Home location 1 

Individual 4 Home location 1--Shopping mall 2--Dinner spot 4--Home location 1 

Individual 5 Home location 1--Shopping mall 3--Dinner spot 3--Home location 1 

Individual 6 Home location 2--Shopping mall 1--Dinner spot 2--Home location 2 

Individual 7 Home location 2--Shopping mall 1--Dinner spot 3--Home location 2 

Individual 8 Home location 2--Shopping mall 2--Dinner spot 3--Home location 2 

Individual 9 Home location 2--Shopping mall 3--Dinner spot 2--Home location 2 

Individual 10 Home location 2--Shopping mall 3--Dinner spot 3--Home location 2 

 

We run Algorithm 2 with the above settings. The algorithm converged after 9 seconds at the 

78th iteration under the average coefficient change tolerance of 0.001. The final results are shown in 

Table 3. The mean values of  
𝑛_𝑠𝑡𝑜𝑟𝑒

 and 
𝑛_𝑟𝑒𝑠𝑡

 are positive, indicating that on average, 

individuals prefer larger shopping malls and dinner spots. The mean value of 
𝑑𝑖𝑠𝑡

 is negative, 

indicating that travel distance on average has negative effects on the utility. Moreover, the results 

reflect diverse tastes at the individual level: (1) individuals {1,3,8} have negative 
𝑛_𝑟𝑒𝑠𝑡

 values, 

while the others have positive ones; (2) individual 2 has the shortest total travel distance. 

Accordingly, the 
𝑑𝑖𝑠𝑡

 value of individual 2 is the lowest (−1.297); and (3) the total utility derived 

from the synthetic schedule has a large standard deviation (6.048) compared to its mean value 

(−3.886), though each individual has already made the best choice assumed in our model. 

 

Table 3 

Results obtained from Algorithm 2 

Individual id 
𝒏_𝒔𝒕𝒐𝒓𝒆

 
𝒏_𝒓𝒆𝒔𝒕

 
𝒅𝒊𝒔𝒕

 𝑽𝒔𝒉𝒐𝒑𝒑𝒊𝒏𝒈 𝑽𝒅𝒊𝒏𝒏𝒆𝒓 𝑽𝑻𝒐𝒕𝒂𝒍 

Individual 1 0.025 -0.042 -0.673 -2.270 -7.683 -9.953 

Individual 2 0.127 0.162 -1.297 -2.006 -11.890 -13.897 

Individual 3 0.221 -0.052 -0.654 4.710 -8.876 -4.166 

Individual 4 0.220 0.148 -0.647 4.702 -3.799 0.903 

Individual 5 0.399 0.046 -0.599 13.165 -5.861 7.305 

Individual 6 0.011 0.077 -0.664 -2.624 -3.322 -5.946 

Individual 7 0.012 0.010 -0.666 -2.628 -5.672 -8.299 

Individual 8 0.051 -0.052 -0.189 0.335 -2.772 -2.437 

Individual 9 0.127 0.126 -0.654 2.190 -2.036 0.154 

Individual 10 0.127 0.046 -0.659 2.155 -4.679 -2.525 

Mean value 0.132 0.047 -0.670 1.773 -5.659 -3.886 

Standard deviation 0.122 0.081 0.265 4.930 3.067 6.048 

  

 

4. Setup of experiments  

4.1 Datasets 

Our experiments are based on the SHC dataset, a processed mobile phone dataset containing two 

weekdays activity information of 26,149 anonymous commuters working in the CBD of Shanghai. 

The original mobile phone data were provided by Wisdom Footprint Data Technology Co., LTD., 



   16 

 

generated by China Telecom mobile subscribers from May 1st to 31st in 2019. We use a processed 

SHC dataset, which contains the activity schedule of each commuter on two weekdays. The two 

weekdays are May 7th and May 14th, both on Tuesday. Table 4 shows a sample of the SHC dataset 

containing four activity schedules of two commuters on two weekdays. Each row contains several 

fields: id (a unique number to differentiate a commuter), date (to differentiate a weekday), home 

(commuter’s home place id, in 500m*500m grids), work (commuter’s workplace id, in street blocks), 

lunch (commuter’s lunch spot id, in 500m*500m grids), c_mode (trip mode for commute), time_lh 

(timestamp when leaving home, in minutes), time_aw (timestamp when arriving workplace, in 

minutes), time_sl (the start time of lunch activity), time_el (the end time of lunch activity), time_lw 

(timestamp when leaving workplace), and time_ah (timestamp when arriving home). We aggregate 

home and work location of commuters before mapping them in space so that there will not be any 

privacy issue.   

 

Table 4 

A sample of the SHC dataset 

id date home work lunch c_mode 
time 

_lh 

time 

_aw 

time 

_sl  

time 

_el 

time 

_lw 

time 

_ah 

26 0507 1342 79 6789 transit 8:03 9:05 12:15 13:13 17:50 18:54 

26 0514 1342 79 539 driving 8:35 9:02 12:00 12:30 17:23 21:25 

78 0507 945 14 345  driving 7:25 8:48 11:47  12:56 18:32 20:01 

78 0514 945 14 345  driving 7:37 9:02 12:05  12:52 18:22 20:05 

 

To understand the impacts of different sample sizes and contexts, we construct three datasets 

from the SHC dataset for our experiments: (1) the dataset with randomly sampled 1,000 observations 

on May 7th (1K-SHC07), (2) the dataset with full observations on May 7th (26K-SHC07), and (3) the 

dataset with full observations on May 14th (SHC14). Fig. 3 visualizes the study area and the 

commuting origin-destination matrix of these datasets. We use the 1K-SHC07 and 26K-SHC07 

datasets to build models and the SHC14 dataset to check their performance. The comparison between 

the 1K-SHC07 and 26K-SHC07 datasets reveals the effect of the sample size, and the comparison 

between the 26K-SHC07 and SHC14 reveals the transferability of our models to the same population 

on a different day scenario.  

 

 
Fig. 3. Visualization of the study area and the datasets. 
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4.2 Model specification 

Based on the dataset, our experiments consider five choice dimensions in commuters’ whole-day 

activity schedule: time to leave home for work, commute mode, time to have lunch, lunch location, 

and time to finish work. To control the size of the choice set, we use 30-minute discrete time periods. 

Table 5 lists the five choice dimensions and the alternatives in them. In general, there are 1,470 

(7 × 2 × 5 × 3 × 7) possible activity schedules for each individual. Our experiments do not consider 

the trips and activities after work since they vary from individual to individual. Instead, only the 

total duration of afterwork activity is included. Focusing on such a skeleton schedule make sense 

because: (1) it is hard to model all possible activities, especially those performed randomly; (2) travel 

demands during non-peak hours contribute less to congestion (compared with commuting).  

 

Table 5 

Five choice dimensions and related alternatives 

Time to leave 

home for work 

Commute 

mode 

Time to have 

lunch 

Lunch  

location 

Time to finish 

work 

6:30-7:00 Transit 11:00-11:30 Inside the CBD 17:30-18:00 

7:00-7:30 Driving 11:30-12:00 Outside the CBD 18:00-18:30 

7:30-8:00  12:00-12:30 In workplace 18:30-19:00 

8:00-8:30  12:30-13:00  19:00-19:30 

8:30-9:00  13:00-13:30  19:30-20:00 

9:00-9:30    20:00-20:30 

9:30-10:00    20:30-21:00 

 

In the operational AMXL model, the total utility of a whole-day activity schedule consists of 

utilities related to work activity, lunch activity, afterwork activity, and the trips between them, as 

shown in Eqs. (23) – (28), which differs from conventional DCMs in that each coefficient is indexed 

by individual, e.g. 𝑤𝑜𝑟𝑘,𝑖
𝑒

. 

 

𝒱 = 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐴 + 𝑉𝑙𝑢𝑛𝑐ℎ,𝑖

𝐴 + 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴 + 𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖

𝑇 + 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇 , ∀𝑖 ∈ 𝑃 (23) 

𝑉𝑤𝑜𝑟𝑘,𝑖
𝐴 = 𝑉𝑤𝑜𝑟𝑘,𝑖

𝑆𝐷 + 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐷𝑢𝑟

= 𝑤𝑜𝑟𝑘,𝑖
𝑒 𝑆𝐷𝐸𝑤𝑜𝑟𝑘,𝑖 + 𝑤𝑜𝑟𝑘,𝑖

𝑙 𝑆𝐷𝐿𝑤𝑜𝑟𝑘,𝑖 + 𝑤𝑜𝑟𝑘,𝑖
𝑝𝑙

𝑃𝐿𝑤𝑜𝑟𝑘,𝑖

+ 𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟 𝑙𝑛(𝐷𝑤𝑜𝑟𝑘,𝑖) , ∀𝑖 ∈ 𝑃 

(24) 

𝑉𝑙𝑢𝑛𝑐ℎ,𝑖
𝐴 = 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑒 𝑆𝐷𝐸𝑙𝑢𝑛𝑐ℎ,𝑖 + 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙 𝑆𝐷𝐿𝑙𝑢𝑛𝑐ℎ,𝑖 + 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑑𝑒𝑠,1 𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
1 + 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑑𝑒𝑠,2 𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
2 ,

∀𝑖 ∈ 𝑃 
(25) 

𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴 = 𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖

𝑑𝑢𝑟 𝑙𝑛(𝐷𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖) + 𝑖𝑛𝑡𝑒𝑟,𝑖
𝑑𝑢𝑟 𝑙𝑛(𝐷𝑤𝑜𝑟𝑘,𝑖) 𝑙𝑛(𝐷𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖) ,

∀𝑖 ∈ 𝑃 
(26) 

𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑇 = 𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖

𝑡 𝑡𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖 + 𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑐 𝑐𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖 + 𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖

𝑚 𝑚𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖,

∀𝑖 ∈ 𝑃 
(27) 

𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇 = 𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖

𝑡 𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖, ∀𝑖 ∈ 𝑃 (28) 

 

where 𝒱  is utility of individual 𝑖  derived from the whole-day activity schedule; 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐴  is work 

activity utility, depending on schedule deviation 𝑉𝑤𝑜𝑟𝑘,𝑖
𝑆𝐷  (schedule early 𝑆𝐷𝐸𝑤𝑜𝑟𝑘,𝑖, schedule delay 

𝑆𝐷𝐿𝑤𝑜𝑟𝑘,𝑖, and additional late-for-work penalty 𝑃𝐿𝑤𝑜𝑟𝑘,𝑖), and log-formed work duration 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐷𝑢𝑟 ; 

𝑉𝑙𝑢𝑛𝑐ℎ,𝑖
𝐴  is lunch activity utility, depending on schedule deviation (schedule early 𝑆𝐷𝐸𝑙𝑢𝑛𝑐ℎ,𝑖  and 

schedule delay 𝑆𝐷𝐿𝑙𝑢𝑛𝑐ℎ,𝑖), and two dummy variables reflecting lunch spot (𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
1 =1 denotes 

inside the CBD, 𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
2 =1 denotes outside the CBD, having lunch in workplace is the reference 
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group); 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝐴  is afterwork activity utility, here we only consider its total duration in log form, 

ln(𝐷𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖) , and an interaction item with work duration, ln(𝐷𝑤𝑜𝑟𝑘,𝑖) ln(𝐷𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖) ; 

𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑇  is commute utility, depending on travel time 𝑡𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖, travel cost 𝑐𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖, and trip 

mode 𝑚𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖  (0 for driving; 1 for public transit); 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑇  is the utility of traveling 

between workplace and lunch spot, here we only consider the travel time 𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖. All these 

observed variables can be calculated from the SHC dataset and Gaode Direction API, and 𝑤𝑜𝑟𝑘,𝑖
𝑒

, 

𝑤𝑜𝑟𝑘,𝑖
𝑙

, 𝑤𝑜𝑟𝑘,𝑖
𝑝𝑙

, 𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑒

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,1

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,2

, 𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

, 𝑖𝑛𝑡𝑒𝑟,𝑖
𝑑𝑢𝑟

, 𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑡

, 

𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑐

, 𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑚

, 𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡

 are 14 coefficients per individual to be calibrated as a mixed 

logit model with deterministic individual tastes. 

 

 
Fig. 4. An illustration of whole-day activity schedule and its decomposition  

 

 We decompose the whole-day scheduling choice into three sub-choices (Fig. 4): (1) joint-choice 

of time to leave home for work and commute mode (Commute choice), (2) joint-choice of time to 

have lunch and lunch location (Lunch choice), and (3) choice of time to finish work (Afterwork 

choice). Table 6 lists their related coefficients, in which the work duration related coefficient, 𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

, 

is the shared coefficient (since work duration is co-influenced by time to leave home for work, time 

spent on lunch, and time to finish work). By doing this, we reduce the choice set from 1,470 

alternatives to 14, 15, and 7 alternatives, respectively, with an additional constraint ensuring that the 

shared coefficient 𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

 should be the same (and hence, jointly estimated). 

 

Table 6 

Five choice dimensions and related alternatives 

 Choice dimension Alternatives Related coefficients 

Commute choice 
Time to leave home for 

work & Commute mode 
14 (7*2) 

𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑡

,  𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑐

,  𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑚

,

𝑤𝑜𝑟𝑘,𝑖
𝑒

, 𝑤𝑜𝑟𝑘,𝑖
𝑙

, 𝑤𝑜𝑟𝑘,𝑖
𝑝𝑙

, 𝒘𝒐𝒓𝒌,𝒊
𝒅𝒖𝒓

 

Lunch choice 
Time to have lunch & 

Lunch location 
15 (5*3) 

𝑙𝑢𝑛𝑐ℎ,𝑖
𝑒

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,1

, 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,2

, 

𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡

, 𝒘𝒐𝒓𝒌,𝒊
𝒅𝒖𝒓

 

Afterwork choice Time to finish work 7 (7) 𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

, 𝑖𝑛𝑡𝑒𝑟,𝑖
𝑑𝑢𝑟

, 𝒘𝒐𝒓𝒌,𝒊
𝒅𝒖𝒓

 

 

4.3 Benchmarking and scenario design 

Our experiments are divided into two major parts. The first part builds the AMXL model and 

compares it with benchmark models, including multinomial logit model (MNL), mixed logit model 

(MXL), dynamic multinomial logit model (DMNL), and dynamic mixed logit model (DMXL). Since 

the choice set of the whole-day schedules is quite large, we build MNL and MXL for each sub-
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choice. The utility functions for each sub-choice are defined as Eqs. (29) – (31). We assume the 

utility of work duration 𝑉𝑤𝑜𝑟𝑘,𝑖
𝐷𝑢𝑟  is considered in all sub-choice situations. 

 

𝑈𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑡𝑒 = 𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖,𝑗

𝑇 + 𝑉𝑤𝑜𝑟𝑘,𝑖
𝑆𝐷 + 𝑉𝑤𝑜𝑟𝑘,𝑖

𝐷𝑢𝑟 + 𝑖𝑗 , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑐𝑜𝑚𝑚𝑢𝑡𝑒 (29) 

𝑈𝑖𝑗
𝑙𝑢𝑛𝑐ℎ = 𝑉𝑙𝑢𝑛𝑐ℎ,𝑖,𝑗

𝐴 + 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖,𝑗
𝑇 + 𝑉𝑤𝑜𝑟𝑘,𝑖

𝐷𝑢𝑟 + 𝑖𝑗 , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑙𝑢𝑛𝑐ℎ (30) 

𝑈𝑖𝑗
𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘

= 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖,𝑗
𝐴 + 𝑉𝑤𝑜𝑟𝑘,𝑖

𝐷𝑢𝑟 + 𝑖𝑗 , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘 (31) 

 

DMNL and DMXL are in line with the basic idea of dynamic DCMs (Västberg et al., 2020), in 

which the utilities of work duration in commute and lunch choices are modified to include expected 

utilities of downstream choice situations, as illustrated in Eqs. (32) – (34). The only difference is 

that the expected utility in our study is defined as the log-sum of utilities of choosing all possible 

alternatives in downstream choice situations. To be more specific, for DMNL, we first build a MNL 

for afterwork choice and get estimated coefficients. Then we calculate the log-sum of utilities of 

choosing alternatives in the afterwork choice set, and build another MNL for lunch choice with a 

new variable called 𝐸𝑉(𝑗, 𝑙𝑢𝑛𝑐ℎ) . Finally, we calculate the log-sum of utilities of choosing 

alternatives in the lunch and afterwork choice set and build a MNL for commuting choice with a 

new variable 𝐸𝑉(𝑗, 𝑐𝑜𝑚𝑚𝑢𝑡𝑒). Similarly, we replace MNL with MXL in each stage to build DMXL. 

The reason for doing so is that the choice set varies across choice scenarios, making it hard to 

calculate multi-dimensional integrals. Though the Västberg et al. (2020)’s study overcomes this 

issue by approximating expected utility with backward induction, it’s at the cost of complicating the 

algorithm and it’s unnecessary in our case since the choice set in each sub-choice has been pre-

defined. 

 

𝑈𝑖𝑗
𝑐𝑜𝑚𝑚𝑢𝑡𝑒 = 𝑉𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖,𝑗

𝑇 + 𝑉𝑤𝑜𝑟𝑘,𝑖
𝑆𝐷 + 

𝑙𝑢𝑛𝑐ℎ
𝐸𝑉(𝑗, 𝑐𝑜𝑚𝑚𝑢𝑡𝑒) + 𝑖𝑗 ,

∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑐𝑜𝑚𝑚𝑢𝑡𝑒 
(32) 

𝑈𝑖𝑗
𝑙𝑢𝑛𝑐ℎ = 𝑉𝑙𝑢𝑛𝑐ℎ,𝑖,𝑗

𝐴 + 𝑉𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖,𝑗
𝑇 + 

𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘
𝐸𝑉(𝑗, 𝑙𝑢𝑛𝑐ℎ) + 𝑖𝑗 ,

∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑙𝑢𝑛𝑐ℎ 
(33) 

𝑈𝑖𝑗
𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘

= 𝑉𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖,𝑗
𝐴 + 𝑉𝑤𝑜𝑟𝑘,𝑖

𝐷𝑢𝑟 + 𝑖𝑗 , ∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝐽𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘 (34) 

 

Comparisons of AMXL and benchmark models are conducted in several ways: (1) basic 

statistics of model results; (2) distribution of estimated coefficients, and; (3) prediction accuracy. 

1K-SHC07 and 26K-SHC07 datasets are used as training data to build models. SHC07 is used as 

test dataset. Prediction accuracy is calculated both at individual level and aggregated level. 

Individual level accuracy is defined as the percentage of commuters whose predicted choices are the 

same as observed choices. Aggregated level accuracy is defined as the percentage overlap between 

observed alternative share and predicted alternative share.  

 In the second part, we applied these models to two scenarios. The first one is a scenario for 

comparison, in which driving durations from 7:30 a.m. to 9:30 a.m. are reduced by 10% and 20% to 

reflect the relief of peak-hour congestion. AMXL and all of the benchmark models can be used to 

predict the choice shift. The second scenario is unique to AMXL, in which utility functions derived 

from the AMXL are directly integrated into a BP problem for a restaurant to select which blocks to 

give coupons to commuters to maximize profits. The aim of this scenario is to showcase the benefits 

of deterministic estimation in AMXL in integrating with optimization models. 
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5. Experimental results 

This section presents the model results and scenario applications of AMXL and benchmark models. 

All of the experiments are conducted on a local machine with Intel(R) Core(TM) i7-10875H CPU 

and 32GB installed RAM. The Gurobi package is used to solve the QP problems. The Xlogit package 

is used to estimate discrete choice models. Codes are written in Python. 

 

5.1 Model results 

We present the model results from three aspects: (1) basic statistics; (2) coefficient distribution; and 

(3) prediction accuracy. 

 

5.1.1 Basic statistics  

 Table 7 and Table 8 summarize the basic statistics of models built with 1K-SHC07 and 26K-

SHC07, from which we can compare our AMXL model to benchmark models under the same 

context. Several interesting points were found.  

(1) The results of AMXL and benchmark models show great consistency in signs: most of the 

activity duration-related coefficients (work duration, afterwork-activity duration) have positive signs, 

and most of the trip-related coefficients (commuting time, commuting cost, work-lunch travel time) 

and activity schedule delay related coefficients (work schedule early and delay, lunch schedule early 

and delay) have negative signs.  

(2) The shared coefficient estimated by MNL and MXL varies greatly in three choice scenarios, 

while DMNL, DMXL, and AMXL gets rid of such a problem. DMNL and DMXL conduct joint 

estimation by including expected utilities of downstream choices. AMXL conduct joint estimation 

by fixing the shared coefficient in each iteration. 

(3) Although the AMXL model cannot report the standard error and significance level of coefficients 

due to its deterministic feature, it ensures coefficients that are insignificant in MNL and MXL are 

also close to 0 (the initial value), implying that these coefficients are relatively useless in utility 

maximization.  

(4) The means of coefficients in AMXL change slightly from 1K sample to 26K sample, similar to 

benchmark models. This indicates the stability of AMXL given a relatively small sample size, 

though AMXL is designed for ubiquitous datasets. 

(5) AMXL took 28.9 hours to converge given the 26K-SHC07 dataset, which is obviously higher 

than DMXL (14.1 hours in total), DMNL (13.5 hours in total), MXL (2.0 hours in total), MNL (17 

seconds in total). The longer computational time of AMXL is partly due to “for” loops solving the 

QP problems in our codes, which can be parallelized in the future. 

 

Table 7 

Basic statistics of models built with 1K-SHC07 (each entry represents the average value of one 

estimated coefficient, and the number in the parenthesis is the standard error) 

Commute choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K) AMXL (1K) 

Commuting time 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑡

) 

-8.608*** 

(0.561) 

-12.956*** 

(2.091) 

-7.373*** 

(0.469) 

-8.912*** 

(0.739) 
-4.537 

Commuting cost 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑐

) 
-- -- -- 

-2.756* 

(1.257) 
-0.314 

Commuting trip mode 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑚

) 
-- -- -- -- 0.301 

Work schedule early 

(𝑤𝑜𝑟𝑘,𝑖
𝑒

) 

-6.340*** 

(0.841) 

-11.124*** 

(2.097) 

-9.214*** 

(1.570) 

-10.573*** 

(1.682) 
-3.707 

Work schedule delay 

(𝑤𝑜𝑟𝑘,𝑖
𝑙

) 

-4.566*** 

(1.187) 
-- 

-7.262* 

(2.891) 

-7.766* 

(3.299) 
-6.460 

Late-for-work penalty -- -- -- -- -0.354 



   21 

 

(𝑤𝑜𝑟𝑘,𝑖
𝑝𝑙

) 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

20.860*** 

(3.261) 

37.962*** 

(7.838) 
-- -- 7.014 

Expected utility 

(
𝑙𝑢𝑛𝑐ℎ

) 
-- -- -- -- -- 

Converging time 1 s 2 min 27 min 29 min 54 min 

Log-likelihood value -2348.5 -2311.1 -2345.3 -2340.2 -- 

Lunch choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K) AMXL (1K) 

Lunch schedule early 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑒

) 

-0.867*** 

(0.105) 

-1.164*** 

(0.193) 

-0.840*** 

(0.020) 

-1.227*** 

(0.044) 
-3.722 

Lunch schedule delay 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙

) 

-1.759*** 

(0.129) 

-2.122*** 

(0.224) 

-1.802*** 

(0.025) 

-1.972*** 

(0.030) 
-7.103 

Eating inside the CBD 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,1

) 

-1.900*** 

(0.257) 
-- 

-1.882*** 

(0.049) 

-2.060*** 

(0.323) 
-1.180 

Eating outside the CBD 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,2

) 
-- -- -- -- -0.182 

Work-lunch travel time 

(𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡

) 

-0.474*** 

(0.073) 

-1.179** 

(0.434) 

-0.330*** 

(0.018) 

-0.324*** 

(0.045) 
-1.165 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

1.661** 

(0.533) 

-4.233*** 

(0.083) 
-- -- 7.014 

Expected utility 

(
𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘

) -- -- 
0.854*** 

(0.111) 

1.008** 

(0.321) 
-- 

Converging time 1 s 2 min 4 min 5 min 54 min 

Log-likelihood value -1841.6 -1807.6 -1836.2 -1820.1 -- 

Afterwork choice MNL (1K) MXL (1K) DMNL (1K) DMXL (1K) AMXL (1K) 

Afterwork-activity 

duration (𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

5.568*** 

(0.476) 
-- 

6.398*** 

(0.096) 

6.289*** 

(0.656) 
3.112 

Work-afterwork 

interaction (𝑖𝑛𝑡𝑒𝑟,𝑖
𝑑𝑢𝑟

) 

10.393*** 

(0.903) 

4.515*** 

(0.500) 

11.892*** 

(0.182) 

16.429*** 

(1.399) 
3.568 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

1.973*** 

(0.164) 

-0.497*** 

(0.024) 

2.277*** 

(0.033) 

1.758*** 

(0.212) 
7.014 

Converging time 1 s 1 min 1 s 1 min 54 min 

Log-likelihood value -1817.2 -1797.7 -1817.2 -1792.5 -- 

Note: ***p-value<0.001, **p-value<0.01, *p-value<0.05, all of the observed variables were normalized 

before modeling 

 

Table 8 

Basic statistics of models build with 26K-SHC07 (each entry represents the average value of one 

estimated coefficient, and the number in the parenthesis is the standard error) 

Commute choice MNL (26K) MXL (26K) DMNL (26K) DMXL (26K) AMXL (26K) 

Commuting time 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑡

) 

-8.877*** 

(0.110) 

-8.852*** 

（0.192） 
-9.650*** 

(0.116) 

-10.399*** 

（0.148） 
-5.407 

Commuting cost 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑐

) 
-1.005*** 

(0.185) 

-4.212*** 

(0.368) 

-0.581** 

(0.188) 

-1.230*** 

(0.214) 
-0.296 

Commuting trip mode 

(𝑐𝑜𝑚𝑚𝑢𝑡𝑒,𝑖
𝑚

) 
0.374* 

(0.156) 

-2.124*** 

(0.295) 

0.678*** 

(0.159) 
-- 0.246 

Work schedule early 

(𝑤𝑜𝑟𝑘,𝑖
𝑒

) 
-6.933*** 

(0.165) 

-10.913*** 

(0.366) 

-11.228*** 

(0.323) 

-12.139*** 

(0.344) 
-4.315 

Work schedule delay 

(𝑤𝑜𝑟𝑘,𝑖
𝑙

) 

-5.324*** 

(0.335) 

-5.233*** 

(0.500) 

-10.836*** 

(0.693) 

-11.673*** 

(0.779) 
-7.691 

Late-for-work penalty 

(𝑤𝑜𝑟𝑘,𝑖
𝑝𝑙

) 
-- -- -- -- -0.322 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

22.364*** 

(0.632) 

36.327*** 

(1.357) 
-- -- 9.269 

Expected utility 

(
𝑙𝑢𝑛𝑐ℎ

) 
-- -- 

3.494*** 

(0.140) 

1.983*** 

(0.077) 
-- 

Converging time 7 s 89 min 13.0 hours 13.5 hours 28.9 hours 
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Log-likelihood value -61184 -60585 -60862 -60293 -- 

Lunch choice MNL (26K) MXL (26K) DMNL (26K) DMXL (26K) AMXL (26K) 

Lunch schedule early 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑒

) 
-0.840*** 

(0.020) 

-1.234*** 

(0.065) 

-0.840*** 

(0.020) 

-1.227*** 

(0.044) 
-3.761 

Lunch schedule delay 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑙

) 

-1.802*** 

(0.025) 

-2.068*** 

(0.079) 

-1.802*** 

(0.025) 

-1.972*** 

(0.030) 
-7.147 

Eating inside the CBD 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,1

) 

-1.927*** 

(0.048) 

-2.719*** 

(0.747) 

-1.882*** 

(0.049) 

-2.060*** 

(0.323) 
-1.197 

Eating outside the CBD 

(𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,2

) 
-- -- -- -- -0.012 

Work-lunch travel time 

(𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡

) 

-0.429*** 

(0.014) 

-2.776*** 

(0.805) 

-0.330*** 

(0.018) 

-0.324*** 

(0.045) 
-1.002 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

1.421*** 

(0.099) 

12.129** 

(3.912) 
-- -- 9.269 

Expected utility 

(
𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘

) -- -- 
0.854*** 

(0.111) 

1.008** 

(0.321) 
-- 

Converging time 7 s 26 min 30 min 35 min 28.9 hours 

Log-likelihood value -48875 -48283 -48844 -48185 -- 

Afterwork choice MNL (26K) MXL (26K) DMNL (26K) DMXL (26K) AMXL (26K) 

Afterwork-activity 

duration (𝑎𝑓𝑡𝑒𝑟𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

6.398*** 

(0.096) 

8.415*** 

(0.005) 

6.398*** 

(0.096) 

6.289*** 

(0.656) 
4.502 

Work-afterwork 

interaction (𝑖𝑛𝑡𝑒𝑟,𝑖
𝑑𝑢𝑟

) 

11.892*** 

(0.182) 

16.450*** 

(0.019) 

11.892*** 

(0.182) 

16.429*** 

(1.399) 
3.106 

Shared coefficient: 

Work duration (𝑤𝑜𝑟𝑘,𝑖
𝑑𝑢𝑟

) 

2.277*** 

(0.033) 

2.908*** 

(0.001) 

2.277*** 

(0.033) 

1.758*** 

(0.212) 
9.269 

Converging time 3 s 7 min 3 s 7 min 28.9 hours 

Log-likelihood value -46156 -45753 -46156 -45540 -- 

Note: ***p-value<0.001, **p-value<0.01, *p-value<0.05, all of the observed variables were normalized 

before modeling 

 

5.1.2 Distribution of individual-specific coefficients 

The AMXL model with 26K-SHC07 dataset converged at the 84th iteration of Algorithm 2 (Fig. 5 

(a)-(c)), resulting in calibrated coefficients per individual that are empirically derived, revealing 

them to be neither Gumbel nor Gaussian. Instead, the empirical distribution seems to be a 

combination of a constant (assumed in MNL, DMNL) and Gaussian distribution (assumed in MXL, 

DMXL).  

According to Fig. 5 (d)-(f), coefficients can be divided into three categories: (1) highly-

concentrated coefficients with non-zero mean values, such as commuting time (t_commute), work 

schedule delay (l_work), lunch schedule delay (l_lunch). These coefficients are concentrated around 

their mean values with small variations, reflecting homogeneous tastes among individuals; (2) even-

distributed coefficients, such as work duration (dur_work), afterwork-activity duration 

(dur_afterwork), work schedule early (e_work), lunch schedule early (e_lunch). These coefficients 

have larger variations, reflecting heterogeneous tastes among individuals, and; (3) highly-

concentrated coefficients with mean values close to zero, such as late-for-work penalty (pl_work), 

eating outside the CBD (des2_lunch). These coefficients imply that individuals are insensitive to 

related variables, and they are also insignificant in benchmark models. To this end, AMXL provides 

a flexible approach for modelers to capture inter-individual homogeneities and heterogeneities, 

which are infeasible in DCMs and dynamic DCMs.  
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Fig. 5. Fixed-point prior in each iteration and distribution of estimated coefficients. In (a)-(c), x-

axis is the number of iterations, y-axis is the value of fixed-point prior 0. In (d)-(f), x-axis is the 

value of estimated coefficients, y-axis is the probability density. 

 

Specifically, Fig.6 presents the probability density function (PDF) of three selected coefficients: 

(1) a highly-concentrated coefficient, commuting time, (2) an even-distributed coefficient, work 

schedule early, and (3) the shared coefficient, work duration. Interestingly, MXL reported three 

different PDFs of work duration in commute, lunch, and afterwork choice, while the PDF of work 

duration obtained by AMXL is in the middle of them. One intuition from the results is that the shared 

coefficient might be a combination of coefficients in a series of models estimated separately.  

 

 
Fig. 6. Probability density function (PDF) of selected coefficients. In (a)-(c), x-axis is the value of 

estimated coefficients, y-axis is the probability density. 

 

Moreover, for these even-distributed coefficients, we aggregate individuals into community 

tracts according to their home location and calculate the mean values of the estimated coefficients 

in each tract. Fig. 7 presents the spatial distribution of selected coefficients, which is infeasible for 

DCMs  and dynamic DCMs to capture. The spatial distribution of coefficients reveals the impacts 

of the transit system and jobs-housing balance on individual tastes: 

(1) The coefficient of mode preference is positive (prefer transit) in communities with better transit 

accessibility, and negative (prefer driving) in suburbs where metro lines cannot cover. 

(2) The negative utilities of starting work earlier than schedule are larger in communities closer to 

the CBD, indicating that individuals living nearby the CBD dislike arriving early for work while 

individuals living in suburbs can better accept it considering the uncertainty of the travel time. 
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(3) The positive utilities of work duration are larger in communities farther way from the CBD, 

indicating that individuals living in suburbs put greater emphases on their working time, probably 

due to the longer time spent on commuting. 

 

 
Fig. 7. Spatial distribution of selected coefficients. 

 

5.1.3 Prediction accuracy 

We compare the prediction accuracy of AMXL and benchmark models at the aggregated level and 

individual level. Aggregated-level predictions of each alternative are made by summing up 

individuals’ probabilities of choosing that alternative (for AMXL we obtain probabilities by 

applying softmax function to retrieved utilities). Individual-level predictions are made by selecting 

the alternative with the highest utility retrieved from the models. Moreover, we use 26K-SHC07 

datasets to calculate in-sample accuracy and use SHC14 dataset to calculate out-of-sample accuracy. 

Table 9 shows a comparison of prediction accuracy. We find that the in-sample accuracy of AMXL 

is generally higher than DCMs and dynamic DCMs, especially at the individual level. This is 

because DCMs and dynamic DCMs find coefficients to maximize the overall likelihood function, 

while AMXL is fitted via IO to each individual. Moreover, the accuracy of MNL and MXL drops 

significantly when it comes to the whole-day schedule prediction, owing to the ignorance of inter-

relationship between sub-choice scenarios. Though DMNL and DMXL consider expected utilities 

of downstream choices, the improvement on prediction accuracy is trivial. That is probably because 

DMNL and DMXL link sub-choices through pre-assumed conditional probability, which is hard to 

fit an empirical joint distribution. In contrast, AMXL considerably improves the in-sample accuracy 

of whole-day schedule prediction, from 9.71% to 80.89% at the aggregated level and from 2.12% to 

47.18% at the individual level. 

 

Table 9 

In-sample and out-of-sample prediction accuracy 

 
Commute choice 

(14 alternatives) 

Lunch choice 

(15 alternatives) 

Afterwork choice 

(7 alternatives) 

Whole-day schedule 

(1,470 alternatives) 

In-sample, aggregated-level accuracy 

MNL 81.40% 85.53% 92.88% 7.50% 

MXL 82.05% 89.68% 91.55% 7.37% 

DMNL 82.81% 85.53% 92.90% 7.47% 

DMXL 82.61% 85.97% 91.55% 9.71% 

AMXL  89.61% 86.71% 98.87% 80.89% 

In-sample, individual-level accuracy 

MNL 13.70% 31.16% 35.76% 1.37% 

MXL 13.69% 32.75% 35.76% 1.65% 
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DMNL 18.21% 32.21% 35.76% 1.97% 

DMXL 17.85% 34.45% 34.66% 2.12% 

AMXL 77.16% 78.43% 80.93% 47.18% 

Out-of-sample, aggregated-level accuracy 

MNL 82.50% 89.92% 89.75% 5.21% 

MXL 81.72% 93.08% 94.81% 5.87% 

DMNL 83.89% 89.90% 89.68% 5.62% 

DMXL 83.51% 90.11% 93.16% 8.66% 

AMXL 75.79% 86.73% 96.07% 61.68% 

Out-of-sample, individual-level accuracy 

MNL 13.53% 27.93% 28.99% 1.06% 

MXL 13.62% 32.02% 28.99% 1.39% 

DMNL 18.63% 27.93% 28.99% 1.60% 

DMXL 18.30% 32.02% 28.90% 1.69% 

AMXL 30.74% 24.25% 37.71% 4.33% 

Note: In-sample accuracy is calculated using 26K-SHC07 dataset. Out-of-sample accuracy is calculated 

using SHC14 dataset. 

 

 When it comes to out-of-sample accuracy, however, the performance of AMXL at the 

individual level drops significantly, indicating a high risk of overfitting though we have already 

added random items to avoid it. Also, AMXL does not outperform benchmark models in all sub-

choice scenarios. For instance, AMXL obtains an out-of-sample accuracy of 86.73% at the 

aggregated level and 24.25% at the individual level, which is lower than the best performance in 

benchmark models (93.08% and 32.02%, respectively). To further examine how overfitting happens 

in our experiments, we first check individual’s schedule change from SHC07 dataset to SHC14 

dataset, and then plot the prediction results of commute choice and lunch choice. Fig. 8 presents 

change of commute and lunch choice between two different weekdays. A relatively clear diagonal 

only exists in Fig.8 (a), indicating that commute choice is more stable than lunch choice among 

different weekdays. In general, 51.51% individuals changed their commute choice while 77.87% 

individuals changed their lunch choice, where a majority of them set their activity schedule half an 

hour earlier/later. Considering traffic conditions and restaurants are unlikely to change greatly 

between two adjacent Tuesdays, the changed choice indicates the variability of individual 

preferences among different days, which brings high overfitting risk to models fitting one 

observation per individual. Fig.9 and Fig.10 show more details of commute and lunch choice 

prediction, from which we can find a more obvious overfitting in lunch choice than commute choice, 

probably because individuals’ preference for lunch activities are more flexible.  

 

 
Fig. 8. Comparison of commute and lunch choice on two different weekdays. x-axis is the 

alternative on 2019 May 7th, y-axis is the alternative on 2019 May 14th, the value in each cell is 

normalized by row. 
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Fig. 9. Commute choice predicted by MNL, DMXL, and AMXL. In (a)-(c), x-axis is the 

alternative, y-axis is the percentage of individuals choosing the alternative. (d)-(f) are confusion 

matrixes. 

 

 
Fig. 10. Lunch choice predicted by MNL, DMXL, and AMXL. In (a)-(c), x-axis is the alternative, 

y-axis is the percentage of individuals choosing the alternative. (d)-(f) are confusion matrixes. 
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Notwithstanding overfitting issues at the individual level, AMXL also presents several 

advantages. (1) AMXL brings a considerable improvement on predicting choice dimensions with 

stable preferences such as mode choice. For instance, if an individual chose to drive and depart 

during 7:00 a.m.-7:30 a.m., the most common mistake made by AMXL is to predict “Driving, 6:30-

7:00”. From Fig.9 (d)-(f) we can find a vague diagonal in the confusion matrix of AMXL, while 

confusion matrixes of MXL and DMXL are chaotic. (2) AMXL provides more information than 

MXL and DMXL in choice dimensions with flexible preferences. From Fig.10 (d)-(f) we can find 

MXL and DMXL are similar to constant models, predicting that all individuals will choose 

“Workplace, 12:00-12:30”, while AMXL gives a time period from 11:00 to 12:30. Though 

additional information do not bring higher performance in our case, it might help given a dataset 

with balanced label and personal attributes. (3) AMXL is meaningful in the whole-day activity 

schedule prediction at least at the aggregated-level, considering its high accuracy of 61.68% 

compared with 8.66% in DMXL. To this end, we should be careful about the practical applications 

of AMXL: (1) It can be applied to predicting whole-day activity schedule at the aggregated level; 

(2) At the individual level, its current form is only valid in predicting choice dimensions with stable 

preferences; and (3) To predict individual-level choice dimensions with flexible preferences, AMXL 

should be extended to fit multi-day observations per individual. We share our thoughts of the 

extended form in the final section. 

 

5.2 Scenario applications 

We design two scenarios in this section. The first scenario is to compare the predictions of AMXL 

and benchmark models. The second scenario is to showcase the capability of AMXL in system 

design and revenue management. 

5.2.1 Scenario1: Peak-hour congestion 

In this scenario, we decrease the driving time within 7:30 a.m.-9:30 a.m. by 10% and 20%, 

simulating a relief of the peak-hour congestion. We compare the prediction of MXL (the worst model 

in benchmarks), DMXL (the best model in benchmarks), and AMXL. Fig. 9 shows the results. 

Generally, individuals changed their mode choice from transit to driving during peak hour. The 

proportion of driving in peak-hour increased by 3% and 7% after the driving time decreased by 10% 

and 20%.  

Moreover, it is interesting to compare the prediction results of benchmark models and AMXL: 

time-schedule shift accounts for a larger proportion in the choice shift predicted by AMXL, mode 

shift is larger in MNL, DMXL is in the middle of MNL and AMXL. To be specific, the choice shift 

predicted by AMXL comes from individuals who previously departed slightly earlier or later than 

the peak hour to avoid congestion. On the other hand, individuals choosing other alternatives 

generally decreased in the prediction of MNL and DMXL. To this end, the prediction of AMXL is 

slightly different from benchmark models, but is reasonable from a behavioral perspective. 
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Fig. 11. Percentage of choice shift after the peak-hour driving time decreased by 10% and 20%. In 

(a)-(b), x-axis is the alternative, y-axis is the percentage change of commuters choosing the 

alternative. 

 

 

5.2.2 Scenario2: Sending lunch coupons to attract commuters 

This scenario is to check the compatibility of AMXL with optimization models applicable to system 

design and revenue management. Let us assume that a new restaurant will be built in a specific 

street-block in the CBD, whose location is shown in Fig. 10. To attract commuters, the restaurant 

manager tends to send lunch coupons to commuters in the CBD. The coupon is a kind of limited 

resource, and they can only be sent to a finite number of street blocks in the CBD considering the 

labor cost. The manager needs to decide which street blocks to send coupons to maximize profits. 

  

 

 
Fig. 12. A summary of optimal solutions given different K and B. 

 

This is a typical binary programming (BP) problem in which the “profits” can be calculated 

from our proposed AMXL model if the manager had access to this data. The BP problem can be 

formulated as Eqs. (35) – (39). 

 

max𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐80𝑥80 (35) 

subject to:  

𝑐𝑏 = ∑(𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡 𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖 + 𝑙𝑢𝑛𝑐ℎ,𝑖

𝑑𝑒𝑠,1
𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖

1 )

𝑖𝑃𝑏

, 𝑏 = 1, . . . ,80 
(36) 

|𝑃1|𝑥1 + |𝑃2|𝑥2 + ⋯+ |𝑃3|𝑥80 ≤ 𝐵 (37) 
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𝑥1 + 𝑥2 + ⋯+ 𝑥80 ≤ 𝐾 (38) 

𝑥1, 𝑥2, … , 𝑥80  ∈ {0,1} (39) 

 

where 𝑥1, 𝑥2, … , 𝑥80 are binary decision variables indicating whether each of the 80 street-blocks in 

total is selected to send coupons. The coefficients of these decision variables in the objective function 

are directly calculated by an estimated AMXL. Specifically, Eq. (36) defines the profit obtained by 

sending coupons to street block 𝑏, 𝑐𝑏, which can be reflected by the summation of increased utilities 

derived from commuters having lunch at the restaurant with coupons. For each commuter 𝑖 working 

in street-block 𝑏 (𝑖 ∈ 𝑃𝑏), we assume having lunch with coupons increases the utility from negative 

to 0 (the same as the reference group, having lunch in the workplace), by setting 𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
1  to -1 

(hence 𝑙𝑢𝑛𝑐ℎ,𝑖
𝑑𝑒𝑠,1

𝑑𝑒𝑠𝑙𝑢𝑛𝑐ℎ,𝑖
1  is positive). In addition, having lunch outside the workplace will cost a 

travel time distance between the workplace and the lunch spot, whose negative utility is denoted as  

𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖
𝑡 𝑡𝑤𝑜𝑟𝑘−𝑙𝑢𝑛𝑐ℎ,𝑖 . Eq. (37) ensures that the total coupons sent out is no more than a 

budget 𝐵, and Eq. (38) ensures that the total selected street-blocks is no more than 𝐾. 

 Fig. 10 summarizes the optimal solutions of this BP problem given different 𝐾 and 𝐵. When 

𝐾 = 5 and 𝐵 = 2,000, five street blocks surround the restaurant are selected, and the total increased 

utility equals 1931.27. When 𝐾 = 10 and 𝐵 = 5,000, the optimal solution suggested to select larger 

street blocks in the south of the restaurant (limited by 𝐾), and the total increased utility equals 

3620.65. When 𝐾 = 20 and 𝐵 = 5,000, the model chooses relatively small street blocks (limited by 

𝐵) and increases the objective value to 4317.54, which is a 19.25% increase on the base of the second 

strategy.  

 

6. Conclusion 

Demand for agent-based modeling is on the rise, and understanding the joint activity scheduling 

choice requires innovative methods to deal with big datasets and large choice sets. We propose an 

agent-based mixed-logit model (AMXL) combined with an inverse optimization (IO) estimation 

method, an agent-level machine learning method that is theoretically constituent with a utility-

maximizing mixed logit model framework. This method is designed for a ubiquitous dataset 

representing a whole population which is possible with big data. It contributes to the study field by 

overcoming three limitations of conventional DCMs given ubiquitous datasets. 

The methodological contributions of this study are as follows. First, we decompose the whole-

day scheduling choice into a series of inter-related sub-choices and jointly estimated by the AMXL 

model through fixing shared coefficients. By doing this, we reduce the size of the choice set from a 

product of alternatives in each choice dimension to a summation of them. Second, AMXL provides 

individual-specific estimation, allowing modelers to obtain empirical distributions of coefficients 

given observation datasets. The experimental results based on 26,149 samples show that empirical 

distributions of coefficients are neither fixed-point nor Gaussian. Instead, it seems to be a 

combination of them. These two improvements increase the prediction accuracy from 8.66% 

(DMXL) to 61.68% (AMXL). Third, the deterministic estimation in AMXL provides linear demand 

functions that can be integrated into optimization models. Estimated coefficients in AMXL can be 

directly used to calculate coefficients in an optimization problem, which is more efficient than 

relying on simulation. 

The overfitting issue is essential to the value of AMXL model. Our experimental results indeed 

show evidence of overfitting, which is more obvious in choice dimensions with flexible preferences 

(e.g., time to have lunch and lunch location). This is because AMXL cannot capture the intra-

individual heterogeneity on multiple days. Nevertheless, AMXL is still useful in predicting the 

whole-day schedule at the aggregated level and predicting choice dimensions with stable preferences 

at the individual level. Actually, the overfitting issue can be reduced by formulating multiday inverse 

utility maximization problems, in which coefficients are no longer perturbed to fit one observation 
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per individual. Instead, multiday observations per individual can be grouped together to estimate 

individual-specific coefficients. This can be fulfilled by modifying the formulation of IO at the 

beginning, such as relaxing the constraints of utility ranking and include a log-likelihood-formed 

item into the objective function. Our future study will focus on the extended AMXL model that 

considers both intra- and inter-individual heterogeneity. 

Besides the overfitting issue, there are many new research opportunities and questions to be 

addressed. While the study looks only at commuters’ work, lunch, and afterwork activities, the 

model can be customized to examine more diverse activity schedules specific to population 

segments. Also, information for economic interpretation obtained by AMXL and DCMs, such as 

elasticity, marginal rate of substitution, and change of social welfare, should be compared in detail. 

Last but not least, AMXL takes a much longer time to converge compared with MNL and MXL. 

Though paralleling computation and pre-trained priors can help to reduce the time cost, a more 

efficient way might be first categorizing individuals into groups and estimating a set of coefficients 

for each group after that. As discussed in Section 3.2.1, agents can also represent segments of the 

population, in which multiple observations from the same segment would share the same set of 

coefficients. This can make the proposed method applicable to a much wider set of choice modeling 

scenarios, such as simultaneously estimating a large set of segment models to represent a whole 

population. Estimating coefficients at a segment level by constraining the agents sharing the same 

segment will be another direction of our future study. 
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