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Abstract

Inspired by the recent paper (L. Ying, Journal of Scientific Computing, 84, 1-14 (2020),
we explore the relationship between the mirror descent and the variable metric method.
When the metric in the mirror decent is induced by a convex function, whose Hessian is
close to the Hessian of the objective function, this method enjoys both robustness from the
mirror descent and superlinear convergence for Newton type methods. When applied to a
linearly constrained minimization problem, we prove the global and local convergence, both
in the continuous and discrete settings. As applications, we compute the Wasserstein gradient
flows and Cahn-Hillard equation with degenerate mobility. When formulating these problems
using a minimizing movement scheme with respect to a variable metric, our mirror descent
algorithm offers a fast convergence speed for the underlying optimization problem while
maintaining the total mass and bounds of the solution.

Keywords Mirror descent - Variable metric - Wasserstein gradient flow -
Degenerate mobility

1 Introduction

We consider the following linearly constrained minimization problem

min  f(u), (I.1)

ueAu=b

where Q2 is a closed convex domain in R” with nonempty interior, f : Q — R is a convex
differentiable function and A € R™*" with m being a small nonnegative integer. One typical
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example is with f taking the form:

Fw =;(gi(u,->+uiv,»>+;ZZWi,juiuj, (12)

i=1 j=1

where g; is a convex function, W; ; = W(|x; — x;|) and V; = V (x;), with W(|x|) and V (x)
assumed to be A—convex. The linear constraint Au = b oftentimes encodes the properties
such as mass conservation. The convex set €2 can be denoted by, for instance, Q2 = {u : u; >
0}, which imposes a bound constraint on u. This example arises in aggregation dynamics
[10, 26], kinetic description of granular gas [2], the mean field limit of neural networks [24],
among many others. In this paper, we assume that the problem (1.1) has a unique solution
u*.

When A = 17 (the all one row vector), b = 1, and Q = {u : u; > 0}, then the feasible
set is the simplex

n
U={u:u; =0, > uj=1¢. (1.3)
i=1

In this case, a strongly convex function @ (u) is constructed to solve the problem (1.1), e.g.,
@ (u) =Yy '_, gi(u;) for the general case, and ®(u) = Y 7", gi (u;) + %W,-,,-ui2 if the matrix
[W;, ;] is positive semidefinite. Ying considered three different types of strongly convex
functions g; in [28]: Kullback-Leibler divergence, reverse Kullback-Leibler divergence, and
Hellinger divergence. Then, the mirror descent has the following update formula:

mirror descent : V& (k) = Vo ) — n (VW) + ATeb)), (1.4)

where 70 is the stepsize and c¢(u¥) € R is the unique vector to be determined such that
AuFt! = b. The nonnegative conditions {i; > 0}_, are automatically satisfied because
of the log terms in {g;}_,, and c(u¥) plays the role of the Lagrangian multiplier for the
constraint Au = b in the mirror descent update. More importantly, for the special case when
g(u) = ulogu, the value c(u¥) can be easily found by a normalization step. For other cases
in [28], the value for ¢(u*) is efficiently found by iterative algorithms such as Newton and
bisection.

In practice, to obtain uF*1! from (1.4), let ®* be the conjugate function of &, which is
defined as ®*(v) = max, v'u — ®(u). Then we have u = V&*(VP(u)). Therefore, the
mirror descent (1.4) has the following equivalent form:

mirror descent 1 u*t! = VO* (VO k) = Vo (VO k) — na(V f Wb
+ ATe@hy)). (1.5)
When & is continuous differentiable, then (1.5) reduces to:
W = (Vo) (VO Wb — nm(Vf W) + ATew"))).

To put (1.5) in a more general framework, since u = V®*(V®(u)), taking derivative
with respect to u, we have I = V2O (u)V2O* (VP (u)). Then the above equation bares the
following first order approximation:
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W AV O (VO Uk)) — nm VPN (VO ) (V F k) + ATeh))
=uF — g V2O WUV W) + AT b)) .

It shows that mirror descent is a discretization of
i=-V2ouw) N(Viw) +ATcw)). (1.6)

Since we can multiply ® by a scalar and change the ordinary differential equation, to simplify
the following analysis, we assume that ® is 1-strongly convex with respect to a given norm
Il ie.,

1
®(x) = @) = VO (x =) = Sl =yl -
A more direct discretization of (1.6) is to apply the forward Euler scheme, namely,
variable metric 1« = uF — g V2O TV W) + ATewr)), A7)

which can be viewed as a first order variant of the mirror descent. Similarly, 1 is the stepsize

and ¢(u*) is a vector to be determined such that Au**! = b. This method is equivalent to
variable metric :  #*T! = are min by (v F ik U — uky u — uk|? ,
g min f(u) + (VS ) )+ 5, 12

(1.8)

and it is called variable metric [14] because of the variable metric V2® (1¥) used in the
quadratic term. When @ = f, (1.8) reduces to the proximal Newton method [22].

In view of the mirror descent method (1.5) and variable metric method (1.7), they both
are first order discretizations of the continuous flow (1.6). Despite vast literature on either
method individually, there is little discussion on the relation between them. Indeed, for the
mirror descent method, emphasize has been put on the treatment of constraints, especially the
simplex constraint mentioned previously, which makes the choice of ® (1) = >}, u; logu;
the most popular. On the other hand, in variable metric methods such as Newton type methods,
® is chosen to incorporate the second order information of the objective function with the
goal of improving the local convergence rate. The constraint, however, is often dealt with by
a projection step. Inspired by the paper [28], we see that one can merge the advantages of
both methods by constructing ® that has both Hessian information and constraint guarantee.
Consequently, by choosing the appropriate Bregman divergence in the mirror descent, we can
prove the global convergence of the new method. This proof can easily lend itself to Newton
type methods owing to their similarity. In return, following the superlinear convergence for
Newton type methods, we can prove the same local convergence for the new method.

Comparing (1.4) and (1.8), it is important to point out the advantage of mirror descent
in treating the constraint x € €2. In practice, such a constraint can be enforced through the
Llull3 foru e @

L oo otherwise ’ or the ones we use in Sect. 4 (i.e.,

choice of ®, for instance, ® () = {

(4.4) and (4.19) ). As a result, the iteration u**! obtained from the mirror descent satisfies

the constraint by construction. In contrast, it is not guaranteed that u**! obtained from (1.7)

will satisfy the constraint, and a projection step may be needed. In addition, in order to make

sense of (1.7), ® needs to be twice continuously differentiable, whereas (1.4) or (1.5) allows

for a much wider class of ¢, which gives more flexibility to the mirror descent method.
The contributions and organization of this paper are summarized as follows:
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e We establish the sublinear convergence of the gradient flow in (1.6) for a general & (u)
in Sect. 2 and extend it to linear convergence with an improved rate in the case of strong
convexity.

e We prove both the global and local convergence of two discretizations (1.4) and (1.7) in
Sect. 3.

e Applications in variable metric gradient flows are presented in Sect. 4 along with numer-
ical experiments.

Finally, the conclusion is drawn in Sect. 5.

2 Convergence of the Gradient Flow (1.6)

In this section, we consider the convergence of (1.6), which guides the convergence analysis
of (1.4) and (1.7) in the next section. With the proper choice of distance measure, in particular
the Bregman divergence in our case, the global convergence can be established. A similar
version of the following theorem can be found in [21].

Theorem 1 (Sublinear convergence) Let u(t) be the solution to (1.6) with u(0) = ug. Then
we have

17T 1
f (*/ u(t)dt> — fW") < —Do(u*, up), 2.1
T Jo T
where Dg is the Bregman divergence induced by ®:
Do (u*, ug) = ®(u*) = Plug) — VO (uo) " (u* — up) .

Proof Consider the time derivative of Dg (1™, u(t)), we have

L Dot = ow - Vo) u*
T Dol u(n) = - [ @) = @) = V@) W — u(r))]

.
_ —VdD(u(t))T$ _ |:V2<I>(u)d1::)] W — u())
+du(t)
+ V)=

= (VS @®) + ATe@®) " @ —u@®) =V f@n) @ —u@)
< fW) = fu@)),
where the third equality uses (1.6) and the inequality comes from the convexity of f. Inte-

grating both sides from O to 7', we obtain

1 1 [T
7 [Do ™, u(T)) — Do (u*, ug)] < f(u*) — ;/ fun)dr,
0

which readily implies (2.1) thanks again to the convexity of f and D¢ being nonnegative.
]

If we further assume the strong convexity of f, we can obtain the linear convergence.

Theorem 2 (Linear convergence) Let u(t) be the solution to (1.6) with u(0) = ug. Define
two Bregman divergences induced by ® and f as De(t) := Do (u*,u) = ®u*) — ®(u) —
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(VO ), u* —u)and Dy(t) == Dy(u*, u) = fu*)— fu)—(V f(u), u* —u), respectively.
Assume that D ¢(t) > uDg(t) for all t. Then we have

Do(t) < Do (0)exp ™,  forall t > 1.

Proof Denote G(u) = —[V f(u) + AT c(u)], then (1.6) writes as

%wp(u) =G), or u=Vou) 'Gu). (2.2)
The global convergence result shows G (u*) = 0. Then, we have
Do = —(Gu),u* —u) = —(Vfu*)+ATc@*) =V fu) — A cu), u* —u)
=—(Vf W —=Vfw),u" —u) from (Au = Au™)
< —[f@”) = f@) = (Vf@),u" —u)] < —puDo(1).

Therefore, we have Do (1) < Dg (0) exp™ . o

Remark 1 The scalar i determines the linear convergence rate. If ® (1) = ||u I1? /2, then u is
the strongly convex constant with respect to the standard norm, which can be very small in
some applications. In such cases, if ® is chosen according to the Hessian of f, then u can
be much larger than the strongly convex constant of f with respect to the standard norm and
results in a much faster convergence.

3 Convergence at the Discrete Level
This section is devoted to the convergence of the discrete schemes (1.4) and (1.7). For global
convergence, the proof follows a similar line of reasoning as in the continuous setting but

with more involved calculations; whereas the local convergence is obtained via a two stage
proof as in other Newton type methods.

3.1 Global Convergence

We first establish the global convergence of (1.4), which is slightly different from that in [6].
We still include it here for completeness.

Theorem 3 (Global sublinear convergence for mirror descent (1.4)) Assume ® is 1-strongly
convex w.r.t. a certain norm || - ||, i.e.,

1
Do(x,y) = 5 llx — Iz (3.1)

Let {u*} be the solution to (1.4) with the initial u® = ug. Then we have

K—-1 K—1
1 k 1 1 M k T k2
f <1< ]; u ) — f) < nMKD‘b(”*’ up) + — ];) SV + ATew@HI

(3.2)

where || - ||w .« is the dual norm of || - || .
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Proof We mimic the proof of Theorem 1. Consider
Do (u*, u") — Do (u*, u*) = W5 — W) + VO ) T (u* — u¥)
— VO T W — uk 1y
Plugging in the relation (1.4) and using Au* = Au* = Au**! = b, we have
Dq>(u*, uk+l) _ D@(u*, uk)
= o) — oW + VOEHH T @ — ) + ymlV £ @) + ATe]T @ —ub)

< Do uF) + (VL) + ATe ) T @b — u" ™ + il f @) — Ff)].
(3.3)

Using the fact that & is 1-strongly convex w.r.t. norm || - ||, we have

— Do " iRy + (V£ @R + ATe@b) Tk — ut T

2
n
< TMIIVf(u") + ATe@h))?

W, %7

where we have used the Young’s inequality for the term 14 (VfWk + ATe@®) T ur -
uk+1y. Therefore, we have

1
F) = F) = [ Dot uh) = Do, ] + LIV £y + ATew@hI,
Summing from k = 0 to K — 1 and dividing by K give rise to (3.2). O

The inequality (3.2) is still valid if AT c(u) is removed, and it reduces to the standard
convergence result with bounded gradient [6]. However, we add ATcw®) here because
V f(u*) + AT e(u*) converges to 0 when u* converges, while V f (1*) may not.

Theorem 4 (Global convergence for variable-metric (1.7)) Assume ® is 1-strongly convex
w.rt. norm || - |2 and V2® is L-Lipschitz, i.e.,

IV20(x) — V2O (y) 2 < Llix — yll2.

Then the solution {uk} to (1.7) with initial u® = ug satisfies

1 K—-1 1 1 K—-1
f (K ;) u") — S W) = e Dol o) + > %nwmk) +ATc@h3

k=0
Lox 1 AT o2 byt k
SN [Iv20ah ™ (v
+ATe@ Bt — 2] (34)

Moreover, if we assume Q({u : Au = b} is bounded, and V® and V f are Lipschitz
continuous with constant L1 and Ly over the bounded set 2 N {u : Au = b}, respectively,
ie.,

IV2@@)ll> < L1, IV f@ll2 <Ly Vue QN {u: Au = b}.
Then
IV LX) +ATc@®))r = 0 as k — oo. (3.5)
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Proof Here we follow the approach in the proof of Theorem 3 but tailor the details according
to the update rule (1.7). First we write

Do w*, u* ™ — Do w*, u")
= dWh) — W) + VO T w* — by — VOGHT w* — ukt)
= —Do ! 1) + [V ") = VO] @ —u*t). (3.6)
Next, compute the difference

Vo Uk — Vo urth
1
— _/ vzq)(uk +t(l/lk+1 _ uk))(uk+l _ Mk)dt
0
1
= ’Wf V2 (X + 1 — i) V2R R TV F R + AT e))dr
0

= nn(VF b + AT b))

1
_ rwf [1 V2 + ! - uk))v2q>(u’<)—1] (V F ) + ATe@))dr .
0

A
3.7

Plugging (3.7) into (3.6) gives
Do w*, u* ™!y — Do @*, u")
= v (V) + ATe@) T @t — "t +ur — )
_ UNAT(M* _ uk+1) _ D@(uk+l, uk)
< v (VW) + ATe@) T @ —u" ) + nalf ) = £
— N AT @ — " — Do (uf ! ub)

2
< %Nllvmk) + AT 3 — anlf@®) — FUD] = AT @ —ufth, (3.8

where we again use the Young’s inequality for the first term and 1-strongly convexity of ®.
Because V2@ is L-Lipschitz, we have

A

L _

< S = V2R TV F @) + AT

Loy
2

Therefore, similarly to the previous theorem, we have

f@®y — fu)

1
< [P0, 1) = Do, 1)) + BEIV £ by + ATew@h B — AT " — k)

All2

V2D @h) "1V f@h) + AT @) |13 3.9)

IA

1
o [Pot i) = Dot TH |+ TRV £y + ATewh13

Ly _
+ Tnv%(uk) YV F@h) + ATe@ )3 u* — u ;.

Summing from k = 0 to K — 1 and dividing it by K, we arrive at (3.4).
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To show (3.5), note that, using (1.7),
F@y = fk = V2o TNV @R + ATewh)))
< f®) —nnV R TVEOWH) TNV k) + ATewb))

2
+ %NL2||V2<I><M">*1(V.f(u") + AT e(h)2
= fW") — N[V W) + AT V2O W) (Vb + AT @)
2
+ ”TNL2||v2d>(u’<)*‘(Vf(uk) + A3, (3.10)
where the last equality uses the fact

AVZO TNV FWh) + ATewh) = niNA(uk —utty =0.

Then if we choose nn < ﬁ, (3.10) becomes

1 L
F@h = f@t) < -y (LT - 2) V2O V) + ATe@DI3
< _%Hvzq)(uk)*l(Vf(uk) + AT )3,

which implies
IV2e @) (V) + AT )5 < %[f(u") - f@hy.
Summing over k of the above inequality leads to
DIV TV ) + ATew@)IE < %[f(uo) — f@hl,
k

and (3.5) readily follows. ]

Comparing (3.8) to (3.3), one sees that the difference lies in the additional term .4, which
leads to the different results in (3.2) and (3.4). While it is not obvious which one gives faster
convergence, we would like to restate one advantage of mirror descent method in treating
constraint u € Omega, as mentioned in the introduction. In particular, for cases when €2 has
some bound constraints, such as non-negativity, one can directly build it in & for (1.4) and
the resulting solution is automatically bound preserving. Whereas in (1.7), there is no such
a guarantee. See numerical examples in Figs. 4 and 5 for an evidence.

As a side note, we can extend the result in Theorem 4 to general quasi-Newton methods:

W =uk — BNV W + AT ey, (3.11)
where By is asymmetric and positive definite matrix that approximates the Hessian as follows:

B (" —u) = V' = V f (), (3.12)
and c(u¥) is again the to-be-determined vector that warrants Au*+! = b.

Theorem 5 (Global convergence for quasi-Newton (3.11)) Let {uk} be the solutionto (3.11)-
(3.12) with initial guess ug. If By satisfies

IBis1B. ' — 12 < nL (3.13)
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for some constant L, which is independent of n and k, then we have

1 K—1 . 1 i} n K—1
s (K ,;0 u") — S W) = Do) + I; [1V £ @ + ATe@HI
+ LIV W)+ ATe@h) allu* — uF )] . (3.14)

Proof Because there is no function ®, we use the objective function f to define Dy and
control the distance between current iteration and the optimal solution. More precisely, we
consider

Df(u*, uk+]) _ Df(u*, Ltk) — [Vf(uk) _ Vf(uk—‘rl)]T(M* _ uk+1) _ Df(uk+l, Mk)
< [Big1 (@ — uF 1T (@ — uk T
= [Br(" — u**Yy + (Bigr — B @h — u*TH1 T — uF T
(3.15)

where the first inequality come from (3.12). Using (3.11), we see that Bi(uk — ukthy =
n(V f W) + ATc(u®)). Thus, (3.15) becomes

Dy(u”, uktly — Dy(u”, uky
< (VW) + AT )T @ —u") +n(VF@b) + ATe@*) T @k —uf
+ [(Brgr — By b — uF 1T @ — bt
<nlf@*) — FEO+ P (VW) + ATe@ ) B (VFb) + ATew®))
+ LIV F ) + AT flu* — "2,
where we have used the convexity of f and property of By in (3.13). Then (3.14) follows

from summing the following inequality over k and dividing by K. O

3.2 Local Superlinear Convergence

In this section, we show the local convergence of (1.4). For notation brevity, we omit the
subscript in 1 and simply write (1.4) as

VOt = Vo ur) = —n(V ") + ATe@b)). (3.16)

First we have the following proposition showing that if the iteration step 7 is properly chosen,
the objective function sufficiently decreases along the flow. This mimics the first stage of
Newton’s method, where only linear convergence is obtained.

Proposition 1 Assume ® is I-strongly convex with respect to the standard norm, i.e., V> ® >
I, and V f is L—Lipschitz. If n is chosen by n < %(1 —a) fora € (0,0.5), then we have
the following sufficient descent condition

FUY < f@h) +aV )T @ = by G.17)
Proof Define

Au = u* T — k. (3.18)
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then we have

1
F@h — —[ V £k + 1 Au)T Audr
0
1
=VFuT Au +/ [V X +1Au) =V £u*)]T Audt
0

<aViu)TAu+ 1 —a)V )T Au+ §||Au||2. (3.19)
From (3.16), one sees that
VW) Au= (Vfw)+ATew))T
Au = —%(V@(uk"'l) — Vo)A < —%||Au||2. (3.20)
Plugging it into (3.19), we have

f(uk+1) _ f(uk) < otVf(uk)TAu + (% — %) ”AM“Z .

Then choosing < %(1 — o) makes % %"‘ 0 and therefore (3.17) holds. ]

Remark2 1) (3.20) indicates that f 1Y is indeed decreasing over iteration.

2) « can be in the range of (0, 1) for the above proposition to hold. However, for the later
use in Lemma 1, we still restrict @ € (0, 0.5).

Next, we show that after sufficiently large number of iterations, the second stage of Newton
type methods is reached and results in superlinear convergence.

Lemma 1 Let Au be defined in (3.18). If
1
Gy = / V20 (u* + sAu)ds (3.21)
0

satisfies the Dennis-Moré condition [15]:

(G = V2 f @)@ = b

TSR — 0, ask — oo, (3.22)

and V?* f is Lo—Lipschitz around u*, then n = 1 in (3.16) satisfies the sufficient descent
condition (3.17) for sufficiently large k.

Proof We have
f k-‘r] f(Mk)

=V e Au+ AuT /01(1 — V2 fu* + tAuydt Au
= %Vf(uk)TAu + %AuT[VCD(uk) —VOu + Au)]
+Au’ /01(1 — OV fu* + tAu)dr Au
- %Vf(uk)TAu —%AMT [Gk =V fu")] Au+ Au” /01(1—0

x [sz(uk + tAu)—sz(u*)] dt Au.
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From (3.22), one has || [Gx —V? f(u*)] Au|| < o(|| Aul|). Therefore,

1 L, .
F@Ah — fak) < EW(uk)TAu +o(llAul®) + 7||Au||2||uk+1 —u*|.

For k sufficiently large, by global convergence Au is sufficiently small, then the last two
terms on the above inequality can be controlled by the first term on the right hand side, so
the descent condition (3.17) will be satisfied. O

Once 7 is chosen to be 1, the superlinear convergence of (3.16) can be obtained.

Theorem 6 (Local superlinear convergence of (3.16)) If Gy defined in (3.21) satisfies the
Dennis-Moré condition (3.22), and assume that around x*, f is B-strongly convex and V* f
is L-Lipschitz. Then the mirror descent (3.16) converges superlinearly, i.e., lukt — w¥|| <
o(lluf —u*|).

Proof From Lemma I, the unit step length is allowed after sufficiently many iterations, and
therefore we have

VOt = Vo uh) = —(V b + ATewb))
which can be rewritten as
G —uk)y = —(V ) + ATe@h)),
where Gy, is defined in (3.21). Then we have
(Gk = V2 f @)@t =)

= —(Vf@") +ATe@)) = V2 f )@t —uh)

= VU = Vb = V@)@ =ik — (V@) + ATewb)). (3.23)
From the Lipschitz continuity of V2 f around u*, we have |V f@uFth — Vfwr) —

V2 £ u*) @F ! —ub)y|| /)| —u¥|| — 0ask — oo. Then using the Dennis-Moré condition
(3.22), (3.23) implies

. IVL@Y + ATe@h))
lim =0,
k— o0 ||I,tk""1 — uk||

which readily leads to

VAT + ATe@h) — VF@u*) — ATe@")|
lim =

0.
ko T =]

The above equation also implies

lim (VE@TY + ATe@) = V@ — ATe@®), @ —u*) /bt —u))

=0.
k— 00 ||I/tk""1 — uk||

Then using the fact that AufFtl = Au*, it reduces to

AV L@ = V), uf T — )
lim

=0.
k=00 ||uk+1 _ uk||||uk+1 _ u*||

Since (Vf**!) — Vf@*), uk*! —u*) > Bju*+1 — u*||? for sufficiently large k and
kT — k) < b — w* || + u* — u* |, we have
B kT — || _
k=00 2 [luk 1 — || 4 [luk — u||

)
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k+1 *
u —Uu
I I =o. O

which implies limg_, o =

We also mention that in general (3.22) is not satisfied, so instead of having the superlinear
convergence, we will have a linear convergence but with an increased rate as compared to
the standard gradient descent. More specifically, we have the following theorem.

Theorem 7 Let ® be I-strongly convex with respect to || - ||, and the sequence {uF} be
obtained from (3.16). Also, assume that D y(u*, uky > uDo (u*, uk). Then we have

Do, u"*!) < (1 — nu) Do (u*, u),
if0 <n < 2(f W) — F@N/IVf @O, .
Proof From the definition of Bregman divergence, we have
Dq;(u*, ukH) _ D@(u*, uk)
= [Du*) — dWr!) — <ch)(uk+1)’ ut — uk+1>]
—[@W*) — @) — (VOu"), u* — ub)]
= [0 — o) — (VO L), ut T —u*)] + (V@b uF —uF
< =t — "G 24 (V£ ), u =l Y = (f @) = F @) — 0Dy, ub)
< IV L@, /2 = n(F @b = F@*) = nuDe (u*, u®)
Therefore, if we choose n < 2(f(uk) — f(u*))/IIVf(uk) ||2w’*, then we have
Do*, u*™") < (1 — nu) Do (u*, u).
The theorem is proved. o

This theorem is consistent with Theorem 2. When @ is properly chosen, it will mitigate the
ill-conditioning inherited from f in the sense that p is increased, and therefore leads to a
much improved rate of convergence.

4 Applications and Numerical Experiments

Apart from the examples mentioned in [28], we consider two additional applications of the
mirror descent (1.4) in evolutionary PDEs: the Wasserstein gradient flow and Cahn-Hillard
equation with degenerate mobility. In particular, viewing the Wasserstein gradient flow as
a weighted H~! gradient flow and using a minimizing movement scheme, we obtain an
ill-conditioned optimization problem. The same problem is encountered in the Cahn-Hillard
equation when the mobility is degenerate. In both cases, our mirror descent can provide
preconditioning mechanisms while preserving the bounds of the solution (e.g., positivity)
and mass conservation.

4.1 Wasserstein Gradient Flow

Let’s consider the following Wasserstein gradient flow

8&
dp(t,x) = =Vw,E(p(t, x)) ==V - (p(t,x)Vg(p(t,x))> ; 4.1
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where W, is the quadratic Wasserstein metric and § denotes the first variation. Here p (7, x)
with x € Q@ C R” is the particle density function, and energy £(p (¢, x)) takes the form

1
E(p(t, x)) :/;Z[U(,o(t,x))+V(x),o(t,x)]dx+§/9 QW(x—y)p(t,x)p(t,y)dxdy.

n|39 = 0 is imposed to ensure the mass
conservation. This equation has diverse applications in physics and biology, such as granular
materials [12], chemotaxis [20], animal swarming [4, 11], and many others.

Numerically solving (4.1) has been quite challenging to satisfy three desired proper-
ties: non-negativity, mass conservation, and energy dissipation. Besides the Eulerian and
Lagrangian methods that have been developed in the literature, we particularly mention the
variational approach following the seminal JKO scheme by Jordan, Kinderlehrer, and Otto
[19]. Given a time step T > 0, the JKO scheme recursively defines a sequence p,(x) via a
minimizing movement approach. This approach has revolutionized PDE analysis, whereas
its impact in numerics has only be revealed recently with the aid of modern optimization
algorithms [7, 9, 13, 18, 23, 25].

In this paper, we consider a similar but slightly different approach. In particular, we
obtain the solution sequence {p,}, an approximation to the exact solution p, (x) = p(nt, x)
as follows:

The no-flux boundary condition p(z, x)V% )

. 1 .
PO = Pin, P+l = arg melﬂg {Ellp - pnlli;nl + E(p)} = arg ;nelﬁ S, 42

where ||u||2 o= = [ou)A u(x)dx, and K = {p:p eP(Q), [qlx|*pdx < +oo},

where P is the set of probablhty measure. Here A, is the negative weighted Laplacian
Ap, ==V -(puV),and A - ! is its pseudo-inverse. It has been shown that the weighted H !
norm is a first order approximation to the Wasserstein distance [27], and therefore will not
violate the first order accuracy of the JKO scheme [3]. In view of (4.2), one sees that the three
desired properties mentioned above are all satisfied. Indeed, the positivity and mass conser-
vation are obtained by requiring the minimizer in K, the energy dissipation £(p,+1) < E(pn)
is also immediate since p,41 is the minimizer.

4.1.1 Mirror Descent Algorithm

To solve the optimization problem (4.2), a direct projected gradient descent takes the follow-
ing form

) 1 6&
P Z projy {pk ) [;Apnl Pk — p) + %(pk)i“ , (4.3)

where 7 is the iteration stepsize and the superscript k, which shall not be confused with the
subscript , denotes the iteration index. Since the value of p, can be arbitrarily close to zero,
A, is very stiff, and therefore the gradient descent (4.3) will take extremely long time to
converge. To this end, we propose the following mirror descent algorithm.

Choosing @ in (1.4) to be

)= 5-lp =l +e / plog pdx . 44)

then the mirror descent reads
§P

5P 1 6&
S0 =Y = 0 | SAL N = o)+ 0N |
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which simplifies to

8E
,okJrl +etA,, log,okJrl = pk +etA,, log pk -7 |:pk — pn + rApng(pk)} . (4.5)

The reason for choosing @ in the form of (4.4) is two-fold. On one hand, the stiffness
introduced by A;n] constitutes the major difficulty in the optimization task in (4.2), and
therefore including this term in @ will significantly mitigate the stiffness. On the other
hand, thanks to the additional entropy term in (4.4), the positivity of p is preserved in (4.5).
Moreover, since A, preserves mass, i.e., f Ap,u(x)dx = 0, mass conservation is also
guaranteed in (4.5), that is, [ p**1(x)dx = [ pF(x)dx = [ p,(x)dx.

In practice, we will further discretize (4.5) in space. Let us consider one dimension for
instance. Denote [x7,, xg] as the computational domain and Ax the size of the spatial grid.
Choose x; = x7 + (j — %)Ax, and denote

pj X p(xj), puj e, xj), 1<) <Ny, neNg,

where #, = nt, and NyAx = xg — xr. First we discretize A, , and denote its discrete
counterpart as D, . Then we propose

1 Pn.jFPn j+1 Pn,j+1+Pn.j .
—m["z"’ Ujl = = ’M./]7 j=1
1 I:pn<_/'+pn.j+l Uip) — Pn,j+1+20n,j+Pn, j—1 ui
P 2 J 2 J
(Dp,u)j = ﬁjﬁpn.jq . . (46
ozt | 2<j<N.—1
1 Pn,jtPn j—1 Pn,jtPn j—1 .
_ATZ[_ eyt e ”f*‘]’ J =Ny
Note specifically that for j = 1 and j = N, our discretization takes into account the

boundary condition in (4.1). Indeed, if either p 90 = Ooru- fz]aQ = 0, then at discrete
level on the left boundary, we have p, 0 4+ p,,1 = 0 or u; — ug = 0 correspondingly, and in
either the second line of (4.6) reduces to the first line. Same arguments applies to the right
boundary. As a result, D, preserves the mass, i.e., 17D, = 0.

Denote
_ T _ T
p = (:017 P2, /ONX) s Pp = (p}’l,17 Pn2s ", ,On,NX) s
we can rewrite (4.5) in the discrete form
§&
,ok'H +etD,, log pk+l = pk +¢etDy, log pk -7 [pk —p, +1Dp, g(pk)] . 47)

Then the remaining task is to solve the nonlinear equations for p**!, for which we use the
Newton’s method. Let y = log p and define & to be h(p) = e¢¥ + etD,,y — b, where
b=p"+ etDy, log p* —nlp* —p, + TDpnég(pk)]. Then the Newton’s method takes the
form

y D = yO — ARy D)y, (4.8)

where A; = diag[e” U)] +e1D,, . Note that since the components of y can vary drastically, A
will be ill-conditioned, and therefore the computation A;” ! h(y®) in (4.8) may be susceptible

.. . .. . 1
to errors. To fix this issue, we propose the following preconditioner P; = diag[e™” ( )], and
rewrite (4.8) into

Y =y O — @A) PR (YD) (4.9)
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Note that since P; is a diagonal matrix, the preconditioner is cheap to apply.
In summary, we have the following algorithms.

Algorithm 1: Mirror descent algorithm for (4.2)

1 Input p,,,D,,, Itermax, Ax, T
2 Output p,,

3 0% =p,, y° =logp°

4k=0

s while k < Itermax and stopping criteria is not achieved do
s | y=>h

7 | while error > le — 6 do

8 A = diag[e?] + etD,,, P = diag[e™7]
9 y=y— (PA)[Ph(y)]

10 error = [y — yll/llyll

11 y=y

12 | end

B | k=k+ 1,y =3

14 end

yk+1
15 pyp1 =€

Algorithm 2: Variational scheme for (4.1)
1 Input py = py,

2 Output p, for 1 <n < N,

3 forn <= N; do

4 | Apply Algorithm 1 to p,, to get p,, |
5 end

4.2 Numerical Examples

We consider two examples of (4.1) and demonstrate the efficiency of mirror descent. In both
examples, we stop Algorithm 1 when the relative error is less than a preset tolerance, i.e.,

k+1 _ ok
W <Tol, where p*=exp”. (4.10)
P
4.2.1 Porous Medium Equation

We first consider the porous medium equation
hp=A0p", m>1, (4.11)

which can be seen as the Wasserstein gradient flow of £(p) = f ﬁpm dx. A well-known
family of exact solutions is given by the Barenblatt profiles, which are densities of the form

_ m—1 o \mT
px,t) =@ +1t) "1 |C—a————x"(t +1tg) m+I , forC,t) > 0. (4.12)
2m(m + 1) n

In our tests, we choose m = 2, fg = 1073, and C = 0.8. The results using our mirror descent
algorithm are gathered in Fig. 1. On the left, the numerical solutions are compared to the
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7 60 102

10

number of iterations

2 4 6 8 0 10 20 30 40 50 60
x t %103 iteration

Fig.1 Porous medium equation with m = 2 and computational domain [—1, 1]. Left: evolution of p compared
with exact solution. Middle: number of iterations needed in Algorithm 1 within each outer time step. The
tolerance in (4.10) is chosen to be Tol=10"3. Right: iteration error of Algorithm 1 in the first step of outer
variational scheme. Numerical parameters are Ax = 0.04, 7 =2 x 10*4, e =0.005in (4.4)and n = 0.2 in
Algorithm 1

analytical formulas, and good agreement is demonstrated. In the middle, we have shown the
number of iterations needed in Algorithm 1 within each outer time step, and one sees that
around the same iterations are needed for a given tolerance Tol= 10~8. On the right, we plot
the relative error (4.10) versus the iteration in the first outer time step. The decay of relative
error behaves quite similar at later times.

It is interesting to mention that we have also implemented the variable metric method
(1.7), or equivalently (1.8). In particular, we choose ®(p) = 2% lo— pnll \-1 instead of (4.4),

then (1.7) becomes "
P T = ok — A, (V5 + ATe(ph)), (4.13)

where f(p) is defined in (4.2), £(p) = f ﬁpmdx, and A is an all one row vector that
encodes the mass conservation of p. As explained before, A, preserves the mass exactly,
therefore ¢(p¥) = 0 here and the algorithm reduces to

SE
p* = ok —n(p* — py) — nAp,lg(p").

Compare it to (4.5), we see that the major difference is that here there is no mechanism
to automatically guarantee the positivity. However, with a proper choice of iteration step
1, the positivity may still be preserved. In this specific example, we apply (4.13) with the
same parameters as in the mirror descent algorithm, and we have obtained exactly the same
behavior of the solution as displayed in Fig. 1, so the plots are omitted.

4.2.2 Aggregation Equation

Next we consider a nonlocal aggregation equation of the form

2
o =V YW xp), W) = -~ In(la), (4.14)

where the interaction kernel W is repulsive at short length scales and attractive at longer
distances. This equation admits a unique equilibrium profile

1
Poo(X) = —/(2 = X2 (4.15)

In practice, to avoid evaluation of W (x) at x = 0, we set W(0) to equal the average value of
W on the cell of width 24 centered at 0, i.e., W(0) = ﬁ f i' » W(x)dx, where we compute
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0.8

061

04r

0.2r

Fig. 2 Aggregation equation with computational domain [—2, 2] and initial data . Left: evolution of p, poo
is given by the analytical formula (4.15). Right: exponential decay of energy. Numerical parameters are
Ax =0.08, 7 =0.016, ¢ = 0.1 in (4.4) and n = 0.8 in Algorithm 1

this value analytically. (See also [9] for a similar treatment.) In Fig. 2, we compute (4.14)
with initial data

1
V2mo

The left picture displays the evolution of p. At ¢ = 3, the solution has reached the steady
state, which matches the analytical formula represented by the dashed curve. The right plot
shows the exponential decay of the energy, where the red dashed line indicates the decay rate.
We also explore the convergence of our algorithm in Fig. 3. As seen in the upper left picture,
the number of iterations needed in reaching the tolerance has shown some heterogeneity with
respect to the outer time. More specifically, at a few times, such as r = 0.528, a significantly
larger number of iterations is needed. More detailed plots on how the relative error (4.10)
evolves are displayed in the upper right and lower left figures, in which a few representative
plots of the error are given. At t = 0.528, which corresponding to the first peak, we also plot
the solution p at this time and the previous time (i.e., t = 0.512), with a zoom-in plot near
the left propagating front of the solution. It is shown that, at the location x = —1.24, there is
a sharp transition in the solution. That is, p19 goes from 5.5996 x 1077 t0 2.1726 x 1074,
which results in around 389 increase in magnitude. Similar increase are observed at time
corresponding to the rest two peaks. So we believe that the deterioration in the convergence
is due to such a rapid transition in the solution.

In comparison, we also considered the variable metric algorithm (1.7). With the choice
of ®(p) = %Hp — ,on||A;”1, and the algorithm takes the same form as (4.13), but with

x2
o(x,0) = e 27 +1078.

E(p) = % J p(W  p)dx. The evolution of p is given in Fig. 4. Here we choose a smaller
iteration step n = 0.01, but the positivity of the solution can still not be preserved, and
oscillation round zero values of p is generated and amplified along time (compare p at
t = 1.616 with r = 3).

4.3 Cahn-Hillard Equation with Degenerate Mobility

Cahn-Hillard equation has first been introduced to study phase separation in binary alloys,
and later extended to many other fields such as image inpainting [8] and math biology [17].
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400 : ; ‘ ‘ ‘ 100
——t=0.016
——1t=0.96
» t=1.712
g 300} 1 107? —+—t=2.72
g
8
%5 200 1 10%
[}
e}
£ 6
3100t 10
0 : ; ‘ : ‘ 108 ‘ :
0 0.5 1 15 2 25 3 0 50 100 150
t iteration
t=0.528 -4
102 ‘ : ‘ 5 X 10 ‘ ‘ ‘ ‘
0.6 ——t=0.512
——1=0.528
404
310.2
2t 0

-2 0

0 50 100 150 200

. - -1.32 13 -128 -1.26 -1.24 -1.22
iteration

Fig. 3 Convergence in the aggregation equation. Upper left: number of iterations needed within each outer
time step. Upper right: several typical plot of the convergence (e.g., relative error versus iteration) at different
outer times. Lower left: a hard to converge scenario at t = 0.528. Lower right: plot of the corresponding
solution at two consecutive times ¢t = 0.512 and ¢t = 0.528

Fig.4 Computation of 0.8
aggregation equation using t=0.176
variable metric algorithm (4.13) —1=0.336
with 5 = 0.01, Ax = 0.08, 067
7 =0.016
04r
0.2}
0
-0.2 .
-2 -1 0 1 2

To put it on the same foot as (4.1), we write it in the gradient flow form:
8E
ou=V- M(u)VS— , (4.16)
u

where u represents the difference in the local concentration of two components in the alloy,
and M (u) = 1 — u* > 0 is a diffusional mobility. £ is the energy functional
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2
Ew) =/(a—|Vu|2+\IJ(u))dx, 4.17)
Q 2

where the first term penalizes large gradients and models the capillary effects. The second term
is the homogeneous free energy. A typical form is the Ginzburg-Landau potential W (u) =
%(1 —u®?or logarithmic potential W (1) = % [(1 + u)log (HT”) + (1 —u)log (1%”)] +
%(1 —u?) foru € (—1, 1), where 6 < 6, are two positive constants.

As before, we solve (4.16) using the minimizing movement scheme. More precisely, we
obtain u, 41 by solving

A 1

M (un)

+5(u)} , (4.18)

. 1
UQ = Uin, Up1 = argmin | — |lu — u,|>
uel | 2T

where U = { [, u(x)dx = [ uin(x)dx, =1 < u < 1}, and IIfIIZAm = Jra FOA )

f(x)dx. Here Ay, is the negative weighted Laplacian Ayy(,,) = —V - (M (u,)V), and
A;,,l(un) is the pseudo-inverse of Ajsy,,)-

4.3.1 Mirror Descent Algorithm

It has been proven that u will stay within the interval (—1, 1) due either to the singularity in
the free energy or degeneracy of the mobility [1, 16]. In order to maintain such a bound, we
choose ® in (1.4) to be:

1
D(u) = —||u - un|| + €1 /(u + Dlog(u + 1)dx + &2 /(1 —u)log(l —u)dx,
M(un)
(4.19)

then the mirror descent becomes

5P 5P

k+1
( ) — "

1 8&

k k
— W) =-n |: M(u,,)(u —up) + E(” )] >
which simplifies to

k41 k41 o k+l
u + T Ap@ylerlog(l +u""") +e2log(l —u™")]

&
= uk + TAM(un)[gl log(l —+ uk) — & lOg(l — uk)] -1 |:uk —u, + TAM(u,,)g(Mk)] .
(4.20)

The discretization of A p(,) is the same as in (4.6) except that one replace p, by M (u,).
In solving (4.20) for u**!, Newton’s method will be used and a similar preconditioner as in
(4.9) wil be employed. We omit the details as they are very similar to Sect. 4.1.1.

4.3.2 An Example

Here we consider a one dimensional example in [5]. Choose W (1) = %(1 —u?),a=0.1lin
(4.17) and let initial condition be

1
X*—>3 : 1 o
cos| =% ) —1,if|lx — 5| < E&*
uin(x) = < ¢ ) | 2| 2
-1, other
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Fig.5 Cahn-Hillard equation with degenerate mobility. Upper left: evolution of « using mirror descent algo-
rithm. The red dashed curve is given by (4.21). Upper right: exponential decay of the relative energy. Lower
left: number of iterations needed within each outer time step. Lower right: evolution of « using variable met-
ric algorithm. Numerical parameters are Ax = 0.02, t = 10_3, e = 0.5, n = 0.02 (mirror descent), and
n = 0.00025 (variable metric)

Then the steady state takes the form

1
1 T3 1 _1
oo (x) = ﬂ|:1+cos< = )j| Lif|x — 5] < 7a ‘ 421
-1 other

The results are collected in Fig. 5. The upper figures show the evolution of the density p
and decay of the energy. The lower left figure displays the number of iterations within each
outer time steps, and the spikes again correspond to the rapid transition of the solution near
—1. All three figures are obtained via the mirror descent algorithm. On the other hand, we

implemented the variable metric algorithm with ® (1) = 2]7 217 o —un | _, and the profile
M (un)
of u is given in the lower right plot of Fig. 5. Here with a much smaller choice of iteration

step, i.e., n = 0.00025 as compared to n = 0.02 in mirror descent, the lower bound of u is
still violated, and results in a wrong steady state.

5 Conclusion

In this paper, we consider a mirror descent algorithm, where the metric is induced by a convex
function, whose Hessian is an approximation of the Hessian of the objective function. The
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advantage of this algorithm is two-fold. On one hand, the mirror descent framework gives
a natural way to incorporate the bound constraint of the solution. On the other hand, the
Hessian information used in building the metric leads to improved rate of convergence.
To put such an advantage on a rigorous footing, we first formulate a gradient flow of the
algorithm, in which the constraints are incorporated as a to-be-determined vector. From this
formulation, we can draw connection between the mirror descent and more general variable
metric algorithms. Then the improved rate of convergence is proved following the two stage
approach in Newton type methods. In return, the proof we obtained for the mirror descent
can lend itself to quasi-Newton methods to show the global convergence. We also apply
the algorithm to two cases, the Wasserstein gradient flow and Cahn-Hillard equation with
degenerate mobility, and demonstrate its effectiveness.
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