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Kinesthetic (or embodied) representations help students build intuition and deep understanding of

concepts. This paper presents a series of kinesthetic activities for a spins-first undergraduate

quantum mechanics course that supports students in reasoning and developing intuition about the

complex-valued vectors of spin states. The arms representation, used in these activities, was

developed as a tangible representation of complex numbers: Students act as an Argand diagram,

using their left arm to represent numbers in the complex plane. The arms representation is versatile

and can be expanded to depict complex-valued vectors with groups of students. This expansion

enables groups of students to represent quantum mechanical state vectors with their arms. We have

developed activities using the arms representation that parallel the progression of a spins-first

approach by starting with complex numbers, then representing two- and three-state systems,

considering time-dependence, and, eventually, extending to approximate wavefunctions. Each

activity illustrates the complex nature of quantum states and provides a tangible manipulative from

which students can build intuition about quantum phenomena.# 2022 Published under an exclusive license
by American Association of Physics Teachers.

https://doi.org/10.1119/5.0073946

I. INTRODUCTION

A particularly challenging aspect of quantum mechanics is
the fundamental role complex numbers play in concepts,
mathematics, and geometry.1,2 In a spins-first approach,3–5

also known as the Stern–Gerlach-first approach,6 students are
introduced to a finite Hilbert space for spin systems and
explore quantum mechanics through Stern–Gerlach experi-
ments. This spins-first approach is increasing in popularity
and has a distinct advantage, compared to the wavefunction-
or position-first approach, of providing a conceptually rich
introduction to the quantum postulates without requiring the
advanced mathematics needed to solve differential equations.

One noteworthy mathematical trade-off of the spins-first
approach is that students work with the complex nature of
quantum states right at the start of the course when they rep-
resent quantum spin states as complex-valued vectors.
Matrix notation and bra-ket notation are used from the begin-
ning. The traditional mathematics courses required for
physics majors (i.e., calculus, infinite series and sequences,
differential equations, and linear algebra) may not provide
students with the in-depth understanding of complex num-
bers necessary to parse the significance and geometry of
these complex vector components.7 To help students build
intuition concerning these mathematical objects, many visu-
alization options have been proposed.8–16 Although these
visualizations support aspects of students’ reasoning, they
may impose additional burdens on (1) students (to coordinate
multiple representations for a single quantum state8,9 or to
parse complex nested diagrams14), (2) educators (to write,
maintain, and acclimate to new textbooks15,16), and (3) class-
room technology (to generate higher dimensional graphs,
which is resource-intensive10–13). Despite strengthening
student understanding, these visualizations still require
students to navigate coordinating between representations
and, in turn, further convolute the already abstract concept of
quantum states. In an effort to lessen the abstraction and

highlight key geometric relationships, the arms representation
was designed as a tangible metaphor for quantum states.17

In this paper, we present the arms representation, a kines-
thetic, Argand-based representation for complex-valued
vectors, and the accompanying arms activities, a cluster of
classroom exercises to support a spins-first approach to
teaching quantum mechanics. These are instructor-guided,
whole-class, active-engagement activities where students
stand up and use their left arms to represent complex num-
bers. Arms was designed to develop student understanding
while acting as a real-time formative assessment. Arms has
the distinct advantage of not requiring specialized equipment
or technical training.
The arms representation is a kinesthetic representation

where each student embodies a complex number, and a
group of students collaboratively represents quantum states.
Researchers have demonstrated that student learning in
physics can be enhanced by integrating classroom activities
that provide physical experience with physics content, acti-
vate sensorimotor brain systems, or support tactile knowl-
edge building.18–22 Many kinesthetic physics activities focus
on kinematics broadly,20–28 but some have also been devel-
oped for other or more focused physics concepts: linear and
angular momentum,19,27 projectile motion,28 electric field,29

centripetal force,30 astronomy,31–33 Newton’s second law,34

torque,35 solar cells,36 energy,37–39 mechanics,40 electricity
and magnetism,41 wave dynamics,42 and more.43,44

In addition to being kinesthetic, the arms activities are
social active-engagement activities that are often at odds
with students’ expectations of a quantum mechanics class. A
meta-analysis of 225 studies on STEM classrooms found
that active-engagement activities, like arms, improve student
performance.45 Additionally, activities that students do not
expect to happen in class often lead to a ripple of giggles,
and a review of 40 years of studies found that infusing clas-
ses with positive humor bolsters engagement and affect.46

Finally, unlike many of the aforementioned, primarily 2D,
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quantum mechanics representations, the arms representation
takes advantage of all three spatial dimensions, involves
multiple students, and uses time effectively to convey the
high dimensionality of the quantum systems.

In this paper, we present how we have used arms in a
junior-level, spins-first quantum mechanics course to sup-
port an array of topics, starting with complex numbers,
then introducing two- and three-state systems, considering
time-dependence, and, eventually, extending to approxi-
mate wavefunctions.47 We begin with an introduction to
the arms representation (Sec. II). Then, we provide in-
depth descriptions of five activities (Sec. III). In Sec. IV,
we discuss how these activities are integrated into the
course and report informal observations of student engage-
ment and learning with this method. We conclude the

paper with a discussion of the advantages of the arms
activities and provide implementation suggestions and
additional resources (Sec. V).

II. ARMS REPRESENTATION OVERVIEW

In its simplest form, the arms representation consists of
one person’s left arm embodying a complex number, as can
be seen in Fig. 1(a). The arms representation is essentially an
embodied Argand diagram, that is, a complex plane. The ori-
gin is at the shoulder; the real axis is parallel to the ground,
with positive numbers in front of the person; the imaginary
axis is perpendicular to the ground with positive values
above the shoulder, and the left fist then represents a com-
plex number in the complex plane. The left arm is preferred

Fig. 1. Stick figure examples of how students can use the arms representation to represent various quantum mechanics phenomena. For (b)–(d), the student in

pink (at the back) represents the j þ iz coefficient, and the student in blue represents the j � iz coefficient. (a) A student representing z ¼ aþ bi with the arms

representation superimposed to an Argand diagram. (b) Two students working together to represent the spin-1/2 quantum state jWi ¼ 1ffiffi
2

p eip=4j þ iz
þ 1ffiffi

2
p e�ip=4j � iz. (c) Two students working together to represent a state with a relative phase of p=2. (d) Representative snapshots in time, of two students

working together to represent the spin 1/2 quantum state jWðtÞi ¼ e�iptðjþiz þ eip=2j � izÞ evolving with time. (e) Infinitely, many students infinitesimally

close together using the arms representation to approximate a wavefunction in the position basis.
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to the right, so that the person embodying the number sees a
correctly oriented Argand diagram.

Figure 1(a) outlines three of the symbolic notations we
use to represent complex numbers. The rectangular form rep-
resents the complex number (z) as the sum of a real compo-
nent (a) and an imaginary component (b). In the exponential
form, z is expressed as its norm (jzj) multiplied by a complex
phase factor, eih, where h is the angle that the complex num-
ber makes with the positive real axis. The polar form corre-
sponds to z ¼ jzj cos hþ ijzj sin h. Each of these notations
can be related to the arms representation. The magnitude
(jzj) is represented by the length of the arm, h is the angle
between the arm and horizontal, and a (i.e., jzj cos h) and b
(i.e., jzj sin h) are the projections onto the real and imaginary
axes, respectively.

The arms representation is versatile and scalable. It can be
expanded to represent n-dimensional complex-valued vec-
tors by having n partners use their left arm to each represent
one of the components of the vector. Moreover, participants’
arms can be rotated in time to represent time-dependent
complex-valued vectors.

III. ACTIVITIES USING ARMS

In this section, we discuss some of the active-engagement
classroom activities we have designed using the arms repre-
sentation. We present five instructor-guided activities: com-
plex number (Sec. IIIA), spin-1=2 quantum state (Sec. III B),
relative and overall phase (Sec. III C), time evolution (Sec.
IIID), and going from spin to wavefunction (Sec. III E). For
each activity, we outline the goals and prerequisite knowl-
edge, and we discuss how we use the activity in our course.

We note that our descriptions of the activities make them
seem highly scripted. In fact, we advocate that the instructor
be flexible and responsive to what students are doing in the
classroom. We consider the versions of the activities pre-
sented here akin to platonic ideals rather than a record of
what occurred in any actual class. Our goals are to show the
general scope and sequence of each activity as well as sug-
gest some prompts that instructors may use. We also provide
notes about how activities can be modified and share anec-
dotes from our classrooms. This paper is intended to give
potential adapters a flavor of these activities, but we strongly
encourage educators to read the instructor’s guides on our
website for more detailed implementation guidance and
updates as we modify and refine the activities.48 Tables I–V
outline the approximate duration and central goal for each
activity. These durations reflect the time students spend
engaged in the arms representation. In Sec. IV, we discuss
how the activities can be integrated into a spins-first quantum
mechanics course and provide insights into how students
interact and learn during these activities. This course utilizes
McIntyre’s quantum mechanics: A paradigms approach text-
book.4 Also, an outline of the learning goals associated with
each activity can be found in the supplementary material.51

A. Complex number activity

During the complex number activity, each student is asked
to represent a series of complex numbers with their arm. We
introduce the arms representation to students for the first
time at the beginning of the activity. Students should already
be familiar with complex numbers and Argand diagrams. In
our course, this activity is done during the first few days of

class. Figure 1(a) and Table I provide an overview of this
activity.
The instructor begins by reminding students of the rectan-

gular and exponential forms used to represent a complex
number, and by drawing an Argand diagram on the board.
Students are then asked to stand and face sideways, so that
their left shoulder points towards the board. By orienting
them in this way, when a student sweeps out the complex
plane with their arm, their complex plane aligns with the
Argand diagram on the board. The arms representation is
then introduced. The instructor begins by outlining the basics
of arms by acting out and describing the representation:

“Swing your left arm in a circle. You just swept
out the complex plane.”

“Put your left arm straight forward, parallel to the
ground. This is the positive, real axis.”

“Put your left arm straight upward, perpendicular
to the ground. This is the positive imaginary axis.”

The instructor then asks the students to practice sweeping
out the complex plane with their arm. We have found it nec-
essary to remind students to rotate their shoulder as their arm
goes behind them in order to avoid injury.
After introducing students to the basics of the arms repre-

sentation, the instructor asks them to represent a specific com-
plex number given in a form the students are familiar with,

Table I. Overview of the complex number activity.

Central prompt Represent the complex number 1þ i with your arms

Duration 10min

When used Week 1, after complex numbers in rectangular

and exponential forms have been introduced

Topics to review Complex numbers

Argand diagrams

Key concepts Forms of complex numbers

Arms representation

Related homework Circle trig complexa

Phaseb

aFind this homework problem in the supplementary material.51

bFind this homework problem in the supplementary material.51

Table II. Overview of spin-1/2 quantum state activity.

Central prompt Working in pairs, represent

jWi ¼ 1ffiffi
2

p eip=4j þ iz þ 1ffiffi
2

p e�ip=4j�iz
with your arms

Duration 5min

When used Week 2, after students have been introduced to

the Sz basis, knowing that the expansion coeffi-
cients are complex numbers, and know how to

represent the eigenstates of Sx and Sy in the Sz
basis

Topics to review Arms representation basics

Complex-valued vectors

Key concepts Components of quantum state are complex

numbers

How to represent common spin-1/2 quantum

states

Textbook section (s) McIntyre 1.2 and 1.3

Related homework Unknown spin-1/2 briefa

aFind this homework problem in the supplementary material.51
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often rectangular form, e.g., z ¼ 1þ i as seen in Fig. 1(a).
Occasionally, the instructor will ask students to close their
eyes before representing the complex number, so that they will
not be influenced by what other students are doing.

As students represent complex numbers with arms, the
instructor leads a whole-class discussion highlighting some
geometric elements of complex numbers, such as the real and
imaginary components as projections onto the respective axes.
When asked to represent a complex number with a magni-
tude other than 1, students will often attempt to stretch their
arm (for jzj > 1) or bend their elbow (for jzj < 1). This
quickly leads to a discussion of how arms poorly represents
the norm of a complex number, since an arm has a fixed
length. We encourage students to think of their arm as an
object of whatever length it needs to be. Although the arms
representation is not suited to illustrate the magnitude of
complex numbers, it allows students to depict approximate
phase angles. Note that bending one’s arm to account for the
magnitude jzj makes these angles more difficult to visualize.

Once students are comfortable representing a complex
number in arms from an instruction given in a familiar sym-
bolic form, the instructor may use prompts given in other
symbolic forms such as rectangular, polar, and exponential
(see Fig. 1(a)). Each new symbolic form should include a

whole-class discussion of the geometric elements. In partic-
ular, relating the phase angle to the exponent of the expo-
nential form gives a tangible meaning to h. This can lead to
an additional discussion about how multiplying by a com-
plex phase factor causes a complex number to rotate in the
complex plane. For this, the instructor should encourage
students to rotate their arm as h increases and to practice
multiplying a given complex number by a complex phase
factor.
The complex number activity is also particularly well

suited for discussing complex conjugation. The instructor
incites the students to represent a complex number and its
complex conjugate. The instructor then facilitates a discus-
sion of how, symbolically, complex conjugation corresponds
to a change of sign in of the imaginary number, while, geo-
metrically, it is a reflection over the real axis.

1. Noteworthy anecdotes about this activity

This activity typically involves a lot of giggling and a bit
of disruption to class. We view this as a good thing. Students
are taken off guard by the kinesthetic nature of the activity
that often falls outside the realm of what they consider
“doing physics.” We have found that students adjust quickly,
and that this activity helps set the tone for other active
engagement activities they encounter in our courses. Even
the most stubborn students typically realize that our “silly”
activities are conceptually rigorous and buy into them. One
tip for building this buy-in is for the instructor to fully com-
mit; let it be silly and fun while also focusing on the
concepts.

B. Spin-1=2 quantum state activity

The spin-1=2 quantum state activity builds off of the com-
plex number activity by having students work in pairs to rep-
resent the complex-valued vectors of spin-1/2 quantum
states. Before this activity, students should be familiar with
quantum mechanical state vectors. They should also know
that the eigenstates for the z-component of the spin of a
spin-1=2 particle operator Sz are jþiz and j�iz (and jþix
and j�ix are those of the Sx operator, and j þ iy and j � iy
are those of the Sy operator), and that ðjþiz; j�izÞ;
ðjþiy; j�iyÞ, or ðjþix; j�ixÞ can serve as a basis to express
any spin-1=2 state. This can be extended to spin-n particles
with a basis of 2nþ1 eigenvectors. In particular, students

Table III. Overview of relative and overall phase activity.

Central prompt Geometrically show the relative phase of jþix
in the Sz basis. Now multiply it by an overall

phase factor ep=4.

Duration 15min

When used Week 2, after students have had some practice

in representing spin-1/2 states in the Sz basis and

have been introduced to the exponential form of

complex numbers, and can multiply complex

phase factors.

Topics to review Arms representation

How to multiply complex phase factors

Key concepts Relative phase defines a quantum state

Textbook section (s) McIntyre 1.2

Related homework McIntyre 1.3

Phase 2a

aFind this homework problem in the supplementary material.51

Table IV. Overview of time evolution activity.

Central prompt Show how the spin-1/2 state:

jWðtÞi ¼ e�i p=4ð Þt 1ffiffi
2

p j þ iz þ 1ffiffi
2

p ei p=2ð Þj � iz
� �

evolves with time.

Duration 10min.

When used Week 4, after students have seen the general

solution to the Schr€odinger equation for a time-

independent Hamiltonian.

Topics to review Arms representation

How quantum states are defined

Key concepts Time-dependent overall phases preserve the

quantum state

Textbook section (s) McIntyre Chap. 3

Related homework McIntyre 3.2

McIntyre 3.5

Frequency (McIntyre 3.12)a

aFind this homework problem in the supplementary material.51

Table V. Overview of going from spin to wavefunction activity.

Central prompt Using as many peers as you need, approximate a

quantum state represented in the position basis

using the arms representation.

Duration 10min

When used Week 5, after students have been introduced to

two-state and n-state quantum systems, and to

operators that correspond to observable

quantities.

Topics to review Arms representation

Position basis

Key concepts Position is continuous and uncountably infinite

Textbook section (s) McIntyre 5.2 and 5.3

Related homework Wavefunctionsa

aFind this homework problem in the supplementary material.51
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should know how to write the jþix and j�ix and jþiy and
j�iy eigenstates in the (jþiz; j�iz) basis,

jþix¼
1ffiffiffi
2

p jþizþ
1ffiffiffi
2

p j�iz; jþiy¼
1ffiffiffi
2

p jþizþ
iffiffiffi
2

p j�iz;

j�ix¼
1ffiffiffi
2

p jþiz�
1ffiffiffi
2

p j�iz; j�iy¼
1ffiffiffi
2

p jþiz�
iffiffiffi
2

p j�iz:

We typically do this activity in week 2 of our five-week
intensive course. Figure 1(b) and Table II provide an over-
view of this activity.

For the spin-1=2 quantum state activity, pairs of students
represent a spin quantum state, so that together they can rep-
resent the complex coefficient (i.e., probability amplitude) of
both jþiz and j�iz. Arms is used to emphasize that quantum
states are complex-valued vectors, and that multiple complex
numbers are needed to represent a single quantum state.

We find that, at the beginning of each of the subsequent
activities, it is useful to remind students of the basics of the
representation. The instructor should then pair the students
and designate the student standing on the left as representing
the jþiz component and the student on the right as represent-
ing the j�iz component. At the beginning of the course, our
students are most comfortable representing spin-1/2 states in
the Sz-basis. A visualization of the spin-1=2 quantum state
activity can be seen in Fig. 1(b).

To help reinforce what each student in the pair repre-
sents, we first ask the pairs to represent the two eigenstates
of Sz, so that one of the students in each pair should display
0 with their arm. Next, the instructor prompts the pairs
to represent jþix; j�ix; jþiy; j�iy; jþiz, and j�iz in the Sz-
basis. This practice with different quantum states supple-
ments the understanding developed with Stern–Gerlach
experiment simulations.49 As with the complex number
activity, the instructor asks students to translate states given
in various notations (bra-ket, matrix, and exponential) into
the arms representation and highlights the geometric rela-
tionships between the various components. We typically
reserve the discussion of the relative phase or angle
between the students in each pair for subsequent activities,
but it could be integrated here as well.

At the end of the spin-1=2 quantum state activity, students
should understand that quantum states are complex-valued
vectors and should be able to represent a spin-1/2 state with
arms and with multiple symbolic notations.

1. Noteworthy anecdotes about this activity

Students can be a bit perplexed when they have to repre-
sent zero for the j þ iz or j � iz states because their arm can-
not have zero size and hanging straight down means pure
imaginary. This can lead to some giggles and/or creativity
about how to handle this. We encourage this giggling and
consideration by students and let them represent zero either
with their arm relaxed to their side or scrunched in small at
their shoulder.

C. Relative and overall phase activity

In our course, the relative and overall phase activity fol-
lows quickly after the spin-1=2 quantum state activity, and
they could be done consecutively, as one larger activity. In
this activity, the instructor facilitates a conversation about
the geometric interpretation of a quantum state and

highlights the convention of choosing the first component to
be real and positive by factoring out an overall phase. Before
this activity, students should be able to multiply complex
phase factors. Figure 1(c) and Table III provide an overview
of this activity.
We recommend reminding students that they will work in

pairs to represent a spin-1/2 state, and that the student on the
left represents the component of jþiz and the student on the
right represents the component of j�iz.
The instructor begins the activity by asking students to

express a state and identify the relative phase angle, both
verbally and geometrically, as seen in Fig. 1(c). They should
then ask the students to multiply this state by a (constant)
overall phase, like eip=4. Students must think through what
multiplication means for the quantum state, and in what
direction to rotate their arms. Reminding students of any
rotations done in the complex number activity can help.
After rotating to accommodate the overall phase, the

instructor again invites the students to determine the relative
phase angle. Students are then prompted to discuss whether
they are in a new quantum state and how they can tell if they
are. Through this line of inquiry and the geometric represen-
tations, students learn that a quantum spin-1=2 state is
defined by the magnitudes and relative phase angle of the
two coefficients, and that an overall phase does not change
the quantum state. From here, a discussion about conven-
tional choices for phase factors ensues.

1. Noteworthy anecdotes about this activity

We have found that this activity benefits from the geomet-
ric nature of arms as well as from the malleability of the rep-
resentation. Letting students rotate and move with their
partner to best represent the relative phase can be useful.
When asked to rotate or multiply the state, students will
occasionally rotate at the waist instead of, or in addition to,
rotating at the shoulder. This phenomenon typically signals a
misunderstanding of the representation, but it may also indi-
cate confusion about the physical system.

D. Time evolution activity

The time evolution activity takes advantage of the kines-
thetic nature of the arms representation and especially of the
ability to use real-world time as a representational dimen-
sion. In this activity, students again work in pairs to represent
quantum spin-1=2 states, but they are now requested to rotate
their arms at the rate indicated by a time-dependent complex
coefficient they have to represent. Before the time evolution
activity, students should: (1) know that the solution to the
Schr€odinger equation for a time-independent Hamiltonian is
a linear combination of energy eigenstates, jEni, with time-
dependent coefficients that depend on the energy, En,
jwðtÞi ¼

P
n cnð0Þe�iEnt=�hjEni, where cnð0Þ is the expansion

coefficients of the state in the energy basis at time t¼ 0 and
�h is the reduced Planck’s constant, (2) be comfortable multi-
plying complex phase factors, and (3) be familiar with both
overall and relative phases of a quantum state. We typically
do the time evolution activity about two-thirds of the way
through our course, before discussing wavefunction notation.
Figure 1(d) and Table IV provide an overview of this
activity.
When using arms to teach about time evolution, we find it

is crucial to begin the activity with a review of key states
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such as jþix; j�ix; jþiy, and j�iy in the Sz-basis. After stu-
dents have been re-familiarized with these states, the instruc-
tor asks them to represent a state, such as jþix in the Sz basis
with an arbitrary overall phase. The instructor guides the stu-
dents through a quick review of what the relative phase is and
reminds them that the relative phase determines the state
(along with the norms of the expansion coefficients).

After this initial exercise, the instructor initiates a discus-
sion of stationary states. The instructor asks students to rep-
resent a state, such as jþix, by writing the state on the board.
Then, the instructor multiplies the state by a time-dependent
overall phase, eixtjþix, and asks the students to represent
this state with their arms.

Students typically spend a few minutes discussing how
to represent the time component and which way to rotate
their arms (counterclockwise for positive x). After most
students have figured out how the time evolution part of
arms works, the instructor asks the students to start over
representing their state, so that the whole class begins rep-
resenting, and rotating, together. Once they have been
rotating for a while, the instructor asks them to pause their
rotation and share what state they are in, or what the rela-
tive phase is. Snapshots of this process can be seen in
Fig. 1(d). A whole class discussion ensues about how the
vector itself changes with time (i.e., the overall phase
changes), but the state and any associated measurement or
probability does not (i.e., the relative phase does not
change). The term “stationary states” is introduced to
describe this phenomenon.

The instructor discusses that if the initial state of the quan-
tum system is an eigenstate of the Hamiltonian, the time-
dependent complex phase factor acts as an overall phase, and
the state is a stationary state. For example, in a case where
the Hamiltonian is proportional to the Ŝx spin component
operator (e.g., a spin-1/2 particle in a uniform magnetic field
pointing in the x direction), the jþix is an energy eigenstate
and, therefore, a stationary state.

The instructor then initiates a discussion of more general
time evolution. The instructor asks the students, what kind of
motion would result in a state that changes with time. The
whole-class discussion should be guided to come to the
agreement that each student in the vector pair would need to
be rotating at a different rate or in a different direction.
Mathematically, that would correspond to a quantum vector
with different time dependent coefficients for each basis
state. Students should then be asked to represent a specific
time-dependent, non-stationary quantum state in the form,
jWðtÞi ¼ eix1tcþjþiz þ eix2tc�j�iz. The instructor then
invites the students to summarize why a state changes with
time and encourages them to articulate that if the relative
phase changes, then the state changes.

In the final sequence of this activity, the instructor sup-
poses that each student pair, initially representing jþix in the
ðjþiz; j�izÞ basis, is subjected to a Hamiltonian that is pro-
portional to the spin component operator Ŝz, as is the case of
a spin-1=2 system in a z-oriented magnetic field. The instruc-
tor leads a discussion about how, in this case, the two
students in the pair represent the two energy eigenstates,
i.e., the eigenstates of Ŝz; jþiz and j�iz. Therefore, to repre-
sent the time-evolved state, each person needs to enact
the unique time-dependent phase factor of the eigenstate
they symbolize. The time dependence can be expressed as
(if starting in the state jþix at t¼ 0)

jwðtÞi ¼ 1ffiffiffi
2

p e�i�ht=2jþiz þ
1ffiffiffi
2

p eþi�ht=2j�iz:

This is an opportunity to emphasize that the energy-
dependent complex phase factor (here e7i�ht=2) is applied to
the corresponding eigenstate of the Hamiltonian, here j6iz.
One must be sure that the initial state is expressed in the
basis of energy eigenstates before multiplying each compo-
nent by the relevant time-dependent phase factors to obtain
the time-dependent state.
The students then act out this time dependence. To empha-

size how the state changes, the instructor can ask students to
pause at key configurations that represent jþix; j�ix;
jþiy; j�iy, the states reviewed at the beginning of the activ-
ity. The students then identify that the state rotates through
jþix; jþiy; j�ix; j�iy, which can be conceptualized as a
spin vector precessing around the z-axis in the xy-plane.

1. Noteworthy anecdotes about this activity

We have tried structuring this activity to prompt students
to represent systems where the state evolved with time at the
beginning of the activity (rather than starting with stationary
states) and observed a student who stood still, looking per-
plexed. When questioned, the student asked “How can it stay
the same state, if the arms move in opposite directions?” The
instructor reinforced this idea that the arms, each embodying
given eigenstates, indeed, rotates independently, resulting in
a change in the relative phase, and, thus, the state was not
conserved. We have found that inverting the prompts is
advantageous for building to the idea of a state changing
with time, rather than confronting it head-on as we used to.
However, either prompt order guides the students to the
ah-ha moment, confronting the cognitive dissonance, that
time evolution of systems can change the quantum state.

E. Going from spin to wavefunction activity

The going from spin to wavefunction arms activity seeks
to help students transition their thinking from discrete spin
systems to continuous systems that can be described with
wavefunctions. Before the going from spin to wavefunction
activity, students should be familiar with spin-1 and spin-n
systems, understanding that observables are represented by
operators, and that the eigenstates of operators form a basis.
We typically do this activity in the last week of the course,
but it could also be done before the time evolution activity,
if desired. Figure 1(e) and Table V provide an overview of
this activity.
We encourage beginning the new activity with a review of

bra-ket notation, probability histograms of measurement out-
comes, and matrix notation. One way to do this is to ask stu-
dents to represent a specific spin-1/2 state, say in the
ðjþiz; j�izÞ basis, given in the bra-ket notation, with their
arms, then have them draw the probability histogram of the
possible outcomes of the measurement of Sz for that state,
and write the state in matrix notation.
Once students have successfully expressed a spin-1/2 state

with arms, bra-ket notation, probability histograms, and
matrix notation, the conversation shifts to spin-1 states. The
instructor asks the class “What would we have to do in order
to represent a spin-1 state with the arms representation?”
The students will eventually suggest adding a third person
(or arm) to the initial pair of students. Students should then
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be regrouped into triads, with each student representing one
of the three basis kets (j1iz; j0iz; j � 1iz). Now in triads, stu-
dents are asked to translate from bra-ket notation to the arms
representation, then draw probability histograms of the mea-
surement results of Sz, and write the state in matrix notation.50

The process of considering a higher-state system, translat-
ing bra-ket notation to arms, probability histograms, and
matrix notation, is repeated for at least one higher-state dis-
crete system. For example, groups of seven students would
represent a spin-3 system. After progressing through discrete
states with an increasing number of basis kets, the instructor
asks the students to imagine a particle where the position is
the observable of interest. Students are asked how they could
use the arms representation to enact the basis that would
allow us to measure position, the position basis. The instruc-
tor encourages all of the students to work together to repre-
sent a state in the position basis. They then solicit ideas
about how many students we need and where they should
stand. The discussion continues until a consensus of needing
an infinite number of people standing infinitely close
together is reached. A visualization of this can be seen in
Fig. 1(e).

The instructor then leads a discussion about the similari-
ties and differences between probability amplitudes in the
spin case and a wavefunction (i.e., a probability density
amplitude). After representing a state in the position basis
with the arms representation, the instructor works with the
students to create a probability histogram of this state, as
they did with spin measurements. Students determine that
this histogram is a function of x and depicts the probability
density. The instructor then introduces the parallel between
spin states (where probabilities are the norm squared of prob-
ability amplitudes) and wavefunctions (where the probability
density is the norm squared of the probability density ampli-
tude, i.e., the wavefunction or the complex function the stu-
dents had just been representing with their arms).

Next, the class considers how to represent this state in
matrix notation, as they did with spin systems, concluding that,
for a wavefunction, an infinitely long column matrix is needed,
with each entry corresponding to a position eigenstate. The dis-
cussion should include how even writing down values for this
matrix is an approximation of the state itself. Just like with the
arms representation for this system, between any two entries
you write down, there are infinitely more entries. The instruc-
tor then frames this as a motivation for wavefunction form,
which can represent all of the entries at once.

The instructor encourages a discussion of the parameters
of a position basis; how the basis, even when the region is
bounded, has an uncountably infinite number of basis kets.
Additionally, the students are encouraged to think about
what an individual position basis ket would look like; we
have found drawing parallels to spiky delta functions to be
useful. At this stage, the instructor should emphasize some
differences between wavefunctions and probability ampli-
tudes, including that squaring the norm of these quantities
leads to probability densities and probabilities, respectively,
and that, therefore, a wavefunction and a probability ampli-
tude have different physical dimensions. We find it helpful
to draw a parallel between this situation and other discrete
vs. continuous situations students might be familiar with,
like the relationship between discrete charges and charge
density. The activity wraps up with a review of the main
learning goals outlined in the supplementary material.51

1. Noteworthy anecdotes about this activity

This activity is most powerful if all students engage in rep-
resenting one state together. The probability density histo-
gram is also particularly potent in connecting the arms
representation to wavefunction notation. We strongly urge
taking the time to re-represent the student’s 3D arms wave-
function as a 2D probability density histogram.

IV. EMBEDDING IN INSTRUCTION

We typically weave these five activities throughout our
five-week intensive quantum fundamentals course. An exam-
ple schedule of the quantum fundamentals course can be
found in the supplementary material.51 Throughout the
course, we leverage the advantages of the arms representa-
tion to support key conceptual understandings. The features
of arms highlight key physics concepts: for example, the spa-
tial separation of the basis kets reinforces the complex nature
of each coefficient. Geometric relations between arms high-
light the significance of relative phase in defining a state.
The ability to enact the temporal changes of time-evolution
helps students to understand stationary states. Enacting the
transition from discrete to continuous reinforces the similari-
ties between discrete spin states and continuous position
wavefunctions and provides conceptual anchors for learning
about wavefunctions. The arms activities are not the core of
the curriculum but rather one tool in our instructor’s tool box
to support student reasoning.
Due to their kinesthetic nature, students are unable to take

notes during the activities. At first, this can cause some dis-
comfort for some students, but we have found that students
quickly develop skills to reflect on their learning in their
notes after an activity, supporting both the physics content
and students’ metacognitive skills. This reflection is rein-
forced through whole-class wrap-up discussions after each
activity. These discussions/mini-lectures summarize the
main points of the activity and provide a space for students
to take notes if they choose. Additionally, these activities
tend to be easy for students to remember, even without
extensive notes. This is a particularly interesting aspect of
activities-paired curricula: the activities continually build
upon the previously learnt physics concepts, so that students
rarely need detailed notes to solidify their understanding of
physics concepts. Indeed, the concepts presented with the
arms activities are continually reinforced throughout the
course through later arms activities, small-group activities,
homework, and exams.
A final note on embedding the arms activities in instruc-

tion is that it is crucial that we do not force students to partic-
ipate in activities. Often, a student or two will sit out of any
given activity, including the kinesthetic ones. For the arms
activities, we often begin with, “If it is physically safe for
you to do so, please move your arm in a circle.” We aim
to normalize the idea that not everyone does everything,
to make it easier for people to decide for themselves when to
participate.

V. CONCLUSIONS

The novelty of the arms representation comes from its sim-
plicity. The lack of specialized equipment and training means
arms has a low barrier of entry for instructors and students
alike. Arms is easily manipulable and provides geometric
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insights that are difficult to convey in two-dimensional repre-
sentations. We have shown how the various activities can bol-
ster students’ understanding of quantum mechanics and help
them gain a physical intuition of the various phenomena. The
kinesthetic nature of the activities brings fun and engagement
to quantum mechanics courses. This paper outlines a few class-
room tested activities that use the arms representation. We
envision many more possibilities for integrating the arms rep-
resentation into our quantum mechanics courses, which will be
the subject of future publications.

The arms representation does have some inherent limita-
tions. For example, arms are a fixed length, and, conse-
quently, the arms representation does not convey the norm of
a complex number. Additionally, while the arms representa-
tion does not require specialized equipment, it does require
significant space, multiple people, and high participant
mobility. We have explored options for representing length,
such as using tinker toys rather than arms to represent the
complex numbers, but found that the added benefit is not
worth the cost, logistical constraints, and removed embodi-
ment that comes with adding equipment. We have also
explored alternative modes of engagement for students with
mobility restrictions, such as using equipment rather than
their arm: tinker toys, pens, and meter sticks. These alterna-
tives may work for many students, but, if not, we recom-
mend grouping those students with students who can act out
the representation and encourage their participation in the
group discussions about how to move. Despite these limita-
tions, we have found the arms representation and activities to
support students’ conceptual understanding, and we hope to
see them taken up by other quantum mechanics instructors.
Beyond the professional reflections offered here, a qualita-
tive analysis of student reasoning and experiences with these
activities is underway, though the results from this analysis
are beyond the scope of this manuscript. Support for adopt-
ing these and other arms activities may be found on our
website.48
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