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Let X(n) be an observation sampled from a distribution P (n)
θ with an

unknown parameter θ, θ being a vector in a Banach space E (most often, a
high-dimensional space of dimension d). We study the problem of estima-
tion of f(θ) for a functional f : E 7→ R of some smoothness s > 0 based

on an observation X(n) ∼ P (n)
θ . Assuming that there exists an estimator

θ̂n = θ̂n(X
(n)) of parameter θ such that

√
n(θ̂n − θ) is sufficiently close

in distribution to a mean zero Gaussian random vector in E, we construct
a functional g : E 7→ R such that g(θ̂n) is an asymptotically normal esti-
mator of f(θ) with

√
n rate provided that s > 1

1−α and d ≤ nα for some
α ∈ (0,1). We also derive general upper bounds on Orlicz norm error rates
for estimator g(θ̂) depending on smoothness s, dimension d, sample size n
and the accuracy of normal approximation of

√
n(θ̂n − θ). In particular, this

approach yields asymptotically efficient estimators in high-dimensional log-
concave exponential models.

1. Introduction. The problem of estimation of a smooth functional f(θ) of parameter θ
of a high-dimensional statistical model is studied in this paper in the case when there exists
an estimator θ̂ of θ for which normal approximation holds as both the dimension d and the
sample size are reasonably large.

Estimation of functionals of parameters of non-parametric and, more recently, high-
dimensional statistical models has been studied by many authors since the 70s [46, 47, 31,
5, 32, 26, 27, 19, 20, 21, 51, 6, 7, 44, 48, 52, 10, 11, 34, 59, 62, 17, 60, 28, 50]. Most of the
results have been obtained for special statistical models (Gaussian sequence model, Gaussian
white noise model, density estimation model) and special functionals (linear and quadratic
functionals, norms in classical Banach spaces, certain classes of integral functionals of un-
known density). Estimation of general smooth functionals was studied in [32, 51, 52] for the
model of an unknown infinite-dimensional function (signal) observed in a Gaussian white
noise. Sharp thresholds on the smoothness of the functional depending on the complexity
(smoothness) of the signal that guarantee efficient estimation of the functional were studied
in these papers.
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Our approach is based on a bias reduction method that goes back to the idea of iter-
ated bootstrap (see [30, 29]). This method has been recently studied in the case of high-
dimensional normal models (see [36, 37, 40, 41]). In particular, it was shown that it yields
efficient estimation of functionals of smoothness s of unknown mean and covariance with
parametric

√
n convergence rate provided that s > 1

1−α and d ≤ nα for some α ∈ (0,1), d

being the dimension of the space. Moreover, the smoothness threshold 1
1−α is sharp in the

sense that for s < 1
1−α the minimax optimal convergence rate is slower than

√
n. Our goal is

to extend some of these results to more general high-dimensional models under an assump-
tion that the model admits statistical estimators of unknown parameter for which normal
approximation holds for large n and sufficiently high dimension of the parameter.

1.1. Bias reduction. Let X(n) be an observation sampled from a probability distribu-
tion P (n)

θ in a measurable space (S(n),A(n)) with unknown parameter θ ∈ T. A particular
example of interest is X(n) = (X1, . . . ,Xn), where X1, . . . ,Xn are i.i.d. observations in a
measurable spaces (S,A). It will be assumed in what follows that the parameter space T
is an open subset of a separable Banach space E (which could be a high-dimensional or
infinite-dimensional space). Let θ̂ = θ̂n = θ̂(X(n)) ∈ T be an estimator of θ based on the ob-
servation X(n). We will be especially interested in estimators θ̂ that could be approximated
in distribution by a Gaussian random vector in E (whose distribution, of course, depends on
unknown parameter θ ∈ T provided that X(n) ∼ P (n)

θ ). More precisely, it will be assumed
in what follows that, for all θ ∈ T (or in properly chosen subsets of T ),

√
n(θ̂ − θ) is close

in distribution to a mean zero Gaussian random vector ξ(θ) in E. In Section 2, it will be
described more precisely in which sense this approximation should hold.

Given a smooth functional f : T 7→ R, our main goal is to construct an estimator of f(θ)
based onX(n). It is well known that in high-dimensional and infinite-dimensional models the
plug-in estimator f(θ̂) is often sub-optimal even when the base estimator θ̂ is optimal. This is
largely due to the fact that for non-linear functionals f the plug-in estimator f(θ̂) has a large
bias even when θ̂ is unbiased, or has a small bias. Thus, the bias reduction becomes a crucial
part of the design of estimators of f(θ) with optimal error rates. To construct an unbiased
estimator of f(θ) (which is not always possible) one has to solve an integral equation T g = f
for the following integral operator:

(T g)(θ) := Eθg(θ̂) =

∫
T
g(t)P (θ;dt), θ ∈ T,(1.1)

where

P (θ;A) = Pθ{θ̂ ∈A},A⊂ T(1.2)

is a Markov kernel on the parameter space T (the distribution of estimator θ̂). Recall that, by
the definition of Markov kernel, it is assumed that T 3 θ 7→ P (θ;A) is a Borel measurable
function for all Borel subsets A⊂ T.

Note that T f is well defined for all functions f ∈ L∞(T ) and, moreover, T : L∞(T ) 7→
L∞(T ) is a contraction. Most often, we will deal with operator T acting on uniformly
bounded Lipschitz functions (or even on sufficiently smooth functions).

Finding an estimator of f(θ) with a small bias then reduces to an approximate solution of
equation T g = f. If B := T − I is a “small operator" (which is the case when the estimator
θ̂ is “close" to θ with a high probability), then the solution of this equation could be written
(at least, formally) as the sum of Neumann series

g = (I +B)−1f = f −Bf +B2f −B3f + . . .
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and one can try to use the following function fk(θ) (with a properly chosen k),

fk(θ) :=

k∑
j=0

(−1)j(Bjf)(θ),

as an approximate solution of equation T g = f. This yields an estimator fk(θ̂) with a reduced
bias

Eθfk(θ̂)− f(θ) = (−1)k(Bk+1f)(θ), θ ∈ T.

Another way to look at this bias reduction procedure is to observe that the bias of the plug-in
estimator f(θ̂) is equal to

Eθf(θ̂)− f(θ) = (T f)(θ)− f(θ) = (Bf)(θ), θ ∈ T.

To reduce the bias of f(θ̂), one could subtract from it the plug-in estimator of the func-
tion (Bf)(θ) yielding the estimator f1(θ̂) = f(θ̂)− (Bf)(θ̂). The bias of f1(θ̂) is equal to
−(B2f)(θ). To further reduce the bias, we have to add its plug-in estimator (B2f)(θ̂) yielding
the estimator f2(θ̂) = f(θ̂)− (Bf)(θ̂) + (B2f)(θ̂), and so on.

This higher order bias reduction method has been studied in [36, 37, 40, 41] in the case
of various high-dimensional normal models and in [33] in the case of the classical bino-
mial model. In particular, the approach to the analysis of this method initiated in [36, 37]
and further developed in [41] is based on the derivation of integral representation formu-
las for functions (Bkf)(θ) in terms of so called smooth random homotopies. These for-
mulas provide a way to obtain sharp bounds on the bias of estimator fk(θ̂) and to estab-
lish smoothness properties of functions fk needed to develop concentration inequalities for
this estimator (see Section 4 for more details). However, the construction of random ho-
motopies for a given estimator θ̂ relies on certain coupling techniques. In particular, it is
based on the existence of a smooth stochastic process G(θ), θ ∈Θ with values in Θ such that

G(θ)
d
= θ̂(X(n)),X(n) ∼ Pθ. The bounds on the bias of estimator fk(θ̂) obtained in [41] rely

on the existence of such a coupling and the Hölder norms of process G are involved in these
bounds. Such a coupling trivially exists in the case of random shift models [40, 42] and it is
easy to construct in the case of general Gaussian models [41] as well as some other exponen-
tial transformation families. However, it is much harder to develop smooth random homo-
topies for MLE and other relevant estimators in the case of more general high-dimensional
parametric models. A possible approach could rely on general coupling methods developed
in the literature such as optimal transport maps and Moser’s coupling (see, e.g., [63]). How-
ever, the bounds on Hölder norms for such coupling maps with explicit dependence on the
dimension have not been developed in the literature and their development leads to difficult
questions concerning smoothness of solutions of PDEs (in particular, Monge-Ampère and
Poisson type equations) in high dimensions. Another serious difficulty is the need to develop
tight concentration bounds for estimators fk(θ̂) that are also not readily available for general
high-dimensional models (with Gaussian, log-concave and some closely related models be-
ing exceptions). Due to these difficulties, the higher order bias reduction method described
above has been so far fully studied only in the case of Gaussian models as well as some
random shift models with Poincaré type noise [41].

In this paper, we study the problem under an additional assumption that the estimator θ̂ ad-
mits sufficiently accurate normal approximation. More precisely, we assume that

√
n(θ̂− θ)

can be approximated in distribution by a Gaussian r.v. ξ(θ) in E. This assumption allows us
to define an approximating Gaussian model, an “estimator" θ̃ = θ + ξ(θ)√

n
of parameter θ for
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this model and the corresponding operators T̃ , B̃ and functions f̃k, k ≥ 0. We show that func-
tions f̃k provide a reasonable approximation of functions fk and one can reduce the bounds
on estimator fk(θ̂) of f(θ) to the bounds on estimator f̃k(θ̃) in the corresponding approxi-
mating Gaussian model. This approach allows us to circumvent the difficulties with the direct
analysis of estimator fk(θ̂) since both the technique of random homotopies and concentra-
tion inequalities are applicable to the approximating model. As a result, we prove “reduction
theorems" (stated in Section 2) showing that the risk bounds and normal approximation prop-
erties established earlier in the Gaussian case hold also for general models, provided that the
normal approximation of estimator θ̂ is sufficiently accurate.

1.2. Smoothness classes and distances between random variables. Let F be a Banach
space and let U ⊂E. For a function g : U 7→ F, denote

‖g‖L∞(U) := sup
x∈U
‖g(x)‖, ‖g‖Lip(U) := sup

x,x′∈U,x 6=x′

‖g(x)− g(x′)‖
‖x− x′‖

and, for ρ ∈ (0,1],

‖g‖Lipρ(U) := sup
x,x′∈U,x6=x′

‖g(x)− g(x′)‖
‖x− x′‖ρ

.

We will now introduce Hölder spaces Cs(U ;F ) of functions of smoothness s > 0 from an
open subset U ⊂ E into a Banach space F (most often, either F = R, or F = E). Given a
function g : U 7→ F, let g(j) denote its Fréchet derivative of order j (in particular, g(0) = g).
Note that, for all x ∈ U, g(j)(x) is a symmetric bounded j-linear form (with values in F ). For
such forms M [u1, . . . , uj ], u1, . . . , uj ∈E, we will use the operator norm

‖M‖ := sup
‖u1‖≤1,...,‖uj‖≤1

‖M [u1, . . . , uj ]‖

and g(j) will be always viewed as a mapping from U into the space of symmetric bounded
j-linear forms equipped with the operator norm. Let s = m + ρ, m ≥ 0, ρ ∈ (0,1]. For an
m-times Fréchet differentiable function g from U into F, define

‖g‖Cs(U ;F ) := max
(
‖g‖L∞(U), max

0≤j≤m−1
‖g(j)‖Lip(U),‖g(m)‖Lipρ(U)

)
.

The space Cs(U,F ) is then defined as the set of all m-times Fréchet differentiable functions
g from U into F such that ‖g‖Cs(U,F ) <∞. When the space F is clear from the context (in
particular, when F = R), we will write simply Cs(U) and ‖ · ‖Cs(U) instead of Cs(U,F ) and
‖ · ‖Cs(U,F ).

REMARK 1.1. The definition of the space Cs(U) used here is not quite standard. In par-
ticular, the space C1(U) consists of all uniformly bounded Lipschitz functions in U rather
than continuously differentiable functions. Note also that, for a j times Fréchet differen-
tiable function g, ‖g(j)‖L∞(U) ≤ ‖g(j−1)‖Lip(U), with the equality holding when U is convex
(which would lead to a more standard definition of Hölder norms).

We will also use the following notation. Let s=m+ρ, m≥ 0, ρ ∈ (0,1]. For l= 0, . . . ,m,
denote

‖g‖Cl,s(U ;F ) := max
(

max
l≤j≤m−1

‖g(j)‖Lip(U),‖g(m)‖Lipρ(U)

)
.

and let C l,s(U ;F ) be the set of all m-times Fréchet differentiable functions g from U into F
such that ‖g‖Cl,s(U,F ) <∞. In particular, ‖ · ‖C0,1(U) = ‖ · ‖Lip(U).
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REMARK 1.2. Note that, by McShane-Whitney extension theorem, any Lipschitz func-
tion g : U 7→ R could be extended to a Lipschitz function defined on the whole space E
with preservation of its Lipschitz norm ‖g‖Lip(U) (in fact, this theorem applies to general
metric spaces, not just to Banach spaces). Moreover, any function g ∈ C1(U) (a uniformly
bounded Lipschitz function) could be extended to the whole space E with preservation of its
C1-norm. In what follows, it will be convenient to assume that bounded Lipschitz functions
(in particular, functions from the space Cs(U) for s≥ 1) and Lipschitz functions (in particu-
lar, functions from the space C0,s(U) for s≥ 1) are indeed extended to the whole space this
way. Similarly, any function from space Cs(U),U ⊂ E,s ∈ (0,1] could be extended to the
whole space E with preservation of its norm (again by the application of McShane-Whitney
extension theorem to the metric space (E,d), d(x, y) := ‖x− y‖s, x, y ∈ E). Note that the
problem of extension of smooth functions (from space Cs(U) with s > 1) to the whole space
with preservation of the norm is much more complicated and such extensions do not always
exist in general Banach spaces.

We will need to quantify the accuracy of normal approximation for random variable√
n(θ̂ − θ) by ξ(θ) (as well as for other random variables), and, for this purpose, we will

introduce below certain distances between distributions of random variables.
Let η1, η2 be random variables defined on a probability space (Ω,Σ,P) with values in a

measurable space (S,A), and let F be a set of measurable functions on S. Define

∆F (η1, η2) := sup
f∈F
|Ef(η1)−Ef(η2)|.

REMARK 1.3. Note that, in fact, ∆F (η1, η2) is a distance between the laws L(η1),L(η2)
of random variables η1, η2 (so, it does not matter whether η1, η2 are defined on the same
probability space or not; however, it is always possible to assume that they are and it will be
convenient for our purposes).

Let now ψ : R 7→R+ be an even convex function with ψ(0) = 0 and such that ψ is increas-
ing in R+. The Orlicz ψ-norm of real valued r.v. ζ is defined as

‖ζ‖ψ := inf
{
c > 0 : Eψ

( |ζ|
c

)
≤ 1
}
.

Denote Lψ(P) := {ζ : ‖ζ‖ψ < +∞}. We will also write ‖ζ‖Lψ(P) = ‖ζ‖ψ (to emphasize
the dependence of the Orlicz norm on the underlying probability measure P). If ψ(u) :=
|u|p, u ∈ R, p ≥ 1, then ‖ · ‖ψ = ‖ · ‖Lp and Lψ(P) = Lp(P). Other common choices of ψ
are ψ1(u) = e|u| − 1 (subexponential Orlicz norm) and ψ2(u) = eu

2 − 1 (subgaussian Orlicz
norm).

We will need another distance between random variables η1, η2 in a space (S,A) defined
as follows:

∆F ,ψ(η1, η2) := sup
f∈F
|‖f(η1)‖ψ − ‖f(η2)‖ψ|.

If (S,d) is a metric space, one can also define the following Wasserstein type distance:

Wψ(η1, η2) := inf
{
‖d(η′1, η

′
2)‖ψ : η′1

d
= η1, η

′
2
d
= η2

}
,

where the infimum is taken over all random variables η′1, η
′
2 on (Ω,Σ,P) such that η′1 has the

same distribution as η1 and η′2 has the same distribution as η2. If ψ(u) = |u|p this becomes
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a usual definition of the Wasserstein p-distance Wp. For this choice of ψ, we also use the
notation ∆F ,p instead of ∆F ,ψ.

We will also use the notations ∆F ,P(η1, η2), ∆F ,ψ,P(η1, η2) and Wψ,P(η1, η2) whenever it
is needed to emphasize the dependence of these distances on P.

Since, for η′1
d
= η1, η

′
2
d
= η2,

|‖f(η1)‖ψ − ‖f(η2)‖ψ|= |‖f(η′1)‖ψ − ‖f(η′2)‖ψ| ≤ ‖f(η′1)− f(η′2)‖ψ,

we could conclude that

∆F ,ψ(η1, η2)≤ sup
f∈F

Wψ(f(η1), f(η2))(1.3)

(for r.v. η1, η2 with values in an arbitrary measurable space S). If (S,d) is a complete separa-
ble metric space and F is the set of all contractions (Lipschitz functions on S with constant
1), then, for all f ∈ F , |f(η1)− f(η2)| ≤ d(η1, η2) implying that

∆F ,ψ(η1, η2)≤ sup
f∈F

Wψ(f(η1), f(η2))≤Wψ(η1, η2).(1.4)

Note also that for ψ(u) = |u| (the L1-norm), we have

∆F ,1(η1, η2)≤W1(η1, η2) = ∆F (η1, η2),

where F is the set of all real valued contractions on S (follows from Kantorovich-Rubinstein
duality).

Most often, we will deal with random variables in a Banach space F (in particular, F =E
and F = R) and the set F will usually be a Hölder ball of certain smoothness, such as F =
{f : ‖f‖Cs(E) ≤ 1} for s > 0, or F := {f : ‖f‖Cs(U) ≤ 1}, or F := {f : ‖f‖Cl,s(U) ≤ 1} for
some 0≤ l < s and for U ⊂ F. In particular, we will use the notations

∆s(η1, η2) = ∆F (η1, η2) and ∆s,ψ(η1, η2) = ∆F ,ψ(η1, η2)

for F = {f : ‖f‖Cs(E) ≤ 1}.
Other distances that will be used in the future include:

• Kolmogorov’s distance between random variables η1, η2 in R (more precisely, between
their laws L(η1),L(η2)) defined as

dK(η1, η2) := sup
x∈R
|P{η1 ≤ x} − P{η2 ≤ x}|= ∆F (η1, η2),

where F := {I(−∞,x] : x ∈R}.
• For s= k+ ρ, k ≥ 0, ρ ∈ (0,1] and random variables η1, η2 in a Banach space E, let

ζs(η1, η2) := sup
‖f (k)‖Lipρ(E)≤1

|Ef(η1)−Ef(η2)|= ∆F (η1, η2),(1.5)

where F := {f : ‖f (k)‖Lipρ(E) ≤ 1}. Note that, for s= 1, ζ1(η1, η2) =W1(η1, η2).

Finally, in a statistical framework, we have to deal with a family of probability measures
Pθ, θ ∈Θ (that generates different distributions of the data) and we will use uniform versions
of the distances defined above:

∆F ,Θ(η1, η2) := sup
θ∈Θ

∆F ,Pθ(η1, η2),

∆F ,ψ,Θ(η1, η2) := sup
θ∈Θ

∆F ,ψ,Pθ(η1, η2) and Wψ,Θ(η1, η2) := sup
θ∈Θ

Wψ,Pθ(η1, η2).
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We will also use the distance

∆+
F ,ψ,Θ(η1, η2) := ∆F ,Θ(η1, η2) + ∆F ,ψ,Θ(η1, η2).

Throughout the paper, the following notations will be used. For real non-negative vari-
ables A,B, A . B means that there exists a universal constant C > 0 such that A ≤ CB,
A & B means that B . A and A � B means that A . B and B . A. If constant C in the
above inequalities depends on additional parameters, the corresponding relationships will be
provided with subscripts: say, A.s,ψ B means that A≤ CB with C = Cs,ψ > 0 depending
on s and ψ.

2. Main results: bounds on Lψ-errors and normal approximation of fk(θ̂). In this
section, we study the error rates of estimator fk(θ̂) depending on the smoothness of func-
tional f and show that they coincide with the rates known to be optimal in the Gaussian case
provided that normal approximation error for θ̂ is negligible.

In [40], the following Gaussian shift model X(n) = θ + ξ√
n
, θ ∈ E was studied, where

ξ is a Gaussian r.v. in E with mean zero and covariance operator Σ. It was assumed that
θ is an unknown parameter and Σ is known and the goal is to estimate f(θ) for a given
smooth functional f. The complexity of this estimation problem could be characterized by
two parameters: the “weak variance" of the noise ξ, ‖Σ‖= sup‖u‖≤1 E〈ξ,u〉2, and its “strong
variance" E‖ξ‖2 = E sup‖u‖≤1〈ξ,u〉2. Note that, in the case of Euclidean space E = Rd and
ξ ∼N(0, σ2Id), ‖Σ‖= σ2 and E‖ξ‖2 = σ2d.

The following result was proved.

THEOREM 2.1. Let s > 0. For s ∈ (0,1], set k := 0 and for s > 1, let s= k + 1 + ρ for
some k ≥ 0 and ρ ∈ (0,1]. Let θ̂ = θ̂(X(n)) =X(n). Then

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖L2(Pθ) .s

(‖Σ‖1/2
n1/2

∨(√E‖ξ‖2
n

)s)∧
1.

Note that the term ‖Σ‖1/2

√
n

of the error bound of Theorem 2.1 controls the concentration of

estimator fk(θ̂) around its expectation whereas the term
(√

E‖ξ‖2
n

)s
controls the bias of this

estimator. Moreover, it was also shown in [40] that, for E = Rd equipped with the standard
Euclidean norm and ξ ∼N(0, σ2Id),

sup
‖f‖Cs(Rd)≤1

inf
T

sup
θ∈Rd
‖T (X(n))− f(θ)‖L2(Pθ) �

(‖Σ‖1/2
n1/2

∨(√E‖ξ‖2
n

)s)∧
1,

where the infimum is taken over all estimators T (X(n)), implying the minimax optimality of
the L2 error rates in the case of Gaussian shift model in the Euclidean space E = Rd.

Note also that the convergence rate is of the order O(n−1/2) if ‖Σ‖. 1, E‖ξ‖2 . nα for
α ∈ (0,1) and s≥ 1

1−α and it is slower than n−1/2 if s < 1
1−α . For s > 1

1−α , it was proved in
[40] that

√
n(fk(θ̂)− f(θ)) could be approximated in distribution by σf (θ)Z,Z ∼N(0,1)

as n→∞, where σ2
f (θ) := 〈Σf ′(θ), f ′(θ)〉, and, moreover, it was shown that fk(θ̂) is an

asymptotically efficient estimator.
We will try to extend some of these results to general models and general estimators θ̂ for

which Gaussian approximation holds.
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To describe Gaussian approximation properties for estimator θ̂ more precisely, let

G(θ) := θ+
ξ(θ)√
n
, θ ∈ T,

where ξ : T 7→E is a Gaussian stochastic process. In what follows, θ̃ :=G(θ), θ ∈ T will be
viewed as a Gaussian approximation of estimator θ̂. In other words, the estimator θ̂ in the
initial model is approximated by the “estimator" θ̃ in a Gaussian shift model with unknown
parameter θ and small Gaussian noise ξ(θ)√

n
. For simplicity, we also assume that Eξ(θ) = 0, θ ∈

T and let Σ(θ) denote the covariance operator of random variable ξ(θ). As a typical example,
consider the case whenE := Rd and ξ(θ) :=A(θ)Z,Z ∼N(0, Id), whereA(θ) : Rd 7→Rd is
a bounded linear operator. Even more specifically, when X(n) = (X1, . . . ,Xn), X1, . . . ,Xn

being i.i.d. ∼ Pθ, θ ∈ T ⊂ Rd, one can think of the maximum likelihood estimator θ̂ and
A(θ) = I(θ)−1/2, where I(θ) is the Fisher information matrix (since in the case of regular
statistical models

√
n(θ̂− θ) is close in distribution to I(θ)−1/2Z).

In the results stated below, the Lψ-error of estimator fk(θ̂) and its normal approximation
will be controlled uniformly in a subset Θ of parameter space T. It will be assumed that ξ(θ)
is bounded or even sufficiently smooth in a small neighborhood

Θδ := {θ ∈E : dist(θ; Θ)< δ} ⊂ T

of set Θ for some δ > 0, and, moreover, that the normal approximation of θ̂ by θ̃, or of√
n(θ̂−θ) by ξ(θ) holds in proper distances uniformly in θ ∈Θδ. The behavior of the process

ξ(θ) outside of Θδ will be of no importance for us, and, without loss of generality, we can and
will set ξ(θ) := 0, θ ∈E \Θδ. With this definition, we still have that ‖ξ‖L∞(E) = ‖ξ‖L∞(Θδ).

In what follows, we will deal with loss functions ψ : R 7→R+. It will be assumed that ψ is
convex with ψ(0) = 0. Moreover, ψ is even, increasing on R+ and satisfies the condition

c′u≤ ψ(u)≤ c′′ψ1(u), u≥ 0

with some constants c′, c′′ > 0, where ψ1(u) = eu−1. Let Ψ be the set of such loss functions.
Given ψ ∈Ψ, denote

ψ̃(u) :=
1

ψ−1
(

1
u

) , u≥ 0.

For instance, in the case of ψ(u) = |u|p, p≥ 1, we have ψ̃(u) = u1/p, u≥ 0, and in the case
of ψ(u) = ψ1(u) = e|u| − 1, we have ψ̃(u) = 1

log(1+ 1

u
)
, u≥ 0.

For ψ ∈Ψ, we will study Orlicz norm error rates ‖fk(θ̂)− f(θ)‖Lψ(Pθ) of estimator fk(θ̂)
depending on the smoothness of functional f. We will also study normal approximation of
r.v.
√
n(fk(θ̂)−f(θ)). The choice of k depends on the degree of smoothness of functional f.

Namely, if f is Cs-smooth with s= k+ 1 + ρ, k ≥ 0, ρ ∈ (0,1], we will use estimator fk(θ̂).
Note that, for k = 0, we have f0 = f and one can use a standard plug-in estimator f(θ̂) for
all s ∈ (0,2]. First, we will state the results in this simple case.

Given Θ⊂ T, denote vξ(Θ) := supθ∈Θ E‖ξ(θ)‖2.

THEOREM 2.2. Let Θ ⊂ T be an open subset and let ψ ∈ Ψ. The following statements
hold:
(i) For all s ∈ (0,1],

sup
‖f‖Cs(E)≤1

sup
θ∈Θ
‖f(θ̂)− f(θ)‖Lψ(Pθ) .s,ψ

(√vξ(Θ)

n

)s
+ ∆H,ψ,Θ(θ̂, θ̃),(2.1)
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where H := {g : ‖g‖Cs(E) ≤ 1}.
(ii) Let δ > 0 be such that Θδ ⊂ T. For s = 1 + ρ with ρ ∈ (0,1], there exists a constant
cs ∈ (0,1) such that

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ
‖f(θ̂)− f(θ)‖Lψ(Pθ) .s,ψ

[‖Σ‖1/2L∞(Θ)

n1/2
+
(√vξ(Θ)

n

)s
+ ∆+

H,ψ,Θδ
(θ̂, θ̃)

+ sup
θ∈Θ

ψ̃1/2
(
P{‖ξ(θ)‖ ≥ csδ

√
n}
)]∧

1,(2.2)

where H := {g : ‖g‖Cs(Θcsδ)
≤ 1}.

REMARK 2.1. For Θ = T =E, bound (2.2) of Theorem 2.2 simplifies as follows:

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖f(θ̂)− f(θ)‖Lψ(Pθ) .s,ψ

[‖Σ‖1/2L∞(E)

n1/2
+
(√vξ(E)

n

)s
+ ∆+

H,ψ,E(θ̂, θ̃)

]∧
1,

where H := {g : ‖g‖Cs(E) ≤ 1}.
In the general case, there are additional terms in the bounds depending on tail probabilities

of ‖ξ(θ)‖. Note that under the assumption that vξ(E) ≤ c′1δ2n for small enough constant
c′1 > 0, it easily follows from the Gaussian concentration inequality that

P{‖ξ(θ)‖ ≥ csδ
√
n} ≤ exp

{
− c′′1δ

2n

‖Σ‖L∞(Θ)

}
, θ ∈Θ.

Since for ψ ∈Ψ, ψ(u) . ψ1(u), u≥ 0 and ψ̃1(u) = 1
log(1+ 1

u
)
, it is easy to conclude that

sup
θ∈Θ

ψ̃1/2
(
P{‖ξ(θ)‖ ≥ csδ

√
n}
)
.

1

δ

‖Σ‖1/2L∞(Θ)

n1/2
.

Thus, in the worst case, the additional term in bound (2.2) is of the same order (up to a

factor 1
δ ) as the term

‖Σ‖1/2

L∞(Θ)

n1/2 present in the optimal bounds in the Gaussian case. For slower
growing losses, this additional term becomes negligible. For instance, for the loss ψ(u) =

up, u > 0, p ≥ 1, it is dominated by exp
{
− c′′

p
δ2n

‖Σ‖L∞(Θ)

}
for some constant c′′ > 0, so, it

decays exponentially fast as n→∞. Note that constants c′1, c
′′
1, c
′′ might depend on s.

The next result provides bounds on normal approximation of the error f(θ̂) − f(θ) for
functionals f of smoothness s ∈ (1,2]. Recall that for a Fréchet differentiable functional f,

σ2
f (θ) := 〈Σ(θ)f ′(θ), f ′(θ)〉.

THEOREM 2.3. Let s= 1 + ρ with ρ ∈ (0,1] and let δ > 0. Let Θ be a subset of E such
that Θδ ⊂ T. Suppose, for some sufficiently small constant c1 > 0, vξ(Θ) ≤ c1n. Then, for
some constant cs ∈ (0,1), the following bounds hold.

(i) For all ψ ∈Ψ,

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∣∣∣‖f(θ̂)− f(θ)‖Lψ(Pθ) − n
−1/2σf (θ)‖Z‖Lψ(P)

∣∣∣
.s,ψ

(√vξ(Θ)

n

)s
+ ∆+

H,ψ,Θδ
(θ̂, θ̃) + sup

θ∈Θ
ψ̃1/2

(
P{‖ξ(θ)‖ ≥ csδ

√
n}
)
,(2.3)
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where H := {g : ‖g‖Cs(Θcsδ)
≤ 1}.

(ii) For all s′ ∈ [1, s], 1

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∆s′(
√
n(f(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n
(√vξ(Θ)

n

)s
+ ∆F ,Θδ

(
√
n(θ̂− θ), ξ(θ)) +

√
n sup
θ∈Θ

P1/4{‖ξ(θ)‖ ≥ csδ
√
n}
]
,

(2.4)

where F := {g : ‖g‖C0,s′ (Ucsδ
√
n) ≤ 1}.

REMARK 2.2. For Θ = T = E, under condition vξ(E) ≤ c1n for a small enough con-
stant c1 > 0, the bounds of Theorem 2.3 simplify as follows:

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖f(θ̂)− f(θ)‖Lψ(Pθ) − n
−1/2σf (θ)‖Z‖Lψ(P)

∣∣∣
.s,ψ

(√vξ(E)

n

)s
+ ∆+

H,ψ,E(θ̂, θ̃)

with H := {h : ‖h‖Cs(E) ≤ 1}, and

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(f(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n
(√vξ(E)

n

)s
+ ∆F ,E(

√
n(θ̂− θ), ξ(θ))

]
,

where F := {g : ‖g‖C0,s′ (E) ≤ 1}.

The problem becomes much more difficult in the case when s= k+ 1 + ρ > 2 (k ≥ 1, ρ ∈
(0,1]). In this case, fk(θ̂) is no longer a standard plug-in estimator and a non-trivial analysis
of its bias is needed (see Section 4). This analysis requires some smoothness assumptions on
the Gaussian stochastic process ξ(θ). Namely, instead of quantity vξ(Θ), we will use such
quantities as

dξ(Θ; s) := E‖ξ‖2Cs(Θ).

Note that, if dξ(Θ; s) <∞, then, for all p ≥ 1, E1/p‖ξ‖pCs(Θ) .p

√
dξ(Θ; s), which easily

follows from Gaussian concentration. Note also that, if ξ(θ) = A(θ)Z, where Z is a given
Gaussian vector in E and Θ 3 θ 7→ A(θ) ∈ L(E) is a Cs function with values in the space
L(E) of bounded linear operators in E, then dξ(Θ; s) ≤ ‖A‖2Cs(Θ)E‖Z‖

2. In particular, if
E = Rd (equipped with the Euclidean norm) and Z ∼N(0, Id), then

dξ(Θ; s)≤ ‖A‖2Cs(Θ)d.(2.5)

In such cases, the conditions in terms of dξ(Θ; s) can be reduced to smoothness assumptions
on the “scaling" operator A(θ) (which is related to regularity properties of covariance Σ(θ)
as a function of θ).

If Θ = T =E, we will use the notation dξ(s) := dξ(E;s). In what follows, such quantities
will be used as complexity parameters in our problem.

1Here and in what follows, Ur := {x ∈E : ‖x‖< r}.
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We are now ready to state the main results of the paper. The next theorem provides a bound
on the Lψ-error of estimator fk(θ̂) for ψ ∈Ψ. Recall that it is assumed that ξ(θ) = 0 outside
of the neighborhood Θδ specified in the theorems.

THEOREM 2.4. Let Θ ⊂ T, let δ > 0 and let s = k + 1 + ρ with k ≥ 1 and ρ ∈ (0,1].
Suppose that Θδ ⊂ T. Then, for all ψ ∈Ψ and for some constant cs ∈ (0,1),

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ
‖fk(θ̂)− f(θ)‖Lψ(Pθ)

.s

[‖Σ‖1/2L∞(E)

n1/2
+

(√
dξ(Θδ;s− 1)

n

)s
+ ∆+

H,ψ,Θδ
(θ̂, θ̃)

+ sup
θ∈Θδ

ψ̃
(
Pθ{‖θ̂− θ‖ ≥ csδ}

)
+ ψ̃1/2

(
P{‖ξ‖L∞(E) ≥ csδ

√
n}
)]∧

1,(2.6)

where H := {g : ‖g‖Cs(Θcsδ)
≤ 1}.

Next we study normal approximation of estimator fk(θ̂).

THEOREM 2.5. Let s = k + 1 + ρ with k ≥ 1 and ρ ∈ (0,1], and let δ > 0. Let Θ be a
subset of T such that Θδ ⊂ T. Suppose that, for some sufficiently small constant c1 > 0,

dξ(Θδ;s)≤ c1n.

Then, the following statements hold.
(i) For all ψ ∈Ψ and some constant cs ∈ (0,1),

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∣∣∣‖fk(θ̂)− f(θ)‖Lψ(Pθ) − n
−1/2σf (θ)‖Z‖Lψ(P)

∣∣∣
.s,ψ

(√
dξ(Θδ;s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(Θδ;s− 1)

n
+ ∆+

H,ψ,Θδ
(θ̂, θ̃)

+ sup
θ∈Θδ

ψ̃
(
Pθ{‖θ̂− θ‖ ≥ csδ}

)
+ ψ̃1/2

(
P{‖ξ‖L∞(E) ≥ csδ

√
n}
)
,(2.7)

where H := {g : ‖g‖Cs(Θcsδ)
≤ 1}.

(ii) For all s′ ∈ [1, s] and some constant cs ∈ (0,1),

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n

(√
dξ(Θδ;s− 1)

n

)s
+ ‖Σ‖1/2L∞(E)

√
dξ(Θδ;s− 1)

n
+ ∆F ,Θδ

(
√
n(θ̂− θ), ξ(θ))

+
√
n sup
θ∈Θδ

Pθ{‖θ̂− θ‖ ≥ csδ}+
√
nP1/4{‖ξ‖L∞(E) ≥ csδ

√
n}
]
,

(2.8)

where F := {g : ‖g‖C0,s′ (Ucsδ
√
n) ≤ 1}.

REMARK 2.3. For Θ = T =E, the bounds of Theorem 2.4 simplify as follows:

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖Lψ(Pθ)
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.s,ψ

[‖Σ‖1/2L∞(E)

n1/2
+

(√
dξ(s− 1)

n

)s
+ ∆+

H,ψ,E(θ̂, θ̃)

]
∧ 1,(2.9)

where H := {g : ‖g‖Cs(E) ≤ 1}.
Assume that, for some sufficiently small constant c1 > 0, dξ(s)≤ c1n. Then, for all ψ ∈Ψ,

the following versions of bounds of Theorem 2.5 hold:

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖fk(θ̂)− f(θ)‖Lψ(Pθ) − n
−1/2σf (θ)‖Z‖Lψ(P)

∣∣∣
.s,ψ

(√
dξ(s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(s− 1)

n
+ ∆+

H,ψ,E(θ̂, θ̃)(2.10)

with H := {g : ‖g‖Cs(E) ≤ 1}, and, for all s′ ∈ [1, s],

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n

(√
dξ(s− 1)

n

)s
+ ‖Σ‖1/2L∞(E)

√
dξ(s− 1)

n
+ ∆F ,E(

√
n(θ̂− θ), ξ(θ))

]
,

where F := {g : ‖g‖C0,s′ (E) ≤ 1}.
In the general case, there are additional terms depending on tail probabilities of ‖ξ‖L∞(E)

and ‖θ̂− θ‖. The term ψ̃1/2
(
P{‖ξ‖L∞(E) ≥ csδ

√
n}
)

is negligible (smaller than n−1/2) for
losses ψ that grow slower than sub-exponential loss ψ1 (see Remark 2.1). For the term

sup
θ∈Θδ

ψ̃
(
Pθ{‖θ̂− θ‖ ≥ csδ}

)
to be of the order O(n−1/2), some conditions on the tail probabilities

sup
θ∈Θδ

Pθ{‖θ̂− θ‖ ≥ csδ},

ranging from polynomial decay in the case of Lp-losses ψ(u) = up to exponential decay
in the case of sub-exponential losses, are needed. In some cases, it is possible to reduce
these conditions to the conditions on the tails of ‖ξ‖L∞(E) using normal approximation (see
Corollary 2.2).

REMARK 2.4. The bounds of theorems 2.2, 2.3, 2.4 and 2.5 show that the estimator fk(θ̂)
of f(θ) exhibits the same type of behavior as in the case of Gaussian shift model studied in
[40] (see also Theorem 2.1 at the beginning of this section and the discussion that follows)
provided that normal approximation of θ̂, quantified by such parameters as

∆+
H,ψ,Θδ

(θ̂, θ̃) and ∆F ,Θδ
(
√
n(θ̂− θ), ξ(θ)),

is sufficiently accurate.

1. The “Gaussian parts" of the bounds of these theorems, such as the part

‖Σ‖1/2L∞(E)

n1/2
+
(√dξ(Θδ;s− 1)

n

)s
of bound (2.6), are similar to the main part ‖Σ‖

1/2

n1/2

∨(√E‖ξ‖2
n

)s
of the bound of The-

orem 2.1. The “Gaussian part" of bound (2.6) consists of two terms: the concentra-

tion term
‖Σ‖1/2

L∞(E)

n1/2 controlling the random error of estimator fk(θ̂) and the bias term
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dξ(Θδ;s−1)

n

)s
controlling the bias of the estimator. In fact, the Gaussian parts are ex-

actly the same as in the case of Gaussian shift model when ξ(θ) does not depend on θ and
it is possible to obtain Theorem 2.1 for Gaussian shift models as a corollary of our general
results, see Corollary 2.1 below.

2. In typical examples, such as ξ(θ) = A(θ)Z,Z ∼N(0, Id), complexity parameters vξ(Θ)
and dξ(Θδ;s− 1) could be easily controlled in terms of some dimension type parameter
d (see, e.g., bound (2.5)), and the Gaussian parts of the bounds are controlled by the

expression 1√
n

+
(√

d
n

)s
. If the normal approximation terms of bounds of theorems 2.2,

2.3, 2.4 and 2.5 are negligible comparing with the Gaussian part, there is a phase transition
from the classical 1√

n
error rate when the smoothness s of functional f is sufficiently large

to slower rates when the smoothness is not sufficient (similarly to the case of Gaussian
shift models [40]). More precisely, if d≤ nα for some α ∈ (0,1), then 1√

n
error rate for

estimators fk(θ̂) holds for all s≥ 1
1−α and slower rates hold for s < 1

1−α (which is known
to be a sharp threshold in the case of Gaussian shift models). Moreover, if s > 1

1−α , then
the bounds of theorems 2.3 and 2.5 also imply normal approximation of estimator fk(θ̂).
However, for Gaussian type bounds on estimator fk(θ̂) to hold in the whole range of
values of α ∈ (0,1), the normal approximation of

√
n(θ̂ − θ) by ξ(θ) should hold for

d= o(n) (see further discussion in Section 3).
3. Finally, note that, for s ∈ (0,2], there is no need in bias reduction to achieve the optimal

(in the Gaussian case) error rates and plug-in estimator f(θ̂) could be used for this purpose
(see theorems 2.2 and 2.3). For s > 2, the bias of the plug-in estimator is too large and
estimators with reduced bias, such as fk(θ̂), are needed to achieve the optimal rate (see
theorems 2.4 and 2.5).

It is not hard to obtain a generalization of results of [40] to more general Gaussian shift
models as a corollary of the results of the current paper. Namely, suppose that X(n) satisfies
the following Gaussian shift model X(n) = θ+ ξ(θ)√

n
, θ ∈E, where ξ(θ) is a Gaussian random

variable in E with mean 0 and covariance operator Σ(θ), θ ∈ E. In particular, this includes
the Gaussian shift models studied in [40] in which the noise ξ(θ) = ξ did not depend on θ.
Let θ̂ = θ̂(X(n)) =X(n). The next corollary is immediate since θ̂ = θ̃ and

√
n(θ̂−θ) = ξ(θ),

implying that

∆F ,Θδ
(
√
n(θ̂− θ), ξ(θ)) = ∆+

H,ψ,E(θ̂, θ̃) = 0.

COROLLARY 2.1. Let s= k+ 1 + ρ with k ≥ 0 and ρ ∈ (0,1]. For all ψ ∈Ψ,

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖Lψ(Pθ) .s,ψ

[‖Σ‖1/2L∞(E)

n1/2
+

(√
dξ(s− 1)

n

)s]∧
1.

Moreover, for k ≥ 1 under the assumption that dξ(s) ≤ c1n for a small enough constant
c1 > 0,

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖fk(θ̂)− f(θ)‖Lψ(Pθ) − n
−1/2σf (θ)‖Z‖Lψ(P)

∣∣∣
.s,ψ

(√
dξ(s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(s− 1)

n
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and, for all s′ ∈ [1, s],

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n

(√
dξ(s− 1)

n

)s
+ ‖Σ‖1/2L∞(E)

√
dξ(s− 1)

n

]
.

For k = 0, the last two bounds hold without the terms involving ‖Σ‖1/2L∞(E)

√
dξ(s−1)

n .

In the case when the noise ξ(θ) = ξ does not depend on θ, we have dξ(s− 1) = E‖ξ‖2,
and the above bounds immediately imply the main results of paper [40].

The bounds of theorems 2.4 and 2.5 show that the “Gaussian error rates" would hold for
other models provided that the additional terms related to the accuracy of normal approxima-
tion and to the tails of random variables ‖θ̂−θ‖ and ‖ξ‖L∞(E) are negligible comparing with
the Gaussian terms. To ensure this (and, in particular, to ensure that

√
n convergence rate is

attainable for estimator fk(θ̂) if f is sufficiently smooth), one needs the conditions

∆F ,Θδ

(√
n(θ̂− θ), ξ(θ)

)
→ 0 and ∆+

H,ψ,Θδ
(θ̂, θ̃) = o(n−1/2) as n→∞.

The following proposition provides useful upper bounds on the distances ∆H,Θδ
(θ̂, θ̃),

∆H,ψ,Θδ
(θ̂, θ̃) and ∆+

H,ψ,Θδ
(θ̂, θ̃).

PROPOSITION 2.1. Let s≥ 1. For H := {g : ‖g‖Cs(Θδ) ≤ 1},

∆H,Θδ
(θ̂, θ̃)≤

∆F ,Θδ

(√
n(θ̂− θ), ξ(θ)

)
√
n

, ∆H,ψ,Θδ
(θ̂, θ̃)≤

∆F ,ψ,Θδ

(√
n(θ̂− θ), ξ(θ)

)
√
n

and ∆+
H,ψ,Θδ

(θ̂, θ̃)≤
∆+
F ,ψ,Θδ

(√
n(θ̂− θ), ξ(θ)

)
√
n

,

where F := {g : ‖g‖C0,s(Uδ√n) ≤ 1}.

It follows that the condition ∆+
H,ψ,Θδ

(θ̂, θ̃) = o(n−1/2) holds if

∆+
F ,ψ,Θδ

(√
n(θ̂− θ), ξ(θ)

)
= o(1).

Next we state corollaries of theorems 2.4 and 2.5 (and, for s ∈ (1,2], of theorems 2.2 and
2.3) in the case of quadratic loss ψ(u) = u2. In these corollaries, we will use Wasserstein
distances W1,W2 to quantify the accuracy of normal approximation and to obtain a simpler
form of the results.

COROLLARY 2.2. Let s= k+ 1 + ρ with k ≥ 1 and ρ ∈ (0,1], and let δ > 0. Let Θ be a
subset of E such that Θδ ⊂ T. Suppose that, for some sufficiently small constant c1 > 0,

dξ(Θδ;s)≤ c1δ
2n.

Then, for all s′ ∈ [1, s] and for some constant c2 > 0,

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)
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.s,δ

[√
n

(√
dξ(Θδ;s− 1)

n

)s
+ ‖Σ‖1/2L∞(E)

√
dξ(Θδ;s− 1)

n

+W1,Θδ
(
√
n(θ̂− θ), ξ(θ)) +

√
n exp

{
− c2δ

2n

‖Σ‖L∞(E)

}]
.

COROLLARY 2.3. Let Θ⊂ T, let δ > 0 and let s= k + 1 + ρ with k ≥ 0 and ρ ∈ (0,1].
Suppose that Θδ ⊂ T. Then, for some constant c2 > 0,

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ
‖fk(θ̂)− f(θ)‖L2(Pθ)

.s,δ

[‖Σ‖1/2L∞(E)

n1/2
+

(√
dξ(Θδ;s− 1)

n

)s
+
W2,Θδ

(
√
n(θ̂− θ), ξ(θ))√
n

+ exp

{
− c2δ

2n

‖Σ‖L∞(E)

}]∧
1.(2.11)

Moreover, if for some sufficiently small constant c1 > 0, dξ(Θδ;s)≤ c1δ
2n, then

sup
‖f‖Cs(Θδ)

sup
θ∈Θ

∣∣∣‖fk(θ̂)− f(θ)‖L2(Pθ) − n
−1/2σf (θ)

∣∣∣
.s,δ

(√
dξ(Θδ;s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(Θδ;s− 1)

n

+
W2,Θδ

(
√
n(θ̂− θ), ξ(θ))√
n

+ exp

{
− c2δ

2n

‖Σ‖L∞(E)

}
.(2.12)

REMARK 2.5. Bounds of corollaries 2.2 and 2.3 also holds for k = 0. In this case, the

terms involving ‖Σ‖1/2L∞(E)

√
dξ(Θδ;s−1)

n could be dropped.

As a simple consequence, we get the following result that shows asymptotic normality of
estimator fk(θ̂) with

√
n rate and provides an exact limit of its mean squared error if normal

approximation holds and the functional f is sufficiently smooth.

COROLLARY 2.4. Let Θ = Θn ⊂ T, let δ > 0 and let s = k + 1 + ρ with k ≥ 0 and
ρ ∈ (0,1]. Suppose that Θδ ⊂ T and, for some α ∈ (0,1), dξ(Θδ;s) . nα. Suppose also that
‖Σ‖L∞(E) . 1. Assume that s > 1

1−α . Finally, suppose that

W2,Θδ

(√
n(θ̂− θ), ξ(θ)

)
→ 0 as n→∞.(2.13)

Then

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ

∣∣∣nEθ(fk(θ̂)− f(θ))2 − σ2
f (θ)

∣∣∣→ 0 as n→∞,(2.14)

and, for all σ0 > 0,

sup
‖f‖Cs(Θδ)≤1

sup
θ∈Θ,σf (θ)≥σ0

dK

(√n(fk(θ̂)− f(θ))

σf (θ)
,Z
)
→ 0 as n→∞,

where Z ∼N(0,1).2

2Of course, it is assumed here and in Theorem 2.5 that θ̂ = θ̂(X(n)),X(n) ∼ P (n)
θ .
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REMARK 2.6. Let Θ = T = E and assume that, for some sufficiently small constant
c1 > 0, dξ(s)≤ c1n. Then, for all s′ ∈ [1, s], the following version of the bound of Corollary
2.2 holds:

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)

.s

[√
n

(√
dξ(s− 1)

n

)s
+ ‖Σ‖1/2L∞(E)

√
dξ(s− 1)

n
+W1,E(

√
n(θ̂− θ), ξ(θ))

]
.(2.15)

The bounds of Corollary 2.3 simplify as follows:

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖L2(Pθ)

.s

[‖Σ‖1/2L∞(E)

n1/2
+

(√
dξ(s− 1)

n

)s
+
W2,E(

√
n(θ̂− θ), ξ(θ))√

n

]
∧ 1,(2.16)

and, under the condition dξ(s)≤ c1n for a small enough constant c1 > 0,

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖fk(θ̂)− f(θ)‖L2(Pθ) − n
−1/2σf (θ)

∣∣∣
.s

(√
dξ(s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(s− 1)

n
+
W2,E(

√
n(θ̂− θ), ξ(θ))√

n
.(2.17)

3. Examples and applications: estimation of functionals and normal approximation
in high-dimensional spaces. To apply the results of Section 2 to concrete statistical mod-
els, one needs to use sharp bounds on the accuracy of normal approximation over classes of
smooth functions for typical statistical estimators (such as maximum likelihood estimators)
in a high-dimensional setting. Ideally, in the case of a d-dimensional parameter θ, bounds on
such distances as ∆F ,Θδ

(
√
n(θ̂ − θ), ξ(θ)) with F := {g : ‖g‖C0,s′ (Uδ√n) ≤ 1} of the order√

d
n , or ∆H,ψ,Θδ

(θ̂, θ̃) with H := {h : ‖h‖Cs(Θδ) ≤ 1} of the order n−1/2
√

d
n are needed to

ensure that the normal approximation holds for d= o(n). This would allow us to deduce from
Theorem 2.4 and Theorem 2.5 the results known to be optimal in the Gaussian case. Unfor-
tunately, such bounds are, in our view, underdeveloped in the literature, not only in the case
of general classes of estimators for high-dimensional models, such as MLE (see, e.g., [1, 2]),
but even in the case of classical central limit theorems (CLT) in high-dimensional spaces (see,
e.g., [56] where there are counterexamples showing that CLT could fail for some reasonable
distributions in Rd unless d2 = o(n)). The main difficulties involved in these problems are
purely probabilistic: identifying classes of distributions in high-dimensional spaces with a
reasonably good dependence of the normal approximation bounds on the dimension. The
importance of these problems in high-dimensional statistics goes far beyond their applica-
tions to functional estimation discussed in the current paper. In this section, we will provide a
very brief review of some approaches to high-dimensional CLT (including, very recent ones)
and discuss several applications to the problem of functional estimation. A more detailed
development of this approach is beyond the scope of the paper.

3.1. High-dimensional CLT. The rates of convergence in CLT in Rd and in infinite-
dimensional spaces have been studied for over fifty years (see [8], [53], [61] and references
therein) with a goal to obtain the bounds on the accuracy of normal approximation in vari-
ous distances in the spaces of probability distributions often represented by sup-norms over
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classes of sets (for instance, convex sets), or classes of functions (for instance, Lipschitz
functions).

The distances ζs defined by (1.5) are particularly useful for our purposes. Such distances
occur very naturally in connection to the Lindeberg’s proof of CLT, they are used as a tool
in bounding other distances (the sup-norms over convex sets, bounded Lipschitz distance,
etc) and they were advocated in [64]. In particular, the following fact is straightforward:
if X1, . . . ,Xn are i.i.d. r.v. in Rd (equipped with the Euclidean norm) with mean zero and
identity covariance and Z is a standard normal r.v. in Rd, then

ζ3

(X1 + · · ·+Xn√
n

,Z
)
.

E‖X‖3√
n

.

Typically, E‖X‖3 could be of the order d3/2, yielding the bound on ζ3-distance of the order
d3/2
√
n
. Thus, normal approximation holds when d= o(n1/3). This is not good enough for our

purposes since an interesting regime in functional estimation problem is d ∼ nα for α ≥
1/2, which leads to non-trivial bias reduction problems. However, in some special cases,
in particular, in the case of random vectors with independent components, one can improve
bounds on ζs-distance rather substantially. The following fact is very simple and well known
(see [64] for similar statements).

PROPOSITION 3.1. Let Y = (Y1, . . . , Yd), Y
′ = (Y ′1 , . . . , Y

′
d) be two random vectors with

independent components. Then

ζs(Y,Y
′)≤

d∑
j=1

ζs(Yj , Y
′
j ).

As a consequence, in the case when r.v. X = (X(1), . . . ,X(d)) has independent compo-
nents,

ζ3

(X1 + · · ·+Xn√
n

,Z
)
. max

1≤j≤d
E|X(j)|3 d√

n
.

and if, in addition, E(X(j))3 = 0, then it is easy to see that

ζ4

(X1 + · · ·+Xn√
n

,Z
)
. max

1≤j≤d
E|X(j)|4 d

n
.

The last bound is of the order d
n , which is already sufficient for our purposes.

In Subsection 3.2 below, we use this very simple approach to study estimation of smooth
functionals for some statistical models with independent components.

In the recent years, there has been a lot of interest in studying normal approximation
bounds in high-dimensional CLT in optimal transport distances (in particular, Wasserstein
type distances). A recent result in [23], provides the following bound on the Wasserstein
W2-distance in normal approximation: assuming that ‖X‖ ≤ β a.s.,

W2

(X1 + · · ·+Xn√
n

,Z
)
.
β
√
d logn√
n

.

Thus, for convergence of W2-distance to 0, this bound requires the condition d= o
(√

n
logn

)
in typical situations when β ∼

√
d. This is again too restrictive for our purposes.
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In recent papers [18, 24], another approach to high-dimensional normal approximation
has been developed. It is based on the technique of Stein kernels and it applies to probabil-
ity distributions in Rd with bounded Poincaré constants, in particular, to some log-concave
distributions (see also [3] for more general results).

A probability measure µ on Rd is said to satisfy Poincaré inequality iff there exists a
constant C > 0 such that for all locally Lipschitz functions g : Rd 7→R and for X ∼ µ,

Varµ(g(X))≤CEµ‖(∇g)(X)‖2.

Let CP (µ) denote the infimum of all constants C > 0 for which the inequality holds. It is
called the Poincaré constant of probability measure µ.

A probability measure (distribution) µ on Rd with density p is called log-concave if p
is a log-concave function, that is, log p is concave. Among the examples of log-concave
distributions are Gaussian measures and uniform distributions in convex bodies of Rd. It is
known that log-concave distributions satisfy Poincaré inequality.

REMARK 3.1. The following facts are well known:

1. For a standard Gaussian measure µ on Rd, CP (µ) = 1. Moreover, if µ(dx) = e−V (x)dx
with V : Rd 7→ R such that V

′′
(x) � C−1 for a symmetric positively definite matrix C,

then CP (µ)≤ ‖C‖, and, if B is a symmetric positively definite matrix and

µ(dx) = exp
{
−1

2
〈B−1x,x〉 − V (x)

}
dx,

where V is a convex function on Rd, then CP (µ)≤ ‖B‖ (see [9]).
2. There are also ways to control the value of Poincaré constant under certain perturbations of

probability measure. For instance, if µ,ν are two probability measures and µ is absolutely
continuous with respect to ν with the density dµ

dν bounded from above by a constant A> 0

and bounded from below by a constant a > 0, then CP (µ) ≤ A
aCP (ν). Also, if µ,ν are

log-concave measures on Rd and, for some ε ∈ (0,1),

dTV (µ,ν) := sup
A⊂Rd

|µ(A)− ν(A)| ≤ 1− ε,

then CP (µ) .ε CP (ν) (see [49]).
3. Let µ be an arbitrary log-concave distribution with covariance Σ. According to the

Kannan-Lovàsz-Simonovits (KLS) conjecture, CP (µ) . ‖Σ‖. Although this conjecture
still remains open, it was recently shown in [13] (building upon earlier results of [23, 45])
that for some constant c > 0

CP (µ)≤ dc(
log log d

log d
)1/2

‖Σ‖.

It was proved in [18] that, ifX1, . . . ,Xn are i.i.d. mean zero random variables with identity
covariance sampled from a distribution µ on Rd such that CP (µ)<∞, then

W2

(X1 + · · ·+Xn√
n

,Z
)
≤
√
CP (µ)− 1

√
d

n
,(3.1)

where Z ∼ N(0; Id). Thus, the convergence in high-dimensional CLT in the W2-distance
holds provided that d = o(n) for all the distributions with bounded Poincaré constants. If
distribution µ is log-concave, then it follows from the bound on Poincaré constant proved in
[13] (see Remark 3.1) that the CLT holds provided that d≤ n1−δ for an arbitrary δ > 0.

This approach will be used in Subsection 3.3 below to study smooth functional estimation
for some classes of log-concave and related models.
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REMARK 3.2. Another interesting approach to high-dimensional normal approximation
was initiated in [14]. In this paper, the authors were trying to overcome the “curse of dimen-
sionality" in CLT by sacrificing the convergence rate with respect to n. Namely, they proved
the bound on the accuracy of normal approximation in sup-norm over the class of hyperrect-

angles of the order O
((

log7(dn)
n

)1/6)
, implying that normal approximation holds provided

that log7 d= o(n). More recently, this result was improved in [43, 35, 15, 16]. In particular,
it was shown in [16] that the accuracy of normal approximation over hyperrectangles is of
the order O

(
log3/2 d√

n
logn

)
, which is optimal up to a logn factor. Thus, the normal approxi-

mation holds when log3 d= o
(

n
log2 n

)
. In principle, the results of this type could be adapted

for our purposes in the case when E is the space Rd equipped with the `∞-norm. However,
in this case E‖ξ‖2`∞ would be typically of the order logd and this would be also a typical
size of such parameters as dξ(s) involved in our bounds. Thus, the Gaussian part of the error

bounds in functional estimation (see Remark 2.4) would be of the order 1√
n

+
(√

logd
n

)s
. If

logd= o(nα) for some α< 1/3, the classical rate n−1/2 dominates the bias term
(√

logd
n

)s
for all s≥ 3/2 and there is no improvement of the rate when the degree of smoothness s is
above 3/2. Moreover, for such low values of logd, the bias reduction is not required and the
optimal rates would be attained for plug-in estimators. One would need to have normal ap-
proximation in high-dimensional CLT in the distances relevant in our paper for logd= o(n)
to take the full advantage of the bias reduction method in the whole range of smoothness of
the functionals. However, such normal approximation results do not seem to be available in
the current literature.

3.2. Independent components. We will start this section with an application of Corollary
2.2 and Corollary 2.3 to statistical models with many independent components.

Let X(n) = (X
(n)
1 , . . . ,X

(n)
d ) be an observation with values in the space S(n) := S

(n)
1 ×

· · · × S
(n)
d , where (S

(n)
j ,A(n)

j ), j = 1, . . . , d are measurable spaces and S(n) is equipped

with the product σ-algebra A(n) := A(n)
1 × · · · × A(n)

d . We will assume that the compo-
nents X(n)

1 , . . . ,X
(n)
d of X(n) are independent r.v. and X(n)

j ∼ P (n)
θj

with parameter θj taking
values in a Banach space Ej , j = 1, . . . , d. Let E := E1 × · · · × Ed be equipped with a
standard structure of linear space (the direct sum of linear spaces E1, . . . ,Ed) and with the

norm ‖x‖ =
(∑d

j=1 ‖xj‖2
)1/2

, x = (x1, . . . , xd) ∈ E. Then, clearly, X(n) ∼ P (n)
θ , θ ∈ E,

where P (n)
θ := P

(n)
θ1
× · · · × P (n)

θd
, θ = (θ1, . . . , θd) ∈ E. In the problems we have in mind,

{P (n)
θj

: θj ∈ Ej}, j = 1, . . . , d are low dimensional models and the complexity of combined

model {P (n)
θ : θ = (θ1, . . . , θd) ∈ E} depends only on the number d of independent compo-

nents.
Let θ̂j = θ̂j(X

(n)
j ) be estimators of parameters θj , j = 1, . . . , d and let θ̂ := (θ̂1, . . . , θ̂d)

be the estimator of θ. Assume that
√
n(θ̂j − θj) could be approximated in distribution by a

centered Gaussian r.v. ξj(θj) with values in Ej and with covariance operator Σj(θj). Since
θ̂j , j = 1, . . . , d are independent r.v., we assume that ξj , j = 1, . . . , d are also independent and
ξ(θ) := (ξ1(θ1), . . . , ξd(θd)), θ = (θ1, . . . , θd) ∈ E can be used to approximate

√
n(θ̂ − θ) in
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distribution. The following formula holds for the covariance operator Σ(θ) of ξ(θ) :

〈Σ(θ)u, v〉=

d∑
j=1

〈Σj(θj)uj , vj〉,

u= (u1, . . . , ud), v = (v1, . . . , vd) ∈E∗ =E∗1 × · · · ×E∗d .(3.2)

Moreover, we will view θj 7→ ξj(θj) as a stochastic process and use the following character-
istic of ξ :

qξ(s) :=

{
1
d

∑d
i=1 E‖ξi‖2Cs(Ei) for s ∈ (0,1]

1
d

∑d
i=1 E‖ξi‖2C1(Ei)

+ log(2d)
d max1≤i≤dE‖ξi‖2C1,s(Ei)

for s > 1.

Based on estimator θ̂ := (θ̂1, . . . , θ̂d), define operators T ,B and functions fk. Note that

σ2
f (θ) = 〈Σ(θ)f ′(θ), f ′(θ)〉=

d∑
j=1

〈Σj(θj)f
′
θj (θ), f

′
θj (θ)〉,

where f ′θj (θ) ∈E
∗
j denotes the partial Fréchet derivative of f(θ) = f(θ1, . . . , θd) w.r.t. θj .

The following result holds.

COROLLARY 3.1. Suppose that qξ(s) . 1 and, for some sufficiently small constant c1 >
0, d≤ c1n. Let s= k+ 1 + ρ with k ≥ 1 and ρ ∈ (0,1]. Then, for all s′ ∈ [1, s],

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z)

.s

[√
nq

s/2
ξ (s− 1)

(√
d

n

)s
+ max

1≤j≤d
‖Σj‖1/2L∞(Ej)

q
1/2
ξ (s− 1)

√
d

n

+
( d∑
j=1

W 2
2,Ej (
√
n(θ̂j − θj), ξj(θj))

)1/2
]

(3.3)

and

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖fk(θ̂)− f(θ)‖L2(Pθ) − n
−1/2σf (θ)

∣∣∣
.s q

s/2
ξ (s− 1)

(√
d

n

)s
+

max1≤j≤d ‖Σj‖1/2L∞(Ej)

n1/2
q

1/2
ξ (s− 1)

√
d

n

+
1√
n

( d∑
j=1

W 2
2,Ej (
√
n(θ̂j − θj), ξj(θj))

)1/2
.(3.4)

In particular, bound (3.4) implies that

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖L2(Pθ) .s

max1≤j≤d ‖Σj‖1/2L∞(Ej)

n1/2
+ q

s/2
ξ (s− 1)

(√
d

n

)s

+
1√
n

( d∑
j=1

W 2
2,Ej (
√
n(θ̂j − θj), ξj(θj))

)1/2
.(3.5)
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REMARK 3.3. The bounds also hold for k = 0. In this case, the terms

max
1≤j≤d

‖Σj‖1/2L∞(Ej)
q

1/2
ξ (s− 1)

√
d

n

of (3.3) and

max1≤j≤d ‖Σj‖1/2L∞(Ej)

n1/2
q

1/2
ξ (s− 1)

√
d

n

of (3.4) could be dropped.

REMARK 3.4. Suppose qξ(s) . 1. In particular, for s > 1, this holds if max1≤i≤dE‖ξi‖2C1(Ei)
.

1 and max1≤i≤dE‖ξi‖2C1,s(Ei)
. d

logd . Suppose, in addition, that max1≤j≤d ‖Σj‖1/2L∞(Ej)
. 1.

If the models {Pθj : θj ∈ Ej} are low-dimensional and sufficiently regular, the assumptions
above hold for maximum likelihood estimators θ̂j of θj , j = 1, . . . , d. In fact, in this case,
we would have max1≤i≤dE‖ξi‖2Cs(Ei) . 1 (if the Fisher information matrices Ij(θj) of low
dimensional models are sufficiently smooth). If, in addition, the following normal approxi-
mation bound holds for the estimators θ̂j of the components θj

max
1≤j≤d

W2,Ej (
√
n(θ̂j − θj), ξj(θj)) . n−1/2,(3.6)

then we have ( d∑
j=1

W 2
2,Ej (
√
n(θ̂j − θj), ξj(θj))

)1/2
.

√
d

n
,

which guarantees normal approximation of
√
n(θ̂ − θ) by ξ(θ) for d = o(n). In this case,

(3.3) implies

sup
‖f‖Cs(E)≤1

sup
θ∈E

∆s′(
√
n(fk(θ̂)− f(θ)), σf (θ)Z) .s

√
n

(√
d

n

)s
+

√
d

n
,

(3.4) implies

sup
‖f‖Cs(E)≤1

sup
θ∈E

∣∣∣‖fk(θ̂)− f(θ)‖L2(Pθ) − n
−1/2σf (θ)

∣∣∣.s

(√
d

n

)s
+

1√
n

√
d

n

and (3.5) implies that

sup
‖f‖Cs(E)≤1

sup
θ∈E
‖fk(θ̂)− f(θ)‖L2(Pθ) .s

1√
n

+

(√
d

n

)s
.

If d≤ nα for some α ∈ (0,1) and s > 1
1−α , the above bounds imply the asymptotic normal-

ity of estimator fk(θ̂) with
√
n rate as well as the convergence of

√
n‖fk(θ̂)− f(θ)‖L2(Pθ)

to σf (θ). Note also that, if d ≤ nα for some α ∈ (0,1), then it is sufficient for asymptotic
normality of fk(θ̂) and for convergence of its normalized risk to σf (θ) to have normal ap-
proximation error in (3.6) of the order o(n−α/2) instead of n−1/2.

REMARK 3.5. In the low-dimensional case, bounds of the order n−1/2 on the accuracy
of normal approximation of MLE and more general M -estimators in Kolmogorov’s distance
(Berry-Esseen type bounds) could be found in [54, 4, 55] and in Wasserstein’s W1-distance
in [2]. We are not aware of similar published results for Wassertein’s W2-distance. However,
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it is possible to adapt the approach of these papers in combination with known bounds on
the accuracy of normal approximation in CLT (see, e.g., [58, 23]) to obtain bounds for the
W2-distance suitable in the framework of Corollary 3.1.

Additional examples of models with independent components are provided in the supple-
ment [38].

3.3. Poincaré constants and log-concave models. Let E = Rd be equipped with the Eu-
clidean norm and let X ∼ Pθ, θ ∈ T,T ⊂Rd be a statistical model with the sample space Rd.
As before, we assume that T is an open subset. Also assume that Eθ‖X‖2 <∞, θ ∈ T and
let

Ψ(θ) := EθX, Σ(θ) := Eθ(X −Ψ(θ))⊗ (X −Ψ(θ)), θ ∈Θ.

Moreover, let us assume that Ψ : T 7→Ψ(T ) is a homeomorphism between open sets T and
Ψ(T ). This assumption would allow us to re-parametrize our model by setting ϑ := Ψ(θ) =
EθX,θ ∈ T and using parameter ϑ ∈Ψ(T ) instead of θ. For this new parameter, we simply
have EϑX = ϑ,ϑ ∈Ψ(T ).

Given i.i.d. observations X1, . . . ,Xn of X, let

X̄ :=
X1 + · · ·+Xn

n
, θ̂ = θ̂(X1, . . . ,Xn) =

{
Ψ−1(X̄) if X̄ ∈Ψ(T )

θ0 if X̄ 6∈Ψ(T ),

where θ0 ∈ T is an arbitrary point, and

ϑ̂= ϑ̂(X1, . . . ,Xn) =

{
X̄ if X̄ ∈Ψ(T )

Ψ(θ0) if X̄ 6∈Ψ(T )
= Ψ(θ̂).

It is easy to check that T (f ◦ Ψ−1) = (T f) ◦ Ψ−1, B(f ◦ Ψ−1) = (Bf) ◦ Ψ−1 and (f ◦
Ψ−1)k = fk ◦ Ψ−1, where, with a little abuse of notation, we keep the same letters T and
B to denote the operators based on estimator ϑ̂. This allows us to reduce the problem of
estimation of functional f(θ) to the problem of estimation of functional (f ◦Ψ−1)(ϑ) under
its proper smoothness and to use for this purpose the estimator

fk(θ̂) = (fk ◦Ψ−1)(ϑ̂) = (f ◦Ψ−1)k(ϑ̂).

Of course, one can expect that
√
n(ϑ̂− ϑ) could be approximated by Gaussian random vari-

able ξ(θ) with mean zero and covariance operator Σ(θ) (for ϑ= Ψ(θ)).
We will assume that Pθ satisfies Poincaré inequality, so, CP (Pθ)<∞. Let

σ2
f◦Ψ−1(ϑ) = 〈Σ(Ψ−1(ϑ))(f ◦Ψ−1)′(ϑ), (f ◦Ψ−1)′(ϑ)〉.

PROPOSITION 3.2. Let d= dn and Θ = Θn ⊂Rd with Diam(Θ) . nA for some A> 0.
Let δ > 0 and let s= k+ 1 + ρ with k ≥ 0 and ρ ∈ (0,1]. Suppose that Θδ ⊂ T and

‖Σ‖Cs(Θδ) . 1 and ‖Σ−1‖L∞(Θδ) . 1.(3.7)

Suppose that, for some α ∈ (0,1), d. nα and assume that s > 1
1−α . Finally, suppose that

sup
θ∈Θδ

CP (Pθ) = o(n1−α) as n→∞.(3.8)

Let θ0 in the definition of θ̂ be a point from Θ. Then

sup
‖f◦Ψ−1‖Cs((Ψ(Θ))δ)≤1

sup
θ∈Θ

∣∣∣nEθ(fk(θ̂)− f(θ))2 − σ2
f◦Ψ−1(Ψ(θ))

∣∣∣→ 0(3.9)
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and, for all σ0 > 0,

sup
‖f◦Ψ−1‖Cs((Ψ(Θ))δ)≤1

sup
θ∈Θ,σf◦Ψ−1 (Ψ(θ))≥σ0

dK

(√n(fk(θ̂)− f(θ))

σf◦Ψ−1(Ψ(θ))
,Z
)
→ 0(3.10)

as n→∞.

REMARK 3.6. Suppose that, for small δ > 0, Ψ is a Cs-diffeomorphism between Θδ and
Ψ(Θδ) (with bounded Cs-norms of Ψ and Ψ−1). Then, for a small enough δ > 0, there exists
δ′ > 0 such that Ψ−1((Ψ(Θ))δ′) ⊂ Θδ and the first supremum in (3.10) and (3.9) could be
taken over the set ‖f‖Cs(Θδ) . 1.

REMARK 3.7. The properties of Poincaré constants discussed in Remark 3.1 provide a
way to check condition (3.8). In particular, the claim of the corollary obviously holds in the
Gaussian case. Moreover, if Pθ is absolutely continuous with respect to a measure νθ for
which CP (νθ) is controlled by a numerical constant (for instance, a Gaussian measure) and
the densities dPθ

dνθ
are bounded from above by a constant A> 0 and bounded from below by

a constant a > 0, then CP (Pθ) . 1 and condition (3.8) holds. Thus, the claim of Proposition
3.2 also holds (under the rest of its conditions).

REMARK 3.8. Suppose that measures Pθ, θ ∈Θδ are log-concave. It follows from a re-
cent result of [13] (see Remark 3.1) that supθ∈Θδ

CP (Pθ) .ν d
ν for an arbitrary ν > 0. Thus,

in this case, condition (3.8) holds for all α ∈ (0,1) (and d . nα) and so are the claims of
Proposition 3.2.

In the simplest case, X = θ + η, where η is a mean zero noise sampled from some dis-
tribution µθ in Rd, depending on the parameter θ. In this case, ϑ = Ψ(θ) = θ and it is easy
to state a simplified version of Proposition 3.2. If the distribution µθ = µ of the noise does
not depend on θ and CP (µ)<∞, similar problems were studied in a recent paper [42]. The
approach was based on a more direct analysis of estimator fk(θ̂) in the case of such Poincaré
random shift models without using normal approximation. However, this approach could not
be extended to more general models with distribution µθ of the noise depending on θ since,
in this case, the construction of random homotopies between estimator X̄ and parameter ϑ
leads to rather challenging coupling problems (see also the discussion in Section 1.1).

A slightly more complicated example, is an exponential family3

Pθ(dx) =
1

Z(θ)
exp{〈θ,x〉}h(x)dx, θ ∈ T,(3.11)

where h : Rd 7→ [0,+∞) is a Borel function and Z(θ) :=
∫
Rd exp{〈θ,x〉}h(x)dx <∞, θ ∈

T. Note that the set {θ ∈ Rd : Z(θ)<+∞} is convex and T is a subset of this set. Assume
that T is convex, too. It is well known that T 3 θ 7→ logZ(θ) is a strictly convex smooth
function and

ϑ= Ψ(θ) = EθX = (∇ logZ)(θ), θ ∈ T.

Moreover, Ψ =∇ logZ is a strictly monotone vector field on T (as a gradient of a strictly
convex smooth function) and, therefore, it is a one-to-one mapping from T onto Ψ(T ) (as
before, it is also assumed to be a homeomorphism). Following the terminology of [12] (which

3All the facts about exponential families used below could be found, for instance, in [12]
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is not quite standard), θ is called the canonical parameter of the exponential family and ϑ is
called its natural parameter.

Note also that (logZ)′′(θ) = Ψ′(θ) = Σ(θ) is the covariance of X. It is also the Fisher
information matrix I(θ) for this model with respect to the canonical parameter θ and the
inverse Fisher information matrix I−1(ϑ) with respect to the natural parameter ϑ = Ψ(θ).

Let now X1, . . . ,Xn be i.i.d. ∼ Pθ, θ ∈ T. If X̄ ∈ Ψ(T ), then θ̂ = Ψ−1(X̄) is the unique
maximum likelihood estimator for this exponential model.

We will call exponential family (3.11) log-concave iff the function h is log-concave.
Clearly, in this case the distributions Pθ, θ ∈ T are log-concave. Proposition (3.2) and the
above discussion yield the following corollary.

COROLLARY 3.2. Let d= dn and let Pθ, θ ∈ T = Tn ⊂Rd be a log-concave exponential
family. Let Θ = Θn ⊂ T with Diam(Θ) . nA for someA> 0. Let δ > 0 and let s= k+1+ρ
with k ≥ 0 and ρ ∈ (0,1]. Suppose that Θδ ⊂ T and conditions (3.7) hold. Suppose that, for
some α ∈ (0,1), d . nα and assume that s > 1

1−α . Let θ0 in the definition of θ̂ be a point
from Θ. Then asymptotic relationships (3.9) and (3.10) hold for estimator fk(θ̂) of f(θ).

REMARK 3.9. Note that, in the case of exponential model, the limit variance σf◦Ψ−1(Ψ(θ))
in Proposition 3.2 is equal to 〈I−1(ϑ)(f ◦ Ψ−1)′(ϑ), (f ◦ Ψ−1)′(ϑ)〉 with ϑ = Ψ(θ). It is
possible to prove local minimax lower bounds showing optimality of this variance and the
asymptotic efficiency of estimator of fk(θ̂) (for instance, using Van Trees inequality [25], see
[36], [40] for similar results).

REMARK 3.10. The result of Corollary 3.2 also holds under more general assumption
that function h in the definition of exponential model (3.11) satisfies the condition c−1g(x)≤
h(x)≤ cg(x), x ∈Rd for a non-negative log-concave function g and for a constant c≥ 1.

REMARK 3.11. It was shown in [57], Theorem 3.1 that, under some moment assump-
tions on d-dimensional exponential families with MLE θ̂, θ̂− θ could be approximated by a
sample mean with accuracy OP( dn). Together with a high-dimensional CLT proved in [56],
this implies that normal approximation of

√
n(θ̂− θ) holds if d= o(

√
n). It was also shown

in [57], Proposition 3.1 that, if d is larger than
√
n, the normal approximation of

√
n(θ̂− θ)

could fail even for linear functionals. Thus, additional conditions on exponential family (for
instance, shape constraints such as log-concavity) are needed to justify normal approximation
for MLE when d ≥

√
n (which is an interesting regime for functional estimation requiring

the bias reduction).

4. Outline of the proofs: bootstrap chains and random homotopies. Let θ̂(k), k ≥ 04

be the Markov chain in the space T with transition probability kernel P (θ,A), θ ∈ T,A⊂ T,
defined by (1.2), and with θ̂(0) = θ. For this chain, θ̂(1) has the same distribution as θ̂; con-
ditionally on θ̂(1), θ̂(2) is sampled from the distribution P (θ̂(1); ·); conditionally on θ̂(2), θ̂(3)

is sampled from the distribution P (θ̂(2), ·), etc. Thus, the Markov chain θ̂(k), k ≥ 0 is con-
structed by an iterative application of parametric bootstrap to the estimator θ̂ and it was
called in [36] the bootstrap chain of this estimator. Bootstrap chains are involved in repre-
sentations of functionals Bkf, k ≥ 1 needed to control the bias of estimator fk(θ̂). Namely

4In this section, k denotes the time index of bootstrap chains and is not related to smoothness parameter s
unless it is stated otherwise (as in Proposition 4.1).
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(see [36, 37, 40, 41]),

(Bkf)(θ) = Eθ
k∑
j=0

(−1)k−j
(
k

j

)
f(θ̂(j)),

which is the expectation of the k-th order difference of function f along the sample path of
the bootstrap chain. It is well known that for a k times continuously differentiable function f
in the real line, its k-th order difference

∆k
hf(x) =

k∑
j=0

(−1)k−j
(
k

j

)
f(x+ jh) = f (k)(x)hk + o(hk) as h→ 0.

If, for a small δ > 0, supθ∈T Pθ{‖θ̂ − θ‖ ≥ δ} is also small, we would have that ‖θ̂(j+1) −
θ̂(j)‖< δ with a high probability. In this case, one could expect that, for a k times continu-
ously differentiable function f :E 7→R, (Bkf)(θ) is of the order δk, and, if f is k+ 1 times
continuously differentiable function, then the bias of estimator fk(θ̂) of f(θ)

Eθfk(θ̂)− f(θ) = (−1)k(Bk+1f)(θ) =O(δk+1).

This heuristic was justified in [41] (with some ideas developed earlier in [36, 37, 40]) using
representations of bootstrap chains as superpositions of so called random homotopies.

A random homotopy between parameter θ and its estimator θ̂ is an a.s. continuous stochas-
tic process H : T × [0,1]×Ω 7→ T defined on a probability space (Ω,F ,P) such that, for all
θ ∈Θ,

H(θ; 0) := θ, H(θ; 1)
d
= θ̂, where θ̂ ∼ P (θ; ·).

In addition, random homotopy H(θ, t), θ ∈ T, t ∈ [0,1] will be assumed to be sufficiently
smooth. In other words, random homotopy is a coupling that provides a smooth path between
parameter θ and a random variable in the parameter space with the same distribution as
the estimator θ̂. Given i.i.d. copies H1,H2, . . . , one can define their superpositions Gk :=
Hk • · · · •H1 as follows:

Gk(θ; t1, . . . , tk) :=Hk(Gk−1(θ; t1, . . . , tk−1), tk), (t1, . . . , tk) ∈ [0,1]k

with G0 ≡ θ. One can also define a Markov chain θ̃(k) :=Gk(θ; 1, . . . ,1) with θ̃(0) = θ and

show that (θ̂(k) : k ≥ 0)
d
= (θ̃(k) : k ≥ 0), see Lemma 4.1 in [41]. Moreover, it is also shown

in the same lemma that

θ̂l
d
=Gk(θ; t1, . . . , tk), (t1, . . . , tk) ∈ {0,1}k,

k∑
i=1

ti = l.

Using these facts, it is easy to derive the following representation of (Bkf)(θ)

(Bkf)(θ) = E∆(1) . . .∆(k)f(Gk(θ; t1, . . . , tk)),

where

∆(i)ϕ(t1, . . . , tk) = ϕ(t1, . . . , ti, . . . , tk)|ti=1 −ϕ(t1, . . . , ti, . . . , tk)|ti=0, i= 1, . . . , k.

Under proper smoothness assumptions on f and on random homotopies, this yields the fol-
lowing formula:

(Bkf)(θ) =

∫ 1

0
· · ·
∫ 1

0
E
∂kf(Gk(θ; t1, . . . , tk))

∂t1 . . . ∂tk
dt1 . . . dtk,
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This approach and other analytic techniques developed in [41] led to the bounds on the Hölder
norms of functions Bjf and fk as well as the bounds on the bias of estimator fk(θ̂) of f(θ).

For a function V : T × [0,1] 7→ F with values in a Banach space F and such that V (·, t) ∈
Cs(T ), t ∈ [0,1], denote

‖V ‖∼Cs(T×[0,1]) := sup
t∈[0,1]

‖V (·, t)‖Cs(T ) and ‖V ‖∼C0,s(T×[0,1]) := sup
t∈[0,1]

‖V (·, t)‖C0,s(T ).

We will summarize some facts proved in [41] (see, in particular, Theorem 3.1, Theorem
3.2, Proposition 7.1).

PROPOSITION 4.1. Let s= k+1+ρ, k ≥ 1, ρ ∈ (0,1]. Assume thatH(θ; t) is k+1 times
continuously differentiable in T × [0,1] and let Ḣ(θ; t) := d

dtH(θ; t). Then, the following
statements hold:

1. If

E(‖H‖∼C0,s−1(T×[0,1]))
s−1‖Ḣ‖∼Cs−1(T×[0,1]) <+∞,(4.1)

then

‖B‖Cs(T )7→Cs−1(T ) ≤ 4(k+ 1)k+2E(‖H‖∼C0,s−1(T×[0,1]))
s−1‖Ḣ‖∼Cs−1(T×[0,1]).

2. Moreover, under the same assumption, for some constant Ds and for all j = 1, . . . , k,

‖Bj‖Cs(T )7→C1+ρ(T ) ≤Ds

(
E(‖H‖∼C0,s−1(T×[0,1]))

s−1‖Ḣ‖∼Cs−1(T×[0,1])

)j
.

3. If DsE(‖H‖∼C0,s−1(T×[0,1]))
s−1‖Ḣ‖∼Cs−1(T×[0,1]) ≤ 1/2, then

‖fk‖C1+ρ(T ) ≤ 2‖f‖Cs(T ).

4. If assumption (4.1) holds, then for all θ ∈ T,

|Eθfk(θ̂)− f(θ)|.s ‖f‖Cs(T )

(
E(‖H‖∼C0,s−1(T×[0,1]))

s−1‖Ḣ‖∼Cs−1(T×[0,1])

)k
×
(∥∥∥E∫ 1

0
Ḣ(θ; t)dt

∥∥∥+ E‖Ḣ‖1+ρ
L∞(T×[0,1])

)
.

These facts provide a way to control the bias of estimator fk(θ̂) and, using the smoothness
of function fk, to study the concentration of fk(θ̂) around its expectation (in the case of nor-
mal models where Gaussian concentration could be used). However, both the construction of
random homotopies and the development of concentration bounds for more general statistical
models than Gaussian are challenging problems.

We get around this difficulty by using the normal approximation of estimator θ̂ and reduc-
ing the problem to the Gaussian case. More precisely, instead of developing random homo-
topies directly for the estimator θ̂, we use a very simple random homotopy

H(θ; t) := θ+
tξ(θ)√
n

for the “estimator" θ̃ =G(θ) = θ+ ξ(θ)√
n
, or for a slightly modified “estimator" θ̃δ, defined as

follows:

θ̃δ :=Gδ(θ) := θ+
ξδ(θ)√
n
∈Θδ,
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where ξδ(θ) := ξ(θ)I
(
‖ξ‖L∞(E) < δ

√
n
)
, θ ∈ E. Using θ̃δ instead of θ̃ would allow us to

prove our results under smoothness assumptions on the process ξ and functional f locally in
a neighborhood of Θ (if ξ and f are smooth in the whole space, using θ̃ would suffice). For
these estimators, we construct the corresponding bootstrap chains θ̃(k) and θ̃(k)

δ , defined as
superpositions

θ̃(k) = (Gk ◦ · · · ◦G1)(θ) and θ̃
(k)
δ = (Gk,δ ◦ · · · ◦G1,δ)(θ)

of i.i.d. copies G1,G2, . . . and G1,δ,G2,δ, . . . of stochastic processes G and Gδ. We show
that these chains approximate in distribution the bootstrap chain θ̂(k) of the initial estimator
θ̂ (see Theorem 5.1 in Section 5). We also approximate operator T by the operators T̃ and
T̃δ :

(T̃ f)(θ) := Eθf(θ̃) = Ef(G(θ)), (T̃δf)(θ) := Eθf(θ̃δ) = Ef(Gδ(θ)), θ ∈E,f ∈ Lip(E)

and define B̃ := T̃ − I, B̃δ := T̃δ − I. This allows us to approximate the function fk by
similar functions f̃ , f̃δ,k defined as follows

f̃k(θ) :=

k∑
j=0

(−1)j(B̃jf)(θ), f̃δ,k(θ) :=

k∑
j=0

(−1)j(B̃jδf)(θ).

Namely, we prove the following bound (see Theorem 5.2, [38]): for all s≥ 1, k ≥ 1 and δ > 0
such that Θkδ ⊂ T,
‖fk − f̃δ,k‖L∞(Θ)

.s,k ‖f‖Cs(Θkδ)

(
1 +

E‖ξ‖sCs(Θ(k−1)δ)

ns/2

)k−1[
∆F ,Θ(η1, η2), (θ̂, θ̃) + Qn(Θ(k−1)δ; δ)

]
,

where F := {f : ‖f‖Cs(Θδ) ≤ 1} and

Qn(Θ, δ) := sup
θ∈Θ

P{‖θ̂− θ‖ ≥ δ}+ P{‖ξ‖L∞(E) ≥ δ
√
n}.

Proposition 4.1 allows us to control the bias Ef̃δ,k(θ̃δ)− f(θ). Moreover, in Section 6, [38],
we use Gaussian concentration (more precisely, Maurey-Pisier type inequalities) to obtain
bounds on the error of “estimator" fδ,k(θ̃δ). This yields the following inequaity (see Theorem
6.1, [38]) that holds, for s= k+ 1 +ρ, k ≥ 1, ρ ∈ (0,1], under the assumption that Θ(k+3)δ ⊂
T :

sup
θ∈Θ

∥∥∥f̃δ,k(θ̃δ)− f(θ)− n−1/2〈f ′(θ), ξ(θ)〉
∥∥∥
Lψ(P)

.s,ψ ‖f‖Cs(Θ(k+3)δ)

[(√
dξ(Θ(k+2)δ;s− 1)

n

)s
+
‖Σ‖1/2L∞(E)

n1/2

√
dξ(Θ(k+2)δ;s− 1)

n

+

√
dξ(Θ(k+2)δ;s− 1)

n
ψ̃1/2(P{‖ξ‖L∞(E) ≥ δ

√
n})
]
.

We combine all these pieces together in Section 7, [38] to complete the proofs of main results.

REMARK 4.1. It easily follows from the proofs of the main results that they also hold for
estimators f̃k(θ̂) and f̃δ,k(θ̂), based on the functionals related to the Gaussian approximation
of estimator θ̂.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimation of smooth functionals in high-dimensional models: boot-
strap chains and Gaussian approximation”
In the supplementary material [38], we develop all the necessary tools and provide the de-
tailed proofs of the main results. In particular, we develop a method of approximation of
bootstrap chains by the Markov chains for Gaussian model and prove concentration bounds
for this model. We also state and prove some additional results.
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