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Fig. 1. Given months or years of recorded webcam footage, our approach builds a Video Temporal Pyramid consisting of different
length shorter videos, each of which visualizes the events happening at a particular timescale. Our Video Spectrogram is a visualization
for the pyramid that provides both overview and drill down functionality to aid in interactive exploration.

Abstract— What can we learn about a scene by watching it for months or years? A video recorded over a long timespan will depict
interesting phenomena at multiple timescales, but identifying and viewing them presents a challenge. The video is too long to watch in
full, and some things are too slow to experience in real-time, such as glacial retreat or the gradual shift from summer to fall. Timelapse
videography is a common approach to summarizing long videos and visualizing slow timescales. However, a timelapse is limited to a
single chosen temporal frequency, and often appears flickery due to aliasing. Also, the length of the timelapse video is directly tied to
its temporal resolution, which necessitates tradeoffs between those two facets. In this paper, we propose Video Temporal Pyramids, a
technique that addresses these limitations and expands the possibilities for visualizing the passage of time. Inspired by spatial image
pyramids from computer vision, we developed an algorithm that builds video pyramids in the temporal domain. Each level of a Video
Temporal Pyramid visualizes a different timescale; for instance, videos from the monthly timescale are usually good for visualizing
seasonal changes, while videos from the one-minute timescale are best for visualizing sunrise or the movement of clouds across the
sky. To help explore the different pyramid levels, we also propose a Video Spectrogram to visualize the amount of activity across the
entire pyramid, providing a holistic overview of the scene dynamics and the ability to explore and discover phenomena across time and
timescales. To demonstrate our approach, we have built Video Temporal Pyramids from ten outdoor scenes, each containing months or
years of data. We compare Video Temporal Pyramid layers to naive timelapse and find that our pyramids enable alias-free viewing of
longer-term changes. We also demonstrate that the Video Spectrogram facilitates exploration and discovery of phenomena across
pyramid levels, by enabling both overview and detail-focused perspectives.

Index Terms—Time, time-frequency, video visualization, multi-scale, webcam

1 INTRODUCTION

The world around us is constantly changing at many speeds at once,
but the human visual system can only perceive a narrow range of
dynamic phenomena in real time. Some things move too slowly for
us to register, such as a glacier flowing, and some things move too
quickly for us to register, such as a bee’s wings in flight. Though we
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cannot see these motions as they occur, we can visualize them after the
fact. For fast events, we can use a high-speed camera and slow down
the footage to a more human-friendly speed (i.e., slow-motion). For
slow events, the most common method of visualizing these changes is
timelapse photography, where frames are taken at a regular intervals
over time and then assembled into a video that plays much faster. The
key observation that motivates our work is that many scenes exhibit
interesting phenomena at multiple timescales: in a single scene, we
might be able to observe foot and vehicle traffic on a road, movement
of clouds in the sky, diurnal changes in illumination, and a building
being constructed over the course of months or years.

A natural way to capture these multi-timescale phenomena is to
begin with an input video with sufficiently high framerate to capture
the fastest-moving phenomena. However, months of raw video cannot
be viewed in a reasonable amount of time, so we might subsample it
to create a series of timelapse videos that show different rates (e.g.,
one frame per minute, one frame per hour, etc.). However, straight-
forward timelapse sampling exhibits aliasing due to high-frequency
content. Consider sampling one frame per month; although longer-term
changes happening at or around a months-long timescale will be natu-



rally viewable, shorter-term changes, such as a person that happened to
be walking through the scene at the moment a frame was sampled, will
appear as a distracting single-frame blip. This paper proposes (1) Video
Temporal Pyramids, a more principled, alias-free approach for visualiz-
ing changes at different timescales; and (2) the Video Spectrogram, a
visualization tool for navigating and exploring the pyramids.

The algorithm that forms the basis for creating a Video Temporal
Pyramid takes inspiration from the common image processing tech-
niques of Gaussian and Laplacian image pyramids, but applied to the
temporal domain. The result is a collection of new videos, each of
which distills the changes happening at a particular timescale (e.g.,
hourly, daily, monthly, yearly). Though each pyramid level is similar
to a timelapse with a particular sampling rate, they feature a smoother
viewing experience with no aliasing or flickering effects.

The Video Temporal Pyramid captures information about the
changes over many timescales, but the volume of video data is (ap-
proximately 2⇥) larger than the original. To help a user navigate and
explore the pyramid and surface more information about events and
patterns in the scene, we propose a visualization tool called the Video
Spectrogram. We quantify the magnitude of changes happening at each
time and in each timescale and plot those data as a heatmap, analo-
gous to the spectrogram used in audio processing [10]. The resulting
spectrogram plots time vs. timescale, showing clear patterns for strong
cyclic changes such as day/night and seasonal periodicity. Anoma-
lies such as significant weather events and corrupted data can also be
discovered. The Video Spectrogram facilitates connecting the video
footage to specific dates and times when events occurred. This enables
the user to quickly do an overview scan and then drill down to lower
timescales to view more details for a particular day or time, in keeping
with Shneiderman’s information seeking mantra [37]. This is key to
making the large volume of video data manageable without arbitrarily
discarding information.

To validate our contributions we have processed multiple long-
duration webcam datasets of diverse outdoor scenes, including a con-
struction site, a ski slope, and a mountain lake, among others. The
time periods covered by our datasets range from 1 month to 16 years,
with base temporal resolutions ranging from 30 frames per second to 1
frame per hour (Fig. 6). In our exploration of these datasets, especially
in direct comparison to a timelapse baseline, we found that our pyramid
videos and spectrogram tool allowed us to rapidly learn a lot of detailed
information about each scene, from how the seasons changed all the
way down to the exact time a particular object appeared in the scene.
Please refer to our supplementary materials to view selected Video
Temporal Pyramid videos from each of our datasets as well as a demo
of the Video Spectrogram.

2 BACKGROUND AND RELATED WORK

The proposed Video Temporal Pyramid and Video Spectrogram are
closely related to work in several subdisciplines. This section provides
a brief overview of the most relevant.

2.1 Timelapse and Related Techniques

Timelapse has been around since the late 1800’s [46] as a popular way
to visualize the passage of time on a small scale (e.g., a pineapple
rotting [39]) or a large scale (e.g., Google Earth Timelapse [12]). Of
particular interest, Martin-Brualla et al. [25] drew from internet imagery
to create years-long timelapse videos, but the noise from internet photos
captured by different cameras and at different times requires heavy
smoothing so that shorter-term changes are not visible and long-term
changes can be hard to detect.

Several techniques have been proposed to smooth out the aliasing ar-
tifacts that result from timelapse sampling after the fact. With consumer
video applications (e.g., hyperlapse and timelapse) in mind, Zhang et
al. [49] propose a method for smoothing transitions between frames
in temporally subsampled videos. Whereas their method interpolates
and smooths after subsampling, our method necessitates fewer model-
ing assumptions because we smooth discontinuities before temporal
subsampling; starting with the densely sampled input also allows us
to produce smooth visualizations of any timescale. Their method is

also tested only on videos that span minutes or hours of time, and
are subsampled to seconds or minutes, whereas ours is designed to
work with years-long video streams. Finally, their method is also more
computationally expensive, operating around 0.5 frames per second,
whereas ours runs at 6 frames per second. While both methods can
benefit from parallelization, this is nonetheless a significant difference
when considering datasets such as ours that have on the order of 1
billion frames. Details on runtime and datasets can be found in the
supplemental material.

In remote sensing, it is often desirable to visualize long-term changes
related to a variety of phenomena caused by humans or natural events.
The data is often of low temporal frequency, sometimes only before-
and-after satellite pictures or landscape photographs taken far apart in
time, such as the U.S. Geological Survey repeat photography project
[41]. Animation techniques have been proposed which can help create
a smooth transition between images. Lobo et al. [24] does this by
simulating plausible intermediary frames, while Harrower [15] provides
the user with control over the spatial and temporal resolution to allow
for optimal visualization of a given phenomenon. While our work
shares the same goals of visualizing changes happening over long
timescales, we work with datasets with high temporal resolution and do
not rely on interpolation to smooth transitions. That said, interpolation
methods such as Lobo et al. [24] could be complementary to ours as a
possible way to fill in segments of missing data from our datasets.

2.2 Temporal Resampling and Video Visualization

Most existing techniques for video visualization are designed for videos
no longer than a few hours, and their end goals often differ significantly
from ours. In fact, over ten years ago, Borgo et al. [5] published a
survey of different video visualization techniques; while our work is
related to many of the techniques they describe, the authors clearly
assumed the use of relatively short videos. This section highlights some
of the most closely related work in this area.

Various works adapt the frame rate, or temporal sampling rate, of
a video over time based on its content [19, 51]. The most closely
related technique is Computational Timelapse [4], which uses temporal
differences in video frames to dynamically speed up the frame rate when
little is changing and slow it down when more changes are occurring.
While this is effective as an automatic fast-forward tool, it requires a
chosen output video length; furthermore, long-term changes appear
choppy and broken up due to sudden changes in the frame rate. Several
works have proposed various non-axis-aligned manipulations of space-
time cubes such as videos; Rav-Acha et al. [30] explore this idea
from in a graphics/vision context, while Bach et al.give a thorough
visualization-oriented review of the possibilities in this space. These
techniques are generally incompatible with cuboids with significantly
longer time extent, such as months-long videos.

Video summarization techniques take another approach—rather than
maintaining chronological and spatial continuity, these techniques at-
tempt to find frames or clips that encapsulate the activity in a video.
These techniques generally approach the problem by automatically
detecting “noteworthy” frames or clips either by using unsupervised
saliency-based approaches [29] or by using example-based learning
[31, 48]. These techniques tend to focus on the real-time timescale and
treat longer-term changes as noise; they also make automated decisions
that may remove content of interest even at the real-time timescale.

Video fast-forward techniques are closely related to the ideas support-
ing timelapse videos and often use frame-skipping. The disadvantages
of timelapse were explored by Hoferlin et al. [17]. Their evaluation of
fast-forward techniques also included an interesting experiment with
the use of temporal blending—similar in spirit to our temporal filtering
method. However, their filtering approach does not generalize to more
than one timescale.

A few prior works have considered multiple timescales of activity in
videos. Motion Denoising [34] separates a video into short-term and
long-term components. This technique produces excellent results, but
handles only two timescales and is very computationally expensive,
making it impractical for months-long videos, much less for years-long
videos. Wehrwein et al. [45] propose a method to composite clips



from different timescales into a single “scene summary”, showing,
for example, people walking, clouds moving, and the sun crossing
the sky all at once. This method begins with a Gaussian temporal
pyramid much like the one constructed as a side-effect of our Laplacian
pyramid construction, then composites salient clips from different
pyramid layers together; though multiple timescales are visualized at
once, the vast majority of the lower pyramid levels are discarded from
the final output. In contrast, we construct visualizations that assists in
exploration of the whole dataset without any assumptions about which
timescales or scene elements are of interest to the viewer.

2.3 Interactive Video Exploration and Retrieval

In contrast to the automated methods above, a separate category of
prior work facilitates interactive browsing, exploration, and retrieval in
video. Though this is more closely related to our task, most of these
techniques are oriented towards retrieval of specific content rather than
discovery, or towards improving the ability to scrub or seek in a shorter
video.

The Video Browser Showdown [33] is a yearly contest of video
browsing tools designed to locate either a specific event or clip in a
video, or locate all instances of an event or action. Tools that are
successful on this task (e.g., [21]) tend to leverage the fact that the
sequence of interest is known a priori, making them less useful for
discovering unknown anomalies; for similar reasons, these tools are
also unlikely to generalize well for the purpose of identifying structure
at longer timescales.

Several techniques have been proposed to show a visual overview
of an entire video sequence, or improve scrubbing. Gutwin et al. [13]
proposed a spread-loading scheme to load frames at varying intervals
when loading a streaming video to improve the scrubbing experience.
They showed that this improved users’ ability to seek to a particular
point in the video quickly, but even with instantaneous availability of all
frames, a months-long video would be tedious to explore by scrubbing.
Barnes et al. [3] create a continuous visual overview of automatically
selected keyframes to assist in scrubbing around in the video, while
Jackson et al. [18] arrange short clips of a video in an animated grid
so a user can shift their focus to any point in a video or watch a single
thumbnail as it cycles through the entire video. These techniques work
well for shorter clips, but their utility is limited by available screen size
for longer-duration videos.

From a visualization perspective, Romero et al. [32] also uses com-
puter vision to analyze and visualize video volumes. In particular, their
interface proposed a closely related heat map visualization called the
Activity Table that is similar in spirit to our Video Spectrogram. The
Activity Table displays aggregate motion computed using thresholded
frame differences, closely related to the frame differences performed
in the construction of our Laplacian Pyramids. Whereas they plot ag-
gregate motion in a single (real-time) timescale across different spatial
locations, we are interested in activity at multiple timescales and use
the vertical axis of the heatmap to index temporal frequency instead of
spatial location.

2.4 Time Series Visualization

Although our work relates to the rich literature on time series visu-
alization (e.g., [1, 2]), video has unique properties that benefit from
domain-specific techniques. One notable example from this literature is
the work by Cakmak et al. [9] which does visualize time-varying data
at multiple timescales; their interface for traversing temporal scales
and viewing summaries at different levels is loosely analogous to our
Video Spectrogram, but is geared towards the very different domain of
time-varying graph data.

2.5 Pyramids and Spectrograms

The pyramid computation component of our approach is directly
adapted from image pyramid techniques from the computer vision
literature. Our adaptation will be described in detail below. In par-
ticular, we compute Gaussian [8] and Laplacian [7] pyramids along
the time dimension, in contrast with their traditional application to the
spatial dimensions of images. The idea of generalizing image pyramid
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Fig. 2. Traditionally, Gaussian and Laplacian pyramids are applied to both
spatial dimensions of an image. The left column (a) shows a Gaussian
pyramid each layer of which is blurred and subsampled from the prior one.
Each level of the Laplacian pyramid (b) is a high-pass filtered version of
the corresponding Gaussian level, computed by subtracting the blurred
level from the original.

techniques to videos is not new; a related generalization of the Gaussian
pyramid to video was proposed by [11] to send videos at variable reso-
lutions in space and time over limited bandwidth network connections.
Their approach resembles a Gaussian pyramid (in contrast to our Lapla-
cian pyramid), operates across spatial and temporal dimensions, and is
designed for efficient coding and variable-resolution transmission of
videos under limited bandwidth. Our method aims to visualize longer-
term changes with high fidelity. For the problem of human action
recognition, numerous works propose variations of pyramids applied
temporally for short (e.g., minutes-long) video clips [22, 36, 43, 44, 50].
To our knowledge, however, our method is the first to extend the tempo-
ral Laplacian pyramid concept to extremely long-duration videos with
the intent to visualize long timescales. Finally, our Video Spectrogram
tool is directly inspired by the idea of time-frequency representations
like the spectrogram, which are commonly used in audio visualization
and processing [10].

3 VIDEO TEMPORAL PYRAMIDS

Our approach is inspired by image pyramids from the computer vi-
sion literature, which allow for separation and manipulation of spatial
frequencies in images. We generalize these same techniques to the
temporal domain in videos in order to separate and manipulate tempo-
ral frequencies. Specifically, the core of our Video Temporal Pyramid
approach is a Laplacian pyramid computed in the time dimension, ap-
proximating the output of a bank of band-pass filters applied pixel-wise
across time. We first formally define the pyramid’s construction, then
discuss several adaptations for the domain of long, fixed-camera videos.

3.1 Definition and Construction

Image pyramids are a classical technique from the computer vision
literature [7, 8], widely used to apply image processing and computer
vision algorithms at multiple scales or in a scale-invariant fashion.
The most basic image pyramid is a Gaussian Pyramid [8] (Fig. 2 (a)),
constructed by repeatedly blurring then subsampling an image. Each
subsequent level of the pyramid represents what remains after a low-
pass filter is applied to the prior level. Each level of a Laplacian
pyramid [7] (Fig. 2 (b)) represents the result of a high-pass filter applied
to the prior level of the Gaussian pyramid, or equivalently a band-pass
filter applied to the original image. The resulting Laplacian pyramid
levels contain narrow slices of spatial frequency content of the image,



thereby resembling the output of a bank of band-pass filters.
Where Laplacian pyramids are traditionally used to isolate and ma-

nipulate spatial frequency content of images, we instead apply the same
procedure to the temporal dimension of a video, leaving the spatial
dimensions alone. A temporal analog to the Gaussian pyramid consists
of videos that have been filtered and subsampled along the time dimen-
sion only. The Laplacian pyramid is also constructed analogously, by
subtracting the temporally blurred video from the original. In principle,
frames of the Laplacian temporal pyramid can be computed by subtract-
ing the computed blur frames from the current level of the Gaussian
pyramid before subsampling. In practice, we use the standard pyramid
construction approach given by [7] to avoid quantization errors and
ensure that the pyramid levels can accurately reconstruct the input sig-
nal. We first filter and downsample the input, then upsample it again to
match the prior level’s temporal sampling rate; this downsampled-then-
upsampled signal is finally subtracted from the input video to calculate
the Laplacian pyramid level.

The pyramid levels are constructed recursively as shown in Fig. 3
and Algorithm 1. We begin with a long input video, which serves as
the first level of the Gaussian temporal pyramid. Each subsequent level
is computed in one pass through the prior level’s video, calculating
blurred frames from a sliding window of prior level frames. The
resulting pyramid levels are themselves videos of the same spatial
resolution and covering the same real-world duration in time, but with a
reduced frame count. For this reason, each level of a Gaussian temporal
pyramid is similar to a timelapse video with a particular sampling rate.
One key difference is that blurring across time before subsampling
causes short-term motions to blur out in higher levels of the pyramid,
thus eliminating aliased content that would appear in a true timelapse
video. The levels of the Laplacian temporal pyramid are less intuitive
to watch, as they contain only specific bands of temporal frequency
content. Sample Laplacian pyramid frames are shown in Fig. 4.

Algorithm 1 Construct temporal pyramid
Input: V , an input video of size (H⇥W ⇥C⇥ Frames)
Output: G = G1...N , the Gaussian pyramid
Output: L = L1...N , the Laplacian pyramid

for i 1 . . .N do

F  f ilter(V ) . apply linear 1D blur in time
V 0  subsample(F) . e.g., if stride=3, keep every 3rd frame
Gi V 0
F⇤  f ilter(upsample(V 0)) . account for quantization error
Li V �F⇤
V  V 0 . set up input for next level

end for

In a Laplacian temporal pyramid the original source video has been
decomposed into multiple component videos. These components can
be reassembled to create an exact copy of the source by performing the
pyramid-creation steps in reverse order (see Algorithm 2). It is also
possible to proceed with this reconstruction while leaving out certain
Laplacian pyramid levels (specified in Algorithm 2 using the W vector).
Reconstructing without the last few Laplacian layers yields a smooth
but slower-moving version a Gaussian blur level. We found this smooth
temporal upsampling option to be quite useful for some of our videos,
as it provides a way to slow down the action so more information can
be absorbed by the viewer.

Each level of the pyramid represents a specific timescale. For in-
stance, the base frame rate of most webcam video is 30 frames per
second (fps), or 1/30th of a second per frame. Motions easily visible
at this frame rate can be thought of as belonging in the “1/30th of a
second” timescale. Higher levels of the pyramid represent changes
happening at a frequency of “once per second” or “once per day” or
even “once per month.”

3.2 Adaptations for Months of Static-Camera Video

The prior section described a straightforward generalization of the
Gaussian and Laplacian image pyramids to construction of temporal

Algorithm 2 Reconstruct pyramid level videos or upsample
Input: k 2 {0 . . .N�1}, chosen ending level
Input: Lk+1...N , Laplacian temporal pyramid videos
Input: GN , the top level Gaussian temporal pyramid video
Input: W 2 {0,1}N , indicator vector of detail levels to reconstruct
Output: Rk, reconstructed video from level k

B GN
for i N . . .k+1 do

U  upsample(B) . e.g., if stride=3, repeat each frame 3 times
F  f ilter(U) . use same filter from pyramid construction
B F +(Li⇥Wi) . add detail layer if applicable

end for

Rk B . reconstructs original when k = 0 and Wk+1...N = 1

pyramids. We now describe a few simple adjustments we made to
adapt these pyramids for the use case of visualizing and exploring long,
fixed-camera video streams.

3.2.1 Variable Downsampling Rates

In image pyramids, the filter width and subsampling rate are parameters
that are traditionally tuned according to the application. For example, to
achieve scale invariance for computer vision algorithms, a subsampling
rate smaller than 2 is often desirable to detect objects at a densely
sampled range of sizes. In our application, the pyramid is unlikely to
miss anything, even with a larger sampling rate because motions and
dynamics tend to be visible in a range of timescales. For example, in
a 30 frames-per-second (30fps) video of a person walking through a
courtyard, the person might take 6 seconds to walk through the scene,
and thus would appear, moving increasingly quickly and increasingly
blurred, in at least the first four or five levels of the pyramid.

While we initially simply used a downsampling rate of 2, problems
arise when the temporal sampling rate of each pyramid level is not
aligned with intuitive units of time. As discussed in [1], modeling time
has many complexities to consider. For example, if our input video
(Gaussian pyramid level 0) is captured at 1/30 second per frame (30
frames per second) and we chose a fixed scale factor of 2x, then level 5
of the pyramid would cover 1.066 seconds per frame, level 10 would
cover 34.133 seconds per frame, and level 22 would cover 1.618 days
per frame. In addition to being less intuitive for interpretation, these
sampling rates can introduce aliasing at higher sampling rates due to
periodic phenomena such as the day/night cycle or seasonal changes.
Since our goal is to visualize and discover structure at long time-scales,
it is important to have sampling rates lined up with known patterns
such the 24-hour cycle of the day and the 365-day cycle of the year.
Achieving this alignment requires choosing different subsampling rates
for different levels of the pyramid. See Supplementary Material for
details of the sampling rates used and timescales represented at all levels
of our pyramids. We used strides of 2, 3, and 5, which necessitated the
use of different blur filters depending on stride. The one-dimensional
blur filter applied across frames was [1,2,2,1] when the stride was 2;
[1,2,3,2,1] when the stride was 3; and [1,2,3,4,5,4,3,2,1] when the stride
was 5.

3.2.2 Scaling to Months and Years of Video

The algorithm as described thus far requires a full pass through each
pyramid level to compute the next; because the layers sizes shrink
exponentially, this requires the equivalent of roughly 2 passes through
the full input video, for an O(n) runtime. However, for months-long
input videos such as ours, this is still very slow and can be easily
parallelized. To accelerate the computation of pyramids, we compute
one-day pyramids in parallel on a cluster, then merge the one-day pyra-
mids to compute the higher pyramid levels. These one-day pyramids
are computed up through level 15, where the Gaussian blur video for
the entire day is 1 frame, and the corresponding Laplacian pyramid
level shows activity changing on a 12-hour timescale. The one-day
pyramids are then merged by stitching together each day’s 1-frame
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Fig. 3. An overview of the temporal pyramid construction process. Left: an illustration of the algorithm for computing one level of the Gaussian and
Laplacian pyramid. A source video (the input, or a prior level of the Gaussian pyramid) is blurred in the temporal dimension. The subsequent level of
the Gaussian pyramid is computed by subsampling this blurred video, while the Laplacian pyramid level is computed by subtracting the blurred video
from the source. Right: The resulting pyramids are the collection of videos generated using the above algorithm.

Gaussian ‘video’ into a full blur video for level 15, which is then used
as the source video for the construction of the remaining pyramid levels.

We also parallelize the creation of years-long videos in the same
manner, running each year separately and then stitching them together
and continuing the construction of multi-year pyramid levels. In ad-
dition to being efficient, this also allows us to approximate a 365- (or
366-) day year with only 360 frames, which is necessary in order to
use only sub-sampling rates of 2, 3, and 5. For each individual year,
after analyzing which days have the most missing frames, we choose
5 days to remove from the pyramid (or 6 days for a leap year). If we
used this 360-day year and did not compute each year separately, we
would end up with a true 360-day timescale and some aliasing over the
course of multiple years, where the year shown would slowly get out
of alignment with the calendar year. When we parallelize the years,
we end up with 1 frame per year at level 21 (the 1-year timescale),
which line up with calendar years, and the higher levels can be built on
that solid foundation. We currently sub-sample with powers of 2 for
multiple-year timescales, but it would be possible to sample by 2 and
then 5 (or 5 and then 2) in order to create a 1-decade timescale.

Missing data is filled in with all-black frames in our temporal pyra-
mid videos. See the supplementary material for a more detailed de-
scription of how we handled missing data.

4 VIDEO SPECTROGRAMS

At this point, we have described an approach for parsing out temporal
frequency content of a long video stream into timescales by construct-
ing a temporal Laplacian pyramid. Watching just the upper level videos
of the pyramid is an efficient way to gain an overview of temporal dy-
namics and long-term events because they are short but distill important
information. However, the pyramid itself does not make it any more
tractable to watch the entirety of the lower levels, which still have very
long durations. To help address this, we propose a visualization tool
called the Video Spectrogram that facilitates interactive navigation and
exploration of the pyramid levels.

The Video Spectrogram user interface evolved to include multiple
elements, as shown in Fig. 5; however, the main element and key idea
is a 2-dimensional plot that provides an overview of the entire pyramid
by showing time on the horizontal axis and timescale (frequency) on
the vertical axis. Each cell in this time/frequency grid represents a 2D
frame from one of the pyramid videos, which would be unwieldy to

visualize in such a small space; instead, we abstract the spatial details
and display a single quantity that captures aggregate activity.

By construction, the Laplacian pyramid layers are “difference”
frames representing only content that has changed at the corresponding
timescale. Therefore, the aggregate activity for a given frame in a
timescale can be measured by taking a norm of the Laplacian frame.
We chose the L2 norm (i.e., the square root of the sum of squared pixel
values), and display it on a logarithmic scale. We experimented with
other norms (L1) and color scales (linear). Because we aggregate across
pixels, the L2 norm gives more weight to spatially smaller changes with
larger magnitude versus more widespread, smaller-magnitude changes.
The logarithmic color map does a better job of showing contrast in
low-activity regions, allowing subtler patterns to be detected when
overall activity levels are low.

We compute the norm for each frame in each Laplacian pyramid
level, and display the resulting values as a 2-dimensional heatmap as
shown in Fig. 1 and Fig. 5, where each tile in the heatmap is the norm of
one Laplacian pyramid frame. Tiles in higher timescales become wider
because the same temporal extent is represented using fewer frames at
higher pyramid levels.

The temporal pyramid videos and the spectrogram plot are closely
linked; the purpose of the spectrogram is to help explore the pyramid,
so we include a large and prominent video player to show the pyramid
videos. The full-spectrogram plot is good for an overview; however,
we found that since we generally watch the video from one level at a
time, it was useful to enlarge the portion of the heatmap corresponding
to the level being watched in the video. We visualize this single-level
spectrogram below the video, along with a moving vertical line that
travels along the plot as the video plays. As the user sees an event unfold
in the video they can get a sense of what the spectrogram shows during
the event. The full-spectrogram plot always includes a red outline
marking the level and/or date being viewed in the current video, for a
‘you are here’ connection to the bigger picture. Both plots have pan and
zoom functionality to assist with overview-to-detail visualization.

In order to go in the other direction, and see what the video content
is like at a particular spot by starting from the spectrogram, we im-
plemented a mouse-over functionality whereby a thumbnail image of
the corresponding video frame shows up underneath the plot when the
mouse hovers over a cell of the single-level spectrogram. Easy access
to those thumbnail images gives the user hints about the reason for the



(F) 30 day timescale(E) 1 day timescale

(D) 1 hour timescale(C) 1 minute timescale

(B) 15 second timescale(A) 1 second timescale

Fig. 4. Examples of frames from Laplacian Difference videos at different
frequencies, taken from the same webcam but not necessarily from the
same days. These show the pixels that changed during that time span.
(A) people walking; (B) evidence that the sun peeked out from behind
some clouds; (C) a golf cart or similar slow-moving vehicle; (D) evidence
of the sun’s movement across the sky which has cast shadows of the
trees on the ground; (E) outlines of snow patches which likely means
that those patches melted over the course of the day; (F) most elements
of the scene are visible, including fall colors, which likely means that the
autumnal seasonal changes that month affected most pixel values.

A
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C

D

E

F

G

H

Fig. 5. Drop-down menu (A) for choosing level to view. Video player
updates with appropriate level video. Chosen level is highlighted on
the full spectrogram (F) as well as enlarged below the video (B). On
mouse hover (D) a thumbnail image of that frame shows below (C). As
the video plays, a vertical orange line (E) will travel along the single-level
spectrogram plot, aligning the date/time between video and plot. Areas
with missing data, such as (G) show up clearly. Toolbars (H) allow for
zoom and save.

Bridge
1 year

30fps video

Bryant Park
30 days

30fps video

Buxton
2 years

30fps video

Geiranger
1 year

30fps video

Hiuchi
8 years

1 image / hr

Smoky
8 years
1 image / hr

Rane
1 year
30fps video

Mid Mountain
1 year
30fps video

Mad River
1 year
30fps video

Kutcharoko
16 years
1 image / hr

Fig. 6. Sample frames from our datasets, along with the names we are
using to refer to them in this paper, their covered timespan, and their
base frame rate. More details in supplemental material.

structure in the heat map and helps determine whether it’s useful to
drill down or investigate further in that area. The thumbnail-on-hover
functionality also makes it possible to “scrub” through the video for
that timescale by dragging the mouse horizontally over the plot at any
speed.

Users can navigate to different levels of the pyramid using a drop-
down menu at the top of the user interface. At the 5-minute timescale
or lower, the user is given the choice to view a particular date instead of
the whole timespan, since those levels are very large and the assumption
is that only a portion will be watched. Once a date is selected, it will
stay selected while the user navigates down to lower levels, making it
easier to ‘drill down’ on interesting content. Also, the user can stay
on one level and easily select a different day on that same level to
view, which helps for comparing dynamics across different days. When
a user hovers to view a thumbnail, the image also displays the date
and time (or timespan) represented by that frame. This information
is valuable for following the thread of an event from upper to lower
levels to gain greater detail and pinpoint the timing of that event. Quick
access to date and time information also allows the user to make use of
their own knowledge of specific past events at that location or patterns
of life relevant to that scene.

5 RESULTS

To demonstrate our approach, we scraped or downloaded 10 datasets
captured by outdoor webcams, with lengths ranging from 30 days to
16 years. Details for these datasets are included in the supplemental
material, and a quick visual reference is included in Fig. 6. The pyramid
videos and spectrograms revealed interesting dynamics and structure at
a range of timescales. Below are some general observations, as well as
specific findings for several datasets.

5.1 Cycles and Visualization of Periodicity

Events that happen repeatedly stand out with clarity in our pyramid
videos. The day/night cycling is the obvious example, and this is no-
ticeable in all of our datasets. However, we found many other examples
of cyclic activity that appeared in the videos as distinctive repetitive
patterns. Tidal patterns were apparent in the Buxton oceanside dataset
as well as the Geiranger ferry dock dataset. Geiranger shows boats ris-
ing and falling next to a dock. In the timescales below 1-day, the boats
move up and down as the video progresses, and in the timescales longer
than 1-day the movement becomes averaged and the video shows a
ghostly blur encompassing all of the vertical positions of the boat over
time. The cyclic nature of seasons becomes obvious in the datasets
with multiple years, such as Hiuchi, Kutcharoko, and Smoky, where
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Bryant Park, 2021-12-12, 5-second Timescale

~ 1.5 hours

Bridge, 2021-05-31, 30-second Timescale

Fig. 7. Examples of periodic human activity showing in the spectrogram.

we can view the seasons changing fast enough that we understand the
similarities of the cycle from year to year. The switching between white
snowy winter and green leafy summer becomes a visual rhythmic pulse
at the higher pyramid levels, just like the day/night changes at the lower
pyramid levels.

On a smaller scale, the natural cycles of plant growth are nicely
visualized in the Mad River dataset. This scene includes a deciduous
tree in the foreground, as well as bushes and other trees on the edge
of a river. The tree in the foreground loses its leaves and grows them
again, and the bushes and other plants can be viewed getting larger
in the summer and smaller in the winter. Another very interesting
discovery is how the branches of the foreground tree droop at night
and perk up during the day, which becomes more noticeable because it
happens repetitively. This dataset seems to have its camera recording
with infrared at night, which fortunately makes the tree always visible.

In addition to the pyramid videos themselves, the Video Spectrogram
also seems to be especially good at visualizing cyclic events. The
day/night cycle is very obvious at the 12-hour timescale, with (usually)
more activity and a lighter color on the spectrogram for the half of
the day which is mostly daylight, and (usually) a darker color for the
less-active night. These two colors on the spectrogram switch back and
forth creating a distinctive pattern at that level of the pyramid for most
of our datasets. In the higher levels of the multiple-year datasets, the
seasonal pulsing is also clearly visualized with the spectrogram colors.

We also found other examples where the periodicity of human activ-
ity showed up clearly in the spectrogram (Fig. 7). In the Bryant Park
ice rink dataset, the spectrogram had lighter colors during the times the
rink was busy with skaters and darker colors for the times when the
ice was cleared. This seemed to happen on a cycle of about an hour
and a half, presumably a planned timing. Another example is from the
Bridge dataset, where the spectrogram shows a light bar every time the
drawbridge goes up which happened frequently on Memorial Day in
2021. Since this was a repeating event over the course of that day, its
pattern on the spectrogram was more noticeable than it was on the days
where the drawbridge only went up once or twice.

5.2 Multiscale Visualization and Drill-Down Navigation

The video spectrogram tool connects events at different timescales by
virtue of using a common timeline. If the viewer sees a short blip of
some interesting or anomalous event at a higher timescale, the user
allows for pinpointing the general date/time of the anomaly and drilling
down to lower levels at that same time in order to see more detail. For
example, one might see a truck appear ‘out of nowhere’ in the 6-day
timescale, then quickly drill down to the day it appeared and view the
5-second timescale on that day in order to see which direction the truck

Timescale:
3-days

Drill down...

Timescale:
5-seconds

time

Timescale:
5-minutes

Drill down...

Timescale:
5-seconds

time

Fig. 8. TOP: In Mid Mountain, a truck abruptly appears and quickly
disappears in the 3-day timescale. Drilling down to the 5-second level is
necessary to learn that the truck drives in from the left and backs into its
parking spot. BOTTOM: In Mad River, a pink jacket left on a rock shows
up briefly at the 5-minute timescale. Drilling down reveals a group of
people moving around.

drove in from before it parked (Fig. 8, top).
Most real-world events do not fall neatly into one discrete timescale,

and this often means that an interesting event can first be discovered
from the bird’s-eye perspective of a higher pyramid level and then the
full extent of the occurrence can be discovered and viewed by drilling
down to lower levels. We found an example of this in the Mad River
dataset (Fig. 8, bottom), when a bright pink object catches the eye
briefly and then disappears during the 5-minute timescale on October
6, 2020, in a corner of the scene. Drilling down to the 5-minute level,
the pink object appears to be a pink jacket left on a rock but it still
disappears quickly. Drilling down to the 1-minute level we can see
fast-moving people and we also see that the pink jacket moves from one
rock to another. However, it is not until we drill down to the 5-second
timescale that we can make out the group of people and their general
movements. The fact that they left a bright pink jacket in one place for
about 15 minutes, while they themselves moved faster, left a clue to
their presence in that longer 15-minute timescale video.

The multiple timescale visualization also provides a useful and
possibly educational demonstration of the role and scope of human
activity in a particular scene. In the Bryant Park dataset, the lower
level pyramid videos show crowds of people skating. However, the
higher level pyramid videos show an eerily empty skating rink, with no
humans in sight. At the 4-hour timescale and above, it is mainly the
lighting changes, and certain infrastructure changes that stand out (such
as a rink-side tent being erected for a while). In the Mid Mountain ski
slope dataset, tire tracks and ski tracks in the snow provide a clue to
human activity at the lower levels of the pyramid, but we don’t see the
humans making those tracks unless we drill down. The same thing can
be seen with tire tracks and footprints in the sandy beach of the Buxton



dataset. With both snow and sand, the evidence of human activity is
melted or eroded away fairly quickly. In contrast, the Rane construction
dataset shows a scene where the long term effect of human activity
is exactly the point, and in that case it is definitely instructive to drill
down and see exactly which lower-timescale activities were responsible
for the higher-timescale view of a building being constructed.

5.3 Discovery of Anomalies

The pyramid videos by themselves, as well as the spectrogram tool,
can be useful for surfacing anomalous events. Missing data is the
most obvious anomaly to find, and sections of missing data show up
as all-black frames in the videos and as solid dark colored areas of the
spectrogram, as can be seen in Fig. 5. Corrupted data is another kind of
anomaly that shows up in the videos and the spectrogram. For instance,
in the Buxton coastline dataset the high-level videos have a section
that shows a static night scene which is clearly out of place since it
lasts longer than a single night both in the pyramid video and on the
timeline. We traced the problem back to the original footage, where a
static image was looped for a while.

Many anomalies are related to the camera itself, the most common
of which is a sudden change in camera angle or placement. The Mid
Mountain dataset includes a few months during ski season where the
camera zooms or moves closer to the ski slope. The Buxton beach video
includes a section where the camera faces out to the ocean instead of
along the coastline. Sometimes camera errors can be seen, such as a day
in the Hiuchi dataset which included camera footage of an office ceiling
when normally the scene is outdoors in the mountains. That event
occurred directly after a long period of missing data, so we suspect the
camera was being repaired before being reinstalled outdoors. When
there is a rainstorm or snowstorm, the video will often show raindrops
on the camera lens for a short while at the lower timescales. The most
entertaining camera-related anomalies we found occured when birds
perch in front of the camera (Buxton) or a spider builds a web on it
(Mad River).

In contrast with standard timelapse, the pyramid videos are visually
less cluttered and they can be upsampled to adjust the rate of change to
be easier to absorb. Anomalous events are more distinctive against this
backdrop and are thus fairly easy to spot. For instance, when watching
the Buxton dataset video for the 4-hour timescale, we noticed that a
railing suddenly appears directly underneath the camera. At that level
we could localize it to May 14, 2020, using the Video Spectrogram.
We went directly to the 5-minute timescale for May 14, 2020, but the
railing was there at the beginning of the day, so we switched to May 13,
2020, and drilled down further. We could see the railing put into place
in the real-time original video for May 13, 2020. Even then it was very
fast and rather anti-climactic since there was no visual of the person
putting it in place (see Fig. 9).

5.4 Long-term Dynamics and Understanding

Our pyramid videos provide a window into the reality of long-term
dynamics without sacrificing much verisimilitude. There is some level
of blurring that occurs at the upper levels of the pyramid, since it has
averaged a lot of small changes over time. We also see the blending of
day and night scenes. These factors mean we sacrifice some precision
and spatial resolution at the longer timescales; however, we found
we were still able to discern larger patterns. For instance, in our Mid
Mountain dataset, the gradual pattern of snow melt on a ski slope
over the course of days or weeks stands out with clarity at the 6-day
timescale. In our Buxton oceanside dataset, at the 1-month timescale,
the water’s edge can be seen slowly changing its position relative to the
beach, slowly rising and retreating much slower than the tides.

Another way these pyramid videos contribute to understanding of
long-term dynamics is through the knowledge that anything showing up
in a particular timescale must have generally stayed in the same place
for a long enough time, related to the timescale. In the 1-hour timescale,
a car driving by would not show up but a car parked in one spot for at
least an hour would show up, and the duration of its appearance in the
video would correspond to how long it stayed parked.

Timescale:
4-hours

Timescale:
5-minutes

Real-time video (1/30th-second timescale):

Fig. 9. In the Buxton dataset, at the 4-hour timescale, a railing quickly
and obviously appears directly under the camera. Drilling down, we had
to go to the original real-time recording to see it being put into place.

5.5 Direct Comparison with Timelapse

For a few datasets, we constructed standard timelapse videos by sub-
sampling at different rates and compiling the resulting frames together
into videos for each timescale. At the top levels of the pyramid this
resulted in extremely short timelapse videos (less than one second),
which were thus not very informative or interesting. However, going
down the pyramid levels, once the videos were at least a few seconds
long they did provide a good baseline for comparison with our pyramid
videos. We found consistent results among all of the datasets which are
summarized below.

5.5.1 High Levels: 1-day Timescale and Above
The visual smoothness of our pyramid videos stands in stark contrast
with the timelapse videos. At the higher levels especially, each frame
of the timelapse is far removed in time from its neighboring frames,
increasing the likelihood of major discontinuities in lighting, weather,
and other large scene elements. The timelapse videos show the viewer
all of these images in rapid succession and the effect is visually chaotic.
Only the most obvious changes can get absorbed by the viewer. The
rest of the changes are likely to get lost in the noise.

Also, smoothly upsampling our videos to spread out over a longer du-
ration makes them more informative and watchable than the timelapse
videos, even after using the video player tools to slow the timelapse
videos down to quarter speed. At the 3-day timescale, the timelapse
video duration was 4 seconds. Slowing it down to quarter time ex-
tended it to 16 seconds. However, our upsampled pyramid video for
that timescale was 24 seconds.

5.5.2 Middle Levels: 2-hour to 12-hour Timescales
The timelapse videos from these levels are almost unwatchable because
of the strobe effect caused by rapid switching between day and night
as the video progresses. This problem would likely be fixed by the
complete removal of night-time frames. We did not test that idea, but
we believe that even with night frames removed, the timelapse videos
from these levels would still suffer from similar faults as they do in
the higher and lower levels. Also, for a fair comparison we would also
need to remove the night frames from our pyramid videos, and this
would likely improve the watchability of those videos as well. We have
currently bypassed the strobe effect problem in our pyramid videos by
upsampling them so they take longer to watch while the pulsing from
day to night happens at a gentler cadence. If we removed night frames,



we would not need to upsample so much and could watch shorter videos.
However, for the majority of our datasets there is interesting visual
activity during the night hours which we would not want to arbitrarily
excise from the video for the sake of watchability or efficiency.

5.5.3 Low Levels: 1-hour Timescale and Below
The timelapse videos are more watchable and informative at lower
levels than they are at the higher levels. When comparing a timelapse
video with a non-upsampled pyramid video (i.e., of the same length),
the pyramid video provides only a slightly better viewing experience
because of its smoothness. Upsampling our pyramid video definitely
improves its viewing quality.

The most interesting comparison occurs at the very lowest levels
(1-minute timescale and below), where we can watch videos for one
day at a time and see fast-moving activity such as people skiing and
cars driving. In the timelapse videos, fast moving people and cars
end up aliased, meaning they show up as a completely solid object
and disappear quickly, without a clear trajectory. By contrast, in the
pyramid videos, fast moving people and cars will show up as a line of
ghostly versions of themselves, along their trajectory. They will only
solidify if they stay in one place for long enough. This provides the
viewer with more information than the timelapse videos provide. As an
example, in the Rane construction site dataset car traffic can be seen
on the road in front of the building site at the 15-second timescale. In
the timelapse video, we see cars at night and during the day and we
can get a general sense that there is less traffic at night. However, in
the pyramid video the day/night traffic difference is clearer. We can
barely register a blur for night-time traffic, and there is clearly more
traffic during the day. It is blurry for the most part, except for when cars
stop at the stoplight at regular intervals, at which point they ‘solidify’
into a clear line of cars. There is a rhythm to this blurred/not-blurred
traffic, presumably corresponding with the traffic light schedule. Also,
when the cars are stopped we can see that there are almost always more
cars in the right lane (possibly getting ready to turn right) This is more
information than we would ever glean from the timelapse videos and
provides a sound argument for the very basis of our video temporal
pyramid.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

This work proposes a novel way to visualize the passage of time and
explore videos that are too large to be practically explored using tradi-
tional tools. We also specifically address phenomena that occur at much
longer timescales than most existing methods; these phenomena are
present and interesting in our application due to the extreme duration of
our videos. Our method compares favorably to naive timelapse videos.
Even as an imperfect visualization tool, timelapse videos have been
put to good use in a diverse range of applications, such as construction
site monitoring [40,47], environmental monitoring [16,23,35], art [14],
education [27,42], ecological awareness [6,20], and more. An improve-
ment to existing timelapse techniques could benefit all of these existing
applications and possibly lead to interesting new applications. It might
also help facilitate a shift in perspective towards long-term thinking.
Humanity’s short-term or ‘real time’ bias can make it difficult to tackle
long-timescale issues like climate change or urban sprawl. If we don’t
see it happening, we don’t care about it as much. Visualization tools
can help us see it [26, 27].

6.1 Limitations

Our method has some important limitations. One is the requirement
that the camera viewpoint be fixed. This ensures that changes in the
video are due to the scene, rather than camera motion; however, if
camera angle changes are infrequent then the spectrogram is minimally
affected, and in fact our method is useful for discovering unusual
camera events such as a change in viewpoint as discussed in Sect. 5.3.

Another limitation is that the top two or three levels of the pyramid
are usually not very informative because there are not enough frames
available for any changes to register when stitching the frames together.
In a pyramid built from one year’s worth of data, the 90-day timescale
will only have 4 representative frames. However, in a pyramid built

from 8 year’s worth of data, the 90-day timescale will include 32
representative frames. We can discern changes over 32 frames much
more easily than over 4 frames.

We also noticed that as the pyramid levels progress higher, the edges
of all scene elements tend to become slightly less sharp with each new
level. This is probably caused by very small camera movements that
register as brief ‘whole scene changes’ with an effect in the pyramid that
compounds as levels are built recursively. This effect could possibly
be mitigated by the addition of a video stabilization preprocessing
step. Simple feature matching-based image alignment techniques [38]
could be used to align the frames to minimize movement due to camera
shakiness. A similar feature matching technique could be used to
manage camera viewpoint changes as well. We found that the noise
present in our datasets was small enough that these techniques were not
necessary, but they could be used to boost visual quality if desired. They
could also help our method generalize to more datasets, such as those
with automated and periodic changes in viewpoint, or fixed-viewpoint
cameras that exhibit noticeable motion due to wind.

6.2 Future Work

Our temporal pyramid computes a very simple, low-level measure of
intensity change from one frame to the next. In the spirit of Viz-a-
Vis [32], we intend to explore more sophisticated types of analyses
that can be aggregated into heatmaps to show more high-level and/or
task-specific measures of activity. For example, optical flow could
be used to measure motion rather than per-frame intensity change at
multiple timescales (similar to [45]). In scenes with specific object
categories of interest (e.g., people, cars etc.), object detection or crowd
counting techniques could extract more meaningful trends which could
then be visualized in a similar time-frequency spectrogram.

Although our method was not designed with the intent of video
anomaly detection, it could provide the basis for some new techniques
in that area. One of the many existing video anomaly detection methods
[28] could possibly be applied to upper level pyramid videos in order
to quickly and automatically surface unusual events at those timescales,
which might yield insight upon drill-down to lower levels. For instance,
detecting the origin of an unattended bag, after the fact, would be likely
made easier with the aid of a temporal pyramid.

Another direction for future work is to explore different types of
visualizations for our spectrogram, other than a heatmap. For example,
a circular or radial representation might be useful for visualizing peri-
odic events. We would also like to find ways to more easily compare
different days with each other (or different years, months, etc.), even
if the days chosen for comparison are far removed from each other in
time.

7 CONCLUSION

In this paper, we presented the Video Temporal Pyramid – a multi-scale
lens through which to view the passage of time via a process that distills
activity happening at different timescales in long fixed-camera video
streams. We also presented the Video Spectrogram, a time-frequency
visualization to facilitate exploration and discovery in our pyramids.
The pyramid videos present a novel alternative to standard timelapse
techniques, providing a smooth viewing experience that allows for
the absorption of more information about how a scene changes over
time. And the spectrogram visualization is the first example of what we
believe is a more general and potentially useful class of time-frequency
representations for video visualization.
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