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Abstract

Deep operator network (DeepONet) has demonstrated great
success in various learning tasks, including learning solution
operators of partial differential equations. In particular, it pro-
vides an efficient approach to predict the evolution equations
in a finite time horizon. Nevertheless, the vanilla DeepONet
suffers from the issue of stability degradation in the long-
time prediction. This paper proposes a transfer-learning aided
DeepONet to enhance the stability. Our idea is to use transfer
learning to sequentially update the DeepONets as the surro-
gates for propagators learned in different time frames. The
evolving DeepONets can better track the varying complexities
of the evolution equations, while only need to be updated by
efficient training of a tiny fraction of the operator networks.
Through systematic experiments, we show that the proposed
method not only improves the long-time accuracy of Deep-
ONet while maintaining similar computational cost but also
substantially reduces the sample size of the training set.

1 Introduction
Solving partial differential equations (PDEs) through deep
learning approach has attracted extensive attention recently.
Thanks to the universal approximation theorem of neural
networks, it is natural to approximate solutions of PDEs
using neural network. Many popular neural network based
methods have been proposed recently, such as Deep Ritz
Method (Yu et al. 2018), Deep Galerkin Method (Sirignano
and Spiliopoulos 2018), Physics Informed Neural Networks
(PINNs) (Raissi, Perdikaris, and Karniadakis 2019) and the
Weak Adversarial Networks (Zang et al. 2020). In spite of the
great success of these methods in solving various PDEs, the
neural networks need to be re-trained if one seeks solutions
corresponding to different initial conditions (ICs), boundary
conditions (BCs) or parameters for the same PDEs. Instead,
the recently proposed parametric operator learning methods,
such as DeepONet (Lu, Jin, and Karniadakis 2019) and FNO
(Li et al. 2020) enable learning of PDEs corresponding to
varying BCs or ICs without re-training the networks. How-
ever, there is one important caveat in the aforementioned oper-
ator neural networks. Namely they are essentially supervised
learning and often require solving large number of PDEs to

*Wuzhe Xu is the corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

form the training data, which can be extremely expansive,
especially when PDEs of interest lie in high dimensional
spaces. To overcome this issue, Wang et al. (Wang, Wang,
and Perdikaris 2021; Wang and Perdikaris 2021) proposed
the physics-informed DeepONet, which uses only the physi-
cal information (for instance the governing law of the PDEs)
to construct loss function and thus making DeepONet self-
supervised. Nevertheless, in practice the physics-informed
DeepONets are more difficult to train compared to its vanilla
version since the exact differential operators act on the net-
works and make the convergence behavior highly depends
on the underlying physics problem.

Recently DeepONet has also been applied to learning the
propagators of evolution equations; see e.g. (Liu and Cai
2022; Wang and Perdikaris 2021). The basic idea is to employ
DeepONets to learn the solution operator of a PDE within
a short time interval subject to a collection of (random) ini-
tial conditions. The solution of the PDE at later times can be
computed as recursive actions of the trained network operator
on solutions obtained at the prior steps. However, the approx-
imation accuracy of solutions can deteriorate in the long-run
for at least two reasons. First, due to the approximation er-
ror, the trained DeepONet, as a surrogate propagator, may
be expansive even if the exact propagator is non-expansive,
which leads to the accumulation of approximation error in
time and hence makes it difficult to predict the solution in
the long-run. Second, during the time-evolution of PDEs, the
functions that a propagator inputs and outputs can vary in
time, even though the form of the propagator within a fixed
time-slot may remain unchanged (e.g. when the dynamics is
autonomous). Taking diffusion equation as an example, one
observes that the functions in the range space of the prop-
agator or the semigroup are much smoother than those in
the domain, and for this reason, the solutions in later times
become increasingly more regular than those in earlier times.
Furthermore, some evolution equations may develop various
complexities in a long time-horizon, such as turbulence and
scale separations. For those equations, iterating a DeepONet
surrogate that is usually only trained in a single (short) time-
frame using a finite collection of initial functions may fail to
capture the correct regularity or complexity of the solutions
in the long time.

Transfer learning (Bozinovski and Fulgosi 1976; Do and
Ng 2005) is an important class of machine learning tech-



niques that use one neural network trained for one task for
a new neural network trained for a different related task.
The idea is that the knowledge or important features of one
problem gained by training the former neural nets can be
transferred to other problems. Transfer learning has been
widely used in image recognition (Yin et al. 2019; Jin, Cruz,
and Gonçalves 2020), natural language processing (Ruder
et al. 2019) and recently in PINNs (Goswami et al. 2019;
Obiols-Sales et al. 2021; Song and Tartakovsky 2022; De-
sai et al. 2021). To the best of our knowledge, the present
work is the first work to employ transfer learning for learning
solution operators of evolutionary PDEs.

1.1 Our contributions
We propose a novel physics-informed DeepONet approach
based on the transfer learning for predicting time-dependent
PDEs. Different from the existing usage of DeepONets in
learning the propagators of PDEs where the learned propaga-
tors are treated constant in time, we use transfer learning to
sequentially update the learned propagators as time evolves.
The resulting time-changing DeepONets offer several advan-
tages compared to the vanilla counterparts: (1) the evolving
DeepONets can better adapt to the varying complexities as-
sociated to the evolution equations; (2) the DeepONets are
updated in a computationally efficient way that the hidden
layers are frozen once trained and only the parameters in the
last layer are re-trained.

We hereby highlight the major contributions of the pro-
posed method:
• Time marching with the transfer-learning tuned Deep-

ONet gives more accurate and robust long-time prediction
of solutions of PDEs while still maintaining low computa-
tional cost.

• The proposed method is applied to various types of evo-
lutionary PDEs, including the reaction diffusion equa-
tions, Allen-Cahn and Cahn-Hilliard equations, the Navie-
Stokes equation and multiscale linear radiative transfer
equations.

• Through extensive numerical results, we show that our
method can significantly reduce the training sample size
needed by DeepONet to achieve the same (or even higher)
accuracy.

1.2 Related works
Transfer-learning has been previously combined with physics
informed neural networks for solving PDEs problems arising
from diverse fields, including the phase-field modeling of
fracture (Goswami et al. 2019), super-resolution of turbulent
flows (Obiols-Sales et al. 2021), training of CNNs on multi-
fidelity data (e.g. multi-resolution images of PDE solutions
on fine and coarse meshes) (Song and Tartakovsky 2022),
etc. In (Chakraborty et al. 2022), transfer-learning was also
applied as a domain adaption method for learning solutions
of PDEs defined on complex geometries. The recent paper
(Desai et al. 2021) proposed a one-shot transfer learning strat-
egy that freezes the hidden layers of a pre-trained PINN and
reduces the training neural networks for solving new differen-
tial equations to optimizing only the last (linear) layer. This

approach eliminates the need of re-training the whole net-
work parameters while still produces high-quality solutions
by tuning a small fraction of parameters in the last layer. The
present paper marry this transfer learning idea with Deep-
ONet for learning the propagators of evolution equations in
order to predict the long time evolution.

While we are finalizing the current paper, we are aware of a
recent preprint (Goswami et al. 2022) where transfer learning
was exploited together with DeepONet for learning PDEs
under conditional shift. The purpose there is to train a source
PDE model with sufficient labeled data from one source
domain and transfer the learned parameter to a target domain
with limited labeled data. The technology developed there is
mainly applied for transferring the knowledge of a solution
operator trained on a system of PDEs from one domain to
another. Different from (Goswami et al. 2022), we leverage
transfer learning to successively tuning the surrogate models
of propagators learned via physics-informed DeepONet so
that the tuned operator networks can adaptively track the
evolving propagators that carry evolving inputs and outputs.
The proposed approach is proven to be more accurate and
robust for learning the long-time evolution of PDEs.

2 Numerical method
Problem set-up Consider the initial boundary value prob-
lem for a general evolution equation:

(
@tf(t,x) = L(f(t,x)),
f(t,x) = �(x), x 2 @⌦x,
f(0,x) = f0(x) , x 2 ⌦x .

(1)

Throughout the paper, we assume that the equations are dis-
sipative in the sense that

R
⌦x

fLfdx  0. Given a time step
size �t, we consider the semi-discrete approximation fn(x)
of the solution f(n�t,x) to (1) defined by the backward
Euler discretization:

fn+1(x) = (I ��tL)�1fn(x) := P
�tfn(x) . (2)

Our goal is to approximate the propagator

P
�t : fn(x) 7! fn+1(x)

by an operator neural network PNN so that only one forward
pass of the neural network achieves time-marching solutions
from one step to the next, and that the evolution dynamics
can be captured in a long time-horizon.

It is important to point out that the backward Euler scheme
is not the only choice for time-marching. One can extend
it to high order time discretization schemes such as Runge-
Kutta methods, as long as �t is chosen such that P�t is a
non-expanding operator. We will make this point more clear
in Section 3 and Appendix C.2. To ease the notation, the
superscript n, n+ 1 and �t will be omitted in the following
context if it does not cause any confusion.

2.1 Physics-informed DeepONet
Let ⌦x be a compact set in Rd and let X be a compact sub-
space of the space C(⌦x) of continuous function defined on
⌦x. Then according to the universal approximation theorem
(Chen and Chen 1995), an operator P : X ! X can be



approximated by a parametric operator PNN with arbitrary
accuracy. That is, for any " > 0, there exists a sufficiently
large parametric neural network PNN , such that

Z

X

Z

⌦x

|P(f)(x)� PNN (f)(x)|2dxdµ(f) < " .

Here µ denotes a probability measure on X . In practice, µ
is chosen as a Gaussian measure induced by the law of a
Gaussian random field. Several operator networks have been
proposed recently, including DeepONets (Lu, Jin, and Karni-
adakis 2019; Wang, Wang, and Perdikaris 2021) and various
neural operators (Bhattacharya et al. 2020; Li et al. 2020;
Kovachki et al. 2021). In this paper, we adopt DeepONet as
the basic architecture and refine it with transfer learning. The
vanilla DeepONet takes the following form:

PNN (f)(x; ✓, ⇠)

=
pX

k=1

bNN
k (f(y1), · · · , f(yN ); ✓)tNN

k (x; ⇠)

=:
pX

k=1

bNN
k (f ; ✓)tNN

k (x; ⇠). (3)

The operator network PNN consists of two sub-networks: the
branch net bNN is paramterized by ✓ and maps an encoded
input function {f(yi)}

N
i=1 to p scalars bNN

k , and the trunk net
tNN = {tNN

k }
p
k=1 is parameterized by ⇠ and forms a direc-

tionary of functions in the output space. Both networks can
be modified in practice to fit with various set-ups of PDEs,
such as the boundary condition. A diagram of the DeepONets
architecture we use in this paper is shown in Figure 2. The
vanilla DeepONets is often trained in a supervised fashion
and requires pairs of input-output functions. To be more spe-
cific, given Ns randomly sampled functions {fs(x)}Ns

s=1 one
needs to prepare reference solutions {P(fs)(x)}

Ns
s=1 either

analytically or using conventional high-fidelity numerical
solvers. Then one trains the PNN by minimizing the loss
function

1

2Ns

NsX

s=1

⇣
kPNN (fs)(·; ✓, ⇠)� P(fs)(·)k

2
L2(⌦x)

+ kPNN (fs)(·; ✓, ⇠)� �s(·)k
2
L2(@⌦x)

⌘
.

However, in reality it can be extremely expensive to obtain
the outputs P(fs), especially when the underlying physical
principles are complicated and the dimension of the problem
is high. To this end, (Wang, Wang, and Perdikaris 2021)
proposed a physics-informed DeepONet which makes the
learning procedure above self-supervised. More precisely, we
turn to minimizing the new loss function

1

2Ns

NsX

s=1

⇣
kP

�1
�
PNN (fs)(·; ✓, ⇠)

�
� fs(·)k

2
L2(⌦x)

+ kPNN (fs)(·; ✓, ⇠)� �s(·)k
2
L2(@⌦x)

⌘
.

(4)

Note that the introduction of P�1 in (4) completely avoids the
evaluations of P(fs). The boundary term in (4) can be further
eliminated in practice because the networks can be modified
to satify the boundary conditions (see e.g. (Lu et al. 2022)).
We also observe through numerical experiments that elimi-
nating the the boundary loss can substantially improves the
training efficiency. The physics-informed DeepONet has been
applied to learning evolution equations (Wang and Perdikaris
2021). For equation (1), instead of first discretizing it in time,
they consider time as an additional input variable, and try to
learn an operator PI that maps the initial condition to the
solutions over an time-interval [0, t0]:

P
I : f(0,x) 7! f(t,x), for t 2 [0, t0] .

The corresponding loss function to be minimized is

L(✓, w, ⇠) =
1

2Ns

NsX

s=1

(k@t(P
I
NN (fs))(t,x)

� L(PI
NN (fs))(t,x)k

2
L2(⌦x⇥[0,t0])

+ kP
I
NNfs(x)� gs(x)k

2
L2(@⌦x⇥[0,t0])

), (5)

where P
I
NN is the neural network approximator to P

I . Once
trained, PI

NN can be applied to f(t0,x) to get the solution
f(t,x) over [t0, 2t0]. Repeating this process enables one to
obtain approximation solutions in any finite time. However,
this methodology may suffer from long-time instability. In
fact, let us illustrate this using the Allen-Cahn equation (16)
in one dimension. Figure 1 shows that the average L2 er-
rors of approximated solutions learned by DeepONets using
both the single-shot loss (4) (labeled as DeepONet) and the
time-integrated loss (5) (labeled as CONT DeepONet). Both
errors accumulate rapidly as time increases, indicating the in-
stability of the learned DeepONets in prediction of long-time
solution. In contrast, our transfer-learning assisted DeepOnet
dramatically reduces the error and stabilizes the prediction.
For completeness, we also compare them with the Fourier
Neural Operator(FNO) (Li et al. 2020), which is another
state-of-the-art operator learning method.

Figure 1: The relative L2 error in time (defined in (22)) for
1D Allen Cahn (16). The networks with “CONT" refer to net-
works trained by using (5) whereas the others are trained by
using (4). The prefix “TL" means tuned by transfer learning.
See implementation details in Appendix C.3.

2.2 DeepONet with transfer learning
The main idea of transfer learning is to train a neural network
on a large data set and then partially freeze and apply it to a



related but unseen task. Inspired by (Desai et al. 2021), we
employ the transfer learning technique to successively correct
the trained DeepONet at the prediction steps: we freeze the
majority of the well-trained DeepONet and merely re-train
the weights in the last hidden layer of the branch net by fitting
the same physics-informed loss (4) defined by the underlying
PDEs. To be more precise, by separating the parameters ✓ in
the hidden layers and the parameter w in the last layer of the
branch net, we rewrite the branch net as

bNN
k (f ; ✓, w) =

qX

j=1

wjhk,j(f ; ✓) ,

where h = {hk,j} are the outputs of the last hidden layer of
the branch net and w = {wj} are the weights in the last layer.
Inserting this into (3) gives

PNN (f)(x; ✓, w, ⇠) =
pX

k=1

qX

j=1

wjh
NN
k,j (f ; ✓)tNN

k (x; ⇠) .

(6)
The architecture of the new operator network is illustrated
in Figure 2. In the training step, the optimal parameters
(✓⇤, w⇤, ⇠⇤) of the DeepONet (6) can be obtained by min-
imizing the empirical loss (4). Later in each prediction step,
we freeze the value of ✓⇤ and ⇠⇤, but update w⇤ by re-training
the loss (4) with newly-predicted solution as the initial con-
dition. Namely with the predicted solution fn at step n, we
seek w⇤

n+1 defined by

w⇤
n+1 2 argmin

w

1

2Ns

NsX

s=1

⇣
kP

�1
PNN (f)(x; ✓⇤, w, ⇠⇤)� fn(x)k

2
L2(⌦x)

+kPNN (f)(x; ✓⇤, w, ⇠⇤)� �(x)k2L2(@⌦x)

⌘
, n = 1, 2, · · · .

(7)

Note that w⇤
1 = w⇤. The optimal sequence of weights

w⇤
n defines a sequence of operator networks P

n
NN :=

P
n
NN (✓⇤, w⇤

n, ⇠
⇤), which can be used to approximate the so-

lution at t = n�t by

f(n�t) ⇡ P
n
NN � P

n�1
NN � P

1
NN (f0).

It is interesting to note that the proposed method shares some
similarities with the classical Galerkin approximation. In fact,
the operator network (6) can be further rewritten as

PNN (f)(x) =
qX

j=1

wj

 
pX

k=1

hNN
k,j (f ; ✓)tNN

k (x; ⇠)

!

=:
qX

j=1

wj�j(x; f) ,

Observe that �j playing the role of basis functions in Galerkin
methods, and wj being the corresponding weight. However,
unlike most Galerkin methods which often use handcraft
bases, such as piecewise polynomials and trigonometric func-
tions, here the bases are learned from the problem itself, and

vary with the function they approximate. This seemly minor
change reduces substantially the number of bases needed in
the output space, as shown by extensive numerical tests in
Section 4. To minimize (7), it amounts to solving a system of
N equations with q unknowns, where N is the total number
of fixed sensors in the branch net. This is achieved by least
square minimization. Since q ⌧ N , the computational com-
plexity of finding the least square solution is only O(q2N).
In practice, we further reduce the computational complex-
ity by sub-sampling Nc grid points out of N in the transfer
learning step.

3 Theoretical result
In this section, we analyze the long time stability of the
learned operator PNN . First let X be a Banach space and
assume that the original propagator P (i.e., P�t in (2)): X !

X is non-expansive such that
kPkX := sup

f2X ,kfkX=1
kPfkX  1. (8)

In the case that X = L2(⌦x), assumption(8) follows from
the dissipative assumption of L; see Appendix B.1 for more
details. Let U ✓ X be a linear subspace, we also assume that

Pf 2 U , 8f 2 U . (9)
The theorem below shows that the long-time prediction error
of the operator network can be bounded by the loss function.
Theorem 1. Assume (8) and (9) hold. If the neural network
approximator PNN satisfies that the maximum loss over the
set U is less than �, i.e.

sup
f2U,kfkX=1

kP
�1

PNNf � fkX  � , (10)

and that
PNNf 2 U , 8f 2 U , (11)

then the following long-time stability holds

sup
f2U ,kfkX=1

k(P)Kf�(PNN )KfkX  �K(1+�)K . (12)

Moreover, if we further assume that
kPkX  ⌘ < 1 (13)

and (10) holds with �  1
2 (1� ⌘), then we have

sup
f2U ,kfkX=1

k(P)Kf � (PNN )KfkX  �K
⇣1 + ⌘

2

⌘K�1
.

(14)
The proof of Theorem 1 is provided in Appendix B.2.

Remark 1. 1. If the error tolerance � = �t2 with �t be-
ing the time-discretization stepsize and the number of
iterations K = T

�t , then (12) becomes

sup
f2U ,kfkX=1

k(P)Kf � (PNN )KfkX  eT�tT�t .

When assumption (13) holds, the estimate above improves
to

sup
f2U,kfkX=1

k(P)Kf � (PNN )KfkX 
�1 + ⌘

2

� T
�tT�t

 C�t,



Figure 2: The architecture of transfer learning aided physics-informed DeepONet. Here P and D are optional layers that enforce
periodic and Dirichlet boundary conditions, respectively. The block named Modified FC is a modified fully connected neural
networks architecture introduced in (Wang, Wang, and Perdikaris 2021). The parameter w (in the red box) denotes the tunable
weights in the last hidden layer of the branch net. In the transfer learning step, only w will be re-trained while the ✓, ⇠ are frozen.

where C is a constant independent of T and �t, sug-
gesting that the prediction error is of the order O(�t)
uniformly in time.

2. We comment on the assumptions made in Theorem 1.
In practice, physics-informed loss (7) is trained so that
condition (10) is fulfilled for some subspace space U ,
e.g. U = {eik·x}|k|K0

. Assumption (9) holds for such
a choice of U when the evolution equation involves dif-
fusion. Assumption (11) holds in particular when sine or
cosine activation function is used in the operator network
PNN .

4 Numerical experiments
In this section, we demonstrate the effectiveness of trans-
fer learning enhanced DeepONet and show its advantages
over the vanilla DeepONet through several evolutionay PDEs,
including reaction diffusion equation, Allen-Cahn and Cahn-
Hilliard equations, Navier-Stokes equation and multiscale
linear radiative transfer equation. The equations of considera-
tion are equipped with either Dirichlet or periodic boundary
conditions. In all the test problems, our goal is to predict
the long time evolution of the equations obtained by suc-
cessive actions of the propagators learned via DeepONets.
More concretely, we first build the first-step neural oper-
ator approximation P

1
NN to the propagator P = P

�t by
minimizing the physics-informed loss (4) with M training
initial data. The operator network P

1
NN is then gradually

tuned to P
j
NN , j = 2, · · ·K via updating the weights w in

the last-layer of its trunk nets. With the learned (and ad-
justed) operators Pj

NN , j = 1, · · ·K, the solution of a PDE
at time t = K�t with an initial condition f0 can then be
obtained approximately by P

K
NN � · · · � P

1
NNf0. We remark

that the M training data is constructed as a subset of a larger
training set of size Ns ⇥ Np, which consists of pointwise
evaluations of Ns randomly sampled functions at Np physi-
cal locations (sensors). We refer to Appendix C.1 for detailed
discussions on the data generating process and treatment of
boundary conditions in various test problems. Choices of

parameters for the operator networks and the training pro-
cess are discussed in the end of Appendix C.1. In all the
numerical results to follow, we quantify the performance of
the proposed method by measuring the aggregated relative
prediction error over a time horizon [0, T ]; see the precise
definition of the relative error in Appendix C.1. The codes
used for the numerical experiments will be published on the
website https://github.com/woodssss/TL-PI-DeepONet.

4.1 Reaction diffusion equation
Consider the reaction diffusion equation

8
<

:

@tf = d�f + kf2, x 2 ⌦x := [0, 1]
f(t,x) = 0, x 2 @⌦x = {0, 1} ,
f(0,x) = f0(x) ,

(15)

where d = k = 0.001. In this example, we train DeepOnets
and our transfer learning enhanced DeepONets using two dif-
ferent loss functions, with one based on the physics-informed
loss within a single time-step �t = 0.05 (c.f. (4)), and the
other based on the aggregated physics-informed loss (5) in the
time window t 2 [0, 1]. We refer to the DeepONets trained
using the latter loss as CONT DeepONets and reserve Deep-

ONets for the one trained by the former loss. The numerical
results of different DeepONets with varying training sample
sizes M are shown in Table 1. Our proposed method provides
more accurate and more robust prediction of the solutions
with little extra computational cost. In particular, the pre-
diction error of vanilla DeepONets and CONT DeepONets
increase dramatically as time increases from 0.2 to 50, while
transfer learning can significantly reduces the error and stabi-
lizes the prediction in the long time. In addition, our method
also substantially reduces the size of training data to achieve
the same order of prediction accuracy. Note that, since trained
only within a single time step, DeepONets take far less train-
ing time than the corresponding CONT DeepONets while
maintain comparable accuracy. The similar trade-off of accu-
racy and training cost applies to other experiments. For this
reason, in subsequent examples we will only report results

https://github.com/woodssss/TL-PI-DeepONet


on our proposed method and the vanilla DeepONet, and ex-
clude the results from CONT DeepONets. Note also that the
results obtained in Table 1 are for propagators defined by
the backward Euler scheme. One can also consider propaga-
tors defined by higher order time-discretization schemes and
their neural network approximation. We refer the numerical
results obtained using the Crank-Nicolson method to Table
8 in Appendix C.2.

Neural network M t1 t2 T = 0.2 T = 50

CONT 1000 43030 0.26 7.95e-2 4.17e-1
DeepONet 3000 79375 0.28 1.01e-2 4.15e-2

10000 83465 0.26 3.40e-3 1.34e-2
CONT 1000 43030 0.93 5.38e-3 1.95e-3
TL-DeepONet 3000 79375 0.98 1.87e-3 6.88e-4

10000 83465 0.93 1.84e-3 4.87e-4
DeepONet 1000 2575 5.02 2.75e-1 1.69e0

3000 4313 4.9 1.05e-1 1.60e0
10000 5854 4.8 9.19e-2 1.87e0

TL-DeepONet 1000 2575 9.86 1.03e-3 1.52e-3
3000 4313 7.1 8.34e-4 1.19e-3
10000 5854 8.2 8.19e-4 9.05e-4

Table 1: Results on reaction diffusion equation. Here t1 is
the training time and t2 is the averaged time of predicting the
solution trajectories among the time interval [0, 50] based on
30 test initial conditions. The last two columns to the right
are the averaged relative L2 error within [0, T ].

4.2 Allen-Cahn and Cahn-Hilliard equations
In the second example, we consider Allen-Cahn equation

⇢
@tf = d1�f + d2f(1� f2),
f(0,x) = f0(x),

(16)

and Cahn-Hilliard equation
8
<

:

@tf = �g,
g = �d1�f + d2(f3

� f),
f(0,x) = f0(x),

(17)

both equipped with periodic boundary conditions. They are
prototype models for the motion of anti-phase boundaries in
crystalline solids. The computational domain is ⌦ := [0, 1]d

with d = 1, 2. We are interested in learning the propagator
P = P

�t with �t = 0.05 and used it to predict the solutions
f(t,x) for every t  T = 50. The results on Allen-Cahn
equation are shown in Table 2 (1D) and Table 3 (2D). See also
Figure 1 for a plot of evolving relative errors on 1D Allen-
Cahn equation. Similar results for 1D Cahn-Hilliard equation
are presented in Table 4 and Figure 3 compares the snapshots
of predicted solutions to the 2D Cahn-Hilliard equation. In
all the results, for a fixed d2, the relative errors increase as
d1 decreases because the transition layers of solutions are in-
creasingly sharper and hence make the numerical resolution
more challenging. Similar to the previous example, our pro-
posed method provides more accurate prediction of solutions
than the vanilla DeepONets among all the configurations of

parameters. We note that the average trajectory prediction
times of TL-DeepONets increase for about 3 times compared
to those of the vanilla DeepONets while the prediction errors
of the former decrease by at least two orders of magnitude.

Neural network M d1=1e-3 d1=5e-4 d1=1e-4

DeepONet 1000 1.13e0 1.33e0 1.29e0
3000 1.33e0 1.18e0 1.23e0
10000 1.01e0 8.95e-1 1.43e0

TL-DeepONet 1000 9.25e-4 9.64e-4 2.16e-2
3000 7.78e-4 8.83e-4 1.81e-2
10000 5.81e-4 7.94e-4 1.16e-2

Table 2: Results on 1D Allen-Cahn equation: the time-
average of relative prediction errors within [0, 50]. The av-
erage trajectory prediction time is 5.1s for DeepONet and
16.1s for TL-DeepONet.

Neural network M d1=4e-3 d1=2e-3 d1=1e-3

DeepONet 1000 9.96e-1 1.01e0 1.02e0
10000 9.96e-1 1.00e0 1.00e0

TL-DeepONet 1000 6.54e-3 8.43e-3 1.01e-2
10000 4.96e-3 6.46e-3 9.01e-3

Table 3: Results on 2D Allen-Cahn equation: the time-
average of the relative prediction errors within [0, 10]. The
average trajectory prediction time is 6.1s for DeepONet and
29.5s for TL-DeepONet.

Neural network M d1=4e-6 d1=2e-6 d1=1e-6

DeepONet 1000 9.43e-1 9.47e-1 9.44e-1
3000 9.54e-1 9.58e-1 9.39e-1
10000 9.65e-1 9.58e-1 9.38e-1

TL-DeepONet 1000 1.04e-2 1.36e-2 4.25e-2
3000 8.11e-3 9.04e-3 3.86e-2
10000 2.29e-3 7.89e-3 3.03e-2

Table 4: Results on 1D Cahn-Hilliard equation: the time-
average of the relative prediction errors within [0, 50]. the
average trajectory prediction time is 4.4s for DeepONet and
12.3s for TL-DeepONet.

4.3 Navier-Stokes equation
Consider the 2D Navier-Stokes equation in the vorticity form:
⇢
@tw(x, t) + u(x, t) ·rw(x, t) = ⌫�w(x, t) + f(x),
w(x, 0) = w0(x)

(18)
with periodic boundary condition and source f(x) =
0.1(sin(2⇡(x + y)) + cos(2⇡(x + y))). We would like to
learn the propagator P�t with �t = 0.01 and apply it to pre-
dict the solution w|(0,1)2⇥(�t,T ). Table 5 shows the results
with varying values of viscosity ⌫. Note that the prediction



Initical condition t=4 t=10

DeepONet

TL-DeepONet

Figure 3: Results on 2D Cahn-Hilliard equation: snapshots of
reference solutions (top), and of approximate solutions pre-
dicted by DeepONet (middle) and TL-DeepONet (bottom).

error increases as ⌫ decreases. TL-DeepONets reduces the
errors of DeepONets by two orders of magnitudes although
the prediction time of the former increases for less than 4
times. Figure 4 shows the snapshots of solutions to (18) with
⌫ = 0.001 at two different times.

Neural network ⌫=1e-1 ⌫=1e-2 ⌫=1e-3 ⌫=1e-4

DeepONet 9.95e-1 1.02e0 9.96e-1 1.04e0
TL-DeepONet 1.41e-2 1.07e-2 3.35e-2 9.42e-2

Table 5: Results on 2D Navier-Stokes equation: the relative
prediction errors within [0, 10]. The average trajectory predic-
tion time is 5.3s for DeepONet and 24.8s for TL-DeepONet.

4.4 Multiscale linear radiative transfer equation
Consider the linear multiscale radiative transfer equation:
8
<

:

"@tf + v ·rf = 1
"Lf, t 2 [0, T ], (x,v) 2 ⌦x ⇥ S

d�1 ,
f(t,x,v) = �(x), (x,v) 2 �� ,
f(0,x,v) = f0(x,v).

(19)
Here " > 0 is the Knudsen number which is a dimension-
less parameter that determines the physical regime of the

equation, L(f) =
1

|Sd�1|

Z

Sd�1

fdv � f =: hfi � f , and

�� = {(x, v) : x 2 @⌦x, v · nx < 0} is the inflow part of
the boundary. In this example, we aim to learn the propagator
P

�t with �t = 0.01 and employ it to predict the solution
f(t,x,v) for t 2 [0, 10]. We mainly consider (19) in one
and two physical dimensions and refer to Appendix C.5 for
a detailed discussion on the experiment set-up and the nu-
merical method. Table 6 displays the results corresponding to
different Knudsen numbers. The transfer learning enhanced

Initical condition t = 4 t = 10

DeepONet

TL-DeepONet

Figure 4: Results on Navier-Stokes equation with ⌫ = 0.001:
snapshots of reference solutions (top), and of approximate so-
lutions predicted by DeepONet (middle) and TL-DeepONet
(bottom).

DeepONets reduces the relative error by one or two orders of
magnitude although increase the prediction time by around 4
times. Figure 9 and Figure 8 in Appendix C.5 show several
snapshots of solutions to (19) with " = 1 and " = 10�4

respectively.

RTE Neural network t2 relative error

1D " = 1 DeepONet 4.6 3.06e-1
TL-DeepONet 22.5 1.52e-2

1D " = 1e-4 DeepONet 5.1 3.74e-1
TL-DeepONet 21.9 5.52e-3

2D " = 1 DeepONet 79.8 3.58e-1
TL-DeepONet 431.3 2.19e-2

2D " = 1e-4 DeepONet 83.1 2.37e0
TL-DeepONet 379.3 8.93e-3

Table 6: Results on the radiative transfer equation: the relative
prediction errors over the time-horizon [0, 10].

5 Conclusion
In this paper, we proposed a new physics-informed Deep-
ONet based on transfer learning for learning evolutionary
PDEs. This is achieved in two steps: first learn the propa-
gators and then predict the solutions by successive actions
of propagators on the initial condition. The experimental
results demonstrated that the proposed method improves sub-
stantially upon the vanilla DeepONet in terms of long-time
accuracy and stability while maintains low computational
cost. The proposed method also reduced the training sample
size needed to achieve the same order of prediction accuracy
of the vanilla DeepONets.
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Table 7: Table of notations

Notation Meaning

P or P�t Target propagator
PNN Neural network approximator
U The Banach space of input functions
{xr

i }
Nr

x
i=1 The interior sensors

{xb
i}

Nb
x

i=1 The boundary sensors
{fs}

Ns
s=1 Randomly sampled functions used for training

✓, ⇠ Neural network parameters
bNN (·, ✓) The branch net of DeepONet
hNN (·, ✓) The output functions defined by the last

hidden layer in the branch net
tNN (·, ⇠) The trunk net of DeepONet
w = {wj}

q
j=1 Weights in the last layer of the branch net

Np Number of sensors
Nc Number of grid points

in transfer learning step
M Number of training sample pairs
p Number of output features
q Number of tunable weights at the last hidden

layer of the branch net

A Table of notations
A table of notations is given in Table 7.

B Theoretical analysis
B.1 Validation of assumption (8)
Here we will give a simple justification for the assumption
(8). Consider the L2 norm as an example:

kPk2 = sup
f2L2(⌦x),kfk2=1

kPfk2 ,

then (8) is fulfilled if the underlying dynamics is stable under
this norm:

d

dt
kfk22(t)  0 ,

where f is the solution to (1). Indeed, multiplying (1) by f
and integrating in x, we have

d

dt

1

2
kfk22 =

Z

⌦x

fLfdx  0 .

Then for the semi-discrete in time version

fn+1
� fn = �tLfn+1

multiplying it by fn+1 and integrating in x, it becomes

1

2
(kfn+1

k
2
2 � kfn

k
2
2 + kfn+1

� fn
k
2
2)

=

Z

⌦x

fn+1
Lfn+1dx  0 ,

which readily leads to

kfn+1
k2 = kPfn

k2  kfn
k2 .

B.2 Proof of Theorem 1
Proof. From (8)-(10), one sees that

sup
f2U

kPf � PNNfkX = sup
f2U

kP(f � P
�1

PNNf)kX

 �kfkX .
(20)

Therefore one obtains that

sup
f2U ,kfkX=1

kPNNfkX  1 + � .

Let f 2 U with kfkX = 1. It follows from above that

k(P)Kf � (PNN )KfkX

= k(P � PNN )(PK�1 + P
K�2

PNN + · · ·+ P
K�1
NN )fkX



K�1X

l=0

k(P � PNN )P l
P

K�1�l
NN fkX (21)

 �K(1 + �)K ,

which proves (12) after taking supreme on f .
Next, if (13) holds, and � is chosen to be � 

1
2 (1 � ⌘),

then we have from (20) that

sup
f2U,kfkX=1

kPNNfk  ⌘ + � 
1 + ⌘

2
.

Inserting above into (21) leads to

k(P)Kf � (PNN )KfkX 

K�1X

l=0

k(P � PNN )P l
P

K�1�l
NN fkX

 �
K�1X

l=0

⌘l(⌘ + �)K�1�l

 �K
⇣1 + ⌘

2

⌘K�1
.

This proves (14).

C Experiment details
In this section, we provide the details on the numerical exper-
iments of Section 4.

C.1 Data generation and configuration of training
Data generation For all numerical experiments, we use
uniform mesh with Nd

x grid points for discretization of the
spatial domain ⌦x ✓ Rd, and Nv Gaussian quadrature points
for discretizing the velocity variable v 2 S

d�1 in the radia-
tive transfer equation only. We generate Ns initial conditions
{fs(x)}

Ns
s=1 for training and Ne functions {fe(x)}

Ne
e=1 for

testing. The training set consists of Nb functions that sampled
from a centered Gaussian random field as well as forward
passes of those functions through up to nt times actions of
the propagator. This gives Ns = nt ⇥Nb training functions.
The random functions may be post-processed so that they
satisfy the boundary condition of the PDE. Details on the
post-processing methods can be found in the subsequent sec-
tions. The final training data of size M is constructed as a



subset of a larger training set of size Ns⇥Np, which consists
of pointwise evaluations of Ns randomly sampled functions
at Np physical locations (sensors). Unless otherwise spec-
ified, we set Nb = 100, nt = 20 in 1D test problems and
Nb = 100, nt = 100 in 2D test problems. Here a training set
of size M = 1000 may only use 50 functions evaluating at
20 grid points in the domain.

Two error measures. To quantify the performance of our
neural nets, we measure two relative errors of neural operator
approaches. The first is the relative error at a single time-step
tk := k�t:

1

Ne

NeX

j=1

vuut
PNx

i=1

�
Pk
NN (fj)(xr

i )� Pk(fj)(xr
i )
�2

PNx

i=1 (P
k(fj)(xr

i ))
2 , (22)

and the second is the relative error over a long time horizon
(or equivalently multiple time steps)
vuut
PNx

i=1

PNe

j=1

PK
n=1 (P

n
NN (fj)(xr

i )� Pn(fj)(xr
i ))

2

PNx

i=1

PNe

j=1

PK
n=1 (P

n(fj)(xr
i ))

2 .

(23)

Neural networks and training parameters In 1D exam-
ples, we use the modified fully connected architecture with
depth of 5 layers and width of 100 neurons for both branch
and trunk nets, and the design of the optional layers P and
D in Figure 2 will be detailed in each of the following ex-
amples. The batch size is chosen to be 100 with ADAM
optimizer, where the initial learning rate lr = 0.001 and a
0.95 decay rate in every 5000 steps. Same architecture is
used in 2D examples except that a depth of 6 layers is used.
In the transfer learning step, to solve the optimization prob-
lem (7), we use the lstsq function (with rcond=1e-6) from
Numpy(Harris et al. 2020) for linear operators and the leastsq
function in Scipy(Virtanen et al. 2020) (using default setting
with ftol =1e-5, xtol =1e-5) for nonlinear operators. All of
the neural networks are trained on a single K40m GPU, and
the prediction step is computed on a AMD Ryzen 7 3700x
Processor.

C.2 Further details on reaction diffusion equation
To generate initial conditions that satisfy zero boundary con-
dition, i.e., f0(0) = f0(1) = 0 we first sample a(x) ⇠

GP(0,Kl(x1, x2)) with

Kl(x1, x2) = e�
(x1�x2)2

2l2 , (24)
and then let f0(x) = a(x)x(1� x). Likewise, to enforce the
same boundary condition for the output of the neural net, i.e.,
PNN (f)(1) = PNN (f)(1) = 0, we employ an additional
layer D in Figure 2 that multiplies the output of trunk nets
by x(1� x).

Crank-Nicolson scheme for reaction diffusion equation
To demonstrate the improvement on the efficiency of using
the higher order in time scheme at the transfer learning step,
we apply Crank-Nicolson scheme for the nonlinear reaction
diffusion equation. As displayed in Table 8, the second order
scheme with �t = 0.4 reduces the prediction time compared
with first order scheme with �t = 0.05 by a factor of 1/6.

Neural network �t t2 Relative error

TL-DeepONet �t = 0.05 7.1 1.78e-3
TL-DeepONet 2nd �t = 0.1 4.53 4.91e-4

�t = 0.2 2.36 2.63e-3
�t = 0.4 1.24 9.53e-3

Table 8: Comparison of first order and second order in time
method for reaction diffusion equation with various �t. Here
t2 is the averaged time of predicting the solution trajectories
among the time interval [0, 50] based on 30 test initial condi-
tions.

Implementation details on Table 1 and Table 8 Con-
sider 1D nonlinear reaction diffusion equation (15) with
d = k = 0.001. We use Ne = 30 test functions drawn
from the Gaussian process defined above with the length
scale l = 0.2 in (24) and we use Nx = 64 uniform spatial
grids for spatial discretization. The loss functions of CONT
DeepONet and CONT TL-DeepONet (c.f. (5)) are calculated
using 20 uniform temporal steps on [0, 1]. For DeepONet
and TL-DeepONet, we set the maximum iteration number
Niter = 100000 and adopt the stopping criterion that the
empirical loss is below 1e-6. For CONT DeepONet and
CONT TL-DeepONet, we set maximum iteration number
Niter = 200000 and use stopping criterion that the empiri-
cal loss is below 1e-6. We use p = 100 features for all four
operator networks. In the transfer learning steps of CONT TL-
DeepONet, we subsample Nc = 400 < 64⇥ 20 grid points
and update q = 25 weights defined in (6). In the transfer
learning steps of TL-DeepONet, we set Nc = 32 < 64 and
q = 15 instead. Additionally, we fix �t = 0.05 in Table 1
and M = 3000 in Table 8.

C.3 Further details on Allen-Cahn and
Cahn-Hilliard equation

In all three examples, we consider periodic boundary con-
ditions. To this end, the initial condition is generated from
f0(x) ⇠ GP(0,Kp

l (x1,x2)), where the covariance kernel
has the desired periodicity. In particular, the kernel in one
dimension reads:

Kp
l (x1, x2) = e�

sin2(⇡(x1�x2))

2l2 (25)

and in two dimension takes the form:

Kp
l (x1,x2) = e�

sin2(⇡(x1,1�x2,1))+sin2(⇡(x1,2�x2,2))

2l2 . (26)

To enforce the periodic boundary condition to the output of
the trunk net, we employ an additional layer P (see Figure 2)
in the truck net, which upsizes x to {cos 2⇡x, sin 2⇡x}.This
way, the input of the trunk net already has the desired peri-
odicity and will be maintained throughout. Analogously, an
additional layer P , which plays the role of upsizing (x, y)
to {cos 2⇡x, sin 2⇡x, cos 2⇡y, sin 2⇡y}, is leveraged in the
trunk net in 2D case.

Implementation details on Figure 1 and Table 2, 3 Con-
sider Allen-Cahn equation (16) with d2 = 0.1. In 1D case,



we use Ne = 30 test functions drawn from the Gaussian
process defined above with the length scale l = 0.5 in
(25) and use Nx = 64 uniform spatial grids for spatial dis-
cretization. For DeepONet and TL-DeepONet, we let time
step size �t = 0.05, set the maximum iteration number
Niter = 100000 and adopt the stopping criterion that the em-
pirical loss is below 1e-6. For CONT DeepONet and CONT
TL-DeepONet, we use additional 20 uniform grids on time
span [0, 1], set maximum iteration number Niter = 200000
and use stopping criterion that the empirical loss is below 1e-
6. We use p = 100 features for all four operator networks. In
the transfer learning steps of CONT TL-DeepONet, we sub-
sample Nc = 400 < 64⇥ 20 grid points and update q = 25
weights defined in (6). In the transfer learning steps of TL-
DeepONet, we set Nc = 32 < 64 and q = 15 instead. In 2D
case, we use Ne = 30 test functions drawn from the Gaussian
process defined above with the length scale l = 1 in (26).
We use �t = 0.01 for time step size and Nx = Ny = 20
uniform spatial grids for spatial discretization. We set the
maximum iteration number Niter = 200000, adopt the stop-
ping criterion that the empirical loss is below 1e-6 and use
number of feature p = 120. In the transfer learning step,
we subsample Nc = 144 < 20 ⇥ 20 and update q = 40
weights defined in (6). Additionally, we fix d1 = 0.0005 and
M = 3000 in Figure 1. For FNO in Figure 1, we choose the
time step size �t = 0.05, prepare 50 Input & Ouput function
pairs, set the maximum iteration number Niter = 100000
and adopt the stopping criterion that the empirical loss is
below 1e-6.

Implementation details on Table 4 and Figure 3 Consider
Cahn-Hilliard equation (17) with d2 = 0.001. In 1D case, we
use Ne = 30 test functions drawn from the Gaussian process
defined above with the length scale l = 0.5 in (25). We use
�t = 0.05 for time step size and Nx = 64 uniform spatial
grids for spatial discretization. We set the maximum iteration
number Niter = 100000, adopt the stopping criterion that
the empirical loss is below 1e-6 and use number of feature
p = 100. In the transfer learning step, we subsample Nc =
32 < 64 and update q = 15 weights defined in (6). In 2D
case, we use Ne = 30 test functions drawn from the Gaussian
process defined above with the length scale l = 1 in (26).
We use �t = 0.01 for time step size and Nx = Ny =
20 uniform spatial grids for spatial discretization. We set
the maximum iteration number Niter = 200000, adopt the
stopping criterion that the empirical loss is below 1e-6 and
use number of feature p = 100. In the transfer learning step,
we subsample Nc = 144 < 20 ⇥ 20 and update q = 25
weights defined in (6). Additionally, we fix d1 =2e-6 and
M = 30000 in Figure 3.

C.4 Further details on Navier-Stokes equation
The data generation of Navier-Stokes equation and the design
of optional layer P in Figure 2 are exactly same as the one to
Allen-Cahn and Cahn-Hilliard equation in Section C.3.

Calculation of Navie-Stokes equation By introducing the
stream function  (x, t), the velocity field and the vorticity
can be found from u(x, t) = (@ @y ,�

@ 
@x ) and w(x, t) =

�� (x, t). Therefore, we rewirte the equation (18) as
(

w = �(@xx + @yy ),
@tw + @y @xw � @x @yw � ⌫(@xxw + @yyw)� ⌫f = 0,
w(x, 0) = w0(x) ,

(27)
and use the following semi-discretization scheme in the com-
putation of the numerical solutions:

8
><

>:

wn+1
�wn +�t@y 

n@xw
n+1

� @x 
n@yw

n+1

� ⌫(@xxw
n+1 + @yyw

n+1)� ⌫f = 0,

wn+1+(@xx 
n+1 + @yy 

n+1) = 0.

Supplementary examples of Navier-Stokes equation
Here we provide the snapshots of solution to (18) with
⌫ = 0.1, 0.01, 0.0001 in Figures 5, 6, 7 respectively.

Implementation details on Table 5 and Figures 5,6,4, 7
Consider 2D Navier-Stokes equation (18). We use Ne =
30 test functions drawn from the Gaussian process defined
above with the length scale l = 1 in (26). We use �t =
0.01 for time step size and Nx = Ny = 20 uniform spatial
grids for spatial discretization. We set the maximum iteration
number Niter = 200000, adopt the stopping criterion that
the empirical loss is below 1e-6 and use number of feature
p = 120. In the transfer learning step, we subsample Nc =
144 < 20⇥ 20 and update q = 40 weights defined in (6).

C.5 Details on Multiscale linear radiative transfer
equation

Computation of multiscale radiative transfer equation
Following (Lu, Wang, and Xu 2022), instead of discretizing
the original radiative transfer equation (19), we consider a
new system of equations based on its micro-macro decom-
position. More concretely, let f = ⇢ + "g, ⇢ = hfi. We
consider
8
><

>:

@t⇢+ hv ·rgi = 0
"2gt + "v ·rg � " hv ·rgi+ v ·r⇢ = Lg,
⇢(t,x) + "g(t,x,v) = �(x), (x,v) 2 ��
f(0,x,v) = f0(x,v).

(28)

It was shown in (Lu, Wang, and Xu 2022) that the PINN
loss based on (19) suffers from the instability issue when the
small Knudsen number " is small while the PINN loss based
on the system (28) above is uniformly stable with respect
to the small Knudsen number in the sense that the L2-error
of the neural network solution is uniformly controlled by
the loss. We consider (19) and its equivalent system (28) in
one and two dimensions. To enforce the inflow boundary
condition

f(t,x,v) = �(x), (x,v) 2 �� ,

we first parameterize f as follows:

f(t,x,v) = N1(t,x)A(x)+C(x)+"N2(t,x,v)B(x,v) ,
(29)

where A(x), B(x,v) and C(x) are determined according
to the specific boundary conditions in each example, whilst
N1(t,x) and N2(t,x,v) are to-be approximated by the neu-
ral nets. In other words, instead of using two neural nets
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Figure 5: Results on Navier-Stokes equation with ⌫ = 0.1: snapshots of reference solutions (top), and of approximate solutions
predicted by DeepONet (middle) and TL-DeepONet (bottom).
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Figure 6: Results on Navier-Stokes equation with ⌫ = 0.01: snapshots of reference solutions (top), and of approximate solutions
predicted by DeepONet (middle) and TL-DeepONet (bottom).
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Figure 7: Results on Navier-Stokes equation with ⌫ = 0.0001: snapshots of reference solutions (top), and of approximate
solutions predicted by DeepONet (middle) and TL-DeepONet (bottom).

to approximate ⇢(t,x) = hfi and g(t,x,v) = f � ⇢, we
approximate N1 and N2, and recover ⇢ and g via
⇢(t,x) = N1(t,x)A(x)+C(x)+ " hN2(t,x,v)B(x,v)i ,

and
g(t,x,v) = N2(t,x,v)B(x,v)� hN2(t,x,v)B(x,v)i .

1D Example Here the computational domain is (x, v) 2
[0, 1]⇥ [�1, 1] and the inflow boundary condition takes the
form:

f(0, v > 0) = 1, f(1, v < 0) =
1

2
.

Then in (29) we use
A(x) = x(1� x) ,

B(x, v) = R(v)x+R(�v)(1� x) ,

C(x) = (1�
1

2
x) ,

where R(v) is the ReLU function. In the same vein,
we generate the initial data by first sampling a(x, v) ⇠

GP(0,Kl(x1, v1), (x2, v2)) with

Kl((x1, v1), (x2, v2)) = e�
(x1�x2)2+(v1�v2)2

2l2 , (30)
and then selecting those that are strictly positive to construct

f0(x, v) = a(x, v)B(x, v) + C(x) .

2D Example Consider the spatial domain as (x, y) 2

[0, 1]2, and velocity variable is (vx, vy) = (cos↵, sin↵) with
↵ 2 [0, 2⇡]. The inflow boundary condition reads:

f(t, 0, y, vx > 0) =
1

2
� (y �

1

2
)2,

f(t, 1, y, vx < 0) = f(t, x, 0, vy > 0) = f(t, x, 1, vy < 0) =
1

2
.

Then to guarantee that f in (29) satisfies this condition, we
choose

A(x, y) = x(1� x)y(1� y) ,

B(x, y, vx, vy) = R(vx)xy(1� y) +R(�vx)(1� x)y(1� y)

+R(vy)yx(1� x) +R(�vy)(1� y)x(1� x)

+R(vx)R(vy)xy +R(vx)R(�vy)x(1� y)

+R(�vx)R(vy)(1� x)y

+R(�vx)R(�vy)(1� x)(1� y) ,

C(x, y) = (
1

4
� (y �

1

2
)2)(1� x) +

1

4
.

Similarly, the initial conditions are generated by first sam-
pling a(x, y,↵) ⇠ GP(0,Kl(x1, y1,↵1), (x2, y2,↵2)) with

Kl((x1, y1,↵1), (x2, y2,↵2)) = e�
(x1�x2)2+(y1�y2)2+(↵1�↵2)2

2l2 .
(31)

and then retaining only the positive samples to construct f0
via:

f0(x, y,↵) = a(x, y,↵)B(x, y, cos(↵), sin(↵)) + C(x, y).

Supplementary examples of radiative transfer equation
Here we provide the snapshots of solution to (19) in 2D with
" = 0.0001 and 1 in Figure 8 and Figure 9, respectively.

Implementation details on Table 6 and Figures 8,9 Con-
sider multiscale radiative transfer equation (19). In 1D case,
we use Ne = 30 test functions drawn from the Gaussian
process defined above with the length scale l = 1 in (30).
We use �t = 0.01 for time step size, Nx = 32 uniform
spatial grids for spatial discretization and Nv = 16 Gaussian
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Figure 8: Results on 2D radiative transfer equation with " =1e-4. The top three rows are snapshots of ⇢(t, x, y) of reference
solutions, approximate solutions predicted by DeepONet and approximate solutions predicted by TL-DeepONet respectively.
The bottom three rows are snapshots of f(t, x, y = 0.5,↵) of reference solutions, approximate solutions predicted by DeepONet
and approximate solutions predicted by TL-DeepONet respectively.
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Figure 9: Results on 2D radiative transfer equation with " = 1. The top three rows are snapshots of ⇢(t, x, y) of reference
solutions, approximate solutions predicted by DeepONet and approximate solutions predicted by TL-DeepONet respectively.
The bottom three rows are snapshots of f(t, x, y = 0.5,↵) of reference solutions, approximate solutions predicted by DeepONet
and approximate solutions predicted by TL-DeepONet respectively.



quadrature points for velocity discretization. We set the max-
imum iteration number Niter = 200000, adopt the stopping
criterion that the empirical loss is below 1e-6 and use number
of feature p = 100. In the transfer learning step, we update
q = 40 weights defined in (6). In 2D case, we use Ne = 30
test functions drawn from the Gaussian process defined above
with the length scale l = 1 in (31). We use �t = 0.01 for
time step size, Nx = Ny = 24 uniform spatial grids for spa-
tial discretization and Nv = 16 Gaussian quadrature points
for velocity discretization. We set the maximum iteration
number Niter = 300000, adopt the stopping criterion that
the empirical loss is below 1e-6 and use number of feature
p = 150. In the transfer learning step, we update q = 120
weights defined in (6).
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