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Abstract. In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with
the fractional di↵usive scaling. There are two main challenges. One comes from a two-fold nonlocality,
that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The
other arises from long-time/small mean-free-path scaling, which introduces sti↵ness to the equation. To
resolve the first di�culty, we use a change of variable to convert the unbounded domain into a bounded
one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple
scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that
uses the structure of the test function in proving the fractional di↵usion limit analytically. Finally, the
e�ciency and accuracy of our scheme are illustrated by a suite of numerical examples.
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1. Introduction We consider the Lévy-Fokker-Planck (LFP) equation

(
@tf+v ·rxf =rv ·(vf)�(��v)sf :=L

s(f) , s2 (0,1) ,

f(0,x,v)=fin(x,v) ,
(1.1)

where f(t,x,v) : (0,1)⇥Rd
⇥Rd

7!R+ is the distribution function of a cloud of particles
in plasma, which undergoes a free transport describing by the convection on the left hand
side, and an interaction with the background, described by the LFP operator on the
right. Here (��v)s is the fractional Lapacian operator that models the Lévy processes at
the microscopic level. Among various equivalent ways of defining the fractional Laplace
operator [23], we only mention the one that will be used throughout the paper:

(��v)
s
f(v) :=Cs,dP.V.

Z

Rd

f(v)�f(w)

|v�w|d+2s
dw, (1.2)

where P.V. denotes Cauchy principal value and Cs,d=
4s�(d/2+s)
⇡d/2|�(�s)| .

When s=1, the right hand side of (1.1) reduces to the to classical Fokker-Planck
operator that models the Brownian motion of the microscopic particles. In contrast,
s2 (0,1) allows particles to make long jumps at the microscopic scale, and hence leads
to the nonlocal e↵ect at the mesoscopic scale. Consequently, as opposed to the Gaussian
Maxwellian to the Fokker-Planck operator, the Lévy-Fokker-Planck operator admits an
equilibrium that has a fat tail. More precisely, there is a unique normalized distribution
M(v), such that [24]:

L
s(M)=0,

Z

Rd

M(v)dv=1, M(v)⇠
C

|v|d+2s
as |v|!1 . (1.3)

Moreover, the convergence toward the equilibrium is shown to be exponential in the
sense of relative entropy. In particular, let � be a convex smooth function, and define
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2 AP SCHEME FOR LFP EQUATION WITH FRACTIONAL DIFFUSION LIMIT

the relative entropy to the equilibrium as

H
�
M(f) :=

Z
�(f)Mdv��

✓Z
fMdv

◆
,

then from the Theorem 2 in [24], one has

H
�
M

✓
f(t)

M

◆
 e

� t
C H

�
M

✓
fin(t)

M

◆
, t�0 ,

for some constant C.
In the long time and small mean free path scaling, that is, rescaling the time and

space as

x 7!"x, t 7!"
2s
t, (1.4)

equation (1.1) can be rewritten into the following form:

(
"
2s
@tf

"+"v ·rxf
"=L

s(f"),

f
"(0,x,v)=fin(x,v) .

(1.5)

Sending " to zero will give rise to a fractional di↵usion equation for the density of
particles. More precisely, we cite the following theorem from [20].
Theorem 1.1. Assume that f02L

2(RN
,M(v)�1dvdx), where M(v) is the unique

normalized equilibrium distribution that satisfies (1.3). Then, up to a subsequence, the

solution f
"
of (1.5) converges weakly in L

1(0,T ;L2(R2d
,M(v)�1dvdx)) to ⇢(t,x)M(v)

as "!0, where ⇢(t,x) solves

(
@t⇢+(��x)s⇢=0 ,

⇢(0,x)=⇢in(x) :=
R
Rd fin(x,v)dv .

(1.6)

In the classical case (i.e., s=1) when M is a fast decaying function such as Gaussian,
one rescales t as t 7!"

2
t and the resulting macroscopic equation is the di↵usion equation

[16]:

@t⇢+rx ·(Drx⇢)=0,

where D is the di↵usion matrix

D=

Z
v⌦vMdv .

Clearly the fat tail equilibrium (1.3) renders the above integral unbounded and therefore
invalids the classical di↵usion limit. Conversely, the anomalous scaling (1.4) is necessary.
Similar scaling has also been investigated in the framework of linear Boltzmann equation,
see [21, 22] for a reference.

Numerically computing (1.5) has two major challenges. One comes from necessity
to apply the fractional Laplacian operator to a slow decay function, in which case one
needs to consider infinite computational domain, since any truncation would lose the
important information carried by the tail and leads to erroneous result. To this end,
two kinds of numerical methods have been developed to approximate the fractional
Laplacian operator. One hinges upon the integral form of (��v)s in (1.2) and splits
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the infinite domain into a computable body part and a compensate tail part that can be
integrated exactly, see especially [5, 6]. This method heavily relies on analytic expres-
sion of the tail, which is not known for our case except when the solution has reached
equilibrium. But since our goal is to simulate the dynamics, this method cannot be
adopted without a major modification. The other uses the spectral method with non-

local basis. For instance, the Hermite spectral method is developed in [3] which takes
advantage of the fact that Hermite polynomials are invariant under Fourier transform
and therefore can be e�ciently computed when taking the fractional Laplacian. In [4],
mapped Chebyshev polynomials are used as basis, then the fractional Laplacian is cal-
culated via the celebrated Dunford-Taylor formula, and therefore is very e�cient in
higher dimensions. Another approach, proposed in [1], also starts from the Chebyshev
polynomial basis, but it then uses a change of variable and even extension of the func-
tion, and therefore boils down the problem to computing the Fractional Laplacian of
the Fourier basis on a finite domain, which can be approximated numerically with high
accuracy. All these spectral methods were developed to address the nonlocality of the
fractional Lapalcian operator, but when they apply to a slow decay function, additional
nonlocality is introduced and a large number of basis are expected in order to meet a
certain accuracy. See also [7, 8] for a review on numerical issues related to fractional
di↵usion. For our problem, we find that the approach in [1] gives the best result within
the computational budget when some tuning parameters are chosen appropriately.

Another challenge arises from the di↵usive scaling, which introduces sti↵ness to the
system. Our goal is to develop a numerical solver with uniform performance across
di↵erent regimes, i.e., " varies in magnitude by several orders. In particular, the scheme
for (1.5) is expected to reduce to the solver for (1.6) automatically with unresolved
mesh. This is the so-called asymptotic preserving (AP) scheme. There has been an
extensive study on the AP scheme for kinetic equations with various scalings, see [18,19]
for a review. When it comes to anomalous di↵usive scaling, we cite specially [10, 12–
14], which all deal with the linear Boltzmann type equation. These works and the
current paper share the same equilibrium (1.3) and di↵usion limit (1.6), but the di↵erent
nature between Fokker Planck type and Boltzmann type operator lead to very di↵erence
convergence mechanism and therefore hinders the application of the methods developed
there. In fact, when the collision is of the Boltzmann type, a strong convergence toward
the anomalous di↵usion is obtained [21, 22], which plays a significant role in designing
the AP method. On the contrary, with the Lévy-Fokker-Planck operator in our case,
only a weak convergence is available, which gives very limited knowledge on how the
scheme can be constructed. Nevertheless, the special choice of the test function that
aids the proof of Theorem 1 in [20] inspires our macro-micro decomposition, which sets
the base of our AP scheme.

The rest of the paper is organized as follows. In the next section, we detail the
computation of the collision operator Ls and combine it with backward Euler scheme to
solve the spatially homogeneous case. Section 3 is devoted to the design of AP scheme,
along with a rigorous proof of the AP property and a detailed guide in implementation.
In section 4, extensive numerical examples are given to test the performance of our AP
scheme. Finally the paper is concluded in section 5.

2. Computation of the collision operator L
s Aside from multiple scales that

appear in equation (1.5), the collision operator L
s itself poses severe computational

di�culties, which is attributed to the non-locality of the operator (��v)s. As already
mentioned in [5,6], if f is compactly supported in v, then the computation of (��v)sf
can be fulfilled by the Fourier transform. However, in our case, the interplay between
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the two operators in L
s leads to an equilibrium that has only a power law decay, see

(1.3). As a result, a more sophisticated treatment is needed for fractional Laplacian, as
will be detailed in the following section. Here for notation simplicity, we assume f only
depends on v throughout this section.

2.1. Change of variable As mentioned above, one of the major di�culties of
fractional Laplacian operator (��v)s is its non-locality, especially when it applies to a
slow decaying function like M in (1.3). In order to treat the fat tail distribution on an
unbounded domain, two approaches can be taken: one is to truncate the computation
domain and introduce suitable boundary conditions; the other is to use a change of
variable that maps the infinite domain into a finite one and then use a spectral method.
In this paper, we take the latter approach, which is also termed as the rational spectral
method. Below we briefly introduce the rational Chebyshev spectral method, more
details can be found in [1].

Consider an algebraic mapping that maps the unbounded domain (�1,1) into
[�1,1], i.e. ,

⇠=
vp

L2
v+v2

2 (�1,1)()v=
Lv⇠p
1�⇠2

2 (�1,1) ,

where Lv is a scaling parameter that is chosen for the sake of accuracy and mass conser-
vation. In principle, it can be chosen adaptive as mentioned in [9], see also Remark 2.2
for more discussion. Take the Chebyshev polynomials of the first kind as the basis on
[�1,1],

Tk(⇠)=cos(karccos(⇠)) , ⇠2 [�1,1] , (2.1)

then

TBk(v)=Tk(
vp

L2
v+v2

) , v2R ,

is the so-called Chebyshev rational polynomials on infinite domain. It has been pointed
out in [17] that Chebyshev rational polynomials are appropriate for approximating the
algebraically decay function, and has also been used in [4] to compute the fractional
di↵usion operator.

We now concentrate on the finite domain [�1,1] and employ a further change of
variable. Let q=arccos(⇠)2 [0,⇡], then

v=
Lv⇠p
1�⇠2

=Lv cot(q), (2.2)

and Tk(⇠) in (2.1) reduces to

Tk(⇠)=cos(kq).

Therefore, expanding f(q) in terms of Chebyshev functions is equivalent to a cosine
expansion.

In the new variable q2 [0,⇡], the fractional Laplacian can be rewritten as [1]

(��q)
s
f(q)=

(
�

1
Lv⇡

R ⇡
0

f 0(p)
cot(q)�cot(p)dp, s= 1

2 ,

Cs,d

2L2s
v s(1�2s)

R ⇡
0

sin2(p)f 00(p)+2sin(p)cos(p)f 0(p)
|cot(q)�cot(p)|2s�1 dp, s 6= 1

2 .
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And one can reformulate (1.1) into
(
@tf+Lv cot(q)@xf =f�cos(q)sin(q)@qf(q)�(��q)sf :=L

s
q(f) ,

f(0,x,q)=fin(x,q) ,
(2.3)

where f now depends on t, x and q2 [0,⇡]. In the rest of this section, we will use (2.3)
as our target equation, and discretize q in the following way:

qj =
⇡(2j+1)

2Nv
, 0 jNv�1 , (2.4)

with �q= ⇡
Nv

.

2.2. Computation of (��q)sf To further ease the computation of (��q)sf , we
conduct the even extension of f at ⇡, i.e.,

f̃(q)=

⇢
f(q), q2 [0,⇡] ,

f(2⇡�q), q2 [⇡,2⇡] .

This way, according to the relation
Z 2⇡

0
f̃(q)cos(kq)dq=

Z 2⇡

0
f̃(q)e�ikqdq ,

one can compute the coe�cients of cosine expansion of f̃ via the Fast Fourier Transform.
More specifically, denote

f̃=[f̃(q0), f̃(q1), · · · , f̃(qNv�1),f(q2Nv�1), f̃(q2Nv�2), · · · , f̃(qNv )]
T
, (2.5)

then its discrete Fourier transform takes the form

f(qj)=
Nv�1X

k=�Nv

ˆ̃
fke

ikqj , j=0, · · · ,2Nv�1 ,

where ˆ̃
fk=

1
2Nv

PNv�1
j=�Nv

f̃(qj)e�ikqj , and hence

(��q)
s
f(qj)=

Nv�1X

k=�Nv

ˆ̃
fk(��q)

s
e
ikqj , j=0, · · · ,2Nv�1 .

Then the question boils down to calculating (��q)seikqj , and we directly cite the result
from [1].
Theorem 2.1. Let s2 (0,0.5)[(0.5,1), then

(��q)
s
�
e
imq

�
=

8
>>>>>><

>>>>>>:

cs,1|sin(q)|2s�1

8L2s tan(⇡s)

P1
l=�1e

i2lq
�
(1�2s)m2

�4ml
�

⇥
�(�1+2s

2 +|l|)�(�1�2s
2 +|m2 �l|)

�( 3�2s
2 +|l|)�( 3+2s

2 +|m2 �l|)
, m even ,

i
cs,1|sin(q)|2s�1

8L2s

P1
l=�1e

i2lq
�
(1�2s)m2

�4ml
�

⇥sgn
�
m
2 � l

� �(�1+2s
2 +|l|)�(�1�2s

2 +|m2 �l|)
�( 3�2s

2 +|l|)�( 3+2s
2 +|m2 �l|)

, m odd .

(2.6)

Moreover, when s=0.5,

(��q)
0.5

�
e
imq

�
=

( |m|sin2(q)
L e

imq
, m even ,

im
L⇡

⇣
�2

m2�4 �
P1

l=�1
4sgn(l)ei2lq

(m�2l)((m�2l)2�4)

⌘
, m odd .
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To implement it numerically, one truncates l by setting l= l1Nv+ l2, where l22

{�Nv/2, . . . ,Nv/2�1}, and l12{�llim, . . . ,llim}. Then (2.6) is approximated as

(��q)
s
�
e
imqj

�
⇡

8
<

:

cs,1|sin(qj)|2s�1

8L2s tan(⇡2s
2 )

PNv/2�1
l2=�Nv/2

hPllim
l1=�llim

am,l1,l2

i
e
i2l2qj , m even ,

i
cs,1|sin(qj)|2s�1

8L2s

PNv/2�1
l2=�Nv/2

hPllim
l1=�llim

am,l1,l2

i
e
i2l2qj , m odd ,

(2.7)
where

am,l1,l2 =

8
>>>>><

>>>>>:

(�1)l1
�
(1�2s)m2

�4m(l1Nv+ l2)
�

⇥
�(�1+2s

2 +|l1Nv+l2|)�(�1�2s
2 +|m2 �l1Nv�l2|)

�( 3�2s
2 +|l1Nv+l2|)�( 3+2s

2 +|m2 �l1Nv�l2|)
, m even ,

(�1)l1
�
(1�2s)m2

�4m(l1Nv+ l2)
�
sgn

�
m
2 � l1Nv� l2

�

⇥
�(�1+2s

2 +|l1Nv+l2|)�(�1�2s
2 +|m2 �l1Nv�l2|)

�( 3�2s
2 +|l1Nv+l2|)�( 3+2s

2 +|m2 �l1Nv�l2|)
, m odd .

Note that llim here is an adjustable parameter, and it is obvious that larger llim gives
better approximation. For all our numerical examples in this paper, we use llim=300.

Now let the Matrix M2C2Nv⇥2Nv be

Mm,n=

⇢
(��q)sei(m�Nv)qn�1 nNv ,

(��q)sei(m�Nv)q2Nv�n Nv+1n2Nv ,

then we have

(��q)
s f̃=(M⇥F) f̃ ,

where f̃ is defined in (2.5), and F denotes the 2Nv-periodic discrete Fourier transform.
Confining the above calculation of f̃ to f, i.e.,

f=(f(q0),f(q1), · · · ,f(qNv�1))
T
. (2.8)

we can write down the matrix representation of (��q)sf as follows:

(��q)
sf=Lsf , (2.9)

where Ls=(M⇥F)(1 :Nv,1 :Nv)+(M⇥F)(1 :Nv,Nv+1 :2Nv).
As already mentioned in the introduction, the way we treat the fractional Laplacian

is not unique. We just choose the one that performs the best in our case in terms of
accuracy and e�ciency.

2.3. Spatially homogeneous case In this section, we detail the computation
of the spatially homogeneous case of (2.3):

@tf =L
s
q(f) :=f�cos(q)sin(q)@qf�(��q)

s
f .

Here the fractional Laplacian term is treated via the aforementioned pseudospectral
method, and @qf is discretized using the Fourier spectral method. Still using the vector
form of the discrete f defined in (2.8), we have the discretization of Ls

qf as

Psf := (C ·F�1KF+ I�Ls)f , (2.10)

where

K= i

0

B@
�Nv

. . .
Nv�1

1

CA , C=

0

B@
�cos(q0)sin(q0)

. . .
�cos(qNv�1)sin(qNv�1)

1

CA .
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Note specifically that even though the computation of Ls can be expensive, it only needs
to be computed once. In sum, we need to solve the following ODE system

@tf=Psf , (2.11)

and we use the Matlab builtin solver ODE15s.

Remark 2.1 (Positivity). The scheme (2.11) is not positivity preserving, but it will be

so after a slight modification. In fact, the positivity is lost when qj close to the boundary,

0 or ⇡. This is because the function value f near the boundary are already small, then

any small numerical error would render it negative. To resolve this issue, our idea is

to use the tail information to reassign the value of f at the boundary. More precisely,

since the equilibrium is proportional to (1+Lv cot(q))�(1+2s)
at its tail, then if there is

an index l close to the right boundary (i.e., q=⇡) such that fl<0 for the first time,

namely fj >0 for j < l, then we set fj =
(1+Lv cot(q(j�1)))1+2s

(1+Lv cot(qj))1+2s for j� l.

Remark 2.2 (Choice of Lv and Nv). In the scheme (2.11), Nv and Lv should be

chosen according to s for the sake of mass conservation. Since the tail of equilibrium

distribution relates to s via M⇠
1

|v|1+2s as |v|!1, larger Nv (with fix Lv) is required

for smaller s to capture the tail information and conserve the total mass. One should

also choose the parameter Lv properly. On one hand, for fixed Nv, Lv should not be

too large, otherwise accuracy is lost in approximating the body part of the distribution

function. On the other hand, if Lv is too small, the method lose the capability to capture

the tail information. Therefore, in principle, the smaller the s is, the larger number of

mode Nv and Lv are needed. For instance, when s�0.5, Nv =64 and Lv =3 is enough;

whereas for s=0.4 and if Lv =3, Nv =128 is required to ensure the mass is conserved

up to error O(10�3), see Table 4.1.

3. Asymptotic preserving scheme We introduce an asymptotic preserving
scheme for the spatially inhomogeneous system and its implementation in this section.
The main di�culty of capturing the anomalous di↵usion limit is to acquire operator
(��x)s when only (��v)s appears in original system. In the proof of Theorem 1, the
authors use a test function in the form of �(x+"v) to get (��x)s from (��v)s weakly
via integration by parts, which indicates a kind of symmetry between x and v. Inspired
by this symmetry, we propose a scheme based on a novel micro-macro decomposition
by requiring the macro part to respect such symmetry.

Let us first introduce some notation. Denote ⌦x=[�Lx,Lx] as our spatial domain
and partition it into Nx uniform grids, i.e. xi=�Lx+(i+ 1

2 )�x, where �x= 2Lx
Nx

.
Periodic boundary condition in the spatial domain will be used. For velocity domain, we
will work with the variable q defined in (2.2) and use the same discretization as in (2.4).
Then f(t,x,q)=f(t,x,v(q)), and we denote numerical approximation of f(tn,xi,qj) as
f
n
i,j , where tn=n�t, 0 jNv�1, 0 iNx�1.

To start, we introduce the following lemmas.

Lemma 3.1. (��v)s(fg)=g(��v)sf+f(��v)sg+I(f,g), where

I(f,g)=C1,s

Z

Rd

(f(v)�f(w))(g(w)�g(v))

|v�w|d+2s
dw.
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Proof.

(��v)
s(fg)=C1,s

Z

R

f(v)g(v)�f(w)g(w)

|v�w|d+2s
dw

=C1,s

Z

R

f(v)g(v)�f(v)g(w)

|v�w|d+2s
dw+C1,s

Z

R

f(v)g(v)�f(w)g(v)

|v�w|d+2s
dw

+C1,s

Z

R

(f(v)�f(w))(g(w)�g(v))

|v�w|d+2s
dw

=g(��v)
s
f+f(��v)

s
g+I(f,g).

Lemma 3.2. Suppose h(x,v)2L
1
v(R)W 2,1

x (R)\L
1
v(R)C2

x(R), then h(��x)sh(x,v)i=
(��x)s hhi, where hfi :=

R
Rf(x,v)dv.

Proof. First, let us rewrite fractional Laplacian in following finite di↵erence form,

(��x)
s
h(x,v)=C1,s

Z 1

0
(2h(x,v)�h(x�y,v)�h(x+y,v))⌫(y)dy ,

where ⌫(y)= |y|
�(1+2s), which is a direct consequence of (1.2). Denote

I(x,v)=

Z 1

0
|(2h(x,v)�h(x�y,v)�h(x+y,v))⌫(y)|dy

=

Z �

0
|(2h(x,v)�h(x�y,v)�h(x+y,v))⌫(y)|dy

+

Z 1

�
|(2h(x,v)�h(x�y,v)�h(x+y,v))⌫(y)|dy

:= I1(x,v)+I2(x,v) ,

for �<1. By Taylor expansion we have

2h(x,v)�h(x+y,v)�h(x�y,v)=�@
2
xh(⇠,v)y

2
,

where ⇠2 (x��,x+�). Since s2 (0,1), we have
R �
0 y

n
⌫(y)dy<1. The assumption

that h(x,v)2L
1
v(R)W 2,1

x (R) then leads to
R
R |@

2
xh(⇠,v)|

R �
0 y

2
⌫(y)dydv<1 . On the other

hand, it’s obvious that
Z

R

Z 1

�
|(2h(x,v)�h(x�y,v)�h(x+y,v))⌫(y)|dydv<1.

Then we conclude the result by the Fubini’s theorem.

3.1. A novel micro-macro decomposition A typical approach in designing
an asymptotic preserving method is via a micro-macro decomposition. That is, write

f(t,x,v)=⇢(t,x)M(v)+g(t,x,v) , (3.1)

where ⇢(t,x) is the macroscopic density, and g is viewed as the microscopic fluctuation.
See for instance [10,12,13,15]. However, directly applying this decomposition to our case
fails as it is not easy to obtain (��x)s when only (��v)s appears in (1.5). Inspired by
the proof of Theorem 1 in [20], we see that the operator (��x)s and operator "2s(��v)s
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are related by considering a test function in variable (x+"v). Therefore, we propose
the following novel micro-macro decomposition of distribution f :

f(t,x,v)=⌘(t,x,v)M(v)+g(t,x,v) , (3.2)

where ⌘(t,x,v) takes the form

⌘(t,x,v)=h(t,x+"v) , (3.3)

for some function h(t,x), and M satisfies

@v(vM)�(��v)
s
M=0,

Z

R
M(v)dv=1 . (3.4)

Here unlike the classical micro-macro decomposition (3.1), we allow ⌘ to depend on v,
but intrinsically ⌘ lives on a lower dimensional manifold than f does, as required from
(3.3). As a result, ⌘ satisfies

"@x⌘=@v⌘, (��v)
s
⌘="

2s(��x)
s
⌘ . (3.5)

Plug (3.2) into (1.5), we get:

"
2s
@t(⌘M+g)+"v@x(⌘M+g)=@v(v(⌘M+g))�(��v)

s(⌘M+g) . (3.6)

Using (3.4),(3.5) and Lemma 3.1, the above equation simplifies to

"
2s
@t(⌘M+g)+"v@xg=L

s(g)�"
2s(��x)

s
⌘M�I(⌘,M). (3.7)

To solve (3.7), we split it into the following system
(
"
2s
@tg+"v@xg=L

s(g)�I(⌘,M) ,

@t⌘=�(��x)s⌘ ,
(3.8)

equipped with the initial condition

⌘in(x,v)=⇢in(x+"v) gin(x,v)=fin(x,v)�⌘in(x,v)M(v) . (3.9)

Upon solving (3.8), one can recover f using (3.2).
Note that the reduction of (3.7) from (3.6) is possible only when ⌘ has the form

(3.3). Therefore, it is important to make sure that such property is preserved along the
dynamics of (3.8). To this end, we have the following lemma.
Lemma 3.3. Let ⌘(t,x,v) solves

@t⌘=�(��x)
s
⌘ , ⌘(0,x,v)=⇢in(x+"v) (3.10)

then there exists a function h(t,x) such that ⌘(t,x,v)=h(t,x+"v) .
Proof. Let h satisfies

@th=�(��x)
s
h, h(0,x,v)=hin(x) . (3.11)

Then we claim that ⌘(t,x,v)=h(t,x+"v) is the solution to (3.10). Indeed, denote
y=x+"v for any fixed v, we have

@th(t,x+"v)=@th(t,y)=�(��y)
s
h=�

Z

R

h(t,y)�h(t,y0)

|y�y0|2s+1
dy0

=�

Z

R

h(t,x+"v)�h(t,x0+"v)

|(x+"v)�(x0+"v)|2s+1
d(x0+"v)

=�(��x)
s
h(t,x+"v) .
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Remark 3.1. From the above lemma, one sees that in order to solve the last equation

in (3.8), one can solve the low dimensional problem (3.11), and then obtain ⌘ by shifting

h, i.e., ⌘(t,x,v)=h(t,x+"v).
Next, we show that the system (3.8) is energy stable.

Proposition 3.1. If (⌘,g) solves (3.8) with initial data (3.9), then f =⌘M+g solves

(1.5). Both system has the energy dissipation property. That is, define the total energy

E
2
f =

Z

R

Z

R

f
2

M
dvdx=

Z

R

Z

R

(⌘M+g)2

M
dvdx, (3.12)

then
dEf

dt 0.
Proof. It is easy to show that if (⌘,g) solves (3.8) with initial data (3.9), then by

directly adding the two equation, f =⌘M+g solves (1.5). The energy dissipation of
the original system (1.5) follows from Proposition 2.1 in [20]. One just needs to check
the same property for the split system (3.8). To this end, multiply the first equation in
(3.8) by g

M , the second equation by ⌘
M , integrate in x and v, and add them together,

we get (here we omit the integration domain, which is R for both x and v):

"
2s
@t

Z Z 
1

2

g
2

M
+

1

2
⌘
2
M+g⌘

�
dxdv+"

Z Z
v@xg

g

M
dxdv

=

Z Z
L
s(g)

⇣
g

M
+⌘

⌘
�I(⌘,M)

⇣
g

M
+⌘

⌘
�(⌘M+g)(��v)

s
⌘�"v@xg⌘dxdv

=

Z Z
(Ls(g)+L

s(⌘M))
⇣

g

M
+⌘

⌘
�@v(v⌘M)

⇣
g

M
+⌘

⌘
+⌘(��v)

s
M

⇣
g

M
+⌘

⌘
�"v@xg⌘dxdv

=

Z Z
(Ls(g)+L

s(⌘M))
⇣

g

M
+⌘

⌘
�vM@v⌘

⇣
g

M
+⌘

⌘
�"v@xg⌘dxdv ,

where the second equality uses Lemma 3.1 and the third equality uses the fact that M
satisfies L

s(M)=0. Since @v⌘="@x⌘ and
R R

v@x⌘g+@xg⌘dxdv=
R R

vM@x⌘⌘dxdv=R R
v@xg

g
Mdxdv=0, we immediately get

"
2s
@t

Z Z 
1

2

g
2

M
+

1

2
⌘
2
M+g⌘

�
dxdv=

Z Z
(Ls(g)+L

s(⌘M))
⇣

g

M
+⌘

⌘
0 .

Moreover, we can bound the energy for ⌘ and ⇢ separately.
Proposition 3.2. If (⌘,g) solves (3.8) with initial data (3.9), then

E
2
⌘ =

Z

R

Z

R
⌘
2
Mdxdv, E

2
g =

Z

R

Z

R

g
2

M
dxdv (3.13)

are both uniformly bounded in time.

Proof. Multiply the second equation in (3.8) with ⌘M and integrate in x and v, we
get

"
2s

2
@t

Z Z
⌘
2
Mdxdv=�

Z Z
⌘(��x)

s
⌘dxMdv

From the definition (1.2), it is straightforward to see that
R
⌘(��x)s⌘dx=

1
2

R R (⌘(x)�⌘(y))2

|v�w|1+2s rdxdy�0. Therefore, d
dtE⌘ 0. Then from

E
2
g =

Z Z
(f�⌘M)2

M
dxdv2

Z Z
f
2+⌘

2
M

2

M
dxdv=2E2

f +2E2
⌘ ,
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we get the uniform boundedness of Eg.
Numerically, we propose the following semi-discrete scheme to (3.8):

"
2s

�t
(g⇤�g

n)=L
s(g⇤)��g

⇤
�I(⌘n,M), (3.14a)

"
2s

�t
(gn+1

�g
⇤)+"v@xg

n+1=�g
n+1

, (3.14b)

1

�t
(⌘n+1

�⌘
n)=�(��x)

s
⌘
n
, (3.14c)

where � is a positive constant. As opposed to directly applying an implicit-explicit
discretization to the first equation in (3.8), i.e.,

"
2s

�t
(gn+1

�g
n)+"v@xg

n+1=L
s(gn+1)�I(⌘n,M) ,

we conduct an operator splitting here, due to three reasons. One is that the Lévy-
Fokker-Planck operator L

s has nonzero null space, and therefore the inversion in this
equation will become sti↵ for small " (see also Table 4.2). The augmented term ��g

⇤

will then shift the spectrum of the to-be-inverted operator and therefore remove the
ill-conditioning. The second is that we need the magnitude of g to remain small for
small " in order to preserve the asymptotic property, and this requirement is fulfilled
in (3.14b), which warrants g

n+1 to be of order "
2s as "!0 (More details is shown in

the proof of Proposition 3.3). The third is the computational e�ciency. Thanks to the
splitting, one no longer needs to invert operators in x and v simultaneously. Instead,
only an inversion in v is needed in solving (3.14a), whereas in (3.14b) only an inversion
in x is needed, and this inversion can be e�ciently accomplished via either sweeping or
the fast Fourier transform.

The rest of this subsection is devoted to proving the asymptotic property of (3.14).
First let us introduce the following lemma that describes the smoothing e↵ect of frac-
tional di↵usion equation.
Lemma 3.4. Consider the initial value problem

@tu+(��x)
s
u=0 u(0,x)=uin(x) . (3.15)

If uin(x)2W
2,1(R)\C

2(R), then u(t, ·)2W
2,1(R)\C

1(R) for t>0.
Proof. Using the Fourier transform for x, one writes down the solution to (3.15) as

û(t,⇠)= ûin(⇠)e
�|⇠|2st := ûin(⇠)K̂s(t,⇠) .

Changing back to x, one has

u(t,x)=

Z

R
Ks(t,x�y)u0(y)dy , Ks(t,x)=

1

t1/2s
F

✓
|x|

t1/2s

◆
,

where F is positive and decreasing, and it behaves like F (r)⇠ r
�(1+2s) at infinity (see

also [11] for further discussion). It is easy to see Ks(t, ·)2L
1(R)\C

1(R) for t>0.
Therefore u(t, ·)2C

1(R). Further, by Young’s convolution inequality, we have

ku(t, ·)k1kKsk1ku0k1 , k@
2
xu(t, ·)k1kKsk1k@

2
xu0k1 .
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The proposition on the asymptotic property of the splitting scheme is in order.
Proposition 3.3. Consider system (1.5) with initial data hfini2W

2,1(R). Let ⌘
n

and g
n
be the solution to (3.14), where ⌘

0=⇢in(x+"v) and g
0=fin�⌘inM. Then the

numerical solution

⇢
n= hf

n
i= h⌘

n
M+g

n
i

satisfies

⇢
n+1

�⇢
n

�t
=(��x)

s
⇢
n (3.16)

as "!0.
Proof. From the reconstruction formula, we have

⇢
n+1

�⇢
n

�t
=

⌧
⌘
n+1

�⌘
n

�t
M

�
+

⌧
g
n+1

�g
n

�t

�

=�h(��x)
s
⌘
n
Mi+

⌧
g
n+1

�g
n

�t

�

=(��x)
s
hf

n
�g

n
i+

⌧
g
n+1

�g
n

�t

�
,

=(��x)
s
⇢
n
�(��x)

s
hg

n
i+

⌧
g
n+1

�g
n

�t

�
,

where the third equality uses lemma 3.2 and lemma 3.4, namely, h(��x)s⌘nMi=
(��x)s h⌘nMi. Then to show (3.16), it amounts to show that the magnitude of gn

vanishes as " approaches zero. First, from (3.14a), one sees that

✓
"
2s

�t
+��L

s

◆
g
⇤=

"
2s

�t
g
n
�I(⌘n,M) .

From the contractive estimate in Corollary 3.1 of [2] and Hille-Yosida Theorem, we have,
for positive �,

kg
⇤(x, ·)kL1

v
.kI(⌘n,M)kL1

v
+

"
2s

�t
kg

n
kL1

v
. (3.17)

Further, from (3.14b), we have, for v<0,

g
n+1(x,v)=

"
2s�1

v�t

Z x

�1
e

"2s
�t

��

"v (y�x)
g
⇤(y,v)dy

Therefore,

|g
n+1(x,v)|

"
2s�1

|v|�t
kg

⇤(·,v)kL1
x

Z x

�1
e

"2s
�t

��

"v (y�x)dy
2"2s

�t
kg

⇤(·,v)kL1
x
. (3.18)

The case with v>0 can be estimated similarly. Then a combination of (3.17) and (3.18)
immediately leads to kg

n+1
kL1

x,v
.O("2s).
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3.2. Fully discrete scheme and implementation Now we briefly discuss
the implementation of scheme (3.14). Using the same notation as mentioned at the
beginning of this section, we denote the numerical approximations ⌘

n
i,j , g

n
i,j as ⌘

n
i,j ⇡

⌘(tn,xi,qj) and g
n
i,j ⇡g(tn,xi,qj), with 0 iNx�1, 0 jNv�1. For a fixed x-index

i, let

⌘
n
i =(⌘ni,1,⌘

n
i,2, · · · ,⌘

n
i,Nv�1)

T
, gn

i =(gni,1,g
n
i,2, · · · ,g

n
i,Nv�1)

T
,

M=(M1, · · · ,MNv�1)
T
, ⌘

n
i M=(⌘ni,1M1, · · · ,⌘

n
i,Nv�1MNv�1)

T
.

For a fixed q-index j, let

⌘
n
j =(⌘n1,j ,⌘

n
2,j , · · · ,⌘

n
Nx�1,j)

T
, gn

j =(gn1,j ,g
n
2,j , · · · ,g

n
Nx�1,j)

T
.

First we compute I(⌘n,M). According to its definition

I(⌘n,M)=(��v)
s(⌘nM)�M(��v)

s
⌘
n
�⌘

n(��v)
s
M,

this is simply accomplished by applying Ls defined in (2.9) to ⌘
n
i M, ⌘ni , and M, respec-

tively, for a fixed spatial index i. Then to treat the spatial discretization in (3.14b) and
(3.14c), we use the Fourier spectral method with periodic boundary condition. Note
that the transport term in (3.14b) is treated implicitly, so the stability is guaranteed.
Moreover, unlike in v direction, where one needs to consider a fat tail distribution due
to the kernel of Ls, we can consider a su�ciently decaying profile in x and therefore the
Fourier spectral method can be used here.

To summarize, for given ⌘
n
i,j and g

n
i,j , we have

Step 1 Compute g⇤
i by

g⇤
i =

✓
"
2s

�t
+�

◆
I�Ps

��1✓
"
2s

�t
gn
i �I(⌘i

n
M)

◆
, i=0,1, · · · ,Nx�1;

Step 2 Compute gn
j by inverting

"
2s
ĝn+1
j � ĝ⇤

j

�t
+"v(qj)Dxĝ

n+1
j =

1

2
ĝn+1
j , j=0,1, · · · ,Nv�1 ,

where ĝj is the Fourier transform of gj, and Dx is the diagonal matrix with elements
k=0,1, · · · ,Nx�1.

Step 3 Compute ⌘
n+1
0 via

⌘̂
n+1
0 =(I+�tDs)

�1
⌘̂
n
0 , j=0,1, · · · ,Nv�1 ,

where ⌘̂0 is the Fourier transform of ⌘0, and Ds is the diagonal matrix with elements
�|k|

2s with k ranging from 0 to Nx�1.

4. Numerical examples In this section, we present several numerical examples
to check the accuracy and e�ciency of schemes (2.11) and (3.14). Periodic boundary
condition is always used in x direction. Unless otherwise specified, we choose Lv =3
and llim=300 in computing (2.7), and �=1 in (3.14).
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4.1. Computation of (��)sf We first check the performance of the pseudospec-
tral method in computing (��)sf via (2.9). Two specific examples will be considered
here: an exponential decay function and a polynomial decay function, both of which
have exact form when taken the fractional Laplacian.

1) f(v)=(1+v
2)�

1�2s
2 , s2 (0,0.5), (4.1)

(��v)
s
f(v)=�22s�

✓
1+2s

2

◆
�

✓
1�2s

2

◆�1

(1+v
2)�

1+2s
2 .

2) f(v)= e
�v2

, (4.2)

(��v)
s
f(v)=�

1
p
⇡
22s�

✓
1+2s

2

◆
1F1

✓
1+2s

2
,0.5;�v

2

◆
.

Here � is the gamma function and 1F1 is the hypergeometric function.
First, a comparison of the numerical solutions with exact solutions is gathered in

Fig. 4.1 and 4.2, for (4.1) and (4.2), respectively, where good agreements are observed
in both cases.
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u
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)

Power law decay with s=0.2

u
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exact

-5 0 5

v

0

0.05

0.1

0.15

0.2

u
(v

)

Power law decay with s=0.4

u
approx

u
exact

Fig. 4.1. Comparison of numerical approximation and exact expression of (��)sf for f in (4.1).
Nv =128 are used for both cases.
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v
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0.5

1

u
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Exponential decay with s=0.4

u
approx

u
exact
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v

-0.5

0

0.5

1

1.5

u
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)

Exponential decay with s=0.6

u
approx

u
exact

-5 0 5

v

-1

-0.5

0

0.5

1

1.5

2

u
(v

)

Exponential decay with s=0.8

u
approx

u
exact

Fig. 4.2. Comparison of numerical approximation and exact expression of (��)sf for f in
(4.2). Nv =64 are used for all cases.

Second, we show relationship between accuracy and the number of modes Nv. Given
fixed Lv =3 and llim=300, Fig. 4.3 displays the error versus Nv for di↵erent s, with
exponential decay function on the left, and power law decay function on the right. The
error is measured in l

1 norm, i.e.

e1=max
j

kuj�(��v)
s
f(vj)k1 (4.3)
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where uj is the numerical approximation of (��v)sf at vj . One sees that a small
number of mode is adequate for the exponential decay case, whereas for the power law
decay case, increasing the number of modes leads to better approximation. Moreover, a
comparison between these two figures also gives a visual indication on why computing
the fractional Laplacian of a slow decaying function is significantly harder than a fast
decaying function, as a lot more modes are needed to reach an even lower accuracy
criteria.

0 100 200 300 400 500 600

Nv

10
-14

10
-12

10
-10

10
-8

10
-6

e

Error vs number of mode

s=0.4

s=0.6

s=0.8

0 100 200 300 400 500 600

Nv

10
-4

10
-3

10
-2

e

Error vs number of mode

s=0.2

s=0.4

Fig. 4.3. Error (4.3) versus Nv with di↵erent s. The left figure is for exponential decay function
(4.1), and the right is for power law decay function (4.2).

4.2. Spatially homogeneous case We restrict our attention to the spatially
homogeneous case in this section and consider the following specific example:

@tf =@v(vf)�(��v)
s
f , f(0,v)= e

�v2

. (4.4)

In order to check the performance of the scheme, two properties of the solution will
be considered: 1) convergence towards equilibrium in the long time limit and 2) mass
conservation.

4.2.1. Long time behavior As pointed out in [24], f(t,v) will converge to-
ward the equilibrium M exponentially fast. To observe this dynamics numerically, we
compute the relative entropy

R
Rf ln

f
Mdv as

H
n=

Nv�1X

j=0

f
n(qj)ln

f
n(qj)

M(qj)
wj , wj =

Lv

(sin(qj))2
. (4.5)

The numerical equilibrium, denoted as f1, is obtained when the variation in the solution
is negligible, i.e.,

X

j

|f
n+1
j �f

n
j |wj�q �, wj =

Lv

(sin(qj))2
, (4.6)

and then set f1=f
n+1. Here � is a small parameter and chosen to be 10�6 in our

examples.
We first test the case with s=0.5, where an explicit form of equilibrium is available:

M(v)=⇡
�0.5(1+v

2)�1. The results are collected in Fig 4.4. In the left and middle
figures, one sees that the numerical equilibrium coincides with analytic one, both in the
bulk area and in the tail. On the right, the evolution of relative entropy (4.5) in time
is plotted, and exponential rate of convergence is confirmed.
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Fig. 4.4. Computation of spatially homogeneous case (4.4) with s=0.5. Left: a comparison
between exact equilibrium and numerical equilibrium after converging. Middle: the tail of the equilib-
rium. Right: exponential convergence of the relative entropy (4.5). Here �t=0.01 and Nv =128, and
numerical equilibrium is reached at t=6.47.

Next, we test two other cases s=0.6, 0.8, where no explicit form of equilibrium is
available, therefore we only check the tail behavior, as predicted in (1.3). As shown in
Fig. 4.4, correct power law decay rate at tail is captured numerically and exponential
convergence toward equilibrium is observed.
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g
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n
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Fig. 4.5. Computation of spatially homogeneous case (4.4) for s=0.6 (top) and s=0.8 (bottom).
Left column shows the tail behavior of the numerical equilibrium f1 and right column shows exponential
convergence of the relative entropy (4.5). Here use Nv =128, �t=0.01. The equilibrium is reached at
t=5.43 and t=4.1 for s=0.6 and s=0.8, respectively.

4.2.2. Mass conservation In this section, we check the total mass versus time.
As mentioned in Remark 2.2, the total mass is not exactly conserved by our scheme, but
with proper choice of Lv and Nv, the error can be controlled. Consider the same initial
value problem as in (4.4), where the total mass is M0=⇡

1
2 , we define the following error

in mass:

M
n= |

NvX

j=1

f
n
N (qj)wj�q�M0|, wj =

Lv

(sin(qj))2
, (4.7)
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and plot it with s=0.4, 0.6, 0.8 in Fig. 4.6. It is shown that, with the same choice of
Lv =3, Nv =128, the mass is conserved better for larger s, which further indicates that
slower decaying function is harder to compute numerically. We also check the mass error
at the numerical equilibrium (defined in (4.6)) for di↵erent s with increasing Nv. The
results are shown in Table 4.1. As expected, with fixed Lv, larger Nv leads to better
conservation.
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Fig. 4.6. From top left to bottom right are mass error (4.7) over time for s=0.4,0.6,0.8 respec-
tively, with Nv =128, Lv =3.

Table 4.1. Mass error at the numerical equilibrium fNv1 .

Nv 64 128 256 512

M
1 with s=0.4 7.8e-2 5.9e-3 2.1e-3 9.5e-4

M
1 with s=0.5 5.7e-2 2.2e-3 5.3e-4 1.3e-4

M
1 with s=0.6 3.3e-3 5.9e-4 9.2e-5 5.3e-6

M
1 with s=0.8 2.9e-4 3.2e-5 9.4e-7 1.1e-6

4.3. Spatially inhomogeneous case Throughout this section, we compute
(1.5) with di↵erent choices of ". The following two initial conditions are considered:

f(0,x,v)=⇡
�0.5(1+sin(

⇡

Lx
x))e�v2

, x2 [�⇡,⇡] , (4.8)

and

f(0,x,v)=⇡
�0.5

e
�15x2

e
�v2

, x2 [�5,5] . (4.9)

The equilibrium M, except for s=1/2, is obtained numerically by running the spatially
homogeneous solver until converge, as described in Section 4.2.1. Note that the periodic
initial data (4.8) does not exactly fall into the assumption of Lemma 3.2, but the conclu-
sion there still holds. Indeed, for function f(x,v) of the form (4.8), one can write it into
Fourier series, then it amounts to check

R
R
R
⌦f(v,x)e

�i⇠xdxdv=
R
⌦

R
Rf(v,x)e

�i⇠xdvdx,
which is true as long as f 2L

1(R⇥⌦).

4.3.1. Advantage of splitting in (3.14) Before presenting specific numerical
examples, we first verify the advantage of splitting and adding the term ��g

⇤ in (3.14a).
In particular, from (3.14a), one updates g

⇤ as g
⇤=A�1

� (gn��t"
�2s

I(⇢̃n,M)), where
A� =[I��t"

�2s(Ls��I)]. Then the success of this step hinges on the condition number
of A� . In Table 4.2, we compute the condition number of A� with �=0, 12 ,1,2. The
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other parameters used are Lx=⇡, Nx=50, Lv =3, Nv =64 and �t=0.1. One sees that
larger � leads to a better conditioned A� , and this improvement is more pronounced for
smaller ". Therefore, in the fractional di↵usive regime, � plays a non-negligible role.

Table 4.2. Condition number of A� .

Cond(A0) Cond(A 1
2
) Cond(A1) Cond(A2)

s=0.4, "=1 4.73 4.54 4.36 4.06
s=0.6, "=1 4.93 4.73 4.55 4.24
s=0.8, "=1 13.28 12.66 12.11 11.14

s=0.4, "=1e�3 7.74e3 158 52 20.90
s=0.6, "=1e�3 1.24e5 187.42 63.44 25.45
s=0.8, "=1e�3 5.97e6 564.32 190.75 75.81
s=0.4, "=1e�5 3.57e5 181.66 55.84 21.43
s=0.6, "=1e�5 3.15e7 188.98 63.67 25.49
s=0.8, "=1e�5 9.46e9 564.62 190.79 75.82

4.3.2. Uniform accuracy in time In this section, we show the first order
accuracy in time by computing the L

1 error at final time T :

e�t=
NxX

i=1

NvX

j=1

|f
�t
i,j (T )�f

�t/2
i,j (T )|wj�q�x. (4.10)

and L
1 error over time:

E�t=
NtX

k=1

NxX

i=1

NvX

j=1

|f
�t
i,j (k�t)�f

�t/2
i,j (k�t)|wj�q�x�t, (4.11)

where Nt=
T
�t . The results are collected in Fig. 4.7, where the first order accuracy is

observed among di↵erent choices of ": "=1, 1e�1, 1e�2, 1e�3, 1e�4, 1e�5. We
would like to point out that the initial data (4.9) is away from equilibrium and therefore
a transition layer shall exist at early time for small ". The e↵ect of initial layer is washed
out in (4.10) as the solution will quickly converge to the equilibrium when " is small,
whereas (4.11) should record the e↵ect of initial layer. In Fig. 4.7, however, we observe
that in either case, the first order accuracy can be obtained.

4.3.3. Energy stability We compute the total energy, and the individual energy
corresponding to the macro and micro part in this section. More precisely, the numerical
approximation to (3.12) and (3.13) are

Ef =
NxX

i=1

NvX

j=1

f
2
i,j

Mj
wj�q�x, Eg =

NxX

i=1

NvX

j=1

g
2
i,j

Mj
wj�q�x, E⌘ =

NxX

i=1

NvX

j=1

⌘
2
i,jMjwj�q�x.

In Fig. 4.8, we compute (1.5) with initial condition (4.9) and various ", ranging from 1
to 1e�5. The solution is computed up to T =0.1. As shown, Ef decays with time, and
Eg and E⌘ are uniformly bounded in time, which coincides with the Propositions 3.1
and 3.2 and confirms the stability of our scheme. When "=1e�5, the sudden change
at the first step is due to fact that (4.9) is not at the equilibrium.
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Fig. 4.7. First order accuracy in time for (1.5) with initial condition (4.9): top is for L1 error
at the final time (4.10) and bottom is L1 error over time (4.11). The left is for s=0.4, with Lx=5,
Nx=200, Lv =3 and Nv =128, right is for s=0.8, with Lx=5, Nx=200, Lv =3 and Nv =128. For
both cases, run up to T =0.1 with time step sizes �t=0.025,0.0125,0.00625,0.003125,0.0015625.
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Fig. 4.8. Computation of Ef , Eg and E⌘ for (1.5) with initial condition (4.9). The numerical
parameters for all three di↵erent " cases are: Lx=5, Lv =3, Nx=100, Nv =128, �t=0.01, and the
solution is computed up to T =0.1.

4.3.4. Kinetic regime "=1 We then check the performance of our scheme in
the kinetic regime with "=1. As a comparison, the following implicit-explicit (IMEX)
scheme is used on finer mesh to produce the reference solution:

(
f⇤�fn

�t +v@xf
n=0,

fn+1�f⇤

�t =@v(vfn+1)�(��v)sfn+1
.

Here Fig. 4.9 and Fig. 4.10 correspond to initial conditions (4.8) and (4.9), respectively.
Di↵erent choices of s are considered. One sees that the numerical solution from our AP
scheme agrees well with the reference solution.

4.3.5. AP property and di↵usive regime In this section, we check the AP
property of the scheme and test its performance in the di↵usive regime. To check the
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Fig. 4.9. Top: solution at t=0.5 for (1.5) with initial condition (4.8). Bottom: error in
f between AP scheme and reference solution. Lx=⇡. For our AP scheme, Nx=100, Nv =128,
�t=0.02. For the reference solution, Nx=200, Nv =256, �t=1e�4.
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Fig. 4.10. Top: solution at t=0.1 for (1.5) with initial condition (4.8). Bottom: error in
f between AP scheme and reference solution. Lx=5. For our AP scheme, Nx=200, Nv =128,
�t=0.01. For reference solution, Nx=800, Nv =256, �t=1e�4.

AP property, we compute the following asymptotic error

Error=k⇢
"
M�f

"
k1=

NxX

i=1

NvX

j=1

|⇢
"
iMj�f

"
i,j |wj�q�x, (4.12)

where M is the equilibrium and ⇢
"=

R
Rf

"dv.
When "=1e�5, we compare the solution to our AP scheme with the solution to

the di↵usive equation (1.6), which is computed using the Fourier spectral method.
The results are collected in Fig. 4.11 and Fig. 4.12, for initial data (4.8) and (4.9),

respectively. The left column of each figure represents the asymptotic error (4.12) in
time with di↵erent choice of ". It is clearly that the error decreases with vanishing ",
and it is at a magnitude of approximately O("). On the right, a good match between
the solution to the AP scheme with the solution to the fractional limit is observed. Two
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di↵erent s are tested for each cases.
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Fig. 4.11. Computation of (1.5) with initial condition (4.8). Left: asymptotic error (4.12) versus
time. Right: plot of solution at T =1. Lx=⇡, Nx=100, �t=0.1 are used in both AP scheme and the
Fourier spectral method in computing (1.6). Nv =128, Lv =3 are used for velocity variable.
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Fig. 4.12. Computation of (1.5) with initial condition (4.9). Left: asymptotic error (4.12) versus
time. Right: plot of solution at T =0.1. Lx=5, Nx=100, �t=0.01 are used in both AP scheme and
the Fourier spectral method in computing (1.6). Nv =128, Lv =3 are used for velocity variable.
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5. Conclusion We designed an asymptotic preserving scheme for Lévy-Fokker-
Planck equation with fractional di↵usion limit. This limit emerges due to the fat tail
equilibrium of the Lévy-Fokker-Planck operator, which breaks down the classical dif-
fusion limit as it renders the di↵usion matrix unbounded. Similar anomalous di↵usion
was considered for the linear Boltzmann case [21, 22], for which asymptotic preserving
schemes have been designed [10,12–14]. Comparing to the linear Boltzmann case, there
are two major di�culties here in constructing numerical schemes. One is that the fat
tail equilibrium does not appear explicitly in the collision operator, but exits implicitly
as the kernel of the collision operator. Therefore, the idea of truncating the infinite
domain into a finite computational one with a tail compensation can not be directly
apply, as the tail behavior is not known unless the solution reaches the equilibrium.
The other comes from the derivation of the fractional di↵usion limit. In the linear
Boltzmann case, a reshu✏ed Hilbert expansion is performed to show the strong con-
vergence of the kinetic equation to the anomalous di↵usion limit and it is the building
block of the design of AP scheme. In contrast, only a weak convergence is known for
our case. To resolve the first di�culty, we adopt a pseudo spectral method based on
rational Chebyshev polynomial, which transforms an infinite domain into a finite one,
and therefore no domain decomposition is needed. For the second di�culty, we propose
a novel macro-micro decomposition, with a unique macro part that is inspired by the
special choice of of the test function in proving the weak convergence. The stability
of the split system is obtained. We also propose an operator splitting discretization to
the split system, which removes the ill-posedness due to the sti↵ness and reduces the
computational cost from a direct implicit treatment. A rigorous asymptotic preserv-
ing property of our scheme is established. Several numerical results are carried out to
demonstrate the properties of our scheme, including asymptotic-preservation, uniform
accuracy and energy dissipation.
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