Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution
Equations

Wuzhe Xu,'* Yulong Lu, ' Li Wang >

! Department of Mathematics and Statistics, University of Massachusetts Amherst
2 School of Mathematics, University of Minnesota
wuzhexu@umass.edu, yulonglu@umass.edu, wang8818 @umn.edu

Abstract

Deep operator network (DeepONet) has demonstrated great
success in various learning tasks, including learning solution
operators of partial differential equations. In particular, it pro-
vides an efficient approach to predict the evolution equations
in a finite time horizon. Nevertheless, the vanilla DeepONet
suffers from the issue of stability degradation in the long-
time prediction. This paper proposes a transfer-learning aided
DeepONet to enhance the stability. Our idea is to use transfer
learning to sequentially update the DeepONets as the surro-
gates for propagators learned in different time frames. The
evolving DeepONets can better track the varying complexities
of the evolution equations, while only need to be updated by
efficient training of a tiny fraction of the operator networks.
Through systematic experiments, we show that the proposed
method not only improves the long-time accuracy of Deep-
ONet while maintaining similar computational cost but also
substantially reduces the sample size of the training set.

1 Introduction

Solving partial differential equations (PDEs) through deep
learning approach has attracted extensive attention recently.
Thanks to the universal approximation theorem of neural
networks, it is natural to approximate solutions of PDEs
using neural network. Many popular neural network based
methods have been proposed recently, such as Deep Ritz
Method (Yu et al.|2018), Deep Galerkin Method (Sirignano
and Spiliopoulos 2018)), Physics Informed Neural Networks
(PINNS) (Raissi, Perdikaris, and Karniadakis|2019) and the
Weak Adversarial Networks (Zang et al.|2020). In spite of the
great success of these methods in solving various PDEs, the
neural networks need to be re-trained if one seeks solutions
corresponding to different initial conditions (ICs), boundary
conditions (BCs) or parameters for the same PDEs. Instead,
the recently proposed parametric operator learning methods,
such as DeepONet (Lu, Jin, and Karniadakis|2019) and FNO
(L1 et al.|2020) enable learning of PDEs corresponding to
varying BCs or ICs without re-training the networks. How-
ever, there is one important caveat in the aforementioned oper-
ator neural networks. Namely they are essentially supervised
learning and often require solving large number of PDEs to

“Wuzhe Xu is the corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

form the training data, which can be extremely expansive,
especially when PDEs of interest lie in high dimensional
spaces. To overcome this issue, Wang et al. (Wang, Wang|
and Perdikaris|2021; Wang and Perdikaris|2021) proposed
the physics-informed DeepONet, which uses only the physi-
cal information (for instance the governing law of the PDEs)
to construct loss function and thus making DeepONet self-
supervised. Nevertheless, in practice the physics-informed
DeepONets are more difficult to train compared to its vanilla
version since the exact differential operators act on the net-
works and make the convergence behavior highly depends
on the underlying physics problem.

Recently DeepONet has also been applied to learning the
propagators of evolution equations; see e.g. (Liu and Cai
2022;|Wang and Perdikaris 2021). The basic idea is to employ
DeepONets to learn the solution operator of a PDE within
a short time interval subject to a collection of (random) ini-
tial conditions. The solution of the PDE at later times can be
computed as recursive actions of the trained network operator
on solutions obtained at the prior steps. However, the approx-
imation accuracy of solutions can deteriorate in the long-run
for at least two reasons. First, due to the approximation er-
ror, the trained DeepONet, as a surrogate propagator, may
be expansive even if the exact propagator is non-expansive,
which leads to the accumulation of approximation error in
time and hence makes it difficult to predict the solution in
the long-run. Second, during the time-evolution of PDEs, the
functions that a propagator inputs and outputs can vary in
time, even though the form of the propagator within a fixed
time-slot may remain unchanged (e.g. when the dynamics is
autonomous). Taking diffusion equation as an example, one
observes that the functions in the range space of the prop-
agator or the semigroup are much smoother than those in
the domain, and for this reason, the solutions in later times
become increasingly more regular than those in earlier times.
Furthermore, some evolution equations may develop various
complexities in a long time-horizon, such as turbulence and
scale separations. For those equations, iterating a DeepONet
surrogate that is usually only trained in a single (short) time-
frame using a finite collection of initial functions may fail to
capture the correct regularity or complexity of the solutions
in the long time.

Transfer learning (Bozinovski and Fulgosi|1976; Do and
Ng||2005) is an important class of machine learning tech-

niques that use one neural network trained for one task for
a new neural network trained for a different related task.
The idea is that the knowledge or important features of one
problem gained by training the former neural nets can be
transferred to other problems. Transfer learning has been
widely used in image recognition (Yin et al. 2019; Jin, Cruz,
and Gongalves|2020), natural language processing (Ruder
et al.|2019) and recently in PINNs (Goswami et al.|[2019;
Obiols-Sales et al. |2021; [Song and Tartakovsky 2022; |De-
sai et al.[2021). To the best of our knowledge, the present
work is the first work to employ transfer learning for learning
solution operators of evolutionary PDEs.

1.1 Our contributions

We propose a novel physics-informed DeepONet approach
based on the transfer learning for predicting time-dependent
PDEs. Different from the existing usage of DeepONets in
learning the propagators of PDEs where the learned propaga-
tors are treated constant in time, we use transfer learning to
sequentially update the learned propagators as time evolves.
The resulting time-changing DeepONets offer several advan-
tages compared to the vanilla counterparts: (1) the evolving
DeepONets can better adapt to the varying complexities as-
sociated to the evolution equations; (2) the DeepONets are
updated in a computationally efficient way that the hidden
layers are frozen once trained and only the parameters in the
last layer are re-trained.

We hereby highlight the major contributions of the pro-
posed method:

* Time marching with the transfer-learning tuned Deep-
ONet gives more accurate and robust long-time prediction
of solutions of PDEs while still maintaining low computa-
tional cost.

* The proposed method is applied to various types of evo-
lutionary PDEs, including the reaction diffusion equa-
tions, Allen-Cahn and Cahn-Hilliard equations, the Navie-
Stokes equation and multiscale linear radiative transfer
equations.

* Through extensive numerical results, we show that our
method can significantly reduce the training sample size
needed by DeepONet to achieve the same (or even higher)
accuracy.

1.2 Related works

Transfer-learning has been previously combined with physics
informed neural networks for solving PDEs problems arising
from diverse fields, including the phase-field modeling of
fracture (Goswami et al.[2019), super-resolution of turbulent
flows (Obiols-Sales et al.|2021), training of CNNs on multi-
fidelity data (e.g. multi-resolution images of PDE solutions
on fine and coarse meshes) (Song and Tartakovsky|[2022),
etc. In (Chakraborty et al.[2022), transfer-learning was also
applied as a domain adaption method for learning solutions
of PDEs defined on complex geometries. The recent paper
(Desai et al. 2021) proposed a one-shot transfer learning strat-
egy that freezes the hidden layers of a pre-trained PINN and
reduces the training neural networks for solving new differen-
tial equations to optimizing only the last (linear) layer. This

approach eliminates the need of re-training the whole net-
work parameters while still produces high-quality solutions
by tuning a small fraction of parameters in the last layer. The
present paper marry this transfer learning idea with Deep-
ONet for learning the propagators of evolution equations in
order to predict the long time evolution.

While we are finalizing the current paper, we are aware of a
recent preprint (Goswami et al.|2022) where transfer learning
was exploited together with DeepONet for learning PDEs
under conditional shift. The purpose there is to train a source
PDE model with sufficient labeled data from one source
domain and transfer the learned parameter to a target domain
with limited labeled data. The technology developed there is
mainly applied for transferring the knowledge of a solution
operator trained on a system of PDEs from one domain to
another. Different from (Goswami et al.|2022), we leverage
transfer learning to successively tuning the surrogate models
of propagators learned via physics-informed DeepONet so
that the tuned operator networks can adaptively track the
evolving propagators that carry evolving inputs and outputs.
The proposed approach is proven to be more accurate and
robust for learning the long-time evolution of PDEs.

2 Numerical method

Problem set-up Consider the initial boundary value prob-
lem for a general evolution equation:

of(t,x) = L(f(t,x)),
{ flt,x) = o(x), x € 0, e
f(07w) = fO(w)y S Qx

Throughout the paper, we assume that the equations are dis-
sipative in the sense that [, fL£fdz < 0.Given a time step
size At, we consider the semi-discrete approximation f" ()
of the solution f(nAt,x) to (I)) defined by the backward
Euler discretization:

[(@) = (I - AtL) (=) =P f"(z). (2)
Our goal is to approximate the propagator
PA: f(@) > £ ()

by an operator neural network P so that only one forward
pass of the neural network achieves time-marching solutions
from one step to the next, and that the evolution dynamics
can be captured in a long time-horizon.

It is important to point out that the backward Euler scheme
is not the only choice for time-marching. One can extend
it to high order time discretization schemes such as Runge-
Kutta methods, as long as At is chosen such that PAL g a
non-expanding operator. We will make this point more clear
in Section 3 and Appendix To ease the notation, the
superscript n, n 4+ 1 and At will be omitted in the following
context if it does not cause any confusion.

2.1 Physics-informed DeepONet

Let €2, be a compact set in R? and let X’ be a compact sub-
space of the space C'(€2;) of continuous function defined on
Q... Then according to the universal approximation theorem
(Chen and Chen||1995), an operator P : X — X can be

approximated by a parametric operator Py with arbitrary
accuracy. That is, for any € > 0, there exists a sufficiently
large parametric neural network Py, such that

/ /Q —Pan(f)($)|2dmdu(f) <e

Here p denotes a probability measure on X. In practice,
is chosen as a Gaussian measure induced by the law of a
Gaussian random field. Several operator networks have been
proposed recently, including DeepONets (Lu, Jin, and Karni-
adakis 2019;|Wang, Wang, and Perdikaris 2021) and various
neural operators (Bhattacharya et al. |2020; [Li et al.|2020;
Kovachki et al.[2021). In this paper, we adopt DeepONet as
the basic architecture and refine it with transfer learning. The
vanilla DeepONet takes the following form:

Pnn (f)(2:0.€)
_ bNN
%"

ZbNN F0t™ (). 3)

S SN O (236

The operator network P n consists of two sub-networks: the
branch net bV is paramterized by and maps an encoded
input function { f(y,;)}2V, to p scalars bV, and the trunk net
tNN = (VNP is parameterized by ¢ and forms a direc-
tionary of functions in the output space. Both networks can
be modified in practice to fit with various set-ups of PDEs,
such as the boundary condition. A diagram of the DeepONets
architecture we use in this paper is shown in Figure [2. The
vanilla DeepONets is often trained in a supervised fashion
and requires pairs of input-output functions. To be more spe-
cific, given N, randomly sampled functions { f ()}, one

needs to prepare reference solutions {P(f,)(x)}Y:, either
analytically or using conventional high-fidelity numerical
solvers. Then one trains the Py by minimizing the loss
function

N

(IPw (£2)(56.€)

s=1

+IPun(fs)(:50,8) —

1
2N,

— P(fs)()“%z(ﬂr)
¢s(~)||%2(am>)'

However, in reality it can be extremely expensive to obtain
the outputs P(fs), especially when the underlying physical
principles are complicated and the dimension of the problem
is high. To this end, (Wang, Wang, and Perdikaris|[2021)
proposed a physics-informed DeepONet which makes the
learning procedure above self-supervised. More precisely, we
turn to minimizing the new loss function

NS

(1P (P (£:)(:6.9)) = £:O)laqan)

s=1

+ PN (fs)(50,8) —

1
2N,

bs(-) ||%2(aszm)>'
)

Note that the introduction of P! in (@) completely avoids the
evaluations of P(fs). The boundary term in (@) can be further
eliminated in practice because the networks can be modified
to satify the boundary conditions (see e.g. (Lu et al.|2022)).
We also observe through numerical experiments that elimi-
nating the the boundary loss can substantially improves the
training efficiency. The physics-informed DeepONet has been
applied to learning evolution equations (Wang and Perdikaris
2021). For equation , instead of first discretizing it in time,
they consider time as an additional input variable, and try to
learn an operator P! that maps the initial condition to the
solutions over an time-interval [0, to]:

Pl f0,2) — f(t,x), for tc[0,tg].
The corresponding loss function to be minimized is

N,
L(O.w,€) = ﬁ S0Pl (f) (8, 2)

— LPRn (F)) (@) 17200 x [0.00))

+ HPJIVNfS(m) -
where P} is the neural network approximator to . Once
trained, P% \ can be applied to f(to,) to get the solution
f(t,) over [tg, 2to]. Repeating this process enables one to
obtain approximation solutions in any finite time. However,
this methodology may suffer from long-time instability. In
fact, let us illustrate this using the Allen-Cahn equation
in one dimension. Figure |I shows that the average L? er-
rors of approximated solutions learned by DeepONets using
both the single-shot loss (4)) (labeled as DeepONet) and the
time-integrated loss (5 (labeled as CONT DeepONet). Both
errors accumulate rapidly as time increases, indicating the in-
stability of the learned DeepONets in prediction of long-time
solution. In contrast, our transfer-learning assisted DeepOnet
dramatically reduces the error and stabilizes the prediction.
For completeness, we also compare them with the Fourier
Neural Operator(FNO) (Li et al.|[2020), which is another
state-of-the-art operator learning method.

9s(®)72 00, x[0,00)))s 5

10°
o
2101
5 107 —— CONT DeepONet
N\l —— CONT TL-DeepONet
P 10,2 ——— DeepONet
= —— TL-DeepONet
© — FNO
[} -3
x 10 W

0.0 10.0 20.0 30.0 40.0 50.0
t

Figure 1: The relative L? error in time (defined in [22))) for
1D Allen Cahn (16). The networks with “CONT" refer to net-
works trained by using (5) whereas the others are trained by
using (@). The prefix “TL" means tuned by transfer learning.
See implementation details in Appendix |C_3

2.2 DeepONet with transfer learning

The main idea of transfer learning is to train a neural network
on a large data set and then partially freeze and apply it to a

related but unseen task. Inspired by (Desai et al.|2021), we
employ the transfer learning technique to successively correct
the trained DeepONet at the prediction steps: we freeze the
majority of the well-trained DeepONet and merely re-train
the weights in the last hidden layer of the branch net by fitting
the same physics-informed loss (4) defined by the underlying
PDEs. To be more precise, by separating the parameters 6 in
the hidden layers and the parameter w in the last layer of the
branch net, we rewrite the branch net as

ijhkj f:0),

where h = {hy, ; } are the outputs of the last hidden layer of
the branch net and w = {w, } are the weights in the last layer.
Inserting this into (3) gives

YN (f:0,w) =

P q

ZZw]h

k=1j=1

(f;)t N (w3 €) .

(6)
The architecture of the new operator network is illustrated
in Figure 2| In the training step, the optimal parameters
(0*, w*,€*) of the DeepONet (6) can be obtained by min-
imizing the empirical loss (@). Later in each prediction step,
we freeze the value of 8* and £*, but update w* by re-training
the loss (4) with newly-predicted solution as the initial con-
dition. Namely with the predicted solution f,, at step n, we
seek wy, | | defined by

Pyn(f)(x;0,w,8) =

* .
Wpyy € Argmin

N,
1 = — * *
i 2 (1P P (A (@i 0" w,6) = ful@)lF 0,
S s=1
P (1) @: 0%, w,6") = (@) 320,) 0 = 1,2,
(N
Note that w] = w*. The optimal sequence of weights

w,, defines a sequence of operator networks Py =
PRy (0%, w?, £%), which can be used to approximate the so-
lution at t = nAt by

f(nAt) = Py o 7317\177\/1 o Pll\iN(fO)'

It is interesting to note that the proposed method shares some
similarities with the classical Galerkin approximation. In fact,
the operator network (6) can be further rewritten as

Prn(f) (@) = i (Z

k=1

Z w;d;(x; f),

N0t (x; 5))

Observe that ¢; playing the role of basis functions in Galerkin
methods, and w; being the corresponding weight. However,
unlike most Galerkin methods which often use handcraft
bases, such as piecewise polynomials and trigonometric func-
tions, here the bases are learned from the problem itself, and

vary with the function they approximate. This seemly minor
change reduces substantially the number of bases needed in
the output space, as shown by extensive numerical tests in
Sectiond] To minimize (7)), it amounts to solving a system of
N equations with ¢ unknowns, where N is the total number
of fixed sensors in the branch net. This is achieved by least
square minimization. Since ¢ < N, the computational com-
plexity of finding the least square solution is only O(g>N).
In practice, we further reduce the computational complex-
ity by sub-sampling N, grid points out of N in the transfer
learning step.

3 Theoretical result
In this section, we analyze the long time stability of the
learned operator Py . First let X be a Banach space and
assume that the original propagator P (i.e., P2t in @):x —
X is non-expansive such that

IPlie:= _ sw _ IPfllx <1, ®)

EX,Ifllx=1
In the case that X = L?((),), assumption(8) follows from
the dissipative assumption of £; see Appendix [B.T for more
details. Let i/ C X be a linear subspace, we also assume that

Pfeld, Vfeld. 9)
The theorem below shows that the long-time prediction error
of the operator network can be bounded by the loss function.

Theorem 1. Assume (8) and (9) hold. If the neural network
approximator PNV satlsﬁes that the maximum loss over the
set U is less than 0, i.e.

sup [P PN~ fle<d, (10)
feu llfllx=1
and that
PnnfelU, Vfel, (11
then the following long-time stability holds

sup [(P)Xf—(Pun)X fllx <K (1+8)%. (12)
Feu, |l fllx=1
Moreover, if we further assume that

[Plla <n<1 (13)

and holds with § < 1(1 — n), then we have

1
Cosup [[(P)Kf = (Paw) f|\x<5K(;’7)
feu,|lfllx=1
(14)

The proof of Theorem I]is provided in Appendix [B.2.

Remark 1. 1. If the error tolerance § = At? with At be-
ing the time- dlscretlzatlon stepsize and the number of
iterations K = 4, then (12)) becomes

At’
sup [|(P)* —(PNN)KfHXgeTAfTAt_

feulifllx=1
When assumption (13) holds, the estimate above improves
to

I+ £
sup [(PYf = (Prw) " fllx < (—0) ¥ Tt
feU |l fllx=1

< CAt,

Branch net b N (f; 6, w)

"

— ~

f . Modified
L FC(0)

i
Convolution

o<

FC(£)

N
Modified J

v

h

qp—a;

\ gy

Trunk net tV N (z; €)

Minimize
X —> D> Pyn(z;0,w,&) > L0,w,¢) —)M

Figure 2: The architecture of transfer learning aided physics-informed DeepONet. Here P and D are optional layers that enforce
periodic and Dirichlet boundary conditions, respectively. The block named Modified FC is a modified fully connected neural
networks architecture introduced in (Wang, Wang, and Perdikaris|2021)). The parameter w (in the red box) denotes the tunable
weights in the last hidden layer of the branch net. In the transfer learning step, only w will be re-trained while the 6, £ are frozen.

where C is a constant independent of 7" and At, sug-
gesting that the prediction error is of the order O(At)
uniformly in time.

2. We comment on the assumptions made in Theorem [I.
In practice, physics-informed loss (7)) is trained so that
condition (10) is fulfilled for some subspace space U,
e.g. U = {€"*} <k, Assumption (9) holds for such
a choice of U/ when the evolution equation involves dif-
fusion. Assumption holds in particular when sine or
cosine activation function is used in the operator network
Pnn.

4 Numerical experiments

In this section, we demonstrate the effectiveness of trans-
fer learning enhanced DeepONet and show its advantages
over the vanilla DeepONet through several evolutionay PDEs,
including reaction diffusion equation, Allen-Cahn and Cahn-
Hilliard equations, Navier-Stokes equation and multiscale
linear radiative transfer equation. The equations of considera-
tion are equipped with either Dirichlet or periodic boundary
conditions. In all the test problems, our goal is to predict
the long time evolution of the equations obtained by suc-
cessive actions of the propagators learned via DeepONets.
More concretely, we first build the first-step neural oper-
ator approximation P} to the propagator P = P4t by
minimizing the physics-informed loss @) with M training
initial data. The operator network P35 is then gradually
tuned to P% . J = 2,--- K via updating the weights w in
the last-layer of its trunk nets. With the learned (and ad-
justed) operators P% ., = 1, - - K, the solution of a PDE
at time ¢ = K At with an initial condition fy can then be
obtained approximately by Py o - -+ o PX 5 fo. We remark
that the M training data is constructed as a subset of a larger
training set of size Ny x N, which consists of pointwise
evaluations of Ny randomly sampled functions at IV,, physi-
cal locations (sensors). We refer to Appendix [C.1]for detailed
discussions on the data generating process and treatment of
boundary conditions in various test problems. Choices of

parameters for the operator networks and the training pro-
cess are discussed in the end of Appendix In all the
numerical results to follow, we quantify the performance of
the proposed method by measuring the aggregated relative
prediction error over a time horizon [0, T']; see the precise
definition of the relative error in Appendix The codes
used for the numerical experiments will be published on the
website https://github.com/woodssss/TL-PI-DeepONet.

4.1 Reaction diffusion equation

Consider the reaction diffusion equation

0,f = dAf + k% € Qy = [0, 1]
f(t,m)207 .’Eean:{O,l}, (]5)
[0, 2) = fo(x),

where d = k = 0.001. In this example, we train DeepOnets
and our transfer learning enhanced DeepONets using two dif-
ferent loss functions, with one based on the physics-informed
loss within a single time-step At = 0.05 (c.f. (4)), and the
other based on the aggregated physics-informed loss (5) in the
time window ¢ € [0, 1]. We refer to the DeepONets trained
using the latter loss as CONT DeepONets and reserve Deep-
ONets for the one trained by the former loss. The numerical
results of different DeepONets with varying training sample
sizes M are shown in Table[I] Our proposed method provides
more accurate and more robust prediction of the solutions
with little extra computational cost. In particular, the pre-
diction error of vanilla DeepONets and CONT DeepONets
increase dramatically as time increases from 0.2 to 50, while
transfer learning can significantly reduces the error and stabi-
lizes the prediction in the long time. In addition, our method
also substantially reduces the size of training data to achieve
the same order of prediction accuracy. Note that, since trained
only within a single time step, DeepONets take far less train-
ing time than the corresponding CONT DeepONets while
maintain comparable accuracy. The similar trade-off of accu-
racy and training cost applies to other experiments. For this
reason, in subsequent examples we will only report results

https://github.com/woodssss/TL-PI-DeepONet

on our proposed method and the vanilla DeepONet, and ex-
clude the results from CONT DeepONets. Note also that the
results obtained in Table [are for propagators defined by
the backward Euler scheme. One can also consider propaga-
tors defined by higher order time-discretization schemes and
their neural network approximation. We refer the numerical

parameters. We note that the average trajectory prediction
times of TL-DeepONets increase for about 3 times compared
to those of the vanilla DeepONets while the prediction errors
of the former decrease by at least two orders of magnitude.

} ! - Neural network | M di=le-3 di=5e-4 di=le-4
results obtained using the Crank-Nicolson method to Table
[8lin Appendix|[C.2. DeepONet 1000 1.13e0 1.33¢0 1.29¢0
3000 1.33e0 1.18e0 1.23e0
10000 1.01e0 8.95e-1 1.43e0
Neuralnetwork | M 4 t2 [T=02 T=50 7 peepONet | 1000 9.25e-4 9.6de-d 2.16e-2
CONT 1000 43030 0.26 | 7.95¢-2 4.17e-1 3000 7.78e-4 8.83e-4 1.81e-2
DeepONet 3000 79375 028 | 1.0le-2 4.15e-2 10000 5.81e-4 7.94e-4 1.16e-2
10000 83465 0.26 | 3.40e-3 1.34e-2
CONT 1000 43030 0.93 | 5.38e-3 1.95e-3 Table 2: Results on 1D Allen-Cahn equation: the time-
TL-DeepONet | 3000 79375 0.98 | 1.87e-3 6.88e-4 average of relative prediction errors within [0, 50]. The av-
10000 83465 0.93 | 1.84e-3 4.87e-4 erage trajectory prediction time is 5.1s for DeepONet and
DeepONet 1000 2575 5.02 | 2.75e-1 1.69¢0 16.1s for TL_DeepONet,
3000 4313 4.9 1.05e-1 1.60e0
10000 5854 4.8 9.19e-2 1.87¢0
TDeON |0 2 N LS 1803 o
10000 5854 8.2 8.19¢-4 9.05e-4 DeepONet 1000 9.96e-1 1.01e0 1.02e0
10000 9.96e-1 1.00e0 1.00e0
Table 1: Results on reaction diffusion equation. Here ¢; is TL-DeepONet | 1000 6.54e-3 8.43e-3 1.01e-2
the training time and ¢5 is the averaged time of predicting the 10000 4.96e-3 6.46e-3 9.01e-3

solution trajectories among the time interval [0, 50] based on
30 test initial conditions. The last two columns to the right
are the averaged relative L? error within [0, 7.

4.2 Allen-Cahn and Cahn-Hilliard equations
In the second example, we consider Allen-Cahn equation

Of =diAf+daf (1 - f2),
{ 700,2) = jo(w), (16)

and Cahn-Hilliard equation

8tf = Aga
g=—diAf+do(f3>— f), (17)
(0, z) = fo(x),

both equipped with periodic boundary conditions. They are
prototype models for the motion of anti-phase boundaries in
crystalline solids. The computational domain is €2 := [0, 1]¢
with d = 1, 2. We are interested in learning the propagator
P = PAt with At = 0.05 and used it to predict the solutions
f(t,x) for every t < T = 50. The results on Allen-Cahn
equation are shown in Table[2](1D) and Table[3](2D). See also
Figure [T for a plot of evolving relative errors on 1D Allen-
Cahn equation. Similar results for 1D Cahn-Hilliard equation
are presented in Table[dand Figure [3|compares the snapshots
of predicted solutions to the 2D Cahn-Hilliard equation. In
all the results, for a fixed ds, the relative errors increase as
d; decreases because the transition layers of solutions are in-
creasingly sharper and hence make the numerical resolution
more challenging. Similar to the previous example, our pro-
posed method provides more accurate prediction of solutions
than the vanilla DeepONets among all the configurations of

Table 3: Results on 2D Allen-Cahn equation: the time-
average of the relative prediction errors within [0, 10]. The
average trajectory prediction time is 6.1s for DeepONet and
29.5s for TL-DeepONet.

Neural network | M di=4e-6 d;=2e-6 d;=le-6

DeepONet 1000 9.43e-1 947e-1 9.44e-1
3000 9.54e-1 9.58e-1 9.3%-1
10000 9.65e-1 9.58e-1 9.38e-1
TL-DeepONet | 1000 1.04e-2 1.36e-2 4.25e-2
3000 8.11e-3 9.04e-3 3.86e-2
10000 2.29e¢-3 7.8%¢-3 3.03e-2

Table 4: Results on 1D Cahn-Hilliard equation: the time-
average of the relative prediction errors within [0, 50]. the
average trajectory prediction time is 4.4s for DeepONet and
12.3s for TL-DeepONet.

4.3 Navier-Stokes equation
Consider the 2D Navier-Stokes equation in the vorticity form:

Ow(z,t) + u(z,t) - Vu(zx, t) = vAw(z, t) + f(x),
w(x,0) = wo(x)

(18)
with periodic boundary condition and source f(x) =
0.1(sin(27(z + y)) + cos(2m(x + y))). We would like to
learn the propagator P2 with At = 0.01 and apply it to pre-
dict the solution w|(0,1)zX(At’T). Table E shows the results
with varying values of viscosity v. Note that the prediction

|
A
—
1
—_
jen)

Initical condition t=

TL-DeepONet ™.

Figure 3: Results on 2D Cahn-Hilliard equation: snapshots of
reference solutions (top), and of approximate solutions pre-
dicted by DeepONet (middle) and TL-DeepONet (bottom).

error increases as v decreases. TL-DeepONets reduces the
errors of DeepONets by two orders of magnitudes although
the prediction time of the former increases for less than 4
times. Figure] shows the snapshots of solutions to with
v = 0.001 at two different times.

Neural network | v=le-1 wv=le-2 wv=le-3 v=le-4
DeepONet 9.95e-1 1.02e0 9.96e-1 1.04e0
TL-DeepONet 1.41e-2 1.07e-2 3.35e-2 9.42e-2

Table 5: Results on 2D Navier-Stokes equation: the relative
prediction errors within [0, 10]. The average trajectory predic-
tion time is 5.3s for DeepONet and 24.8s for TL-DeepONet.

4.4 Multiscale linear radiative transfer equation
Consider the linear multiscale radiative transfer equation:

e f+v-Vf=1LF t€[0,T)], (x,v) € Qy x S,
ft,z,v)=¢(x), (z,v)el_,
f(0,x,v) = fo(x,v).
(19)
Here ¢ > 0 is the Knudsen number which is a dimension-

less parameter that determines the physical regime of the
equation, L(f) = %/ fdv—f=:(f)— f,and
|81 Jga-
I'_ ={(z,v) : x € 99y, v-n, < 0} is the inflow part of
the boundary. In this example, we aim to learn the propagator
PAt with At = 0.01 and employ it to predict the solution
f(t,x,v) for t € [0,10]. We mainly consider in one
and two physical dimensions and refer to Appendix [C.5] for
a detailed discussion on the experiment set-up and the nu-
merical method. Table|6|displays the results corresponding to
different Knudsen numbers. The transfer learning enhanced

Initical condition

o
4 N

04 06 08
X

TL-DeepONet

Figure 4: Results on Navier-Stokes equation with v = 0.001:
snapshots of reference solutions (top), and of approximate so-
lutions predicted by DeepONet (middle) and TL-DeepONet
(bottom).

DeepONets reduces the relative error by one or two orders of
magnitude although increase the prediction time by around 4
times. Figure[9 and Figure[8 in Appendix [C.5 show several
snapshots of solutions to withe = 1and e = 107*
respectively.

RTE \ Neural network o relative error

IDe=1 DeepONet 4.6 3.06e-1
TL-DeepONet 22.5 1.52e-2

1D € = le-4 | DeepONet 5.1 3.74e-1
TL-DeepONet 21.9 5.52e-3

2De =1 DeepONet 79.8 3.58e-1
TL-DeepONet 431.3 2.19e-2

2D e = le-4 | DeepONet 83.1 2.37e0
TL-DeepONet 379.3 8.93e-3

Table 6: Results on the radiative transfer equation: the relative
prediction errors over the time-horizon [0, 10].

5 Conclusion

In this paper, we proposed a new physics-informed Deep-
ONet based on transfer learning for learning evolutionary
PDEs. This is achieved in two steps: first learn the propa-
gators and then predict the solutions by successive actions
of propagators on the initial condition. The experimental
results demonstrated that the proposed method improves sub-
stantially upon the vanilla DeepONet in terms of long-time
accuracy and stability while maintains low computational
cost. The proposed method also reduced the training sample
size needed to achieve the same order of prediction accuracy
of the vanilla DeepONets.

Acknowledgement

L. Wang is partially supported by NSF grant DMS-1846854.
Y. Lu thanks NSF for the support via the award DMS-
2107934.

References

Bhattacharya, K.; Hosseini, B.; Kovachki, N. B.; and Stu-
art, A. M. 2020. Model reduction and neural networks for
parametric PDEs. arXiv preprint arXiv:2005.03180.

Bozinovski, S.; and Fulgosi, A. 1976. The influence of pat-
tern similarity and transfer learning upon training of a base
perceptron b2. In Proceedings of Symposium Informatica,
volume 3, 121-126.

Chakraborty, A.; Anitescu, C.; Zhuang, X.; and Rabczuk, T.
2022. Domain adaptation based transfer learning approach
for solving PDEs on complex geometries. Engineering with
Computers, 1-20.

Chen, T.; and Chen, H. 1995. Universal approximation to
nonlinear operators by neural networks with arbitrary acti-
vation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4): 911-917.

Desai, S.; Mattheakis, M.; Joy, H.; Protopapas, P.; and
Roberts, S. 2021. One-Shot Transfer Learning of
Physics-Informed Neural Networks. arXiv preprint
arXiv:2110.11286.

Do, C. B.; and Ng, A. Y. 2005. Transfer learning for text
classification. Advances in neural information processing
systems, 18.

Goswami, S.; Anitescu, C.; Chakraborty, S.; and Rabczuk, T.
2019. Transfer learning enhanced physics informed neural

network for phase-field modeling of fracture. arXiv preprint
arXiv:1907.02531.

Goswami, S.; Kontolati, K.; Shields, M. D.; and Karniadakis,
G. E. 2022. Deep transfer learning for partial differential
equations under conditional shift with DeepONet. arXiv
preprint arXiv:2204.09810.

Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers,
R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg,
S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk,
M. H.; Brett, M.; Haldane, A.; del Rio, J. F.; Wiebe, M.;
Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.;
Weckesser, W.; Abbasi, H.; Gohlke, C.; and Oliphant, T. E.
2020. Array programming with NumPy. Nature, 585(7825):
357-362.

Jin, B.; Cruz, L.; and Gongalves, N. 2020. Deep facial diag-
nosis: deep transfer learning from face recognition to facial
diagnosis. IEEE Access, 8: 123649-123661.

Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhat-
tacharya, K.; Stuart, A.; and Anandkumar, A. 2021. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481.

Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhat-
tacharya, K.; Stuart, A.; and Anandkumar, A. 2020. Fourier
neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895.

Liu, L.; and Cai, W. 2022. DeepPropNet—A Recursive Deep
Propagator Neural Network for Learning Evolution PDE
Operators. arXiv preprint arXiv:2202.13429.

Lu, L.; Jin, P.; and Karniadakis, G. E. 2019. Deeponet: Learn-
ing nonlinear operators for identifying differential equations
based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193.

Lu, L.; Meng, X.; Cai, S.; Mao, Z.; Goswami, S.; Zhang, Z.;
and Karniadakis, G. E. 2022. A comprehensive and fair com-
parison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics
and Engineering, 393: 114778.

Lu, Y.; Wang, L.; and Xu, W. 2022. Solving multiscale
steady radiative transfer equation using neural networks with
uniform stability. Research in the Mathematical Sciences,
9(3): 1-29.

Obiols-Sales, O.; Vishnu, A.; Malaya, N. P.; and Chan-
dramowlishwaran, A. 2021. SURFNet: Super-resolution of
Turbulent Flows with Transfer Learning using Small Datasets.
In 2021 30th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 331-344. IEEE.

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computa-
tional physics, 378: 686-707.

Ruder, S.; Peters, M. E.; Swayamdipta, S.; and Wolf, T. 2019.
Transfer learning in natural language processing. In Proceed-
ings of the 2019 conference of the North American chapter
of the association for computational linguistics: Tutorials,

15-18.

Sirignano, J.; and Spiliopoulos, K. 2018. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of computational physics, 375: 1339-1364.

Song, D. H.; and Tartakovsky, D. M. 2022. TRANSFER
LEARNING ON MULTIFIDELITY DATA. Journal of Ma-
chine Learning for Modeling and Computing, 3(1): 31-47.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.;
Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.;
Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I.: Feng,
Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.;
Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt,
P.; and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature
Methods, 17: 261-272.

Wang, S.; and Perdikaris, P. 2021. Long-time integration of
parametric evolution equations with physics-informed deep-
onets. arXiv preprint arXiv:2106.05384.

Wang, S.; Wang, H.; and Perdikaris, P. 2021. Learning the
solution operator of parametric partial differential equations
with physics-informed DeepONets. Science advances, 7(40):
eabi8605.

Yin, X.; Yu, X.; Sohn, K.; Liu, X.; and Chandraker, M. 2019.
Feature transfer learning for face recognition with under-
represented data. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 5704-5713.
Yu, B.; et al. 2018. The deep Ritz method: a deep learning-
based numerical algorithm for solving variational problems.
Communications in Mathematics and Statistics, 6(1): 1-12.
Zang, Y.; Bao, G.; Ye, X.; and Zhou, H. 2020. Weak ad-
versarial networks for high-dimensional partial differential
equations. Journal of Computational Physics, 411: 109409.

Table 7: Table of notations

B.2 Proof of Theorem

Proof. From (8)-(10), one sees that

Notation Meaning

P or PA! Target propagator

Pnn Neural network approximator

U The Banach space of input functions

{azf}f\;ml The interior sensors

b

{xt} N The boundary sensors

{fo3e, Randomly sampled functions used for training

0,¢ Neural network parameters

NN (. 0) The branch net of DeepONet

RN (. 0) The output functions defined by the last
hidden layer in the branch net

tVN (. €) The trunk net of DeepONet

w = {w;}i_, Weights in the last layer of the branch net

N, Number of sensors
N, Number of grid points
in transfer learning step
M Number of training sample pairs
P Number of output features
q Number of tunable weights at the last hidden

layer of the branch net

sup |[Pf — Pynflla =sup |[P(f =P 'Pynf)llx
feu feu

<Ol
(20)
Therefore one obtains that

sup [[Pynfllx <1+44.
Feu i fllx=1

Let f € U with || f||x = 1. It follows from above that

I(P)* f — (Pnn) " fllx

= (P = Pyn)(PE L+ PE 2Py + -+ Py fllx

K-—1
< Z I(P —Pnn)P' PRy fllx (21
< SK(1 + 5)K

which proves (12)) after taking supreme on f.
Next, if (I3 .) holds, and § is chosen to be § < (1 — 1),
then we have from (20) that

A Table of notations
A table of notations is given in Table

B Theoretical analysis
B.1 Validation of assumption

Here we will give a simple justification for the assumption
(8). Consider the L? norm as an example:

[Pll2 = sup P fll2,
FEL2(€0),l1fl2=1

then (8) is fulfilled if the underlying dynamics is stable under
this norm:

d 2
S <

where f is the solution to (I). Indeed, multiplying (1) by f
and integrating in , we have

Gall= [rerae<o.

Then for the semi-discrete in time version
fn+1 _ fn _ Atﬁfn—H
multiplying it by f**! and integrating in z, it becomes
1 n n n n
SUFTHE = 15+ 1 = f7113)
:/ FrlLtldy <)
Qg

which readily leads to
£ 2 = 1P S 2 < 1 Ml2 -

1+
sup [[Punfll <n+o<
el fllx=1
Inserting above into leads to
K—1
[(PYf = (Pwn) flle < 3 (P = Pun)P'PRR ™ fllx
1=0
K-
Z (n+ 8)K—1-1
K—1
S(;K(HJ) _
2
This proves (14). O

C Experiment details

In this section, we provide the details on the numerical exper-
iments of Section]

C.1 Data generation and configuration of training

Data generation For all numerical experiments, we use
uniform mesh with N¢ grid points for discretization of the
spatial domain €2, C R<, and N,, Gaussian quadrature points
for discretizing the velocity variable v € S~ in the radia-
tive transfer equation only. We generate N initial conditions
{fs(x)}Ys, for training and N, functions {f. ()}, for
testing. The training set consists of [V functions that sampled
from a centered Gaussian random field as well as forward
passes of those functions through up to n; times actions of
the propagator. This gives Ny = n; X NN} training functions.
The random functions may be post-processed so that they
satisfy the boundary condition of the PDE. Details on the
post-processing methods can be found in the subsequent sec-
tions. The final training data of size M is constructed as a

subset of a larger training set of size N, x N,,, which consists
of pointwise evaluations of Ng randomly sampled functions
at N, physical locations (sensors). Unless otherwise spec-
ified, we set N, = 100, n; = 20 in 1D test problems and
N, = 100, ny = 100 in 2D test problems. Here a training set
of size M = 1000 may only use 50 functions evaluating at
20 grid points in the domain.

Two error measures. To quantify the performance of our
neural nets, we measure two relative errors of neural operator
approaches. The first is the relative error at a single time-step

th .= kAt
1 i SN (Ph () (@) — PR(f) (@)
Ne i SN (PR ()

and the second is the relative error over a long time horizon
(or equivalently multiple time steps)

N X5 S (PR (i) (@) = P (i) (@7))*
i X5 Y (P(F)(@)

2

» (22)

(23)

Neural networks and training parameters In 1D exam-
ples, we use the modified fully connected architecture with
depth of 5 layers and width of 100 neurons for both branch
and trunk nets, and the design of the optional layers P and
D in Figure [2 will be detailed in each of the following ex-
amples. The batch size is chosen to be 100 with ADAM
optimizer, where the initial learning rate [r = 0.001 and a
0.95 decay rate in every 5000 steps. Same architecture is
used in 2D examples except that a depth of 6 layers is used.
In the transfer learning step, to solve the optimization prob-
lem (7)), we use the Istsq function (with rcond=1e-6) from
Numpy(Harris et al.|2020) for linear operators and the leastsq
function in Scipy(Virtanen et al.[2020) (using default setting
with ftol =le-5, xtol =le-5) for nonlinear operators. All of
the neural networks are trained on a single K40m GPU, and
the prediction step is computed on a AMD Ryzen 7 3700x
Processor.

C.2 Further details on reaction diffusion equation

To generate initial conditions that satisfy zero boundary con-
dition, i.e., fo(0) = fo(1) = 0 we first sample a(x) ~
QP(O, KZ(CCh 1‘2)) with

(z1—w9)?

Ky, az) =e” 37 (24)
and then let fo(z) = a(z)x(1 —). Likewise, to enforce the
same boundary condition for the output of the neural net, i.e.,
Pnn(f)(1) = Pun(f)(1) = 0, we employ an additional
layer D in Figure 2 that multiplies the output of trunk nets
by z(1 — x).

Crank-Nicolson scheme for reaction diffusion equation
To demonstrate the improvement on the efficiency of using
the higher order in time scheme at the transfer learning step,
we apply Crank-Nicolson scheme for the nonlinear reaction
diffusion equation. As displayed in Table[8] the second order
scheme with At = 0.4 reduces the prediction time compared
with first order scheme with At = 0.05 by a factor of 1/6.

Neural network | At | t2 | Relative error
TL-DeepONet At=0.05 | 7.1 | 1.78e-3
TL-DeepONet 2nd | At =0.1 | 4.53 | 4.91e-4

At=0.2 | 236 | 2.63e-3
At=04 1.24 | 9.53e-3

Table 8: Comparison of first order and second order in time
method for reaction diffusion equation with various At. Here
to is the averaged time of predicting the solution trajectories
among the time interval [0, 50] based on 30 test initial condi-
tions.

Implementation details on Table [T and Table [§ Con-
sider 1D nonlinear reaction diffusion equation (15]) with
d = k = 0.001. We use N, = 30 test functions drawn
from the Gaussian process defined above with the length
scale [= 0.2 in and we use N, = 64 uniform spatial
grids for spatial discretization. The loss functions of CONT
DeepONet and CONT TL-DeepONet (c.f. (3)) are calculated
using 20 uniform temporal steps on [0, 1]. For DeepONet
and TL-DeepONet, we set the maximum iteration number
Niter = 100000 and adopt the stopping criterion that the
empirical loss is below le-6. For CONT DeepONet and
CONT TL-DeepONet, we set maximum iteration number
Niter = 200000 and use stopping criterion that the empiri-
cal loss is below 1e-6. We use p = 100 features for all four
operator networks. In the transfer learning steps of CONT TL-
DeepONet, we subsample N, = 400 < 64 x 20 grid points
and update ¢ = 25 weights defined in (6). In the transfer
learning steps of TL-DeepONet, we set N. = 32 < 64 and
g = 15 instead. Additionally, we fix At = 0.05 in Table[T
and M = 3000 in Table[8l

C.3 Further details on Allen-Cahn and
Cahn-Hilliard equation

In all three examples, we consider periodic boundary con-

ditions. To this end, the initial condition is generated from

fo(x) ~ GP(0, K} (1, x2)), where the covariance kernel

has the desired periodicity. In particular, the kernel in one

dimension reads:

sin?(n(x] —29))

K} (z1,29) =€~ 22 (25)

and in two dimension takes the form:

sin? (n(®q 1 —®o 1)) +sin? (7 (21 2 -2 2))

K} (1, @) =€~ 22 . (26)

To enforce the periodic boundary condition to the output of
the trunk net, we employ an additional layer P (see Figure[2)
in the truck net, which upsizes z to {cos 27z, sin 27z }.This
way, the input of the trunk net already has the desired peri-
odicity and will be maintained throughout. Analogously, an
additional layer P, which plays the role of upsizing (z,y)
to {cos 27z, sin 27z, cos 27y, sin 27y }, is leveraged in the
trunk net in 2D case.

Implementation details on Figure[Tjand Table[2} 3] Con-
sider Allen-Cahn equation with dy = 0.1. In 1D case,

we use N, = 30 test functions drawn from the Gaussian
process defined above with the length scale [= 0.5 in
(25) and use NV, = 64 uniform spatial grids for spatial dis-
cretization. For DeepONet and TL-DeepONet, we let time
step size At = 0.05, set the maximum iteration number
Niter = 100000 and adopt the stopping criterion that the em-
pirical loss is below le-6. For CONT DeepONet and CONT
TL-DeepONet, we use additional 20 uniform grids on time
span [0, 1], set maximum iteration number N;.,, = 200000
and use stopping criterion that the empirical loss is below le-
6. We use p = 100 features for all four operator networks. In
the transfer learning steps of CONT TL-DeepONet, we sub-
sample N, = 400 < 64 x 20 grid points and update ¢ = 25
weights defined in (6). In the transfer learning steps of TL-
DeepONet, we set N, = 32 < 64 and ¢ = 15 instead. In 2D
case, we use IV, = 30 test functions drawn from the Gaussian
process defined above with the length scale I = 1 in (26).
We use At = 0.01 for time step size and N, = IV, = 20
uniform spatial grids for spatial discretization. We set the
maximum iteration number N, = 200000, adopt the stop-
ping criterion that the empirical loss is below 1e-6 and use
number of feature p = 120. In the transfer learning step,
we subsample N, = 144 < 20 x 20 and update ¢ = 40
weights defined in (6). Additionally, we fix d; = 0.0005 and
M = 3000 in Figure[T] For FNO in Figure[I] we choose the
time step size At = 0.05, prepare 50 Input & Ouput function
pairs, set the maximum iteration number Nz, = 100000
and adopt the stopping criterion that the empirical loss is
below 1e-6.

Implementation details on Tabledand Figure[3] Consider
Cahn-Hilliard equation with do = 0.001. In 1D case, we
use N, = 30 test functions drawn from the Gaussian process
defined above with the length scale [= 0.5 in (23]). We use
At = 0.05 for time step size and N, = 64 uniform spatial
grids for spatial discretization. We set the maximum iteration
number N;:.,. = 100000, adopt the stopping criterion that
the empirical loss is below le-6 and use number of feature
p = 100. In the transfer learning step, we subsample N, =
32 < 64 and update ¢ = 15 weights defined in (6). In 2D
case, we use N, = 30 test functions drawn from the Gaussian
process defined above with the length scale [= 1 in (26).
We use At = 0.01 for time step size and N, = N, =
20 uniform spatial grids for spatial discretization. We set
the maximum iteration number Ny, = 200000, adopt the
stopping criterion that the empirical loss is below le-6 and
use number of feature p = 100. In the transfer learning step,
we subsample N, = 144 < 20 x 20 and update ¢ = 25
weights defined in @ Additionally, we fix d; =2e-6 and
M = 30000 in Figure[3]

C.4 Further details on Navier-Stokes equation

The data generation of Navier-Stokes equation and the design
of optional layer P in Figure[2)are exactly same as the one to
Allen-Cahn and Cahn-Hilliard equation in Section|C.3!

Calculation of Navie-Stokes equation By introducing the
stream function ¥ (z, t), the velocity field and the vorticity

can be found from wu(z,t) = (%’_%) and w(z,t) =

—Ay(z,t). Therefore, we rewirte the equation (I8) as

{ Oyw + 0y 0y w — OphOyw — V(Ogzw + Oyyw) —vf =0,
w(z,0) = wo(x),

27)
and use the following semi-discretization scheme in the com-
putation of the numerical solutions:

WM —w" + At " 0w — 0,y Oy
— V(O™ T 4+ Oyt —vf =0,
W (0" T + 9,) = 0.

Supplementary examples of Navier-Stokes equation
Here we provide the snapshots of solution to with
v =0.1,0.01,0.0001 in Figures [3 [6} [7] respectively.

Implementation details on Table 5 and Figures [5}64, [7
Consider 2D Navier-Stokes equation (18). We use N, =
30 test functions drawn from the Gaussian process defined
above with the length scale I = 1 in 26). We use At =
0.01 for time step size and N, = N, = 20 uniform spatial
grids for spatial discretization. We set the maximum iteration
number N;:.,, = 200000, adopt the stopping criterion that
the empirical loss is below 1le-6 and use number of feature
p = 120. In the transfer learning step, we subsample N, =
144 < 20 x 20 and update ¢ = 40 weights defined in (6).

C.5 Details on Multiscale linear radiative transfer
equation

Computation of multiscale radiative transfer equation
Following (Lu, Wang, and Xu|2022), instead of discretizing
the original radiative transfer equation (19), we consider a
new system of equations based on its micro-macro decom-
position. More concretely, let f = p + g, p = (f). We
consider

dhp+(v-Vg)=0
e2g;+ev-Vg—e(v-Vg)+v-Vp=Lg,
p(t,x) +eg(t, z,v) = ¢(z), (x,v) €'
f(0,z,v) = fo(z,v).

It was shown in (Lu, Wang, and Xu 2022) that the PINN
loss based on suffers from the instability issue when the
small Knudsen number ¢ is small while the PINN loss based
on the system (28) above is uniformly stable with respect
to the small Knudsen number in the sense that the L?-error
of the neural network solution is uniformly controlled by
the loss. We consider and its equivalent system (28)) in
one and two dimensions. To enforce the inflow boundary
condition

(28)

ftz,v) = ¢(x), (x,v) €T,
we first parameterize f as follows:

f(t,z,v) =Ni(t,x)A(x) + C(x) +eNa(t, x,v) B(x, v),

(29)
where A(x), B(x,v) and C(x) are determined according
to the specific boundary conditions in each example, whilst
Ni(t,) and Na(t, z,v) are to-be approximated by the neu-
ral nets. In other words, instead of using two neural nets

t=4

Initical condition

0.72 0.030

‘ 0.016 0.016
0.54 0.024 . 0.012 0.012
0.36 0.018 0.008 0.008
0.012
0.18 Sooe . 0.004 0.004
0.00 0'000 > 0.000 0.000
—-0.18) E — —
—0.006 0.004 0.004
—-0.36 —0.012 —0.008 —0.008
~0.54 _o0.018 - -0.012 -0.012
-0.72 —0.024 -0.016 -0.016
0.0 0.2 0.4 0.6 0.8
X
0.030 0.016 0.016
0.024 0.012 0.012
0.018 0.008 0.008
0.012
0.006 0.004 0.004
! > 0.000 0.000
DeepONet 0.000
—0.004 —0.004
~0.006
—0.012 —0.008 —0.008
_0.018 = -0.012 -0.012
—0.024 = —0.016 = . —0.016
X . 04 0.6 0.8 X . 0.4 0.6 0.8
X X
0.030 ‘ 0.016 ‘ 0.016
0.024 0.012 0.8 0.012
0.018 0.008 0.008
0.012
0.006 0.6 0.004 0.6 0.004
' > 0.000 > 0.000
- 0.000
TL DeepONet 0.4 —0.004 0.4 —0.004
~0.006
—0.012 02 —0.008 02 —0.008
_0.018 : -0.012 : -0.012
_ -0.016 -0.016
0.024 0.0 0.0
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
X X

Figure 5: Results on Navier-Stokes equation with v = 0.1: snapshots of reference solutions (top), and of approximate solutions
predicted by DeepONet (middle) and TL-DeepONet (bottom).

Initical condition

08] gij:: 0.4 g:;;g 0.16
' 0.270 o3 0.162 g(laz
0.6 0.135 02 0.108 Vol
> 0.000 0.1 0.054 oo
0.4 -0.135 0.0 0.000 7'0.04
-0.270 -0.1 —0.054 oo
0.2 —0.405 —0.2 —0.108 o
~0.540 -0.3 —0.162 “o12

0.0 —0.4 —0.216 .

00 02 04 06 08
X

03 0.162 012

02 0.108 0.08

0.1 0.054 0.04
DeepONet 0.0 0.000 000

-0.1 —0.054 -

-0.2 —0.108 —0.08

-0.3 —-0.162 —-0.12

—0.4 —0.216 —0.16

03 0.162 012

02 0.108 0.08

0.1 0.054 0.04

TL-DCCPONCt 0.0 0.000 0.00

-0.1 —0.054 —0.04

-0.2 —0.108 —0.08

-0.3 —0.162 —0.12

—0.4 —0.216 —0.16

Figure 6: Results on Navier-Stokes equation with v = 0.01: snapshots of reference solutions (top), and of approximate solutions
predicted by DeepONet (middle) and TL-DeepONet (bottom).

Initical condition
\ 4 4 0.88 1.6
1.2
0.8
0.4
0.0
—-0.4
—0.8

0.540

0.405

0.270

0.135
0.000 &,
-0.135

0.48
0.36
0.24
0.12
0.00
—0.12
—0.24
-0.36
—0.48

—0.270
—0.405
—0.540

-1.2
-1.6

-

X

00 02

t=4
q
4 0.6 078

0.540 1.6

0.405 0.8 1.2
0.270) 08
0.135 0.6 " 0.4
0.000 >, 0.0

—0.135 0.4
—0.270
—0.405 0.2
—0.540

-0.4
-0.8

DeepONet

"0.0 0.2 0.4 0.6 0.8

-1.2
-1.6

1.6
1.2
0.8
0.4
0.0
-0.4
-0.8

0.540
0.405 08

0.270

0.135 0.6
0.000 5,
-0135 0.4
-0.270

—0.405 0.2
—0.540

TL-DeepONet

-1.2
-1.6

00 02 04 06 038

Figure 7: Results on Navier-Stokes equation with v = 0.0001: snapshots of reference solutions (top), and of approximate
solutions predicted by DeepONet (middle) and TL-DeepONet (bottom).

to approximate p(t,x) = (f) and g(t,z,v) = f — p, we
approximate A7 and N>, and recover p and g via

p(t,x) = Ni(t,x)A(x) + C(x) + ¢ (Na(t, z, v) B(z,v)),
and
g(t,z,v) = Na(t,z,v)B(z,v) — (Nao(t, z,v)B(x,v)) .

Then to guarantee that f in (29) satisfies this condition, we
choose

Az, y) =z(1 —2)y(1 —y),
B(z,y,vz,vy) = R(vz)ry(l — y) + R(—v)(1 — 2)y(1 — y)

DE o Hlore th onal domein 1 (a,v) + R(vy)yx(l — 2) + R(—vy)(1 — y)a(l —)
xample Here the computational domain is (z,v) € + R(v,)R + R(v,)R(— 1—
[0,1] x [~1,1] and the inflow boundary condition takes the (v R(vy)y (0e) R(=vy)z(1 ~y)
form: + R<_Uz>R(Uy)(1 —)y
1 _ _ _ _
FO,0>0)=1, f(Lv<0)= .. + R(=ve) R(-vy)(1 — 2)(1 —),
, 2 1 1., 1
Then in (29) we use C(m,y):(z—(y—§))(1_55)"‘1
Alx) = a(l -), Similarly, the initial conditi ted by first
B imilarly, the initial conditions are generated by first sam-
B(x7v) - R(U):j—i_ R(_v)(l - x) ’ phng a(xayaa) ~ gP(07Kl(x17ylva1)7 (1‘271/27 QQ)) with
C.’L’Zl——.’L‘, zq—29)2 — 24 (ag—ag)?
() (2) Ki((z1,y1, 1), (22,92, a2)) = e_(L2 Hylzz%?) E—

where R(v) is the ReLU function. In the same vein,
we generate the initial data by first sampling a(z,v) ~
QP(O, Kl(xl, Ul), (LEQ, ’Ug)) with

_ (m1—w9) 24 (vy —vg)?
[

Ki((z1,v1), (z2,v2)) =€ 22 , (30)
and then selecting those that are strictly positive to construct
folz,v) = a(z,v)B(z,v) + C(x).
2D Example Consider the spatial domain as (z,y) €
[0, 1]2, and velocity variable is (v,, v,) = (cos a, sin «) with
« € [0, 27]. The inflow boundary condition reads:

1 1

£,0,9,v, >0) = = — (y — =),

1
f(t, 1Ly, <0)= f(t,2,0,v, >0) = f(t,z,1,v, <0) = 3

@31
and then retaining only the positive samples to construct fj
via:

folz,y,a) = a(z,y, @) B(z,y, cos(a),sin(a)) + C(z, y).

Supplementary examples of radiative transfer equation
Here we provide the snapshots of solution to in 2D with
€ = 0.0001 and 1 in Figure 8|and Figure[9} respectively.

Implementation details on Table[6|and Figures Con-
sider multiscale radiative transfer equation . In 1D case,
we use N, = 30 test functions drawn from the Gaussian
process defined above with the length scale [= 1 in (30).
We use At = 0.01 for time step size, IV, = 32 uniform
spatial grids for spatial discretization and N,, = 16 Gaussian

Initical condition

0.904

0.744 0.4525 0.4525
0832 0.690 0.4300 0.4300
0760 0.636 0.4075 0.4075
0.688 0.582 0.3850 0.3850
0.616 0.528 0.3625 0.3625
0.544 0.474 0.3400 0.3400
0.472 0.420 0.3175 0.3175
0.400 0.366 0.2950 0.2950
0.328 0.312 0.2725 0.2725
0.256 0.258 0.2500 0.2500
0.744 0.4525 0.4525
0.690 0.4300 0.4300
0.636 0.4075 0.4075
0.582 0.3850 0.3850
0.528 0.3625 0.3625
DeepONet
0.420 0.3175 0.3175
0.366 0.2950 0.2950
0.312 0.2725 0.2725
0.258 0.2500 0.2500
0.744 0.4525 0.4525
0.690 0.4300 0.4300
0.636 0.4075 0.4075
0.582 0.3850 0.3850
0.528 0.3625 0.3625
TL'DGCPONet 0.474 0.3400 0.3400
0.420 0.3175 0.3175
0.366 0.2950 0.2950
0.312 0.2725 0.2725
0.258 0.2500 0.2500
Initical condition t=0.5
0.5025
0.876 0.4775 0.4550 0.4550
0.816 0.4505 0.4325 0.4325
0.756 037 0.4100 0.4100
0.696 0.3875 0.3875
. 0.636 g':gjz 0.3650 0.3650
0.576 - 0.3425 0.3425
0.516 0.3525 0.3200 0.3200
0.456 0.3275 0.2975 0.2975
0.396 0.3025 0.2750 0.2750
> - 0.336 0.2775 0.2525 0.2525
02 04 06 08
x
0.5025
04775 0.4550 0.4550
0.4325 0.4325
0.4525
0.4100 0.4100
g:i;: 0.3875 0.3875
: 0.3650 0.3650
DeepONet 03775 ppstes ppses
0.3525 0.3200 0.3200
0.3275 0.2975 0.2975
0.3025 0.2750 0.2750
0.2775 0.2525 0.2525
0.5025
04775 0.4550 0.4550
0.4325 0.4325
0.4525
0.4100 0.4100
z;i:: 0.3875 0.3875
- 0.3650 0.3650
TL-DeepONet 03775 pptes pptes
0.3525 0.3200 0.3200
0.3275 0.2975 0.2975
0.3025 0.2750 0.2750
0.2775 0.2525 0.2525

Figure 8: Results on 2D radiative transfer equation with ¢ =1e-4. The top three rows are snapshots of p(t, z,y) of reference
solutions, approximate solutions predicted by DeepONet and approximate solutions predicted by TL-DeepONet respectively.
The bottom three rows are snapshots of f (¢, z,y = 0.5, «) of reference solutions, approximate solutions predicted by DeepONet
and approximate solutions predicted by TL-DeepONet respectively.

Initical condition

0.375

0.46 0.366 0.3705
0.42 0360 0.354 0.3585
0.38 0.345 0.342 0.3465
0.34 0.330 0.330 0.3345
- 0.30 0.315 0.318 0.3225
0.26 0.300 0.306 0.3105
0.22 0.285 0.294 0.2985
0.18 0.270 0.282 0.2865
0.14 0.255 0.270 0.2745
02 o4 06 08 0.10 0.240 0.258 0.2625
X
0.375 0.366 0.3705
0.360 0.354 0.3585
0.345 0.342 0.3465
0.330 0.330 0.3345
0.315 0.318 0.3225
DeepONet 0.300 0.306 0.3105
0.285 0.294 0.2985
0.270 0.282 0.2865
0.255 0.270 0.2745
0.240 0.258 0.2625
0.375 0.366 0.3705
0.360 0.354 0.3585
0.345 0.342 0.3465
0.330 0.330 0.3345
0.315 0.318 0.3225
TL-DeepONet 0300 0306 03105
0.285 0.294 0.2985
0.270 0.282 0.2865
0.255 0.270 0.2745
0.240 0.258 0.2625
Initical condition
4 — 0.488 0.484 0.475 0.475
. 0.448 0.448 0.450 0.450
0.408 0.412 0.425 0.425
0.368 0.376 0.400 0.400
o ‘“ 0.328 0.340 0.375 0.375
0.288 0.304 0.350 0.350
0.248 0.268 0.325 0.325
0.208 0.232 0.300 0.300
0.168 0.196 0.275 0.275
0.128 0.160 0.250 0.250

0.484
0.448
0.412
0.376
0.340
0.304
0.268
0.232
0.196
0.160

DeepONet

0.484
0.448
0.412
0.376
0.340
0.304
0.268
0.232
0.196
0.160

TL-DeepONet

0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250

0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250

0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250

0.475
0.450
0.425
0.400
0.375
0.350
0.325
0.300
0.275
0.250

Figure 9: Results on 2D radiative transfer equation with ¢ = 1. The top three rows are snapshots of p(t, z,y) of reference
solutions, approximate solutions predicted by DeepONet and approximate solutions predicted by TL-DeepONet respectively.
The bottom three rows are snapshots of f (¢, z,y = 0.5, «) of reference solutions, approximate solutions predicted by DeepONet
and approximate solutions predicted by TL-DeepONet respectively.

quadrature points for velocity discretization. We set the max-
imum iteration number N;;.,, = 200000, adopt the stopping
criterion that the empirical loss is below 1e-6 and use number
of feature p = 100. In the transfer learning step, we update
q = 40 weights defined in (@) In 2D case, we use N, = 30
test functions drawn from the Gaussian process defined above
with the length scale I = 1 in (3I). We use At = 0.01 for
time step size, N, = N, = 24 uniform spatial grids for spa-
tial discretization and N,, = 16 Gaussian quadrature points
for velocity discretization. We set the maximum iteration
number N,z = 300000, adopt the stopping criterion that
the empirical loss is below le-6 and use number of feature
p = 150. In the transfer learning step, we update ¢ = 120
weights defined in (6).

	Introduction
	Our contributions
	Related works

	Numerical method
	Physics-informed DeepONet
	DeepONet with transfer learning
	Theoretical result
	Numerical experiments
	Reaction diffusion equation
	Allen-Cahn and Cahn-Hilliard equations
	Navier-Stokes equation
	Multiscale linear radiative transfer equation

	Conclusion
	Table of notations
	Theoretical analysis
	Validation of assumption (8)
	Proof of Theorem 1
	Experiment details
	Data generation and configuration of training
	Further details on reaction diffusion equation
	Further details on Allen-Cahn and Cahn-Hilliard equation
	Further details on Navier-Stokes equation
	Details on Multiscale linear radiative transfer equation

