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FROBENIUS-PERRON THEORY FOR PROJECTIVE SCHEMES

J. M. CHEN, Z. B. GAO, E. WICKS, J. J. ZHANG, X. H. ZHANG, AND H. ZHU

ABSTRACT. The Frobenius-Perron theory of an endofunctor of a k-linear cat-
egory (recently introduced in Chen et al. [Algebra Number Theory 13 (2019),
pp. 2005-2055]) provides new invariants for abelian and triangulated cate-
gories. Here we study Frobenius-Perron type invariants for derived categories
of commutative and noncommutative projective schemes. In particular, we
calculate the Frobenius-Perron dimension for domestic and tubular weighted
projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Ko-
daira dimensions, and provide examples. We apply this theory to the derived
categories associated to certain Artin-Schelter regular and finite-dimensional
algebras.

INTRODUCTION

The Frobenius-Perron dimension of an endofunctor of a category was introduced
by the authors in [CG]. It can be viewed as a generalization of the Frobenius-Perron
dimension of an object in a fusion category introduced by Etingof-Nikshych-Ostrik
[ENOO5] in early 2000 (also see [EGNO15, EGO04,Nik04]). It is shown in [CG] that
the Frobenius-Perron dimension of either Ext! or the suspension of a triangulated
category is a useful invariant in several different topics such as embedding problem,
Tame and wild dichotomy, complexity of categories. In particular, the Frobenius-
Perron invariants have strong connections with the representation type of a category
[CG,Z7Z].

The definition of the Frobenius-Perron dimension of a category will be recalled
in Section 2. In the present paper we continue to develop Frobenius-Perron theory,
but we restrict our attention to the bounded derived category of coherent sheaves
over a projective scheme. A projective scheme could be a classical (or commutative)
one, or a noncommutative one in the sense of [AZ], or a weighted projective line
in the sense of [GL]. We refer to Section 3 for some basics concerning weighted
projective lines.

Received by the editors April 29, 2020, and, in revised form, December 10, 2021.

2020 Mathematics Subject Classification. Primary 16E35, 16E65, 16E10; Secondary 16B50.

Key words and phrases. Frobenius-Perron dimension, derived category, projective scheme,
weighted projective line, noncommutative projective scheme.

The first author was partially supported by the National Natural Science Foundation of China
(Grant Nos. 11971398 and 12131018) and the Fundamental Research Funds for Central Univer-
sities of China (Grant No. 20720180002). The second author was partially supported by the
National Natural Science Foundation of China (Grant No. 61971365). The third and fourth au-
thors were partially supported by the US National Science Foundation (Grant Nos. DMS-1402863,
DMS-1700825 and DMS-2001015). The fifth author was partially supported by the National Natu-
ral Science Foundation of China (Grant No. 11401328). The sixth author was partially supported
by a grant from Jiangsu overseas Research and Training Program for university prominent young
and middle-aged Teachers and Presidents, China.

(©2023 American Mathematical Society

2293

Licensed to Univ of Washington. Prepared on Sat May 20 12:58:36 EDT 2023 for download from IP 128.95.104.109.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2294 J. M. CHEN, Z. B. GAO, E. WICKS, J. J. ZHANG, X. H. ZHANG, AND H. ZHU

Our first goal is to understand the Frobenius-Perron dimension, denoted by fpd,
of the bounded derived category of coherent sheaves over a weighted projective
line, which is also helpful for understanding the Frobenius-Perron dimension of the
path algebra of an acyclic quiver of ADE type via the derived equivalence given in
Lemma 2.1(2). Let X be a weighted projective line (respectively, a commutative or
noncommutative projective scheme). We use coh(X) to denote the abelian category
of coherent sheaves over X and D’(coh(X)) to denote the bounded derived category
of coh(X). Here is the main result in this topic.

Theorem 0.1 (Theorem 2.13). Let X be a weighted projective line that is either
domestic or tubular. Then fpd(D®(coh(X))) = 1.

Note that Theorem 0.1 is a “weighted” version of [CG, Proposition 6.5(1,2)]. By
Lemma 2.1(2), we obtain the Frobenius-Perron dimension of the bounded derived
category of finite dimensional representations of acyclic quivers of ADE type.

Our second goal is to introduce Frobenius-Perron (“fp” for short) version of some
classical invariants. We will focus on fp-analogues of two important invariants in
projective algebraic geometry, namely,

Calabi-Yau dimension, and
Kodaira dimension.

Let fpx (respectively, fpcy) denote the fp version of the Kodaira dimension [Defini-
tion 3.5(1)] (respectively, the Calabi-Yau dimension [Definition 3.1(3)]). Both are
defined for bounded derived categories of smooth projective schemes or more gener-
ally triangulated categories with Serre functor. In algebraic geometry, a Calabi-Yau
variety has the trivial canonical bundle. In noncommutative algebraic geometry, a
“skew Calabi-Yau” scheme may not have a trivial canonical bundle. Our fp version
of the Calabi-Yau dimension covers the case even when the canonical bundle is not
trivial. Below is one of the main results in this direction. Note that the definition
of fpk is dependent on a chosen structure sheaf.

Theorem 0.2 (Propositions 3.3 and 3.6). Let X be a smooth projective scheme
and T be the triangulated category D®(coh(X)) with structure sheaf Ox. Then the
following hold.
(1) for(T, Ox) = (X).
(2) fpey(T) =dimX. As a consequence, if X is Calabi-Yau, then fpcy T equals
the Calabi- Yau dimension of X.

In the noncommutative case we have

Theorem 0.3 (Theorem 4.5). Let A be a noetherian connected graded Artin-
Schelter Gorenstein algebra of injective dimension d > 2 and AS index ¢ that is
generated in degree 1. Suppose that X := Proj A has finite homological dimension
and that the Hilbert series of A is rational. Let T be the bounded derived category
of coh(X) and A be the image of A in Proj A.

(1) fpey(T)=d—1.

(2) If € > 0, then fpr(T,A) = —oo and fpr~ (T, A) = GKdim A — 1.

(3) If £ < 0, then fpr(T,A) = GKdim A — 1 and fpx~ (T, A) = —

(4) If £ =0, then fpr(T,A) = fps~ (T, A) = 0.

Similar results are proved for Piontkovski projective lines, see Section 4.
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Note that the definitions of fp Calabi-Yau dimension and fp Kodaira dimension
make sense for bounded derived category of left modules over a finite dimension
algebra of finite global dimension. However, we don’t have a complete result for
that case. Some examples are given in Section 5.

When we are working with finite dimensional algebras, it is well-known that the
global dimension is not a derived invariant. By definition, fp Calabi-Yau dimension
is a derived invariant. This suggests that the fp Calabi-Yau dimension is nicer
than the global dimension in some aspects. So it is important to study this new
invariant. To start we ask the following questions.

Question 0.4. Let A be a finite dimensional algebra of finite global dimension and
let 7 be the derived category D®(Mod 4 —A).

(1) Is fpcy(T) always finite?
(2) What is the set of possible values of fpcy(7) when A varies?
(3) What is the set of possible values of fpk(7, A) when A varies?

More questions and some partial answers are given in Section 5. Some other
examples are given in [Wi, ZZ].

We have outlined several important applications of Frobenius-Perron invariants
in [CG]. Next we would like to mention one surprising application of the Frobenius-
Perron curvature defined in [CG, Definition 2.3(4)].

Theorem 0.5 ([ZZ, Corollary 0.6]). Suppose that the bounded derived categories
of representations of two finite acyclic quivers are equivalent as tensor triangulated
categories. Then the quivers are isomorphic.

This result is striking because it is well-known that, for two Dynkin quivers
with the same underlying Dynkin diagram, their derived categories are triangulated
equivalent [BGP,Hal, even if the quivers are non-isomorphic. We hope that different
Frobenius-Perron invariants will become effective tools in the study of triangulated
categories and monoidal (or tensor) triangulated categories.

This paper is organized as follows. Some background material are provided in
Section 1. In Section 2, we review some facts about weighted projective lines and
prove Theorem 0.1. In Section 3, we introduce fp-version of Calabi-Yau dimension
and Kodaira dimension for Ext-finite triangulated categories with Serre functor
and prove Theorem 0.2. In Section 4, fp Calabi-Yau dimension and fp Kodaira
dimension are studied for noncommutative projective schemes and Theorem 0.3 is
proved there. In Section 5, some partial results, comments and examples are given
concerning finite dimensional algebras. Sections 6 and 7 are appendices. The proof
of Theorem 0.1 is dependent on some linear algebra computation given in Section
6. This paper can be viewed as a sequel of [CG].

1. PRELIMINARIES AND DEFINITIONS

Throughout let k be a base field that is algebraically closed. Let everything be
over k.

We are mainly interested in the derived category D(coh(X)) where X is a smooth
commutative or noncommutative projective scheme, but most definitions work for
more general pre-triangulated (or abelian) categories.

Part of this section is copied from [CG].
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1.1. Spectral radius of a square matrix. Let A be an nxn-matrix over complex
numbers C. The spectral radius of A is defined to be

p(A) = max{|ri],|r2|,- -, |ral},

where {ry, ra, ..., 7, } is the complete set of eigenvalues of A. When each entry of A
is a positive real number, p(A) is also called the Perron root or the Perron-Frobenius
eigenvalue of A.

In order to include the “infinite-dimensional” setting, we extend the definition
of the spectral radius in the following way.

Let A = (aij)nxn be an n X n-matrix with entries a;; in R™ := RU{+oc0}. Define
A = (a;j)nxn where

A4 A5 7’5 iOO,
/ P— p—
Q5 = § Tij a;j; = 00,
_xij aij = —0OQ.

In other words, we are replacing oo in the (4, j)-entry by a finite real number, called
x;j, in the (4, j)-entry. Or x;; are considered as function or a variable mapping
R —+ R.

Definition 1.1. Let A be an n x n-matrix with entries in R™. The spectral radius

of A is defined to be
p(A) ;= liminf p(A").

all x;;—o00

See [CG, Remark 1.3 and Example 1.4].

1.2. Frobenius-Perron dimension of a quiver.

Definition 1.2 ([CG, Definition 1.6]). Let @ be a quiver.

(1) If @ has finitely many vertices, then the Frobenius-Perron dimension of Q
is defined to be

fpd Q == p(A(Q))
where A(Q) is the adjacency matrix of Q.

(2) Let @ be any quiver. The Frobenius-Perron dimension of @Q is defined to
be

fpd Q := sup{fpd Q'}

where Q' runs over all finite subquivers of Q.

1.3. Frobenius-Perron dimension of an endofunctor. Let C denote a k-linear
category. For simplicity, we use dim(A, B) for dim Hom¢ (A, B) for any two objects
A and B in C. Here the second dim is dimy.

The set of finite subsets of nonzero objects in C is denoted by ® and the set of
subsets of n nonzero objects in C is denoted by ®,, for each n > 1. It is clear that
® =J,,~; ®n. We do not consider the empty set as an element of ®.

Definition 1.3 ([CG, Definition 2.1]). Let ¢ := {X;, Xo, ..., X, } be a finite
subset of nonzero objects in C, namely, ¢ € ®,,. Let ¢ be an endofunctor of C.

(1) The adjacency matriz of (¢p, o) is defined to be
A(¢,0) = (aij)nxn, where a;; :=dim(X;,0(X;)) Vi,j.
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(2) An object M in C is called a brick [ASS, Definition 2.4, Ch. VII] if
Home (M, M) = k.
If C is a pre-triangulated category [Ne, Definition 1.1.2] with suspension ¥,
an object M in C is called an atomic object if it is a brick and satisfies
Home (M, X% (M)) =0, Vi>D0.
(3) ¢ € @ is called a brick set (respectively, an atomic set) if each X is a brick
(respectively, atomic) and
dlIIl(‘X27 XJ) = (52‘]‘
for all 1 <4,j < n. The set of brick (respectively, atomic) n-object subsets
is denoted by ®,,; (respectively, @, ,). We write &, = Un21 ®,, 5 (respec-
tively, @, = U,,>1 Pn,a)-
Definition 1.4 ([CG, Definition 2.3]). Retain the notation as in Definition 1.3,

and we use ¥, as the testing objects. When C is a pre-triangulated category, ® is
automatically replaced by ®, unless otherwise stated.

(1) The nth Frobenius-Perron dimension of o is defined to be
fpd"(o) := JSup {p(A(¢,0))}-
n,b
If @, is empty, then, by convention, fpd" (o) = 0.
(2) The Frobenius-Perron dimension of o is defined to be
fpd(o) := sup{fpd" (o)} = sup {p(A(¢,0))}.
n peDy
(3) The Frobenius-Perron growth of o is defined to be
fpg(c) := sup {limsup log, (p(A(¢,0™)))}
peEDP, n—oo

By convention, log, 0 = —oc.
(4) The Frobenius-Perron curvature of o is defined to be

fpv(0) = sup {limsup (p(A(,0™)))"/"}.
pED, n—oo

In this paper, we only use ®;, and ®, as the testing objects. But in principal
one can use other testing objects, see Section 7. We continue to review definitions

from [CG].
Definition 1.5 ([CG, Definition 2.7]).
(1) Let A be an abelian category. The Frobenius-Perron dimension of 2 is
defined to be
fpd 2l := fpd(E")
where E' := Exty(—,—) is defined as in [CG, Example 2.6(1)]. The
Frobenius-Perron theory of 2 is the collection
{fpd™ (E™) }in>1,n20

where E™ := Ext’y(—, —) is defined as in [CG, Example 2.6(1)].
(2) Let T be a pre-triangulated category with suspension X. The Frobenius-
Perron dimension of T is defined to be

fpd T := fpd(%).
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(3) The fp-global dimension of T is defined to be
fpgldim T := sup{n | fpd(EZ") # 0}.

Fix an endofunctor o of a category C. For a set of bricks B in C (or a set of
atomic objects when C is triangulated), we define

fpd" |B (o) = sup{p(A(¢,0)) | ¢:={X1,...., X} € Py, and X; € B Vi}.
Let A := {A\} be a totally ordered set. We say a set of bricks B in C has a o-
decomposition {B*}xca (based on A) if the following holds.

(1) B is a disjoint union J,, B*.

(2) If X € B* and Y € B°® with A < d, Home(X,0(Y)) = 0.

The following is [CG, Lemma 6.1].

Lemma 1.6 ([CG, Lemma 6.1]). Let n be a positive integer. Suppose that B has
a o-decomposition {B*}xen. Then
fpd” |g(o) < . sup {fpd™ |p>(0)}.

,msn

2. FROBENIUS-PERRON THEORY OF WEIGHTED PROJECTIVE LINES

The main goal of this section is to recall some facts about weighted projective
lines and then to prove Theorem 0.1.

2.1. Weighted projective lines. First we recall the definition and some basics
about weighted projective lines. Details can be found in [GL, Section 1].

For t > 1, let p := (po, p1, ---, pt) be a (t + 1)-tuple of positive integers, called
the weight sequence. Let D := (Ao, A1, ..., At) be a sequence of distinct points of
the projective line P! over k. We normalize D so that A\g = 0o, Ay =0 and Ay = 1
(if t > 2). Let

S =Kk[Xo, X1,..., Xe]/(XP = XPV+ N X0 i =2,...,1).
The image of X; in S is denoted by z; for all i. Let I be the abelian group of rank

1 generated by 7, for i = 0,1, ..., t and subject to the relations
T == pF = =g = 2

The algebra S is LL-graded by setting degxz; = 7,. The corresponding weighted
projective line, denoted by X(p, D) or simply X, is a noncommutative space whose

category of coherent sheaves is given by the quotient category
L_s

coh(X) = g]ii.

8rf g -5

The weighted projective lines are classified into the following three classes:
domestic if pis (p,q),(2,2,n),(2,3,3),(2,3,4),(2,3,5);
X is < tubular if pis (2,3,6),(3,3,3),(2,4,4),(2,2,2,2);
wild otherwise.
In [Sc, Section 4.4], domestic (respectively, tubular, wild) weighted projective lines
are called parabolic (respectively, elliptic, hyperbolic). Let X be a weighted projec-

tive line. A sheaf F' € coh(X) is called torsion if it is of finite length in coh(X). Let
Tor(X) denote the full subcategory of coh(X) consisting of all torsion objects. By
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[Sc, Lemma 4.16], the category Tor(X) decomposes as a direct product of orthog-
onal blocks

t
(E2.0.1) Tor(X) = I1 Tor, x [[Tors,
zE€PI\{Xo,A1,...,A¢ } i=0

where Tor, is equivalent to the category of nilpotent representations of the Jordan
quiver (with one vertex and one arrow) over the residue field k, and where Tor),
is equivalent to the category of nilpotent representations over k of the cyclic quiver
of length p;, see Example 2.3. A simple object in coh(X) is called ordinary simple
(see [GL)) if it is the skyscraper sheaf O, of a closed point z € P1\ {\g, Ay, ...,
At}

Let Vect(X) be the full subcategory of coh(X) consisting of all vector bundles.
Similar to the elliptic curve case [BB, Section 4], one can define the concepts of
degree, rank and slope of a vector bundle on a weighted projective line X; details
are given in [Sc, Section 4.7] and [LM, Section 2]. For each p € Q, let Vect, (X) be
the full subcategory of Vect(X) consisting of all semistable vector bundles of slope p.
By convention, Vects (X) denotes Tor(X). By [Sc, Comments after Corollary 4.34],
when X is a domestic or tubular weighted projective line, every indecomposable
object in coh(X) is in

U Vect, (X).
nEQU{oo}

Below we collect some nice properties of weighted projective lines. The definition
of a stable tube (or simply tube) was introduced in [Ri].

Lemma 2.1 ([CG, Lemma 7.9]). Let X = X(p, D) be a weighted projective line.
(1) coh(X) is noetherian and hereditary.
@) i
Db(MOdf_d_ —H{Apyq) Zf pP=
DY(Mody 4 —kD,) ifp=
DP(coh(X)) = { D*(Mod; 4. —kEs)  if p = (2,3,3),
DY(Mod;q —kE7)  if p=(2,3,4),
DY(Mod;4 —kEg)  if p=(2,3,5).

(3) Let S be an ordinary simple object in coh(X). Then Exty(S,S) =

(4) fpd*(coh(X)) > 1.

(5) If X is tubular or domestic, then Exty(X,Y) = 0 for all X € Vect,:(X)
and Y € Vect,(X) with p' < p.

(6) If X is domestic, then Exty(X,Y) = 0 for all X € Vect,s(X) and Y €
Vect, (X) with p’ < p < oo. As a consequence, fpd(X |veer, (x)) = 0 for all
< oo.

(7) Suppose X is tubular or domestic. Then every indecomposable vector bundle
X is semi-stable.

(8) Suppose X is tubular and let i € Q. Then each Vect,(X) is a uniserial cate-
gory. Accordingly indecomposables in Vect,, (X) decomposes into Auslander-
Reiten components, which all are stable tubes of finite rank. In fact, for

every € Q,

q);

»,
(2.2,n),
(2,
(2,

Vect, (X) = Vect (X) = Tor(X).
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Proof. (1) This is well-known, see [Le, Theorem 2.2].
(2) See [KLM, Proposition 5.1(i)] and [GL, 5.4.1].
(3) Let S be an ordinary simple object which is of the form O, for some x €
P\ {Xo, ..., \¢}. Then S is a brick and Ext%(S,S) = Extx(0,,0,) = k.
4) Follows from (3) by taking ¢ := {S}.
) This is [Se, Corollary 4.34(i)].
) This is [Sc, Comments after Corollary 4.34]. The consequence is clear.
) [GL, Theorem 5.6(i)].
)

(
(
(
(
(8) See [Sc, Theorem 4.42] and [GL, Theorem 5.6(iii)]. O

5
6
7
8

Our main goal in this section is to prove Theorem 0.1. Eventually one should
ask Question 2.2.

Question 2.2 ([CG, Question 7.11]). Let X be a weighted projective line. What
is the exact value of fpd” D®(coh (X)), for n > 1, in terms of other invariants of X?

2.2. Standard stable tubes [LS,Ri]. In this subsection we would like to under-
stand the (standard) stable tubes in T'ory, in the decomposition (E2.0.1), which is
the Auslander-Reiten quiver of the z-nilpotent (or a-torsion) representations of the
algebra in Example 2.3.

Example 2.3. Let £ be a primitive nth root of unity. Let T,, be the algebra
k(g, z)
(9" — 1,9z — Exg)
This algebra can be expressed by using a group action. Let G be the group
{9lg" =1}=2/(n)

acting on the polynomial ring k[z] by ¢ - = £x. Then T,, is naturally isomorphic

T, =

to the skew group ring k[z] * G. Let A,,_1 denote the cycle quiver with n vertices,
namely, the quiver with one oriented cycle connecting n vertices. It is also known

that T;, is isomorphic to the path algebra of the quiver A, ;.

Let 2 be the category of finite dimensional left T,,-modules that are z-torsion.
In this subsection we will show that fpd(2l) = 1 [Corollary 2.12]. We start with
somewhat more general setting.

Let A be any algebra and let Mods g4 —A be the category of finite dimen-
sional left A-modules. Let I'(Mody 4 —A) denote the Auslander-Reiten quiver with
Auslander-Reiten translation 7.

Let € be a component of I'(Mod.q. —A). We say € is a self-hereditary component
of I'(Mody 4. —A) if for each pair of indecomposable A-modules X and Y in €, we
have Ext% (X,Y) = 0.

We now recall some results from the book [SS]. The definitions can be found in
[SS]. Let ¢ := {E1, ..., E,} be a brick set in €. (In [SS], ¢ is called a finite family
of pairwise orthogonal bricks.) The extension category [SS, p.13] of ¢, denoted by
E,Ex, 00 EXT A(E4, ..., E,), is defined to be the full subcategory of Mody 4 —A
whose nonzero objects are all the objects M such that there exists a chain of
submodules

M=MyDM 2---2 M =0,
for some ! > 1, with M;/M;;1 isomorphic to one of the bricks Ey, ..., E, for all
0<i<l Wesay {Fy, ..., E.}is a t-cycle if 7(E;) = E;_; for all i € Z/(r).
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We will be using the notation introduced in [SS]. For example, E;[j] represents
some uniserial object, which is nothing to do with the jth suspension of F;.

Theorem 2.4 ([SS, Lemma 2.1 and Theorem 2.2 in Ch. X]). Let ¢ := {E1, ...,
E.}, with r > 1, be a brick set on Mody g —A. Suppose that ¢ is a T-cycle and
a self-hereditary family [SS, p.14]. Then the extension category £ is an abelian
category with the following properties.

(1) For each pair (i,7), with 1 <i < and j > 1, there exist a uniserial object
E;[j] of E-length lg(E;[§]) = j in the category E, and homomorphisms

Ujj El[] — 1] — Ez[j], and Pij ¢ El[j] — Ei+1[j — 1]7
for j > 2, such that we have two short exact sequences in Mody 4 —A

0 — Bi[j — 1]~ B[] 22

Eirj1[1] — 0,

’

0 — Ei[1] —2 Ei[j] 22 Eia]j — 1] — 0,

where p;j = Pitj_220---0p;; and u;j = w;; 0 -+ 0 Un. Moreover, for each
7 > 2, there exists an almost split sequence

I: Pij—1 :|
. Ui . o (Wig15-1 pig) .

in Mody. g —A, where we set E;[0] = 0 and Ejyxr[m] = E;[m], form > 1
and all k € Z.

(2) The indecomposable uniserial objects E;[j], withi € {1, ..., r} and j > 1,
of the category &, connected by the homomorphisms w;; : E;[j — 1] — E;[j]
and pi; : Ei[j] = Eix1[j — 1], form the infinite diagram presented below.

Eqlj — 1] Eilj—1]

N N o

z+1[7 -2 Eialj —2]

Eiyj3[3]

> i | / Eiyj-3(2] > Eitj[2] / :
\ \ 1+1[1] o . Eitj-all] \ 7E;”72[1] \ éi;jil[l]

(3) ExtA(X, Y) =0, for each pair of objects X andY of €.
Theorem 2.5 ([SS, Theorem 2.6 in Ch. X]). Retain the hypothesis as in Theorem
2.4. Then the abelian category € has the following properties.

(1) Every indecomposable object M of the category & is uniserial and is of the
form M = E;[j], wherei € {1, ..., r} and j > 1.
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(2) The collection of indecomposable objects forms a self-hereditary component,
denoted by Te, of I'(Mody.q. —A).

(3) The component T¢ is a standard stable tube of rank r [SS, Definition 1.1 in
Ch. X].

(4) The objects Er, ..., E,. form the complete set of objects lying on the mouth
[SS, Definition 1.2 in Ch. X] of the tube T¢.

Let ¥ be the T¢ defined as in Theorem 2.5. Let D := Homy(—, k) be the usual
k-linear dual.

Corollary 2.6 ([SS, Corollary 2.7 in Ch. X]). Retain the hypothesis as in Theorem
2.4.

(1) The only homomorphisms between two indecomposable modules in T are k-
linear combinations of compositions of the homomorphisms wj, pij, and the
identity homomorphisms, and they are only subject to the relations arising
from the almost split sequences in Theorem 2.4(1).

(2) Givenie {1, ..., r} and j > 1, we have
(2a) Enda(E;[j]) = Kk[t]/(t™), for some m > 1,

(2b) Enda(E;[j]) 2k if and only if j <7, and
(2¢) Exth (E;[4], Eilj]) = D Homa(FE;[j], 7Ei[j]) = 0 if and only if j < r—1.

(3) If the tube T is homogeneous (namely, r = 1), then Ext' (M, M) # 0, for

any indecomposable M in €.

Brick objects in ¥ are determined by Corollary 2.6(2b). To work out all brick sets
in ¥, we need to understand the Hom between brick objects. Part (2) of Theorem
2.7 describes these Homs.

Theorem 2.7. Let T be a standard stable tube of rank r as used in Theorem 2.5
and Corollary 2.6. Keep the notation as above and assume 1 < 4,7,4',7 <r. Then
the following hold.

(1) Endz(Es[j]) =k.
(2) Homs (E;[j], Eir[j']) # 0 if and only if (i/,7') satisfies one of the following
conditions:
(2a) i <i' <i+j—landi+j<i+7,
(2b) i/ <i4+j—1—randi+j <i'+j +r. Here, ifi+j—1—r <1, then
{{|<i<i+j-1-r}.
Moreover, if Homsz (E;[j], Ev[j']) # 0, then Hom< (E;[j], Ev[5']) 2 k.

Proof. (1) See Corollary 2.6(2).

(2) Since ¥ is a standard stable tube, it is a mesh category [SS, Definition
2.4 in Ch. X]. Moreover, by Corollary 2.6(a), the only homomorphisms between
two indecomposable modules in ¥ are k-linear combinations of compositions of
the homomorphisms u;;,p;;, and the identity homomorphisms, which subject to
the relations arising from the almost split sequences in Theorem 2.4(a). By mesh
relationship [SS, Definition 2.4 in Ch. X], we obtain the description (2a) and (2b)
for all objects E;/[j'] that satisfy Homs (E;[j], Ei[j']) # 0.
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Moreover, if j' < j, Homxz (E;[j], Ei[j']) is generated by composition morphisms

Wi 51w Wil g —i/ 4141 " Wiq? g —i/ 42U/ 5 —i 1 D5 — 14§ —4/ 41
© o Pitkj—k t Pit1,j—-1Dijs
where 0 < k <4 —4,0 <1< (¢! +5')—(i4+j)—1. Here, if i+ k > r, then the index

i+ k means i+ k —r.
If j" = j, Homg (E;[j], Ew[j']) is generated by

Pir—1,5'+1 " Pitl,i’ 45 —i—1 " " Dit1,i +5' —i—1Dii’ +5/ —iWi i +5' —i
Cr Wik Wi 42U 41,
where 0 <k < (i'+5)—(i+7),0 <1 <4 —i—1. Here, if i+ > r, then the index
i+ 1 means i + [ — r. Therefore Homz (E;[j], By [j']) = k. O

Part (1) of Corollary 2.8 next is just a re-interpretation of Theorem 2.7(2).

Corollary 2.8. Let ¥ be a standard stable tube of rank r. Keep the notation as
above and put E;[j],1 <i4,j <r in order
Eq[1], Es[1], ..., E.[1); E1[2], E2[2], ..., E.[2]; ...; Eilr], E2lr], ..., Exr],

and denote them by X1, ..., X, where n = r2.

(1) The n x n matrix

(dim Homg (X, X5))

nxn

has the following form

po  pl p? p3 ... pr-1
1 . 2 . 3 . r—1 )
po EP’L ZPZ ZPl ZPZ
=0 1=1 =2 i=r—2
! i 2 ; 3 . r—1 )
PO Z 2L Z P Z 2L . Z pi
(E281) 7;?0 izo izl l?i_l?)
PO PP P . Y P
i=0 i=0 i=0 i=r—4
1.. ; 2 . 3 . r—1
PO ZPz ZPZ ZPz ZPl
i=0 i=0 i=0 =
where
0 0 0 0 0 1
10 0 0 0 O
01 0 0 0 0
P=1o 0 1 0o o0 o

0 0 0 0 1 0
X7

and where P° is the identity matriz I, of order r.
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(2) The n X n-matriz

(dim Extg(X;, X;))

nxn

has the following form

Prfl P'rfl Prfl Pr71 . Pr71
r—1 . r—1 ) r—1 ) r—1 )
pr-2 Yy pi Py P Y pi
i=r—2 i=r—2 i=r—2 i=r—2
r—2 r—1 r—1 re1
ps Y PiY PSP ... Y P
(E2.8.2) Rt DR
pr-t Z P Z P E Pt ... Z pi
i=r—4 i=r—4 i=r—4 i=r—4
1 2 3 r—1
po P P yYP ... 3P
=0 i=0 i=0 i=0

Proof. (1) This follows from Theorem 2.7(2).
(2) The assertion follows from part (1) and the Serre duality

Extz (E;[j], Ei[j']) = D Homs (Ey[j'], 7Eilj]) = D Homs (Ey [j'], Ei-1[j])-
Some detailed matching of entries is omitted.

We use Example 2.9 to illustrate the results in Corollary 2.8.

Example 2.9. Let T be a standard stable tube of rank 3:

Put E;[j],1 <i,j < 3 in order

Eq[1], Eo[1], E3[1]; B (2], E[2], E3[2]; E1[3], E2[3], E3[3].
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Denote this list as X1, ..., Xg9. Then we have

TaBLE 1. Homz (X, X;)

X; = Er[1] k 0 0 0 0 k 0 k 0
Es[1 0 k 0 k 0 0 0 0 k
B3l 0 0 k 0 k 0 k 0 0
Eq2 k 0 0 k 0 k 0 k k
Es[2 0 k 0 k k 0 k 0 k
42 0 0 k 0 k k k k 0
Eq[3 k 0 0 k 0 k k k k
E>[3 0 k 0 k k 0 k k k
E3(3 0 0 k 0 k k k k k

TABLE 2. Extt(X;, X;)
Exty(X;, X;) | X; = Ei[1] | BE2[1] | Bs[1] | E12] | E2[2] | Es[2] | E1[3] | Eo[3] | E5[3]

X, = B4 [1] 0 k 0 0 k 0 0 k 0
Es|1 0 0 k 0 0 k 0 0 k
Esl1 k 0 0 k 0 0 k 0 0
B2 0 0 k 0 k k 0 k k
E,[2 k 0 0 k 0 k k 0 k
52 0 k 0 k k 0 k k 0
Eq 3 k 0 0 k 0 k k k k
Es[3 0 k 0 k k 0 k k k
E3(3 0 0 k 0 k k k k k

The corresponding Hom-dimension and Ext'-dimension matrices are
PO Pl P2

1 2
P° Y pi S pi

(dim Homg (X, X4))gy o = i=0 i=1

1 2
PO Z Pi Z Pz
i=0 i=0
and
P2 p? p?
. P P P*
(dlmExt};(Xj,Xi))gxg = %:1 %:1
PO S pi Y pi
i=0 i=0
where
0 0 1
P=11 0 0
010
Lemma 2.10 shows that if H(i1, ..., is) is a principal submatrix of (E2.8.1) such
that H (i1, ..., is) = Isxs, then the corresponding principal submatrix of (E2.8.2)

(with the same rows and columns) has spectral radius at most 1.
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Lemma 2.10 (Lemma 6.4). Retain the above notation. Suppose the Hom-matriz
is given as in (E2.8.1) and Ext'-matriz is given as in (E2.8.2), then p(A(¢)) <1
for every brick set ¢.

The proof of Lemma 2.10 is given in Appendix 6. Note that (E2.8.1)—(E2.8.2)
are in fact the transpose of the usual Hom and Ext-matrices. By [CG, Lemma
3.7] (by considering the opposite category), Lemma 2.10 holds for the transpose
matrices of (E2.8.1)-(E2.8.2) too.

Theorem 2.11. Let £ and T be as in Theorem 2.5. Then fpd & = 1.

Proof. By Corollary 2.6(2b), all brick objects in £ are FE;[j] for all i € Z/(r) and
1 < j <r. We can determine all brick sets by using the matrix in Corollary 2.8(1).
For each brick set, its Ext'-matrix M was determined by using (E2.8.2). By Lemma
2.10, p(M) < 1. On the other hand, let ¢ = {E1[1], ..., E.[1]}, then M = P~}
and hence fpd € = p(A(4, Ext')) = 1. Therefore the assertion follows. O

We have an immediate consequence. Let T, be the algebra in Example 2.3.

Corollary 2.12. Let 2 be the category of finite dimensional left x-nilpotent T,.-
modules. Then fpd2A = 1.

Proof. 1t is well-known that 2 is equivalent to the category £ of rank r. To see
this we set degz = 1 and degg = 0. Then the degree zero component of T, is

isomorphic to k®" with primitive idempotents {ej, ..., e.}. Under this setting,
E;[j] is identify with (T}./(z*))e; for all 4,j. Now the result follows from Theorem
2.11. 0

2.3. Proof of Theorem 0.1. Now we are ready to show Theorem 0.1.

Theorem 2.13. Let X be a domestic or tubular weighted projective line. Then
fpd Db(coh(X)) = 1.
Proof. By Lemma 2.1(4), it suffices to show that fpd(D’(coh(X))) < 1. By [CG,
Theorem 3.5(4)], it is enough to show that

fpd(c) = fpd(coh(X)) < 1

where o is Extg(—, —).

By [Sc, Corollary 4.34(iii)], every brick (or indecomposable) object is semistable.
By Lemma 2.1(5), the class {Vect,(X)},cou{oo} is a o-decomposition (see the
definition before Lemma 1.6). By Lemma 1.6, it is enough to show the claim that
fpd |veet, (x) (o) < 1 for every p.

Case 1. X is domestic. If p is finite, then fpd |yect,(x) () = 0 by Lemma
2.1(6). If pu = oo, then, by (E2.0.1), Vectoo(X) := Tor(X) has a decomposition
into Auslander-Reiten components, which all are tubes of finite rank. By Theorem
2.11, fpd |76p(x) (0) = 1. The claim follows.

Case 2. X is tubular. By Lemma 2.1(8),
Vect,(X) = Vectoo (X) = Tor(X)
for all u. Then the proof of Case 1 applies. Therefore the claim follows. |

As usual we use Ox for the structure sheaf of X [GL, Sect. 1.5].
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Proposition 2.14. Let X be a weighted projective line of wild type. Then
fpd D®(coh(X)) > dim Homx(Ox, Ox (W)
where W is the dualizing element [GL, Sec. 1.2].

Proof. Let ¢ = {Ox} which is a brick and atomic set. Then, by definition and
Serre duality [GL, Theorem 2.2],

fpd Db(coh(X)) > p(A(¢, Ext)) = dim Ext} (Ox, Ox)
= dim Homx (Ox, (’)X(ﬁ)).

3. DIMENSION THEORY FOR CLASSICAL PROJECTIVE SCHEMES

The aim of this section is to introduce Frobenius-Perron versions of two im-
portant and related invariants — Calabi-Yau dimension and Kodaira dimension of
D?(coh(X)) where X is a smooth projective scheme.

3.1. A result from [CG]. Let X be a smooth (irreducible) projective scheme over
C of positive dimension. By [CG, Proposition 6.5 and 6.7],

1 if X is P! or an elliptic curve,

oo otherwise.

fpd(D*(coh(X))) = {

3.2. Calabi-Yau dimension. Recall from [Kel, Section 8.1] that if a Hom-finite
category C has a Serre functor S, then there is a natural isomorphism

DHome(X,Y) = Home(Y, S(X))

for all X,Y € C. A (pre-)triangulated Hom-finite category C with Serre functor S
is called n-Calabi- Yau if there is a natural isomorphism

S=xn =:[n]

where Y is the suspension of C. In this case n is called the Calabi-Yau dimension
of C. (In [Ke2, Section 2.6] it is called weakly n-Calabi- Yau.) More generally, C is
called a fractional Calabi-Yau category if there is an m > 0 and there is a natural
isomorphism
S 3" = [n]

for some n, see [vR, p.2708] and [Ku, Definition 1.2]. In this case we say C has
Calabi-Yau dimension ;-. Abelian hereditary fractionally Calabi-Yau categories
are classified in [vR]. One key property of Calabi-Yau varieties is that the canon-
ical bundle of these varieties are trivial. However, our definition of fp Calabi-Yau
dimension (see Definition 3.1 below) applies to projective schemes that do not have
the trivial canonical bundle.

If a Serre functor exists, then it is unique up to isomorphism. In this case we
usually use S for the Serre functor. Throughout the rest of this section, let T
be a Hom-finite (pre-)triangulated category with Serre functor S. We will define
a version of (fractional) Calabi-Yau dimension for 7 which is not necessarily a
(fractional) Calabi-Yau category.

Recall from Definition 1.4(3) that the Frobenius-Perron growth of a functor o is
defined to be

fpg(o) := sup {limsup log, (p(A(¢,0™)))}.

ped, mn—oo
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By convention, log,, 0 = —oo. Similarly, we define a slightly modified version of fpg
as follows, which is used to define the fp Calabi-Yau dimension.

Definition 3.1. Let o be an endofunctor of 7 with Serre functor S.

(1) The lower Frobenius-Perron growth of ¢ is defined to be

fg(c) == sup {liminf log, (p(A(6,0™))) } .
— ¢€q>a n— o0
By convention, log,, 0 = —o0.
(2) The spectrum of T is defined to be

Sp(T) == {(m,n) € Z"? | fpg(S™ 0 £™™) > —o0}.
(3) The fp Calabi-Yau dimension of T is defined to be
|
m

fpey(T) :== lim { sup {

(m,n) € Sp(T)}} .

Next we show that the fp Calabi-Yau dimension exists for various cases.

Lemma 3.2. Suppose T is a pre-triangulated category satisfying the following con-
ditions:

(a) T is Ext-finite [BV, Definition 2.1], namely, for all objects X, Y € T,

> dim Hom (X, £*(Y)) < oo.
SEZL

(b) T has a Serre functor S.
(¢) T is fractional Calabi-Yau of dimension d =a/b € Q.
Then the following holds.
(1) Sp(T) C (b,a)Q.
(2) If T contains at least one atomic object, there exists w € N such that

(bwt, awt) € Sp(T) for all t € Z.
(3) Under the hypothesis of part (2), we have fpcy(T) = d.

Proof. (1) Let (m,n) be a pair of integers that is not in (b, a)Q, and let ¢ = S™o
¥~ Since T is fractional Calabi-Yau of dimension a/b, we can assume that S®o¥ ¢
is the identity functor. Then, for each ¢, ¢*® = X¥(ma="0) where ma — nb # 0. By
hypothesis (a), for any two objects X and Y in 7, Homy (X, X4me=m0)Y") = 0 for
[t| > 0. Then, for every atomic set ¢, it implies that A(¢,c'®) = 0 for [¢t| > 0.
Thus log,,(p(A(¢,0'*))) = —oco for all [t| > 0. This implies, by definition, that
fpg(o) = —o0, or (m,n) & Sp(T). The assertion follows.
_(2) Let ¢ be the set of a single atomic object X in 7. Replacing (b,a) by
(bw, aw) for some positive integer w if necessary, we can assume that o := S boy—a
is the identity functor. Then A(¢,0™) is the 1 x 1l-identity matrix I; for all n.
Then log,, (p(A(¢,0™))) = 0 for all n. This implies that fpg(c) = 0 > —oo or
(b,a) € S(T). Similarly, one sees that (bt,at) € S(T) for all integer t. The
assertion follows.

(3) This follows from the definition and parts (1,2). O

The next proposition is part (2) of Theorem 0.2, which shows that fpcy is indeed
a generalization of Calabi-Yau dimension.
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Proposition 3.3. Let X be a smooth irreducible projective variety of dimension
d € N and let T be D*(coh(X)). Then fpcy(T) = d.

Proof. When d =0, then T = Di}_d(Vectk). It is easy to see that the Serre functor
S is the identity. So the assertion is easily shown. Now we assume that d > 0.

It suffices to show that Sp(T) = {(¢,td) | t € Z}.

By [BO, (7)], the Serre functor S is equal to — ®x wx[d] where d is the dimension
of X and wx is the canonical bundle of X. Let ¢ = S o £~%. Then ¢ is the functor
— ®x wx. Let O, be the skyscraper sheaf of a closed point a € X. Then it is an
atomic object and 0(0,) = O,. Let ¢ = {O,}. Then A(¢p,o™) is the 1 x 1-identity
matrix [;. This implies that log, (p(A(¢,c™))) = 0 and that fpg(c) = 0 > —oc.
Therefore (1,d) € S(T). Similarly, one sees that (t,dt) € S(T) for all t > 0.

For the other implication, let (m,n) € Z*?\ {(t,td) |t € Z}. Let 0 = S™o X",

We need to show that that fpg(c) = —oo. Note that 0 = — ®x W™ o pntdm
where —n + dm # 0. Since coh(X) has global dimension d, for all objects A and B
in 7T,

Hom7(A, ' (B)) = Homy (A, (B @x wi™)[t(—n + dm)]) =0

for all £ > 0. This implies that fpg(c) = —oo as required. O

3.3. Kodaira dimension. First we review the classical definition of the Kodaira
dimension.

Definition 3.4 ([La, Definition 2.1.3 and Example 2.1.5]). Let X be a smooth
projective variety and let wx be the canonical bundle of X.

(1) The Kodaira dimension of X is defined to be
Kk(X) = nhﬁn;() log,, (dim H(X,w§™)) .

(2) More generally, for a line bundle M, the Kodaira-Iitaka dimension of M is
defined to be

K(X, M) := lim log, (dim H°(X, M®")).
n—oo
(3) The anti-Kodaira dimension of X is defined to be
K_l(X) = K(X,wgl).

The anti-Kodaira dimension of a scheme was defined in [Sa]. It is classical
and well-known that x(X), x(X, M) € {—o00, 0, 1, ..., dim X} and that there are
0 < ¢1 < ¢ such that,

(E3.4.1) ern M) < dim Homy (Ox, M®™) < ean M)y s 0.

See [La, Corollary 2.1.37]. By Proposition 3.3, dim X = fpcy(7), which suggests
Definition 3.5.

In the following we use the order t; < ty if ¢; divides t3. Since we are mainly
interested in commutative and noncommutative projective schemes, 7 is equipped
with the structure sheaf, denoted by O.
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Definition 3.5. Let T be a pre-triangulated category and 7, denote the pair (7, O)
where O is a given special object in 7. Suppose that 7 is Hom-finite with Serre
functor S and that fpcy(7) = d = a/b for some integers a, b.

(1) The fp Kodaira dimension of T, is defined to be

fpr(Ty) == li%n {hm sup dim Hom (O, (S o Ea"t)(O))}

n— oo
where the first limit ranges over all positive integers ¢ with order < as
defined before the definition.
(2) The fp anti-Kodaira dimension of T, is defined to be

fpr~H(T.) := lign {lim sup dim Hom7 (O, (S7°" o Z‘mt)((’)))}

n—oo

where the first limit ranges over all positive integers ¢ with order < as
defined before the definition.

Proposition 3.6 justifies the above definition.

Proposition 3.6. Let X be a smooth irreducible projective variety of dimension
d € N and let T be D(coh(X)) with structure sheaf O := Ox. Then

fpr(T2) = #(X) and fpr ' (T2) = &~ (X).

Proof. By Proposition 3.3, fpcy(7) = d = dimX. So we take b =1 and a = d in
Definition 3.5. By (E3.4.1), for each ¢t > 1,
lim sup dim Hom7 (O, (S*™ o ™) (0)) = k(X).
n—oo
The first assertion follows by the definition.
The proof for anti-Kodaira dimension is similar. O

Theorem 0.2 follows from Propositions 3.3 and 3.6.

Remark 3.7. Assume the hypothesis of Lemma 3.2. Then one can check easily that
(E3.7.1) fpr(T:) = fpr~1(T2) = 0.

So abstractly (E3.7.1) should be part of the definition of a fractional Calabi-Yau
variety (even in the noncommutative setting).

Proposition 3.8. If T is a triangulated category such that either fpr(T,) = oo or
fpr~Y(T.) = o0 or fpcy(T) = oo or —oco, then T, is not triangulated equivalent to
the bounded derived category of a smooth projective scheme.

Proof. By definition, fpcy is an invariant of a triangulated category, and fpk is an
invariant of a triangulated category with O. The assertion follows from Propositions
3.3 and 3.6. (]

4. INVARIANTS OF NONCOMMUTATIVE PROJECTIVE SCHEMES

In this section we study fp Calabi-Yau dimension and fp Kodaira dimension of
noncommutative projective schemes in the sense of [AZ]. An algebra A is said to
be connected graded over k if A =k ® A; ® Ay @ --- with A;4; C A;y; for all
i,j,€ N. Let A be a noetherian connected graded algebra. The noncommutative
projective scheme associated to A is denoted by X := Proj A, see [AZ] for the
detailed definition of a noncommutative projective scheme. Let coh(X) be the
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category of noetherian objects in Proj A and let 7 be the triangulated category
D’(coh(X)). Here is a restatement of a nice result of Bondal-Van den Bergh [BV,
Theorem 4.2.13].

Theorem 4.1 ([BV, Theorem 4.2.13]). Suppose A is noetherian and has a balanced
dualizing complex and that Proj A has finite homological dimension. Then T has a
Serre functor.

One special class of connected graded algebras are the Artin-Schelter regular
algebras (see the next definition).

Definition 4.2 ([AS]). Let A be a connected graded algebra over the base field
k. We say A is Artin-Schelter Gorenstein (or AS Gorenstein) if the following
conditions hold:

(a) A has finite injective dimension d on both sides,
(b) Ext’y(k, A) = Ext’4on(k, A) = 0 for all i # d where k = A/A>;, and
(c) Ext?(k, A) = k(£) and Ext4., (k, A) 2 k(¢) for some integer £. This integer
¢ is called the AS index of A.
If moreover
(d) A has finite global dimension,

then A is called Artin-Schelter regular (or AS regular).

We collect some well-known facts below. Let 7 : Gr A — Proj A be the canonical
quotient functor. By abuse of notation, we also apply 7 to some graded A-bimodules
such as “A' in Lemma 4.3.

Lemma 4.3. Let A be a noetherian connected graded algebra, let X be Proj A, and
let T be Db(coh(X)).
(1) [Ye, Corollary 4.14] If A is Artin-Schelter Gorenstein, then A has a balanced
dualizing complez.
(2) [YZ, Corollary 4.3] Suppose A is Artin-Schelter Gorenstein such that X has
finite homological dimension. Let d = injdim A, ¢ be the AS index of A and
u be the Nakayama automorphism of A. Then the Serre functor of T is
— Qo w(HAY)(=0)[d — 1].
Let M be a locally finite Z-graded module or vector space. The Hilbert series of
M is defined to be
Hy(t) := Z dim M,,t".

Let A be a graded algebra and s be a positive integer. The sth Veronese subalgebra
of A is defined to be
A(g) = ®n€ZAsn'

Lemma 4.4 is well-known.

Lemma 4.4. Let A be a noetherian connected graded algebra generated in degree
1. Let s be a positive integer.

(1) A is a finitely generated module over A®) on both sides.

(2) GKdim A = GKdim A®).

(3) If the Hilbert series of A is a rational function, then so is the Hilbert series
of A,

Licensed to Univ of Washington. Prepared on Sat May 20 12:58:36 EDT 2023 for download from IP 128.95.104.109.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2312 J. M. CHEN, Z. B. GAO, E. WICKS, J. J. ZHANG, X. H. ZHANG, AND H. ZHU

(4) If the Hilbert series of A is a rational function, then
lim sup log,,(dim 4,,) = GKdim A — 1.

n—roo
(5) If A is an Artin-Schelter regular algebra, then the Hilbert series of A is a
rational function.

Proof. (1) Connected graded noetherian algebras are finitely generated. So A is
generated by @f;olAi over A®®) on both sides.

(2) It follows from part (1) and [MR, Proposition 8.2.9(i)].

(3) This follows from the fact that

s—1
Hy(t) = é > Ha(E't)
=0

where £ is an sth primitive root of unity.

(4) When H 4(t) is a rational function, dim A4,, is a multi-polynomial function of
n in the sense of [Zh1, p.399]. Say d is the degree of the multi-polynomial function
dim A,, of n. Then GKdim A = d + 1 by using [Zh1, (E7)]. This implies that

limsuplog,,(dim 4,,) = d = GKdim A — 1.

n— oo

(5) This is [StZ, Proposition 3.1]. O

Theorem 4.5. Let A be a noetherian connected graded Artin-Schelter Gorenstein
algebra of injective dimension d > 2 that is generated in degree 1. Suppose that
X := Proj A has finite homological dimension. Let T be the bounded derived category
of coh(X). In parts (2,3,4,5,6), we further assume that the Hilbert series of A is
rational. Let ¢ be the AS index of A.

(1) fpey(T)=d—1.

(2) If € > 0, then fpr(T.) = —co and fpr~*(T,) = GKdim A — 1.
(3) If £ <0, then fpr(T.) = GKdim A — 1 and fpr = (T.) = —o0.
(4) If € =0, then fpr(Ts) = fpr~(T.) = 0.
(5) For all objects C and D in T,

limsup log,, (dim Hom(C, (S o =4)"(D))) < GKdim A — 1.

n— oo

(6) For all objects C and D in T,
limsup log,, (dim Hom7(C, (S o £~%)""(D))) < GKdim A — 1.

n—oo
Proof. (1) Let £ be the AS index of A. There are two different cases: ¢ < 0 and
£ > 0. The proofs are similar, so we only prove the assertion for the first case.
First we claim that Sp(7T) C (1,d — 1)Z. Suppose (m,n) € (1,d — 1)Z. Let
o=8"o¥Y ™" = — @ M®"[(d - 1)m — n] where M = 7(*A')(—F) and where
(d—1)m —n # 0. Since Proj A has finite global dimension, we have that, for all
objects A and B in T,

Hom7(A, o' (B)) = Homy (A, (B® M®"™)[t((d - 1)m —n)]) =0

for all # > 0. This implies that fpg(c) = —oo. Hence (m,n) ¢ Sp(T) and hence
we have proven the claim.
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Second we claim that (1,d — 1)N C Sp(T). Let O = w(A). It is a brick object
as Homy(0,0) = Ay = k. For every (m,n) = (s,s(d — 1)) € (1,d — 1)N, let
o=S5"o¥N " =—®M®. Then

a(0) =2 O(—4s)
and
Hom7(0,0(0)) 2 A_ys #0
when ¢ < 0. This implies that p(A(¢,0)) > 1 where ¢ = {O}. Similarly,
p(A(p,0™)) > 1 for all n. Consequently, fpg(o) > 0 > —oc. Therefore (m,n) €
Sp(T) as desired. Now we have

(1,d = )N C Sp(T) € (1,d — 1)Z

which implies that fpcy(7) =d — 1.
(2) Let w = GKdim A which is at least 2. By Lemma 4.4(2,3,4), for every integer
s>1,
(E4.5.1) limsup log,,(dim As,,) = GKdimA — 1 =w — 1.
n—00
Now assume that £ is positive. By Lemma 4.3(2), o := S o £~ (4= is equivalent
to — ® O(—¢) when applied to O. Thus

(E4.5.2) Homy(0,c™"(0)) = A_p, =0
when n > 0 and
(E4.5.3) HOIIIT(O, U_n(('))) = A,

for n > 0. Now (E4.5.2) implies that x(7T,0) = —oo, and (E4.5.3) together with
(E4.5.1) implies that k1(7,0) =w — 1 = GKdim A — 1.

(3) Similar to the proof of (2).

(4) Assume that £ = 0. Then o := S o X~ (@1 is equivalent to — ® O(—F) when
applied to O. Thus

Hom7(O0,0"(0)) = A_p, = Ao =k

for all n € Z. This implies that fpx(7.) = fpr~1(T.) = 0.

(5,6) The proofs are similar. We only consider (5). Note that S o X~(4=1) =
—@m(*AY)(—¢). By [BV, Lemmas 4.2.3 and 4.3.2], T is generated by {O(n)},cz.
Hence we can assume that ¢ = O and D = O(a)[b] for some a and b. Note that [AZ,
Theorem 8.1(3)] holds for Artin-Schelter Gorenstein algebras. Then [AZ, Theorem
8.1(3)] implies that

dim Ext% (0, (8 o £~W@="@"(O(a))) < en®~!
for some constant ¢ only dependent on a,b. Therefore the assertion follows. O

The noncommutative projective scheme in the sense of [AZ] can be defined for
connected graded coherent algebras that are not necessarily noetherian. Here we
consider a family of noncommutative projective schemes of non-noetherian Artin-
Schelter regular algebras of global dimension two.

Let W,, be the Artin-Schelter regular algebra k(z1, ..., z,)/(>r, z7) of global
dimension 2. When n > 3, this algebra is non-noetherian [Zh, Theorem 0.2(1)], but
coherent [Pi, Theorem 1.2]. Let P. denote the noncommutative projective scheme
associated to W,, defined in [Pi], which is also denoted by ProjW,,. We call P! a
Piontkouvski projective line of rank n. See [Pi,SSm] for basic properties of PL. The
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main result concerning P is the following. See [CG] for the definition of fpex and
fpv.

Theorem 4.6. Let P be a Piontkovski projective line of rank n > 2. Let T, be
the derived category D®(coh(PL)). Then

(1) fpd(T,) =1 for alln > 2.
) fpgldim(7,) =1 for all n > 2.
) fpex(7,) =0 for all n > 2.
) fpv(T,) =0 for alln > 2.
) fpey(Tn) =1 for alln > 2.
1 n=2
)
)

7) fpe((Tn)s) = —o0 for all n > 2.

(2
(3
(4
(5
(6

(
Proof. Let O denote the object w(W,,) in X := Proj W,,. Then coh(X) is hereditary,
and T, is Ext-finite with Serre functor S := — ® O(—2)[1] [Pi, Proposition 1.5].

(1) By [CG, Theorem 3.5(4)], fpd(7,) = fpd(coh(X)). Since coh(X) is heredi-
tary, fpd(coh(X)) < 1. It remains to show that fpd(coh(X)) > 1. Let A be the
simple object in coh(X) of the form w(W/I)) where I is the right ideal of W gener-
ated by W(zxs, ..., ®,) + x2. Then it is routine to verify that Extioh(x)(A, A)=k
This implies that fpd(coh(X)) > 1 as required.

(2) By [CG, Theorem 3.5(1)], fpgldim(7,) < gldimcoh(X) = 1. By part (1),
fpgldim(7;,) > 1. The assertion follows.

(3,4) These follow from the fact that coh(X) is hereditary.

(5) Since the Serre functor S is of the form — ® O(—2)[1], we can almost copy
the proof of Proposition 3.3.

(6,7) Using the special form of the Serre functor S, we can adapt the proofs of
Proposition 3.6 and Theorem 4.5. |

5. COMMENTS ON FP-INVARIANTS OF FINITE DIMENSIONAL ALGEBRAS

In this section we give some remarks, comments and examples concerning finite
dimensional algebras. Let 7 (A) be the derived category D°(Mody4—A). The fp
Calabi-Yau dimension fpcy(7T) is defined as in Definition 3.1.

Example 5.1. Let @ be a finite acyclic quiver and A be the path algebra k@Q. Let
T be the bounded derived category D®(Mody 4 —A).

(1) If Q is of ADE type, then T is fractional Calabi-Yau and by Lemma 3.2(3)
and [Kel, Example 8.3(2)],
h—2
f] = —
pey(T) = —
where h is the Coxeter number of Q). In this case, fpcy(7) is strictly between
Oand 1.
(2) If Q is of ADE type, then, by using Lemma 2.1(2), 7 is equivalent to
D"(coh(X)) for a weighted projective line X. Similar to the proof of Theorem
4.5(1), one can show that

fpey(D°(coh(X))) = 1
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for every weighted projective line X. (The proof is slightly more complicated
and details are omitted). Thus we obtain that

fpey(T) = 1.
If @ is of wild representation type, in some cases, one can shows that
(E5.1.1) tpey(T) = 1.

Such an example is the Kronecker quiver with two vertices and n arrows from the
first vertex to the second, see Example 5.7. It is not clear to us if (E5.1.1) holds
for all acyclic quivers of wild representation type.

Lemma 5.2. Let A and B be finite dimensional algebras of finite global dimension.
Suppose that both T(A) and T(B) are fractional Calabi-Yau of dimension dy and
do respectively. Then T (A ® B) is fractional Calabi-Yau of dimension d; + ds.

The proof of Lemma 5.2 is straightforward and hence omitted. One immediate
question is

Question 5.3. Let A and B be finite dimensional algebras of finite global dimen-
sion. Is then

fpey(T(A® B)) = fpey(T(A)) + fpey(T(B))?

To define fp (anti-)Kodaira dimension of 7 as in Definition 3.5, we need to specify
an object O which plays the role of the structure sheaf in algebraic geometry. One
choice for O is the left A-module A. So we let T(A). be (T(A), A).

Definition 5.4. Let A be a finite dimensional algebra of finite global dimension.
Suppose that 7(A) has a fractional fp Calabi-Yau dimension ¢ € Q.

(1) The fp Kodaira dimension of A is defined to be

n—oo

fpr(A) = fpr(T(A).) = li%n {lim sup dim Hom (A4, (S o Z‘mt)(A))}

where the first limit ranges over all positive integers ¢ with order < as
defined before Definition 3.5.
(2) The fp anti-Kodaira dimension of A is defined to be

fpr ™ (A) == fpr (T (A),) = li%n {hm sup dim Hom7 (A4, (S~ o E‘mt)(A))}
n—oo
where the first limit ranges over all positive integers ¢ with order < as

defined before Definition 3.5.

Remark 5.5. Suppose T (A) is fractional Calabi-Yau. Then one can check easily
that

(E5.5.1) fpr(A) = fpr 1 (A) = 0.

So if there is a notion of a fractional Calabi-Yau algebra, (E5.5.1) should be a part
of the definition.

Let A be a finite dimensional algebra of finite global dimension. Then the
Serre functor is given by — ®4 DA. Tt is unknown if fpcy(7(A)) always exists.
If fpcy (T (A)) exists and is a rational number, then we can define and calculate fp
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Kodaira dimension (respectively, anti-Kodaira dimension) of A. Here is a list of
questions that are related to the fp Kodaira dimension.

Question 5.6. Let A and B be two finite dimensional algebra of finite global
dimension. Suppose that fpcy (7T (A)) and fpcy (T (B)) are rational numbers.

(1) Are fpr(A) and fprx=1(A) less than oo?

(2) If T(A) is triangulated equivalent to T (B), is then fpx(A) = fpr(B) and
fpr~1(A) = fpr~1(B)?

(3) Suppose both fpx(A) and fpk(B) are finite, is then

fpr(A ® B) = fpr(A) + fpr(B)?
The first question has a negative answer.

Example 5.7. Let ),, be the Kronecker quiver with two vertices and n arrows from
the first vertex to the second. Let U, be the path algebra of @,,. By [Min, Theorem
0.1], if n > 2,

(E5.7.1) DY(Mod; 4 — U,) = D*(coh(P})) =: T,

where P} is given in Theorem 4.6. By Theorem 4.6(3), fpcy(D°(Mody.q. —U,)) = 1
for all n > 2. On the other hand, fpcy(D*(Mody.q. — Uy)) = 272 = 1 where h =3
is the Coxeter number of the quiver As (which is @), see [Kel, Example 8.3(2)].

We claim that fpx(U,) = —oo and that fpx~1(U,,) = oo when n > 3. We only
prove the second assertion. By the noncommutative Beilinson’s theorem given in
[Min, Theorem 0.1] (also see (E5.9.1)), the equivalent (E5.7.1) sends U,, to O®O(1)
where O is the structure sheaf of PL.

Note that the Serre functor is S := — ® O(—2)[1]. Let A = U,,. Then

fpr ™1 (A) = lign {lim sup dim Hom7(4)(4, (™" o Etm)(A))}

m— o0

= li%n {lim sup dim Hom, (O @ O(1), (S o ©"™)(O @ (’)(1)))}

m—r0o0

> li¥n {lim sup dim Hom~, (O, (S7"™ o Et'”)((’)))}

fpr ™ (7))

=0

where the last equation is Theorem 4.6(6).
We add a few more questions to Question 0.4.

Question 5.8. Let A be a finite dimensional algebra of finite global dimension and
let 7 be the derived category D®(Mod 4 —A).

(1) By Example 5.7, if A is the path algebra of the quiver Q1, then fpcy(7) = %
Is the minimum value of fpcy(7) equal to % for an arbitrary A?
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(2) Is there a value of fpcy(T) outside of the set

h—2
R = ZTN ﬂ@>0?

h>3

By Lemma 5.2 and [Kel, Example 8.3(2)], every number in R can be realized
as fpcy (7)) for some finite dimensional algebra. But we don’t have examples
of fpcy that are outside this range.

Recall that

Definition 5.9 ([HP, p. 1230]). Let X be a smooth projective scheme.

(1) A coherent sheaf £ on X is called ezceptional if Homx(E,€) = k and
Ext%(£,€) = 0 for every i > 0.

(2) A sequence &1, ..., &, of exceptional sheaves is called an exceptional se-
quence if Ext%(&;, &;) =0 for all k and for all ¢ > j.

(3) If an exceptional sequence generates D(coh(X)), then it is called full.

(4) If an exceptional sequence satisfies

Ext%(&,&) =0
for all £ > 0 and all 4, j, then it is called a strongly exceptional sequence.

The existence of a full exceptional sequence has been proved for many projective
schemes. However, on Calabi-Yau varieties there are no exceptional sheaves. When
X has a full exceptional sequence &1, . . ., &,, then there is a triangulated equivalence

(E5.9.1) DP(coh(X)) = D*(Mod 4 —A)

where A is the finite dimensional algebra Endx(®!_,&;). In this setting, the fp
Calabi-Yau dimension of D*(Mod; 4 —A) is equal to dimX, which exists and is
finite. In many examples in algebraic geometry, a full exceptional sequence consists
of line bundles. Assume this is true. Via (E5.9.1), one sees easily that fpx®!(A4) >
fpx®1(X). In fact, in many examples, we have fpr™!(A) = fpr®!(X).

6. APPENDIX A: PROOF OF LEMMA 2.10
As in Section 2, let r be a positive integer. Suppose that a hereditary abelian
category T has r? brick objects as given in Corollary 2.8, now labeled as
1,2,3,...,72 = 1,72,

where the matrices

H = (H,) = (dim Hom(4, 5))

rZxr? rZxr2;
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see (E2.8.1), and

E = (Eij),2,,» = (dim Hom(i, 3j5))

r2xr2
see (E2.8.2), are given by the following block matrices:
RN (3) (4) (r)
(1) ,P° p! p? p3 prt
1 2 3 r—1
@) | P’ P YP YP >, P
=0 i=1 =2 i=r—2

c)
E
M-
T
N
T
\d
T
\d
T

s
Il
=)
-
Il
<)
.
Il
-
-
I
Y
|
@

(E6.0.1) H=

&
T
M-
T
o8
T
v
g
A
g

s
Il
o
~
Il
<}
©
|
<}

i=r—4

1 2 3 r—1
(r) pP° ;}Pl ;)Pl ;}Pl ;)P’

(1) P'rfl P Prfl Prfl Prfl
r—1 r—1 r—1 r—1

(2) Pr72 Z Pt Z Pt Z pt Z pt
i=r—2 i=r—2 i=r—2 i=r—2
r—2 r—1 r—1 r—1

(3) Pr—3 Z Pt Z Pt Z Pt Z P
i=r—3 i=r—3 i=r—3 i=r—3
FE = r—3 r—2 r—1 r—1

4 |p* > P > P ¥ P > P
i=r—4 i=r—4 i=r—4 i=r—4

0 ! i 2 i 3 T P 1

(r) \ P > P > P 2. P > P
=0 =0 =0 =0

=
N
o
\g/
R
I
\d
R
I
\g/
R
I
M
N
i

@
Il
=
-
Il
=
-
Il
=
-
1
-

&
T
&
Mes
T
!
e
T
!
Mes
T
!
e
o)
i

=2 =1 =1 =1
= 4 4 4 4 g
(4) Pr—4 ;Pr—l ;P’I‘—’L ;Pr—z ;Pr—z

=
3
Il
N
N
i
1§
it
Y
i
Il
N
N
i
Mi
N
i

o
@
o
Il
A
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where P is the r X r permutation matrix

0

S O =

0

0

0
1
0

0

0

0
0
1

0

OO OO

0

OO OO

1

OO O

2319

and P° denotes the r x r identity matrix. Note that P" = PY. We will show that
p(A(4)) <1 for all brick sets ¢.

The Hom and Ext! matrices given in (E2.8.1)-(E2.8.2) are actually the transpose
of the usual Hom and Ext' matrices since they follow the convention of Corollary
2.8. See the remark before Theorem 2.11.

First, notice that

(1)

(1) /P

(2) Pr—l

(3| P
HT =

()| P

(r)\ P!

Define the following non-negative r

T
=N —

M-
T
|

s
I
o

M
T
|

-
Il
—

e
T
|

s
||
N

r—1

Z Prfi

i=r—2

(1)

1) Pt
2) Pr—2
3) Pr73
4) Pr74
r) \ P°

(1)

(1) /P
@) [ P~
(3)| Pr-
(4| Pr-
o\ P

1
2
3

ML~

s
I
o

e

)

s
Il
—

i=r—3

2

(2)
Pr—l
Pr—2
Pr73
Pr74

po

(2)

P’r

Pr
Pr—l
Pr—2

P2

i
|
~

(3)
Pr—l
Pr—2
Pr73
Pr74

po

(3)
P’r
PT’
P’I‘

Z Prfi

Pr—l

po

M-
T
|

s
I
o

Mo
T
|

s
I
o

e
T
|

s
I
o

r—1

Z Prfi

i=r—4

x 72 matrices:

(4)
Pr—l
Pr—2
Pr73
Pr74

po

(4)
P’I"
P’I"
PT‘
P'I"

pt
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We can see that
(E6.0.2) HI + F
(1) (2) (3) (4) e (7)

(1) Z Pr—z Z Pr—z Z Pr—z Z Pr—z Z Pr—z
=0 =0 =0 =0 =0

2 ) 2 ) 2 ) 2 . 2 )

(2) Z Pr—z Z Pr—z Z Pr—z Z Pr—z Z Pr—z
i=1 i=0 =0 i=0 =0

3 . 3 . 3 . 3 . 3 .

B (3) Z pr— Z pr— Z pr— Z pr— Z pr—
= =2 =1 =0 =0 =0

(4) Z Pr—z Z Pr—z Z Pr—z Z Pr—z Z Pr—z
1=3 1=2 =1 1=0 =0
T T T o T T

(T’) Z Prfz Z Prfz 4 Z Prfz Z Prfz Z Prfz

=FE+G.
To finish the proof we need a few lemmas.

Lemma 6.1. Let ¢ be a brick set which is a subset of {1, 2, ..., r?}. Suppose that
1,J € ¢ and that the (I,J)-entry Ery #0. Then Fry = Ery = 1.

Proof. Since E is a matrix whose entries consist of zeros and ones, E;; = 1. We
consider two different cases.

Case 1 (I =J). By (E6.0.2),
1+ Fry=(H")1j+ Fry = Ery+Gry = Ery +1
which implies that Fr; = Ery = 1.
Case 2 (I # J). Since I, J are distinct elements in the same brick set, we have
(HT);; = 0. By (E6.0.2),
Fry=(H")r+Fry=Er;+Gry > 1.
Since F' is a matrix whose entries are contained in {0,1}, Fry = 1. ]

Lemma 6.2. If ¢ is a brick set, for each row I there exists at most one column
J such that A(p)r; # 0. If there exists a row J such that A(¢)r; # 0, then
A(p)rs = 1.

Proof. Assume for contradiction that we have a brick set ¢ containing elements
I,J,J such that J # J" and Er; # 0 # Erj. Notice that we have the following
general formula for n,m € {0, ..., r—1},4,5 € {1, ..., r}
Fnr+i,mr+j = (Pr_l_n)ij~
We can always write
IT=nr+1i J=mr+j, J’:m’r—kj',

for some ¢,5,7 € {1, ..., r},n,m,m’ € {0, ..., r—1}.
Assume without loss of generality that m > m’. We will show that

Hjyp = HmrJrj,m’rJrj’ 7& 0.
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Therefore, J, J' cannot be in the same brick set, a contradiction.
By Lemma 6.1,
1= FIJ = Fnr+i,mr+j = (Prilin)ij = (PnJrlir)ji,

11—
1= FIJ’ = Fnr+i,m’7‘+j' = (Pr n)ij"

Then

T

1= (PnJrlfr)ji(Prflfn)ij/ _ Z(PnJrlfr)jk(Prflfn)kj/
k=1

= (PP e = G

which implies that j = j'.
By examination of the H matrix (E6.0.1), we can see that for m > m/’,

0
Hyy = Hurvjmrsgr = (P7) g5 + Agjo
for some non-negative r x r matrix A. Therefore,
0
Hyyr = Hurijmrtyr = Hmeggmeg = (P7)j5 + A5 = 055+ Aj; > 1

as required.
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O

Lemma 6.3. If ¢ is a brick set, for each column J there exists at most one row
I such that A(¢)ry # 0. If there exists a row I such that A(p)ry # 0, then

A(p)ry=1.

Proof. The proof is similar to the proof of Lemma 6.2 and omitted.

Lemma 6.4. If ¢ is a brick set, p(A(¢)) < 1.

O

Proof. By Lemmas 6.2 and 6.3, we have shown that if ¢ is a brick set, A(¢) is
a matrix with at most one non-zero entry in each row and at most one non-zero
entry in each column, such that if any entry is non-zero, it is 1. Then A(¢) is
almost a permutation matrix. In this case the quiver corresponding to A(¢) has

cycle number at most 1. By [CG, Theorem 1.8], p(A(¢)) < 1.

7. APPENDIX B: SOME VARIANTS

O

Recall that the set of subsets of n non-zero objects in C is denoted by ®,, for
each n > 1. And let & = Un21 ®,,. In this paper, we use either &, or ®, as

testing objects in the definition of fp-invariants [Definition 1.4]. Depending on the
situation, we might want to choose a testing set different from ®; or ®,. Here is a

list of possible alternative testing sets.

Example 7.1.
(1) &= Un21 D,,.

(2) If the category C is abelian, we can consider “simple sets” as follows. Let
®,, s be the set of n-object subsets of C, say ¢ := {X1, Xo, ..., X,,}, where

the X, are non-isomorphic simple objects in C. Let &4 = Un>1 (P

(3) A subset ¢ = {X1, Xa, ..., X,,} is called a triangular brick set if each X
is a brick object and, up to a permutation, Home (X;, X;) = 0 for all ¢ < j.
Let @, + be the set of all triangular brick n-sets, and let ®4, = Un21 D, 10
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(4) Now assume that C is a triangulated category with suspension functor X.
A subset ¢ = {X;1, Xo, ..., X} is called a triangular atomic set if each
X, is an atomic object and, up to a permutation, Home(X;, X;) = 0 for
all i < j. Let ®,., be the set of all triangular atomic n-sets, and let
Dy = UnZl ‘bn,ta-

Basically, for any property P, we can define ®, p;, (respectively, ®, p,) and
let ®py (respectively, ®p,) be J,,~; Pn,py (respectively, (J,~; Pn,pa). All of the
definitions in this paper and in [CG] can be modified after we redefine p(A(¢, o))
as follows.

Definition 7.2. Let C be a k-linear category and let ¢ be a set of n non-zero
objects, say {X1, ..., X}, in C. Let o be a k-linear endofunctor of C. We define

p((dlmHomc(Xz,U(X])))nxn)
p ((dimHome (X;, X;))nxn)

P(A6,0)) =

Note that p(A(¢,0)) agrees with the original definition when ¢ is a brick set.
One reason to introduce P-versions of fp-invariants is to extend these invariants
even if the category contains no brick objects.
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