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Let X (n) be an observation sampled from a distribution P(n) with an
unknown parameter 6, 6 being a vector in a Banach space E (most often, a
high-dimensional space of dimension d). We study the problem of estima-
tion of f(#) for a functional f : E — R of some smoothness s > 0 based

)

O = On (X (”)) of parameter 6 such that \/n (A, — 0) is sufficiently close
in distribution to a mean zero Gaussian random vector in F, we construct
a functional g : £ — R such that g(én) is an asymptotically normal esti-
mator of f(0) with \/n rate provided that s > ﬁ and d < n® for some
a € (0,1). We also derive general upper bounds on Orlicz norm error rates
for estimator g(é) depending on smoothness s, dimension d, sample size n
and the accuracy of normal approximation of \/ﬁ(én — ). In particular, this
approach yields asymptotically efficient estimators in high-dimensional log-

concave exponential models.

on an observation X () ~ Pén . Assuming that there exists an estimator

1. Introduction. The problem of estimation of a smooth functional f(6#) of parameter 6
of a high-dimensional statistical model is studied in this paper in the case when there exists
an estimator 6 of 6 for which normal approximation holds as both the dimension d and the
sample size are reasonably large.

Estimation of functionals of parameters of non-parametric and, more recently, high-
dimensional statistical models has been studied by many authors since the 70s [46, 47, 31,
5,32, 26,27, 19, 20, 21, 51, 6, 7, 44, 48, 52, 10, 11, 34, 59, 62, 17, 60, 28, 50]. Most of the
results have been obtained for special statistical models (Gaussian sequence model, Gaussian
white noise model, density estimation model) and special functionals (linear and quadratic
functionals, norms in classical Banach spaces, certain classes of integral functionals of un-
known density). Estimation of general smooth functionals was studied in [32, 51, 52] for the
model of an unknown infinite-dimensional function (signal) observed in a Gaussian white
noise. Sharp thresholds on the smoothness of the functional depending on the complexity
(smoothness) of the signal that guarantee efficient estimation of the functional were studied
in these papers.
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Our approach is based on a bias reduction method that goes back to the idea of iter-
ated bootstrap (see [30, 29]). This method has been recently studied in the case of high-
dimensional normal models (see [36, 37, 40, 41]). In particular, it was shown that it yields
efficient estimation of functionals of smoothness s of unknown mean and covariance with
parametric /n convergence rate provided that s > ﬁ and d < n® for some o € (0,1), d
being the dimension of the space. Moreover, the smoothness threshold ﬁ is sharp in the
sense that for s < ﬁ the minimax optimal convergence rate is slower than /n. Our goal is
to extend some of these results to more general high-dimensional models under an assump-
tion that the model admits statistical estimators of unknown parameter for which normal
approximation holds for large n and sufficiently high dimension of the parameter.

1.1. Bias reduction. Let X(™ be an observation sampled from a probability distribu-
tion Pe(") in a measurable space (S, .A() with unknown parameter § € T. A particular
example of interest is X () — (X1,...,X,), where X1,...,X, are i.i.d. observations in a
measurable spaces (5,.4). It will be assumed in what follows that the parameter space T’
is an open subset of a separable Banach space F (which could be a high-dimensional or
infinite-dimensional space). Let 6 = 6,, = 0 (X (™)) € T be an estimator of 6 based on the ob-
servation X (™). We will be especially interested in estimators 6 that could be approximated
in distribution by a Gaussian random vector in /' (whose distribution, of course, depends on
unknown parameter 6 € T" provided that X ) ~ Pén)). More precisely, it will be assumed
in what follows that, for all # € T (or in properly chosen subsets of 1), /n(6 — 6) is close
in distribution to a mean zero Gaussian random vector £(#) in E. In Section 2, it will be
described more precisely in which sense this approximation should hold.

Given a smooth functional f: T — R, our main goal is to construct an estimator of f(6)
based on X (™ Itis well known that in high-dimensional and infinite-dimensional models the
plug-in estimator f(#) is often sub-optimal even when the base estimator 6 is optimal. This is
largely due to the fact that for non-linear functionals f the plug-in estimator f (é) has a large
bias even when @ is unbiased, or has a small bias. Thus, the bias reduction becomes a crucial
part of the design of estimators of f(#) with optimal error rates. To construct an unbiased
estimator of f(6) (which is not always possible) one has to solve an integral equation 7 g = f
for the following integral operator:

(1.1) (T9)(0) = Eag(0) = /T g(t)P(0:dt),0 € T,
where
(1.2) PO;A)=Py{fc A},ACT

is a Markov kernel on the parameter space 7' (the distribution of estimator 6). Recall that, by
the definition of Markov kernel, it is assumed that 7" > 6 — P(6; A) is a Borel measurable
function for all Borel subsets A C T.

Note that 7 f is well defined for all functions f € L (7) and, moreover, T : Loo(T') —
Lo (T) is a contraction. Most often, we will deal with operator 7 acting on uniformly
bounded Lipschitz functions (or even on sufficiently smooth functions).

Finding an estimator of f(¢) with a small bias then reduces to an approximate solution of
equation 7g = f. If B:=T — 7 is a “small operator" (which is the case when the estimator
0 is “close" to 6 with a high probability), then the solution of this equation could be written
(at least, formally) as the sum of Neumann series

g=(T+B) f=f-Bf+B2f—Bf+...
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and one can try to use the following function f;(6) (with a properly chosen k),

k
=Y (1) (B/f)(9),

Jj=0

as an approximate solution of equation 7 ¢g = f. This yields an estimator f} (¢ ) with a reduced
bias

Egfx(0) — f(0) = (=1)*(B**' f)(0),0 € T.

Another way to look at this bias reduction procedure is to observe that the bias of the plug-in
estimator f(#) is equal to

Eof(0) — £(6) = (T£)(0) — f(6) = (Bf)(9),0 € T

To reduce the bias of f (HA)7 one could subtract from it the plug-in estimator of the func-
tion (Bf)(0) yielding the estimator f1(6) = f(0) — (Bf)(9). The bias of f1(f) is equal to
—(B2f)(6). To further reduce the bias, we have to add its plug-in estimator (B2 f)(0) yielding
the estimator f(0) = f(0) — (Bf)(6) + (B2f)(6), and so on.

This higher order bias reduction method has been studied in [36, 37, 40, 41] in the case
of various high-dimensional normal models and in [33] in the case of the classical bino-
mial model. In particular, the approach to the analysis of this method initiated in [36, 37]
and further developed in [41] is based on the derivation of integral representation formu-
las for functions (B*f)(6) in terms of so called smooth random homotopies. These for-
mulas provide a way to obtain sharp bounds on the bias of estimator fk(é) and to estab-
lish smoothness properties of functions f needed to develop concentration inequalities for
this estimator (see Section 4 fog more details). However, the construction of random ho-
motopies for a given estimator # relies on certain coupling techniques. In particular, it is
based on the existence of a smooth stochastic process G(6), 0 € © with values in © such that

G(6) 4 (X (™), X" ~ P,. The bounds on the bias of estimator f(f) obtained in [41] rely
on the existence of such a coupling and the Holder norms of process G are involved in these
bounds. Such a coupling trivially exists in the case of random shift models [40, 42] and it is
easy to construct in the case of general Gaussian models [41] as well as some other exponen-
tial transformation families. However, it is much harder to develop smooth random homo-
topies for MLE and other relevant estimators in the case of more general high-dimensional
parametric models. A possible approach could rely on general coupling methods developed
in the literature such as optimal transport maps and Moser’s coupling (see, e.g., [63]). How-
ever, the bounds on Hoélder norms for such coupling maps with explicit dependence on the
dimension have not been developed in the literature and their development leads to difficult
questions concerning smoothness of solutions of PDEs (in particular, Monge-Ampere and
Poisson type equations) in high dimensions. Another serious difficulty is the need to develop
tight concentration bounds for estimators fj (¢ ) that are also not readily available for general
high-dimensional models (with Gaussian, log-concave and some closely related models be-
ing exceptions). Due to these difficulties, the higher order bias reduction method described
above has been so far fully studied only in the case of Gaussian models as well as some
random shift models with Poincaré type noise [41].

In this paper, we study the problem under an additional assumption that the estimator 6 ad-
mits sufficiently accurate normal approximation. More precisely, we assume that y/n (é —0)
can be approximated in distribution by a Gaussian r.v. {(#) in E. This assumption allows us

to define an approximating Gaussian model, an “estimator” 0=0+ % of parameter 6 for
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this model and the corresponding operators T, B and functions fk, k > 0. We show that func-
tions fi provide a reasonable approximation of functions fj and one can reduce the bounds
on estimator fx(6) of f(@) to the bounds on estimator f(#) in the corresponding approxi-
mating Gaussian model. This approach allows us to circumvent the difficulties with the direct
analysis of estimator fx(6) since both the technique of random homotopies and concentra-
tion inequalities are applicable to the approximating model. As a result, we prove “reduction
theorems" (stated in Section 2) showing that the risk bounds and normal approximation prop-
erties established earlier in the Gaussian case hold also for general models, provided that the
normal approximation of estimator 6 is sufficiently accurate.

1.2. Smoothness classes and distances between random variables. Let F' be a Banach
space and let U C E. For a function g : U — F|, denote

lg(z) — g(=")]]
9l =supllg@)|, llg]lL; =  sup
ooy = sup o)l ol = sup  1EE =05
and, for p € (0,1],
lg(x) — g(@")]]
9|l =  sup ————
H HLpp(U) z,x’ €U,x#x’ Hx_x/”p

We will now introduce Holder spaces C*(U; F') of functions of smoothness s > 0 from an
open subset U C FE into a Banach space F' (most often, either ' =R, or F' = FE). Given a
function g : U — F, let gU ) denote its Fréchet derivative of order J (in particular, g(o) =g).
Note that, for all z € U, g\) () is a symmetric bounded j-linear form (with values in F). For
such forms M{uq,...,u;],u1,...,u; € E, we will use the operator norm

||M ]| := sup | Mu, ... u;l|
ua[[<1,. [Juy <1

and gU) will be always viewed as a mapping from U into the space of symmetric bounded
j-linear forms equipped with the operator norm. Let s =m + p, m > 0, p € (0, 1]. For an
m-times Fréchet differentiable function g from U into F| define

lllorwim = max (gl ). max 199 wipco 9™ i, @)

The space C*(U, F) is then defined as the set of all m-times Fréchet differentiable functions
g from U into F such that || g|cs 0, 7) < oo. When the space F is clear from the context (in
particular, when F' = R), we will write simply C*(U) and || - || ¢+ (1) instead of C*(U, F') and
I llesw,r)-

REMARK 1.1. The definition of the space C*(U) used here is not quite standard. In par-
ticular, the space C'(U) consists of all uniformly bounded Lipschitz functions in U rather
than continuously differentiable functions. Note also that, for a j times Fréchet differen-
tiable function g, |9\ 7y < |9 ||Lip(rr), With the equality holding when U is convex
(which would lead to a more standard definition of Hélder norms).

We will also use the following notation. Let s = m+p, m > 0,p € (0,1]. For[ =0,...,m,
denote

lg?&%{q Hg(])HLip(U)7 Hg(m)”Lipp(U)).

lgllcn oy = max(

and let C4*(U; F) be the set of all m-times Fréchet differentiable functions g from U into F
such that ||g|c1.- 7,7y < 0o. In particular, || - ||co @y = || - ||Lip(er)-
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REMARK 1.2. Note that, by McShane-Whitney extension theorem, any Lipschitz func-
tion g : U — R could be extended to a Lipschitz function defined on the whole space F
with preservation of its Lipschitz norm ||g||rip(rry (in fact, this theorem applies to general
metric spaces, not just to Banach spaces). Moreover, any function g € C''(U) (a uniformly
bounded Lipschitz function) could be extended to the whole space E with preservation of its
C'-norm. In what follows, it will be convenient to assume that bounded Lipschitz functions
(in particular, functions from the space C*(U) for s > 1) and Lipschitz functions (in particu-
lar, functions from the space C%*(U) for s > 1) are indeed extended to the whole space this
way. Similarly, any function from space C*(U),U C E,s € (0,1] could be extended to the
whole space E with preservation of its norm (again by the application of McShane-Whitney
extension theorem to the metric space (F,d), d(x,y) := ||z — y||*,x,y € E). Note that the
problem of extension of smooth functions (from space C*(U) with s > 1) to the whole space
with preservation of the norm is much more complicated and such extensions do not always
exist in general Banach spaces.

We will need to quantify the accuracy of normal approximation for random variable
v/n(6 — 0) by £(0) (as well as for other random variables), and, for this purpose, we will
introduce below certain distances between distributions of random variables.

Let 71,72 be random variables defined on a probability space (€2, 3, P) with values in a
measurable space (.5,.4), and let F be a set of measurable functions on S. Define

Az(ni,m2) == sup [Ef(n) — Ef(n2)]-
feF

REMARK 1.3. Note that, in fact, A x(n1,72) is a distance between the laws £(1), £(n2)
of random variables 71,72 (so, it does not matter whether 71,72 are defined on the same
probability space or not; however, it is always possible to assume that they are and it will be
convenient for our purposes).

Let now ¢ : R — R be an even convex function with ¢(0) = 0 and such that ¢) is increas-
ing in R . The Orlicz 1-norm of real valued r.v.  is defined as

¢l ;:inf{c>o:E¢(@) < 1}.
c
Denote Ly (P) :={C : [|¢[|y < +oo}. We will also write ||C]|, @) = [[¢]ly (to emphasize
the dependence of the Orlicz norm on the underlying probability measure P). If ¢(u) :=
lulP,u € R,p>1, then || - ||, = || - ||z, and Ly(P) = Ly(P). Other common choices of 1

are 11 (u) = e/*l — 1 (subexponential Orlicz norm) and (1) = e** — 1 (subgaussian Orlicz
norm).

We will need another distance between random variables 71,72 in a space (S,.4) defined
as follows:

Ar (i, m2) = sup ||| f(m)lly = [1f (m2) 4]
feF

If (S, d) is a metric space, one can also define the following Wasserstein type distance:

. d d
Wy (n1,m2) == lnf{lld(nimé)llw =,y = n2}7

where the infimum is taken over all random variables 7}, 75 on (€2, X, P) such that | has the
same distribution as 7, and 7, has the same distribution as 7. If ¢)(u) = |u|P this becomes
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a usual definition of the Wasserstein p-distance W),. For this choice of v, we also use the
notation Az, instead of Ax .

We will also use the notations Az p(11,72), Ar ¢.p(n1,7m2) and Wy, p(1n1,72) whenever it
is needed to emphasize the dependence of these distances on P.

Since, for 7} 4 m,nh 4 72,

L)l = 1 )l | = 11F )l = 1 ()l < 1 ) = £ (0r2)

we could conclude that

(1.3) Ax(n1,m2) < sup Wy (f(m), f(n2))
feF

(for r.v. 71, m2 with values in an arbitrary measurable space S). If (S, d) is a complete separa-
ble metric space and F is the set of all contractions (Lipschitz functions on S with constant

1), then, for all f € F, |f(m)— f(n2)| < d(n1,7n2) implying that
(1.4) Arp(m,n2) < chquw(f(m), f(n2)) < Wy (m,m2).-
€

Note also that for 1)(u) = |u| (the L;-norm), we have

Az 1(m,n2) <Wilm,m2) = Ar(n,m2),

where F is the set of all real valued contractions on S (follows from Kantorovich-Rubinstein
duality).

Most often, we will deal with random variables in a Banach space F’ (in particular, F' = F
and F' =) and the set F will usually be a Holder ball of certain smoothness, such as F =

{f:fllesmy <1} for s >0, or F:={f | fllo:w) <1}, or Fi={f : || fllcresy < 1} for
some 0 <! < s and for U C F. In particular, we will use the notations

As(n1,m2) = Ar(ni,m2) and Ag y(n1,7m2) = Ar . (m1,m2)

for F={f:[|fllc:m) <1}
Other distances that will be used in the future include:

» Kolmogorov’s distance between random variables 11,72 in R (more precisely, between
their laws L£(n1), £(n2)) defined as

di(n1,m2) == Sup P{m <z} —P{n <z} =Ax(n,m),
TE

where F:= {I(_o 4 : ¥ € R}.
e Fors=k+p, k>0,p € (0,1] and random variables 7,75 in a Banach space FE, let

(1.5) Cs(n1,m2) = sup  [Ef(m) —Ef(n2) = Ax(n,n2),

£ Lip, () <1
where F := {f : || f®|Lip, () < 1}. Note that, for s = 1, ¢1(m1,m2) = Wi (1, 72).

Finally, in a statistical framework, we have to deal with a family of probability measures
Py, 6 € O (that generates different distributions of the data) and we will use uniform versions
of the distances defined above:

Aro(m,n2) =supArp,(n1,m2),
9cO

Arypo(m,n) = sup Arypp,(m,n2) and Wy e(n1,m2) == sup W, (11,12)-
S S
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We will also use the distance
AJ},¢,®(”17 n2) = Are(n,n2) + Arye(n,n2).

Throughout the paper, the following notations will be used. For real non-negative vari-
ables A, B, A < B means that there exists a universal constant C' > 0 such that A < CB,
A 2 B means that B < A and A < B means that A < B and B < A. If constant C in the
above inequalities depends on additional parameters, the corresponding relationships will be
provided with subscripts: say, A S, B means that A < OB with C = Uy, > 0 depending
on s and .

2. Main results: bounds on L.;-errors and normal approximation of fk(é) In this

section, we study the error rates of estimator f (6 ) depending on the smoothness of func-
tional f and show that they coincide with the rates known to be optimal in the Gaussian case
provided that normal approximation error for 6 is negligible.

In [40], the following Gaussian shift model X (™ = g + %, 0 € E was studied, where

¢ is a Gaussian r.v. in F with mean zero and covariance operator Y. It was assumed that
6 is an unknown parameter and ¥ is known and the goal is to estimate f(f) for a given
smooth functional f. The complexity of this estimation problem could be characterized by
two parameters: the “weak variance" of the noise &, ||| = supyj, <1 E(¢, u)?, and its “strong

variance" E||¢[|2 = E supjy <1 (¢ u)?. Note that, in the case of Euclidean space E = R? and
£~ N(0,0%1y), |X|| = 0? and E||€]|? = o2d.
The following result was proved.

THEOREM 2.1. Let s > 0. Forse( 1], set k:=0 and for s > 1, let s=k + 1+ p for
some k>0 and p € (0,1]. Let 0 = «9(X(”)) = X Then

j =2 E||g 2
sup  sup||fx(0) — F(O)L, ) Ss L
[ fllcsm)y<10€E (o) ( n1/2 ( ) )/\

Note that the term I } of the error bound of Theorem 2.1 controls the concentration of

estimator f (é) around its expectation whereas the term (\ / %) controls the bias of this

estimator. Moreover, it was also shown in [40] that, for E = R? equipped with the standard
Euclidean norm and & ~ N (0, 0%1y),

1/2 2\s
sup inf sup ||T(X )—f(9)||L2(Ps>X(|ﬂ|/z ( %) )Al

[ flls@ay<t T Oere n

where the infimum is taken over all estimators 7'(X (”)), implying the minimax optimality of
the Lo error rates in the case of Gaussian shift model in the Euclidean space F = R4,

Note also that the convergence rate is of the order O(n~/2) if |2 < 1, E[|€]> < n® for

€ (0,1) and s > X and it is slower than n=1/2 if s < ;1. For s > 11 it was proved in
[40] that \/n(fx(6 ) — f(#)) could be approximated in dlstrlbutlon by 0(0)Z,Z ~ N(0,1)
as n — oo, where JJ%(Q) := (Xf'(0), f'()), and, moreover, it was shown that fj(f) is an
asymptotically efficient estimator.

We will try to extend some of these results to general models and general estimators 6 for
which Gaussian approximation holds.
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To describe Gaussian approximation properties for estimator 6 more precisely, let

a0y =0+ ger

V'
where ¢ : T+ E is a Gaussian stochastic process. In what follows, 6 := G(6),6 € T will be

viewed as a Gaussian approximation of estimator 6. In other words, the estimator 6 in the
initial model is approximated by the “estimator” 6 in a Gaussian shift model with unknown

parameter 6 and small Gaussian noise i\/%). For simplicity, we also assume that E€(0) = 0,0 €

T and let X(6) denote the covariance operator of random variable £(6). As a typical example,
consider the case when E :=R% and £(0) := A(0)Z,Z ~ N(0, 1), where A(6) : R% — R% is
a bounded linear operator. Even more specifically, when X = (X1,....X,,), X1,..., X,
being i.i.d. ~ Py,0 € T C R%, one can think of the maximum likelihood estimator 6 and
A(6) = 1(h)~1/2, where I(6) is the Fisher information matrix (since in the case of regular
statistical models /n(6 — ) is close in distribution to I(6)~'/22).

~

In the results stated below, the L,,-error of estimator fj(6) and its normal approximation
will be controlled uniformly in a subset © of parameter space 7'. It will be assumed that £(6)
is bounded or even sufficiently smooth in a small neighborhood

O5:={0c F:dist(0;0) <o} CT

of set © for some § > 0, and, moreover, that the normal approximation of 6 by 6, or of
v/n(0—0) by £(0) holds in proper distances uniformly in § € ©;. The behavior of the process
£(0) outside of ©4 will be of no importance for us, and, without loss of generality, we can and
will set £(0) := 0,0 € £\ ©5. With this definition, we still have that ||| () = I§]l1.(e,)-
In what follows, we will deal with loss functions ¢ : R — R . It will be assumed that 1) is
convex with ¢(0) = 0. Moreover, 1 is even, increasing on R and satisfies the condition

du<ep(u) < "Pr(u),u>0
with some constants ¢/, ¢’ > 0, where 11 (u) = e* — 1. Let ¥ be the set of such loss functions.
Given ¢ € U, denote

Qﬁ(u) ::# u > 0.

("
For instance, in the case of ¥)(u) = |u|P,p > 1, we have Y(u) =u!P,u >0, and in the case
of ¥(u) = 11 (u) = el*l — 1, we have (u) = m,u > 0.

For ¢ € ¥, we will study Orlicz norm error rates || fk(é) = f(O)r,@,) of estimator fk(é)
depending on the smoothness of functional f. We will also study normal approximation of
r.v. vn(fr(0) — f(6)). The choice of k depends on the degree of smoothness of functional f.
Namely, if f is C*-smooth with s =k + 1+ p, k>0, p € (0, 1], we will use estimator fk(é)
Note that, for k = 0, we have fo = f and one can use a standard plug-in estimator f(6) for
all s € (0,2]. First, we will state the results in this simple case.

Given © C T, denote v¢(©) := supgee E[|£(0)]|%.

THEOREM 2.2. Let © C T be an open subset and let 1) € V. The following statements
hold:
(i) For all s € (0,1],

A o N
@2.1) sup  sup |[£(6) = F(O)L, o) gs,w( L)  Anuoldd)
1 fllcsm)<10€O© n
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where H :={g:||gllc:(p) < 1}
(ii) Let 6 > 0 be such that ©5 C T. For s =1 + p with p € (0,1], there exists a constant
€ (0,1) such that

1/2

A ||E”L ©) 0e(O©)\ s .~
sup_sup [(0) = JO)] .o e | + (2 ag 6, 00)
ooy <1660 4 (Py) nl/2 < n > H,1p,0

su jL/2 C n
@2) a2 (O] > covi)| AL

where H :={g: Hg”CS(ecss) <1}.

REMARK 2.1. For ©® =T = F, bound (2.2) of Theorem 2.2 simplifies as follows:

1/2
A HEHL (E) ve(E)\ s .~
o 3 +

sup_ supl(0) = Ol Se [+ () 4 AL w00 AL
[ fllcs (m<10€E »(Po) o,y nl/2 n Hp B /\
where H :={g: ||l9llc(m) < 1}

In the general case, there are additional terms in the bounds depending on tail probabilities
of [|£(0)]|. Note that under the assumption that ve(E) < ¢}§?n for small enough constant
¢} > 0, it easily follows from the Gaussian concentration inequality that

/" S2
015*”}’96@_

P{Hg(G)H > Cs(;\/ﬁ} < exp{_

12z o)
Since for ¢ € W, th(u) <y (w),u > 0 and ¢y (u) = m, it is easy to conclude that
1 2
(B0 > civy) < = || N

Thus, in the worst case, the additional term in bound (2.2) is of the same order (up to a

1/2
12Nz o

factor %) as the term — 5% present in the optimal bounds in the Gaussian case. For slower
growing losses, this additional term becomes negligible. For instance, for the loss 1 (u) =
n
P Elece)
decays exponentially fast as n — oo. Note that constants ¢, ¢/, ¢” might depend on s.

uP,u > 0,p > 1, it is dominated by exp{ } for some constant ¢’ > 0, so, it

The next result provides bounds on normal approximation of the error f(#) — f(6) for
functionals f of smoothness s € (1,2]. Recall that for a Fréchet differentiable functional f,

07(0) = (2(0)f'(0), f'(6)).

THEOREM 2.3. Let s=1+ pwith p € (0,1] and let 6 > 0. Let © be a subset of E such
that ©5 C T. Suppose, for some sufficiently small constant ¢ > 0, v¢(©) < c¢in. Then, for
some constant cs € (0,1), the following bounds hold.

(i) Forall ¢ € U,

Il <19€@‘”f SOz =2 O Z ], )
Co(O5) >

O)\ s ~ o~ ~
23 S (L) 4 2 0,0.0) + 5002 (PO 2 v
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where H:={g: ||gllc-(e.,,) <1}-
(ii) For all s' € [1,s], !
sup  sup Ay (vn(f(0) — f(0)),07(0)Z)

I fllcs o5 <10€O

2.4)
< [V(y2L2) 4 e (VA0 - 0).60) + Vs P Ig(0)] 2 .5V,

where F :={g: ||g||CO‘3,(Uc56\/E) <1}

REMARK 2.2. For © =T = FE, under condition v¢(E) < ¢in for a small enough con-
stant c; > 0, the bounds of Theorem 2.3 simplify as follows:

sup  sup||[£(0) = FO)llr, e,y —nPor (O Z] L, @)
[fllcsm<10cE

Soo (V2B a7, 400

~ S, n

with H := {h : HhHC*(E) < 1}, and
sup  sup Ay (Vn(f(0) — £(9)),04(0)2)

I fllcsm<10€E

where F := {g: [|gllco." 5y < 1}

The problem becomes much more difficult in the case when s=k+1+p>2(k>1,p€
(0,1]). In this case, f;,(0) is no longer a standard plug-in estimator and a non-trivial analysis
of its bias is needed (see Section 4). This analysis requires some smoothness assumptions on
the Gaussian stochastic process (). Namely, instead of quantity v (©), we will use such
quantities as

0(055) == El¢]|2s o)

Note that, if 9¢(0;s) < oo, then, for all p > 1, El/p”&”’és(@) Sp V0¢(0O; s), which easily
follows from Gaussian concentration. Note also that, if {() = A(6)Z, where Z is a given
Gaussian vector in F and © > 0 +— A(f) € L(F) is a C* function with values in the space
L(E) of bounded linear operators in E, then d¢(0;s) < [|A[2. @)EllZ||*. In particular, if

E =R? (equipped with the Euclidean norm) and Z ~ N (0, 1), then
(2.5) 26(035) < [[A][2 0 d-

In such cases, the conditions in terms of 0¢(©; s) can be reduced to smoothness assumptions
on the “scaling" operator A(f) (which is related to regularity properties of covariance ()
as a function of 8).

If © =T = E, we will use the notation d¢(s) := 0¢(E; s). In what follows, such quantities
will be used as complexity parameters in our problem.

"Here and in what follows, Uy 1= {z € E : ||z <r}.
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We are now ready to state the main results of the paper. The next theorem provides a bound

A~

on the Ly,-error of estimator f, () for ¢» € . Recall that it is assumed that £(#) = 0 outside
of the neighborhood ©5 specified in the theorems.

THEOREM 2.4. Let © C T, let § >0 and let s=k+ 1+ p with k> 1 and p € (0,1].
Suppose that ©5 C T Then, for all 1) € ¥ and for some constant cs € (0,1),

sup  sup || fi(6) = F(O) L, (20
| fllcs e <10€©

2
< HEHZC(E) (0555 —1)\° A+ 0.0
~S n1/2 + n + ’}-[7157@5( ) )

@6+ sup (Be{ll0 = 0] > e} ) + &2 (B{llEl 1. ) > cséﬁ})] AL
0€0B;
where H:={g:||gllc:(e..;) <1}

Next we study normal approximation of estimator fk(é)

THEOREM 2.5. Lets=k+ 1+ pwithk>1and p € (0,1], and let 6 > 0. Let © be a
subset of T' such that ©5 C T. Suppose that, for some sufficiently small constant ¢y > 0,

0:(0s;55) < cin.

Then, the following statements hold.
(i) For all ¢ € ¥ and some constant cs € (0, 1),

sup_supl[1/s(0) — f(O) ey~ (0)|Z |, o)
I fllcs o) <16€O

1/2
(0535 —1)\* ”ZHLOO(E) 0:(0535—1) 4 .
Ss,w < n n1/2 n + AH#Z)?@J (97 9)

@D+ sup b (Pofllf - 01l = .0} ) + 2 (PLE ) 2 00V} ),
[AS(SH

where H:={g:|gllc-e..,) <1}
(ii) For all §' € [1,s] and some constant c5 € (0,1),

sup  sup Ay (vVn(fu(0) — £(0)),04(0)2)

I fllcs o5 <10€O

(055 —1)\° 0:(0s5;5 —1 .
S V(PO iy g PO A, (Vi - ),600)
(2.8)
+ \/ﬁesug Po{ |10 — 0|| > 56} + VP {|[¢ll L) > 055\/5}} 7
€0s
where F:={g: [|9|lco.- ., ) <1}

REMARK 2.3. For © =T = E, the bounds of Theorem 2.4 simplify as follows:
sup sup || fiu(6) = f(O)lz, @)

lfllcsm<10€E
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- BIZw (=1 -
(2.9) Ssab | =173 Ly + A, p(0,0)] A1

n

where H :={g: ||gllc-(5) <1}-
Assume that, for some sufficiently small constant ¢; > 0, 9¢(s) < ¢in. Then, forall ¢ € ¥,
the following versions of bounds of Theorem 2.5 hold:

supsup|[f(8) = FO)llz. e,y — 0o (0) |1 ZlIn, o))
I fllcs = <10k

_ 2e-D\ =12 -1 T
2100 Suy —) =5 4 A (0.0)

with H :={g: ||gllc-(z) < 1}, and, for all s’ € [1, 5],
sup _ sup Ay (Va(fi(6)  [(9)),0,(6)2)

lfllcsm<10€E

< 05(8—1) § 1/2 05(8—1) ~
S V(22 12 o B+ A (Va0 - 0),600))
where F :={g:||gl|co. () <1}
In the general case, there are additional terms depending on tail probabilities of [|{||1_ ()
and ||0 — 6]|. The term 1)'/2 (IP’{MHL > csé\f}) is negligible (smaller than n~'/2) for
losses v that grow slower than sub- exponentlal loss 11 (see Remark 2.1). For the term

sup ¢ (P{[l0 — 0] > .6}
[USCH

to be of the order O(n_l/ %), some conditions on the tail probabilities
sup Py{||6 — || > c,0},
0€05

ranging from polynomial decay in the case of L-losses ¢(u) = u” to exponential decay
in the case of sub-exponential losses, are needed. In some cases, it is possible to reduce
these conditions to the conditions on the tails of ||{]|_ () using normal approximation (see
Corollary 2.2).

REMARK 2.4. The bounds of theorems 2.2, 2.3, 2.4 and 2.5 show that the estimator f;,(6)
of f(0) exhibits the same type of behavior as in the case of Gaussian shift model studied in
[40] (see also Theorem 2.1 at the beginning of this section and the discussion that follows)
provided that normal approximation of 8, quantified by such parameters as

Afiye,(0:0) and Axe,(vVi(f —0).£(0)),
is sufficiently accurate.

1. The “Gaussian parts" of the bounds of these theorems, such as the part

12152 )
nl/2

) ( (555 — 1))5

n

S
of bound (2.6), are similar to the main part ”517% \/( % of the bound of The-

orem 2.1. The “Gaussian part" of bound (2.6) consists of two terms: the concentra-
=02

tion term — 555> controlling the random error of estimator fx(#) and the bias term
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S— s . . . .
< w) controlling the bias of the estimator. In fact, the Gaussian parts are ex-

actly the same as in the case of Gaussian shift model when £(6) does not depend on 6 and
it is possible to obtain Theorem 2.1 for Gaussian shift models as a corollary of our general
results, see Corollary 2.1 below.

2. In typical examples, such as £(0) = A(0)Z,Z ~ N(0, 1), complexity parameters v¢(O)
and 0¢(Os; s — 1) could be easily controlled in terms of some dimension type parameter
d (see, e.g., bound (2.5)), and the Gaussian parts of the bounds are controlled by the

S
expression ﬁ + <\/% ) . If the normal approximation terms of bounds of theorems 2.2,

2.3,2.4and 2.5 are negligible comparing with the Gaussian part, there is a phase transition
from the classical f error rate when the smoothness s of functional f is sufficiently large
to slower rates when the smoothness is not sufficient (similarly to the case of Gaussian
shift models [40]). More precisely, if d < n® for some a € (0,1), then f error rate for
estimators f (6 ) holds for all s > ;= and slower rates hold for s < 1 — (whichi 1s known
to be a sharp threshold in the case of Gaussian shift models). Moreover, if s > 1_a, then
the bounds of theorems 2.3 and 2.5 also imply normal approximation of estimator fj( A)

However, for Gaussian type bounds on estimator f (6 ) to hold in the whole range of

values of o € (0,1), the normal approximation of v/n(6 — ) by £(6) should hold for
d = o(n) (see further discussion in Section 3).

3. Finally, note that, for s € (0, 2], there is no need in bias reduction to achieve the optimal
(in the Gaussian case) error rates and plug-in estimator f (é) could be used for this purpose
(see theorems 2.2 and 2.3). For s > 2, the bias of the plug-in estimator is too large and

estimators with reduced bias, such as fi (é), are needed to achieve the optimal rate (see
theorems 2.4 and 2.5).

It is not hard to obtain a generalization of results of [40] to more general Gaussian shift
models as a corollary of the results of the current paper. Namely, suppose that X (") satisfies

the following Gaussian shift model X () = ¢ + E(\F) 0 € E, where £(0) is a Gaussian random

variable in E with mean 0 and covariance operator 3(),6 € E. In particular, this includes
the Gaussian shift models studied in [40] in which the noise £(6) = £ did not depend on 6.
Let § = (X (™) = X The next corollary is immediate since 6 = § and /n(6 — ) = £(0),
implying that

Are,(V(l —6),6(0) = A%, p(6,6) =

COROLLARY 2.1. Lets=k+1+pwithk>0and p € (0,1]. Forally € ¥,

516) — FO) 1o < {”Z”m (P A
sup _ sup [ fx(0) = J(O)llL, o) Ssw | = 13
I fllcs ) <10€E v (Po) 172

Moreover, for k > 1 under the assumption that 0¢(s) < cin for a small enough constant
c1 >0,

supsup|[fe(8) = FO)ll e,y — 0 P01 (0)| ZlIn, o))
I fllcs <10k
1/2

w(s =1\ IEI 5 [oe(s—1)
55@( n * nl/2 n
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and, forall s' € [1,s],

sup  sup Ay (vVn(fi(0) — f(0)),04(6)Z)

lfllesm<10€E

< [va(y ) sy 2D,

n

1/2 05(8—1)

For k =0, the last two bounds hold without the terms involving || %]}/ (B) -

In the case when the noise £(0) = £ does not depend on ¢, we have d¢(s — 1) = E||¢||?,

and the above bounds immediately imply the main results of paper [40].

The bounds of theorems 2.4 and 2.5 show that the “Gaussian error rates" would hold for
other models provided that the additional terms related to the accuracy of normal approxima-
tion and to the tails of random variables |6 — 0|| and ||{|| . (x) are negligible comparing with
the Gaussian terms. To ensure this (and, in particular, to ensure that \/n convergence rate is

attainable for estimator fj (@) if f is sufficiently smooth), one needs the conditions

Are, (\/ﬁ(é - 9),5(0)) — 0 and A;_rimeé(é,é) =o(n"'?) as n — co.

The following proposition provides useful upper bounds on the distances Ay o, (é, 5),

Agyp0,(0,0) and A, | o (6,6).
PROPOSITION 2.1.  Let s > 1. For H:={g: |9l c:(e,) < 1},

Are, (Vild—0).60))

Aro. (Vi - 0),60))

AH,@& (é’é) < s A’H,d,,@d (é,é) <

vn vn

AF o, (VRO - 0),00))

and AL Jn )

H?w?

@5(9’5) <
where F:={g: ||gllco.c v, ) < 1}

It follows that the condition Af}{t’lp’@é (0,0) = o(n=/2) holds if

AF o, (VR(8 = 0).£(60)) = o(1).

Next we state corollaries of theorems 2.4 and 2.5 (and, for s € (1, 2], of theorems 2.2 and
2.3) in the case of quadratic loss 1(u) = u?. In these corollaries, we will use Wasserstein
distances W7y, Wy to quantify the accuracy of normal approximation and to obtain a simpler

form of the results.

COROLLARY 2.2. Lets=k+ 1+ pwithk>1and p € (0,1], and let § > 0. Let © be a
subset of E/ such that ©5 C T'. Suppose that, for some sufficiently small constant c; > 0,

0¢(0s355) < c16%n.

Then, for all s’ € [1, s| and for some constant ca > 0,

sup  sup Ay (vVa(fx(0) — £(6)),07(0)2)

Ifllcs o5 <10€O
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0:(Bg;5—1 0:(Bs;5 —1
Ses [P0 26O

n

A~ ¢ 2n
+Wie, (Vn(0 —0).£(0) + \/ﬁe"p{_nzfi@}] '

COROLLARY 2.3. Let© C T, let § >0andlet s=Fk+ 1+ pwithk>0and p € (0,1].
Suppose that ©5 C T. Then, for some constant ca > 0,

2.11)

sup  sup || fe(8) = F(O)] Loy
Ifllcs o5 <10€0

1112 & NCETES
E\Ys,
o [Pt ( )

n

o

_l’_

Moreover, if for some sufficiently small constant c¢; > 0, 9¢(Oj5;5) < c10%n, then

2.12)

sup  sup||fs(0) = F(O)lln, e, — 120 (0)

Ifllcs o, 0€©
1/2
< 0:(Og;8—1)\° HE”L (E) [09¢(Os;5—1)
~S,0 +
n nl/2 n

Wae,(v/n(0 — 0),£(0)) _ﬂ
! Vi *ex"{ \EHLW(@}'

REMARK 2.5. Bounds of corollaries 2.2 and 2.3 also holds for k = 0. In this case, the

terms involving ||X]|;/

1/2 . M could be dropped.

As a simple consequence, we get the following result that shows asymptotic normality of
estimator fx(6) with y/n rate and provides an exact limit of its mean squared error if normal
approximation holds and the functional f is sufficiently smooth.

COROLLARY 24. Let © =0, CT, let 6 >0 andlet s=k+ 1+ p with k>0 and
p € (0, 1] Suppose that ©5 C T and for some o € (0,1), 9¢(Os; 5) S n®. Suppose also that

(DM
(2.13)

Then
(2.14)

y S 1. Assume that s > 1 = - Finally, suppose that

W0, (\/ﬁ(e — H),f(ﬁ)) — 0 asn — co.

sup  sup|nBq(fi(6) — £(6)) — 0?(9)‘ —0asn— oo,
I fllcs o5 <1 6co

and, for all oo > 0,

sup sup
Ifllcs o5 <10€0,04(0)>00

—0asn— oo,

Vi(fe(0) = £(0))
ax ( @ 2 )

where Z ~ N(0,1).2

20f course, it is assumed here and in Theorem 2.5 that 6 = é(X(n)), x™M o Pe(n).
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REMARK 2.6. Let © =T = E and assume that, for some sufficiently small constant
c1 >0, 0¢(s) < cin. Then, for all s’ € [1, 5], the following version of the bound of Corollary
2.2 holds:

sup sup Ay (Va(fi(0) = £(6)),04(6)2)

lfllcsm<10€E

(s —1)\?° Ve(s—1 A
219 5o [Va(y ) i PO s - 0).60) |
The bounds of Corollary 2.3 simplify as follows:

sup  sup || fe(8) — £(0)l| 1,z
Ifllcs(my<10€E

1/2

(2.16) <s [”E”LM+< %(n—D) N Wz,EWﬁ(jﬁ— 9)@(9))} AL

nl/2
and, under the condition d¢(s) < ¢yn for a small enough constant ¢; > 0,

sup _sup|[(8) = F(O)ll1.e,) —n 201 6)]
Ifllcsm<10€E

so\ =12 1) Wap(V/n(l—0),£0
%(n >> Pl %(n ) . m(ﬂﬁ ).6(9)

3. Examples and applications: estimation of functionals and normal approximation
in high-dimensional spaces. To apply the results of Section 2 to concrete statistical mod-
els, one needs to use sharp bounds on the accuracy of normal approximation over classes of
smooth functions for typical statistical estimators (such as maximum likelihood estimators)
in a high-dimensional setting. Ideally, in the case of a d-dimensional parameter 6, bounds on
such distances as Ar g, (vn(0 — 0),£(0)) with 7 :={g : ||g[|co." v, .y < 1} of the order

\/g, or AH%@J(@,@) with H := {h : [|h[|c:(e,) < 1} of the order n_l/Q\/% are needed to
ensure that the normal approximation holds for d = o(n). This would allow us to deduce from
Theorem 2.4 and Theorem 2.5 the results known to be optimal in the Gaussian case. Unfor-
tunately, such bounds are, in our view, underdeveloped in the literature, not only in the case
of general classes of estimators for high-dimensional models, such as MLE (see, e.g., [1, 2]),
but even in the case of classical central limit theorems (CLT) in high-dimensional spaces (see,
e.g., [56] where there are counterexamples showing that CLT could fail for some reasonable
distributions in R? unless d? = o(n)). The main difficulties involved in these problems are
purely probabilistic: identifying classes of distributions in high-dimensional spaces with a
reasonably good dependence of the normal approximation bounds on the dimension. The
importance of these problems in high-dimensional statistics goes far beyond their applica-
tions to functional estimation discussed in the current paper. In this section, we will provide a
very brief review of some approaches to high-dimensional CLT (including, very recent ones)
and discuss several applications to the problem of functional estimation. A more detailed
development of this approach is beyond the scope of the paper.

@17 5 (

3.1. High-dimensional CLT. The rates of convergence in CLT in R? and in infinite-
dimensional spaces have been studied for over fifty years (see [8], [53], [61] and references
therein) with a goal to obtain the bounds on the accuracy of normal approximation in vari-
ous distances in the spaces of probability distributions often represented by sup-norms over
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classes of sets (for instance, convex sets), or classes of functions (for instance, Lipschitz
functions).

The distances (s defined by (1.5) are particularly useful for our purposes. Such distances
occur very naturally in connection to the Lindeberg’s proof of CLT, they are used as a tool
in bounding other distances (the sup-norms over convex sets, bounded Lipschitz distance,
etc) and they were advocated in [64]. In particular, the following fact is straightforward:
if X1,...,X, are iid. r.v. in R? (equipped with the Euclidean norm) with mean zero and
identity covariance and Z is a standard normal r.v. in R¢, then

Xi+---+X E| X3
(Bt ) SEIEE
7n Jn

Typically, E|| X || could be of the order d3/?, yielding the bound on (3-distance of the order
43/2

n
p\urrposes since an interesting regime in functional estimation problem is d ~ n® for o >
1/2, which leads to non-trivial bias reduction problems. However, in some special cases,
in particular, in the case of random vectors with independent components, one can improve
bounds on (,-distance rather substantially. The following fact is very simple and well known
(see [64] for similar statements).

Thus, normal approximation holds when d = o(nl/ 3). This is not good enough for our

PROPOSITION 3.1.  LetY = (Y1,...,Yy),Y' = (Y{,...,Y)) be two random vectors with
independent components. Then

d
GOLY) <D G(Y,Y)):
j=1

As a consequence, in the case when r.v. X = (X WX (d)) has independent compo-
nents,

. (X1+---+Xn
3 ’\/ﬁ
and if, in addition, E(X 7))3 = 0, then it is easy to see that
X 4+ 4+ X N oad
C4<1+—M,Z) < max E|XD[*=.
N 1<j<d n

The last bound is of the order %, which is already sufficient for our purposes.

s d
,Z) < max E[XDp-L.
1<5<d n

NG

In Subsection 3.2 below, we use this very simple approach to study estimation of smooth
functionals for some statistical models with independent components.

In the recent years, there has been a lot of interest in studying normal approximation
bounds in high-dimensional CLT in optimal transport distances (in particular, Wasserstein
type distances). A recent result in [23], provides the following bound on the Wasserstein
Ws-distance in normal approximation: assuming that || X || < 3 a.s.,

X4+ X, Z><B\/dlogn
VAV

Thus, for convergence of Ws-distance to 0, this bound requires the condition d = o <\/7 )

o

_n_
logn

in typical situations when 3 ~ v/d. This is again too restrictive for our purposes.
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In recent papers [18, 24], another approach to high-dimensional normal approximation
has been developed. It is based on the technique of Stein kernels and it applies to probabil-
ity distributions in R? with bounded Poincaré constants, in particular, to some log-concave
distributions (see also [3] for more general results).

A probability measure 1 on R? is said to satisfy Poincaré inequality iff there exists a
constant C' > 0 such that for all locally Lipschitz functions ¢ : R? — R and for X ~ i,

Vary(9(X)) < CE,[[(Vg) (X))

Let Cp(p) denote the infimum of all constants C' > 0 for which the inequality holds. It is
called the Poincaré constant of probability measure .

A probability measure (distribution) ; on R? with density p is called log-concave if p
is a log-concave function, that is, logp is concave. Among the examples of log-concave
distributions are Gaussian measures and uniform distributions in convex bodies of R?. It is
known that log-concave distributions satisfy Poincaré inequality.

REMARK 3.1. The following facts are well known:

1. For a standard Gaussian measure z on R?, Cp(u) = 1. Moreover, if pu(dz) = e~V @) dx
with V : R? — R such that V" (x) = C~! for a symmetric positively definite matrix C,
then Cp(u) <||C||, and, if B is a symmetric positively definite matrix and

u(dr) = exp{—%(B_lzv,:U) - V(:U)}da:,

where V' is a convex function on R?, then Cp(p) < || B| (see [9]).

2. There are also ways to control the value of Poincaré constant under certain perturbations of
probability measure. For instance, if y, v are two probability measures and y is absolutely
continuous with respect to v with the density ‘;—5 bounded from above by a constant A > 0

and bounded from below by a constant a > 0, then Cp(u) < gC’p(u). Also, if p,v are
log-concave measures on R and, for some ¢ € (0, 1),

drv (p,v) = sup |u(A) —v(A)|<1—¢,
ACR4

then Cp(u) < Cp(v) (see [49]).

3. Let p be an arbitrary log-concave distribution with covariance . According to the
Kannan-Lovasz-Simonovits (KLS) conjecture, Cp (1) < ||X||. Although this conjecture
still remains open, it was recently shown in [13] (building upon earlier results of [23, 45])
that for some constant ¢ > 0

loglogd)l/Z

Cp(p) <desa )72
It was proved in [18] that, if X7, ..., X, are i.i.d. mean zero random variables with identity
covariance sampled from a distribution ;2 on R such that C'p(p) < 0o, then

G.1) Wy (A ) < /) - 1\/3,

vn n
where Z ~ N(0;1;). Thus, the convergence in high-dimensional CLT in the Wj-distance
holds provided that d = o(n) for all the distributions with bounded Poincaré constants. If
distribution p is log-concave, then it follows from the bound on Poincaré constant proved in
[13] (see Remark 3.1) that the CLT holds provided that d < n'=9 for an arbitrary § > 0.

This approach will be used in Subsection 3.3 below to study smooth functional estimation
for some classes of log-concave and related models.
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REMARK 3.2. Another interesting approach to high-dimensional normal approximation
was initiated in [14]. In this paper, the authors were trying to overcome the “curse of dimen-
sionality" in CLT by sacrificing the convergence rate with respect to n. Namely, they proved
the bound on the accuracy of normal approximation in sup-norm over the class of hyperrect-

; 1/6
angles of the order O ( (W) ), implying that normal approximation holds provided

that log7 d = o(n). More recently, this result was improved in [43, 35, 15, 16]. In particular,
it was shown in [16] that the accuracy of normal approximation over hyperrectangles is of

the order O(log\}: d log n), which is optimal up to a logn factor. Thus, the normal approxi-

mation holds when log® d = 0( n

Tog? n) . In principle, the results of this type could be adapted

for our purposes in the case when E is the space R? equipped with the £,,-norm. However,
in this case E||¢ H%x would be typically of the order logd and this would be also a typical
size of such parameters as 0¢(s) involved in our bounds. Thus, the Gaussian part of the error

bounds in functional estimation (see Remark 2.4) would be of the order ﬁ + < 10511) S. If

log d = o(n®) for some o < 1/3, the classical rate n /2 dominates the bias term < 105(1) ’
for all s > 3/2 and there is no improvement of the rate when the degree of smoothness s is
above 3/2. Moreover, for such low values of log d, the bias reduction is not required and the
optimal rates would be attained for plug-in estimators. One would need to have normal ap-
proximation in high-dimensional CLT in the distances relevant in our paper for logd = o(n)
to take the full advantage of the bias reduction method in the whole range of smoothness of
the functionals. However, such normal approximation results do not seem to be available in

the current literature.

3.2. Independent components. We will start this section with an application of Corollary
2.2 and Corollary 2.3 to statistical models with many independent components.

Let X" = (X §"), . ,Xé”)) be an observation with values in the space S := SYL) X

- X Sén), where (S](n),A§")), j =1,...,d are measurable spaces and S s equipped
with the product o-algebra A := Agn) X eee X A((jn). We will assume that the compo-
nents X{™ ..., X{™ of X" are independent r.v. and X ](") ~ (gjﬁ) with parameter 6; taking
values in a Banach space E;, j =1,...,d. Let I/ := E; x --- X Ey be equipped with a
standard structure of linear space (the direct sum of linear spaces F1, ..., E;) and with the

1/2
norm ||z|| = (Z;l:l Hx]H2> , &= (x1,...,2q) € E. Then, clearly, X ~ Pe(n),ﬁ €E,

where Pg(") = Pe(ln) X oe X Po(:)v 0 = (61,...,04) € E. In the problems we have in mind,

{Péjn) :0; € E;},j=1,...,d are low dimensional models and the complexity of combined

model {Pe(") :0=(01,...,04) € E} depends only on the number d of independent compo-
nents.

Let éj = éj(Xj(n)) be estimators of parameters 6;,7 =1,...,d and let 0= (él, .. .,éd)

be the estimator of 6. Assume that \/ﬁ(é] — 0;) could be approximated in distribution by a
centered Gaussian r.v. £;(#;) with values in £; and with covariance operator >;(6;). Since

~

0,7 =1,...,d are independent r.v., we assume that §;,j =1, ..., d are also independent and
£(0) := (€1(61),...,€4(0a)),0 = (01,...,0,4) € E can be used to approximate v/n(d — 6) in
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distribution. The following formula holds for the covariance operator () of £(6) :

Ju,v) = ug,vj),

M;L

j=1
(3.2) u=(ui,...,uq),v=(v1,...,vq9) € E* =E] x--- x EJ.

v
)

Moreover, we will view 6; — £;(6;) as a stochastic process and use the following character-

istic of £ :

C=(E;) for s € (0, 1}

Ls~d gmig 12
o) {dzgl e

log(2d
ézizlEH&”%l(Ei) + Og&Z ) maxlgingHgiH%m(Ei) for s > 1.

Based on estimator 0 := (él, ... éd), define operators 7, B and functions f;. Note that

d
a7 (0) = ((0)f’ )= (% 0), fo,(0)),

Jj=1

where f(;j (0) € E denotes the partial Fréchet derivative of f(6) = f(61,...,0q) w.r.t. 0;.
The following result holds.

COROLLARY 3.1.  Suppose that q¢(s) S 1 and, for some sufficiently small constant ¢, >
0,d<cin.Let s=k+ 1+ pwithk>1and p € (0,1]. Then, forall s' € [1,s],

sup  sup Ay (Va(fi(0) — f(0)),04(0)2)

Ifllcs sy <10€E

s/2,. d\’ 1/2 1/2 _ \/E
[y -0 (V2) s IS o6 - 10

d ) R 1/2
(3.3) + (Z W3 g, (Vn(0; — 9]'),5]'(9]'))) ]

J=1

and

sup_supl[1fx(0) ~ SOz, e, — M 21(6)]
Ifllcsm<10cE

5/2 \/E y maXlgjgdHZj“yQ(E-) 1/2 d
<. q (5_1)( n) + nl/2 q¢ (s = 1y/~

1 d 9 ~ 1/2
(3.4 tn (; W g, (Vn(0; - 9]'),@-(9]'))) :

In particular, bound (3.4) implies that

1/2
InaX1<j<d||Zj||L/ (E;) 5/2

) <j< (B a\*
sup_sup [u(0) = SO e = kg 1) (1))

lfllcsm<10€E n

1 & ) . 1/2
(3.5) o (W, (VA - 6).66:)))

=1
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REMARK 3.3. The bounds also hold for £ = 0. In this case, the terms

1/2 12, d
fg?gdHEJHLOO(Ej)% (s—1) n
of (3.3) and
1/2
max<j<d||%; HL/OO(Ej) V200 1y, / @
n1/2 qg (8 - ) E
of (3.4) could be dropped.

REMARK 3.4.  Suppose q¢(s) < 1. In particular, for s > 1, this holds if max;<;<4 E||&; H2CI(E,;) <

1 and maxlgingH&H%m(Ei) 5 ﬁ.

If the models { Py, : §; € E;} are low-dimensional and sufficiently regular, the assumptions

Suppose, in addition, that max;<;<q HEjHiﬂ(E) <1
<< (B

above hold for maximum likelihood estimators éj of 0,7 =1,...,d. In fact, in this case,
we would have max;<;<qE|[|&] ZCS(Ei) < 1 (if the Fisher information matrices 1;(6;) of low
dimensional models are sufficiently smooth). If, in addition, the following normal approxi-
mation bound holds for the estimators ¢; of the components ¢;

(3.6) max Wa,p, (V(0; — 0;),6;(0;) Sn~ /2,
1<j<d

then we have
d . 1/2 d
(X wap, (valh; —0,).60,0) 545,
j=1
which guarantees normal approximation of /n(6 — 6) by £(0) for d = o(n). In this case,
(3.3) implies
5 d\* d
s A (VD) ~ S0),o5(0)2) 5o vy )

Ifllcs sy <10€E n

(3.4) implies

A d\® 1 d
o s I(0) = SO 1(6)| o)
and (3.5) implies that

A ' o
b oub fke _fe 2([Fg SS"‘( > .
Hf||cS(E>S19€EH (0) = FO)lLaen) =5 7 ;

If d < n® for some « € (0,1) and s > ﬁ, the above bounds imply the asymptotic normal-

ity of estimator fj,(#) with /n rate as well as the convergence of \/n|| () — QLTS
to o4(#). Note also that, if d < n® for some a € (0, 1), then it is sufficient for asymptotic

normality of f;(0) and for convergence of its normalized risk to o f(6) to have normal ap-
proximation error in (3.6) of the order o(n~%/?) instead of n~1/2.

REMARK 3.5. In the low-dimensional case, bounds of the order n~'/2 on the accuracy
of normal approximation of MLE and more general M -estimators in Kolmogorov’s distance
(Berry-Esseen type bounds) could be found in [54, 4, 55] and in Wasserstein’s Wj-distance
in [2]. We are not aware of similar published results for Wassertein’s Wa-distance. However,
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it is possible to adapt the approach of these papers in combination with known bounds on
the accuracy of normal approximation in CLT (see, e.g., [58, 23]) to obtain bounds for the
Ws-distance suitable in the framework of Corollary 3.1.

Additional examples of models with independent components are provided in the supple-
ment [38].

3.3. Poincaré constants and log-concave models. Let E =R be equipped with the Eu-
clidean norm and let X ~ Py, 6 € T, T C R? be a statistical model with the sample space R.
As before, we assume that 7" is an open subset. Also assume that Eg|| X ||? < 00,6 € T and
let

U(0) :=EpX, 3(0):=Eg(X —U(80)® (X —¥(9)),0€0.

Moreover, let us assume that ¥ : 7' — W(7T') is a homeomorphism between open sets 7" and
U(T). This assumption would allow us to re-parametrize our model by setting ¢ := ¥ () =
EyX,0 € T and using parameter ¢ € U(T') instead of 6. For this new parameter, we simply
have Ey X = 9,9 € ¥(T).

Given i.i.d. observations X1,..., X, of X, let

X4+ X, U-HX) if X e U(T)

X: . 0=0(X1,...,X,) = -
(X1 ) {% if X ¢ W(T),

n
where 0y € T is an arbitrary point, and
X if X ew(T)

U (6p) ﬁXgmanzwwy

&:mxbnwxg:{
It is easy to check that 7(fo U™ = (Tf) o UL B(foU™1)=(Bf)o¥~!and (fo
\Il_l)k = f,, o U1, where, with a little abuse of notation, we keep the same letters 7 and

B to denote the operators based on estimator V. This allows us to reduce the problem of
estimation of functional f(6) to the problem of estimation of functional (f o W~1)(«)) under
its proper smoothness and to use for this purpose the estimator

Fe(0) = (froT™)(0) = (f 0 T 1) (0).

Of course, one can expect that \/77(19 — 19) could be approximated by Gaussian random vari-
able £(#) with mean zero and covariance operator ¥(6) (for ¥ = ¥ (9)).

We will assume that Py satisfies Poincaré inequality, so, Cp(FPy) < co. Let
0Foy-1(0) = (S(TTHI))(f o U1 (9), (f o U7 (9)).

PROPOSITION 3.2. Let d = d,, and © = ©,, C R% with Diam(©) < n* for some A > 0.
Let 0 >0andlet s=k+ 1+ pwith k>0 and p € (0,1]. Suppose that ©5 C T and

(3.7) IZlloo, S1and 57 L 0, S 1.
Suppose that, for some o € (0,1), d < n® and assume that s > ﬁ Finally, suppose that
(3.8) sup Cp(Py) = o(nl_o‘) as n — 0o.

0€B;

Let 0y in the definition of 0 be a point from ©. Then

(3.9) sup sup|nEq(fx(0) — £(6))? — 030y (¥(8))| 0
|fo¥—tlos(w(o)),)<10€O
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and, for all oy > 0,

(3.10) sup sup dK<\/ﬁ(fk(é) — f(6)) , Z) —0

10U [os ((w(0y)5) <10€0,0 1oy 1 (¥(8)) >0 ofow-1(¥(0))

as n — oo.

REMARK 3.6. Suppose that, for small 9 > 0, ¥ is a C*-diffeomorphism between ©5 and
U (05) (with bounded C*-norms of ¥ and W—1). Then, for a small enough § > 0, there exists
8" > 0 such that U~1((¥(0))s) C Os and the first supremum in (3.10) and (3.9) could be
taken over the set || f||c-(0,) S 1.

REMARK 3.7. The properties of Poincaré constants discussed in Remark 3.1 provide a
way to check condition (3.8). In particular, the claim of the corollary obviously holds in the
Gaussian case. Moreover, if Py is absolutely continuous with respect to a measure vy for
which Cp(1p) is controlled by a numerical constant (for instance, a Gaussian measure) and
the densities ‘éP ¢ are bounded from above by a constant A > 0 and bounded from below by
a constant a > 0 then Cp(Py) < 1 and condition (3.8) holds. Thus, the claim of Proposition
3.2 also holds (under the rest of its conditions).

REMARK 3.8. Suppose that measures Py, € O; are log-concave. It follows from a re-
cent result of [13] (see Remark 3.1) that supycg, Cp(Ps) Sp d” for an arbitrary v > 0. Thus,
in this case, condition (3.8) holds for all « € (0,1) (and d < n®) and so are the claims of
Proposition 3.2.

In the simplest case, X = 6 + 1, where 1 is a mean zero noise sampled from some dis-
tribution 419 in R?, depending on the parameter 6. In this case, ¥ = W¥(6) = 6 and it is easy
to state a simplified version of Proposition 3.2. If the distribution py = p of the noise does
not depend on 6 and Cp (i) < oo, similar problems were studied in a recent paper [42]. The
approach was based on a more direct analysis of estimator f (6 ) in the case of such Poincaré
random shift models without using normal approximation. However, this approach could not
be extended to more general models with distribution iy of the noise depending on 6 since,
in this case, the construction of random homotopies between estimator X and parameter 1)
leads to rather challenging coupling problems (see also the discussion in Section 1.1).

A slightly more complicated example, is an exponential family?

(3.11) Py(dx) = exp{(0,z)}h(x)dx,0 €T,

1
Z(0)
where h : R? — [0,+00) is a Borel function and Z() := [, exp{(f,z)}h(z)dz < 00,6 €
T. Note that the set {# € R?: Z() < +o0} is convex and T is a subset of this set. Assume
that 7" is convex, too. It is well known that 7' > 6 — log Z(#) is a strictly convex smooth
function and

V=U(0)=EyX =(VlegZ)(0),0 € T.
Moreover, ¥ = V log Z is a strictly monotone vector field on 71" (as a gradient of a strictly

convex smooth function) and, therefore, it is a one-to-one mapping from 7" onto W (7') (as
before, it is also assumed to be a homeomorphism). Following the terminology of [12] (which

3 All the facts about exponential families used below could be found, for instance, in [12]
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is not quite standard), 6 is called the canonical parameter of the exponential family and ¥J is
called its natural parameter.

Note also that (log Z)”(6) = ¥/(0) = X(0) is the covariance of X. It is also the Fisher
information matrix I(6) for this model with respect to the canonical parameter 6 and the
inverse Fisher information matrix Z~!(1)) with respect to the natural parameter ¥ = ¥(6).
Let now X1,..., X, be iid. ~ Py,0 € T. If X € U(T), then § = U~1(X) is the unique
maximum likelihood estimator for this exponential model.

We will call exponential family (3.11) log-concave iff the function A is log-concave.
Clearly, in this case the distributions Py, 0 € T are log-concave. Proposition (3.2) and the
above discussion yield the following corollary.

COROLLARY 3.2. Letd=d, andlet Py,0 € T =T, C R? be a log-concave exponential
family. Let © = ©,, C T with Diam(0) < n for some A > 0. Let § > 0 and let s = k+1+4p
with k > 0 and p € (0, 1]. Suppose that O5 C T and conditions (3.7) hold. Suppose that, for
some a € (0,1), d <n® and assume that s > 1 . Let 0y in the definition 0f9 be a point

from ©. Then asymptotic relationships (3.9) and (3.10) hold for estimator f1(0) of f(0).

REMARK 3.9. Note that, in the case of exponential model, the limit variance o oy -1 (V(6))
in Proposition 3.2 is equal to (Z~X(9)(f o U1 (), (f o U1 (¥)) with ¥ = ¥(h). It is
possible to prove local minimax lower bounds showing optimality of this variance and the
asymptotic efficiency of estimator of f (é) (for instance, using Van Trees inequality [25], see
[36], [40] for similar results).

REMARK 3.10. The result of Corollary 3.2 also holds under more general assumption
that function h in the definition of exponential model (3.11) satisfies the condition ¢! g(z) <
h(z) < cg(x),z € R? for a non-negative log-concave function g and for a constant ¢ > 1.

REMARK 3.11. It was shown in [57], Theorem 3.1Athat, under some moment assump-
tions on d-dimensional exponential families with MLE 6, 6 — 0 could be approximated by a
sample mean with accuracy Op(%). Together with a high-dimensional CLT proved in [56],
this implies that normal approximation of /(6 — ) holds if d = o(y/n). It was also shown
in [57], Proposition 3.1 that, if d is larger than /n, the normal approximation of 1/7(6 — 6)
could fail even for linear functionals. Thus, additional conditions on exponential family (for
instance, shape constraints such as log-concavity) are needed to justify normal approximation
for MLE when d > /n (which is an interesting regime for functional estimation requiring
the bias reduction).

4. QOutline of the proofs: bootstrap chains and random homotopies. Let é(k) k> 0%
be the Markov chain in the space 7" with transition probability kernel P(0, A),6 € T, A cT,
defined by (1.2), and with 6 = ¢. For this chain, #!) has the same distribution as 9 con-
ditionally on e ), 6 is sampled from the distribution P(é(l) ;-); conditionally on é(Q), 63
is sampled from the distribution P(é(Q), -), etc. Thus, the Markov chain 0%) k>0 is con-
structed by an iterative application of parametric bootstrap to the estimator 6 and it was
called in [36] the bootstrap chain of this estimator. Bootstrap chains are involved in repre-
sentations of functionals B f, k > 1 needed to control the bias of estimator fk(é) Namely

*In this section, k denotes the time index of bootstrap chains and is not related to smoothness parameter s
unless it is stated otherwise (as in Proposition 4.1).
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(see [36, 37, 40, 41]),

k
@0 =50y (-0 (4) 1)

i=0 J

which is the expectation of the k-th order difference of function f along the sample path of
the bootstrap chain. It is well known that for a k£ times continuously differentiable function f
in the real line, its k-th order difference

k . k—j (K , (&) (o1 k
Ajf(z)=>) (-1) J<,>f(x+jh):f (x)h" +o(h™) as h — 0.
J=0 J

If, for a small § > 0, supger Po{||f — 0|| > 6} is also small, we would have that ||§U+1) —

u) || < with a high probability. In this case, one could expect that, for a k times continu-
ously differentiable function f : E + R, (B¥ £)() is of the order 6*, and, if f is k + 1 times
continuously differentiable function, then the bias of estimator f(6) of f(0)

Eq fx(0) — f(0) = (~1)*(B*+1£)(6) = O(6"1).

This heuristic was justified in [41] (with some ideas developed earlier in [36, 37, 40]) using
representations of bootstrap chains as superpositions of so called random homotopies.

A random homotopy between parameter 6 and its estimator 6 is an a.s. continuous stochas-
tic process H : T' x [0, 1] x  — T defined on a probability space (€2, F,P) such that, for all
e,

H(0;0):=0, H(0;1) 4 0, where 6 ~ P(0;).

In addition, random homotopy H(0,t),0 € Tt € [0, 1] will be assumed to be sufficiently
smooth. In other words, random homotopy is a coupling that provides a smooth path between
parameter 6 and a random variable in the parameter space with the same distribution as
the estimator §. Given i.i.d. copies Hy, Hs, ..., one can define their superpositions Gy, :=
Hy o--- e Hj as follows:

Gk(e;tl,. .. ,tk) = Hk(Gk_l(G;tl, - ,tk—l)atk;), (tl, - ,tk) € [0, l]k

with G = 6. One can also define a Markov chain %) := Gr(6;1,...,1) with 6 =g and

show that (§%) : k > 0) 4 (0% : k> 0), see Lemma 4.1 in [41]. Moreover, it is also shown
in the same lemma that

k
él in(eathatk)?(thatk) € {O7l}kaztl =1
=1

Using these facts, it is easy to derive the following representation of (B* f)(6)
(B £)(0) =EAW AW £(Gr(05t4,. .., 1)),
where
Aty ) = ot tis e i) =1 — Pt i ) =0y i = 1, K.

Under proper smoothness assumptions on f and on random homotopies, this yields the fol-
lowing formula:

! ! 8kf(Gk(95tl) o atk))
k —
L e R R
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This approach and other analytic techniques developed in [41] led to the bounds on the Holder
norms of functions B f and f; as well as the bounds on the bias of estimator f;(6) of f(#).

For a function V' : T' x [0, 1] — F' with values in a Banach space F' and such that V' (-,¢) €
C*(T),t €0,1], denote

cxr) and [|VI|Go.: 7y 0,1 ::tzl[épuHV(.’t)HCO'S(T)'

We will summarize some facts proved in [41] (see, in particular, Theorem 3.1, Theorem
3.2, Proposition 7.1).

VIS (rxjo,1) == sup [V (-, 2)]
t€[0,1]

PROPOSITION 4.1.  Lets=k+1+p,k>1,p € (0,1]. Assume that H(0;t) is k+1 times
continuously differentiable in T x [0,1] and let H(0;t) := %H(G;t). Then, the following
statements hold:

1. If
4.1) E(1H G0 rxjo,0)° " NHIIGe-1rxjo,17) < 005
then
1Bllcs (ysce-r(r) < 4k + DM PRIH | Gooor e po,)” ™ NG (o,
2. Moreover, under the same assumption, for some constant Dg and forall j =1,... k,

. ~ s— TN ¥
18| (1) 0101y < Ds (E(HHHCUv‘Sfl(TX[O,l])) 1HH”CS*1(T><[O,1])> :

3. IfDsE(HHHSOTH(Tx[o,l]))S_lHH’ Cor(rxfo.r)) < 1/2; then

I fellcrecry < 20 fllcs (1)
4. If assumption (4.1) holds, then for all 0 € T,

R . k
Eofr(0) — fF(O)] Ss 1 f Ml () <E(HHHEOvs—l(TX[O,l]))S_lHHHES—l(TX[O,l}))

x <HE/01H(9;t)dtH BN o))

These facts provide a way to control the bias of estimator fx () and, using the smoothness
of function f%, to study the concentration of fk(é) around its expectation (in the case of nor-
mal models where Gaussian concentration could be used). However, both the construction of
random homotopies and the development of concentration bounds for more general statistical
models than Gaussian are challenging problems.

We get around this difficulty by using the normal approximation of estimator 6 and reduc-
ing the problem to the Gaussian case. More precisely, instead of developing random homo-
topies directly for the estimator €, we use a very simple random homotopy

H(0;t) ;:0+@

vn
for the “estimator" 6 = G(0) = 0 + ii), or for a slightly modified “estimator" s, defined as
follows:

9~5 = G(;(@) =0+ 55(\/? € Oy,
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where &;5(6) = §(9)1<H§HLOO(E) < 5\/ﬁ>,9 € E. Using 05 instead of  would allow us to

prove our results under smoothness assumptions on the process £ and functional f locally in
a neighborhood of © (if £ and f are smooth in the whole space, using § would suffice). For

these estimators, we construct the corresponding bootstrap chains 6 and égk), defined as
superpositions

%) = (G o---0G1)(0) and égk) =(Giso---0G1)(0)
of i.i.d. copies G1,Go,... and Gy s,G2ay;,. .. of stochastic processes G and Gs. We show

that these chains approximate in distribution the bootstrap chain %) of the initial estimator
9 (see Theorem 5.1 in Section 5). We also approximate operator 7 by the operators T and
Ts:
(T1)(0):=Eof (0) =Ef(G(0)), (T5/)(0) :=Eof(05) =Ef(Gs(9)), 0 € B, f € Lip(E)
and define B := T T, Bs :=T5 — Z. This allows us to approximate the function f}, by
similar functions f f5 i defined as follows

k k

Fe0) = S (=1 (B F)(0), fin(0) := S (~1V (BLF)(0).
§=0 §=0
Namely, we prove the following bound (see Theorem 5.2, [38]): forall s > 1,k >1and § >0
such that ©5 C T,

£ = forllro o)

Bl o\
S Moo (1 =222 ) [ m ) (0.0) + 200051500
where F := {f : || fll¢:(0,) < 1} and
2,(0.0)s= sup B{16 — 0] > 5} + Bl ) > 53/}
S

Proposition 4.1 allows us to control the bias [E f57k(6~5) — f(6). Moreover, in Section 6, [38],
we use Gaussian concentration (more precisely, Maurey-Pisier type inequalities) to obtain
bounds on the error of “estimator" fs (65). This yields the following inequaity (see Theorem
6.1, [38]) that holds, for s = k+ 1+ p,k > 1, p € (0, 1], under the assumption that O (k+3)5 C
T:

sup| | 75.(85) = £(8) = V27 (6),£(0))|

0cO

1/2
< %(Ousosis — D\ I1EIL ) [0e(O 255 — 1)
S 1 fllos ©pssys) +— 5

n n

Ly (P)

0(Ok2)555 — 1) -
+\/ — PYAP{E] 1oy = 6V} |
We combine all these pieces together in Section 7, [38] to complete the proofs of main results.

REMARK 4.1. It easily follows from the proofs of the main results that they also hold for
estimators fk( ) and f5.1(0), based on the functionals related to the Gaussian approximation

of estimator 6.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimation of smooth functionals in high-dimensional models: boot-
strap chains and Gaussian approximation”
In the supplementary material [38], we develop all the necessary tools and provide the de-
tailed proofs of the main results. In particular, we develop a method of approximation of
bootstrap chains by the Markov chains for Gaussian model and prove concentration bounds
for this model. We also state and prove some additional results.
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