Quality Assurance for Infrastructure Orchestrators:
Emerging Results from Ansible

Yue Zhang* Muktadir Rahman® Fan Wu! Akond Rahman®
*Department of Computer Science, Tuskegee University, Tuskegee, AL, USA
TMetaDesign Solutions, Dhaka, Bangladesh
iDepalrtment of Computer Science, Tuskegee University, Tuskegee, AL, USA
§Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
Email: *yzhang8317 @tuskegee.edu " muktadir.rahman @mds.com.bd ifwu@tuskegee.edu §akond@auburn.edu

Abstract—Infrastructure as code (IaC) is the practice of auto-
matically managing computing infrastructure at scale. Despite
yielding multiple benefits for organizations, the practice of IaC
is susceptible to quality concerns, which can lead to large-scale
consequences. While researchers have studied quality concerns
in IaC manifests, quality aspects of infrastructure orchestrators,
i.e., tools that implement the practice of IaC, remain an under-
explored area. A systematic investigation of defects in infrastruc-
ture orchestrators can help foster further research in the domain
of IaC. From our empirical study with 22,445 commits mined
from the Ansible infrastructure orchestrator we observe (i) a
defect density of 17.9 per KLOC, (ii) 12 categories of Ansible
components for which defects appear, and (iii) the ‘Module’
component to include more defects than the other 11 components.
Based on our empirical study, we provide recommendations for
researchers to conduct future research to enhance the quality of
infrastructure orchestrators.

Index Terms—ansible, devops, infrastructure as code

I. INTRODUCTION

Infrastructure as code (IaC) is the practice of automatically
managing computing infrastructure at scale [7] using a state
reconciliation approach. IaC is implemented using infrastruc-
ture orchestrators, i.e., tools that account for state reconcilia-
tion to implement the practice of IaC, such as Ansible. Use
of infrastructure orchestrators have yielded several benefits
for organizations. Along with automation, the practice of IaC
recommends application of quality assurance activities, such as
static analysis and testing. Infrastructure orchestrators are no
different: quality assurance activities also need to be applied
for infrastructure orchestrators. However, quality assurance of
infrastructure orchestrators remain an under-explored area. A
systematic investigation of defects that occur for infrastructure
orchestrators can lay the groundwork for future research.

To that end, we conduct a preliminary empirical study where
we analyze 22,445 commits mined from the repository of the
Ansible infrastructure orchestrator [1]. We apply a qualitative
analysis technique called open coding [15] using which we
quantify defect frequency, and derive component categories
for which defects appear. Dataset and source code used in our
empirical study are available online [2]. With our empirical
study, we answer the following research questions: (i) RQI:
How frequently do defects occur for the Ansible infrastruc-

ture orchestrator?, and (ii) RQ2: In what components do
defects appear for the Ansible infrastructure orchestrator?

Our Contribution is an empirical analysis of defects in
components within the Ansible infrastructure orchestrator.

II. RELATED WORK

Our paper is related to prior research that have investigated
quality assurance for Ansible. Dalla Palma et al. [4] introduced
a set of 46 metrics that can be used to predict defective
Ansible manifests. In another paper, Dalla Palma et al. [3]
found code-based metrics to be better than process metrics
for defect prediction for Ansible manifests. Opdebeeck et
al. [12] identified code smells that can cause defects in An-
sible manifests. Hassan and Rahman [11] categorized defects
observed in Ansible test manifests. Kokuryo et al. [9] observed
execution of external manifests as a quality concern in Ansible
manifests. Specific categories of defects, such as security
defects, have also garnered interest. Rahman et al. [14] derived
a taxonomy of security defects in Ansible manifests. Rahman
et al. [14]’s paper was replicated by Hortlund [6], who reported
the security weakness density to be less than that reported by
Rahman et al. [14]. From the afore-mentioned discussion, we
observe a lack of research on how frequently defects occur
for the Ansible infrastructure orchestrator. We address this
research gap in our paper.

III. METHODOLOGY
A. Methodology for RQI

We conduct our empirical study by mining the OSS repository
for the Ansible infrastructure orchestrator [1]. We download
this repository with 52,245 commits on May 01, 2022. We
mine commits from this repository, and the corresponding
Python files that are modified in each commit. We select
Python files as it is the primary language to implement the
Ansible infrastructure orchestrator [1].

Keyword search: We apply a keyword search to identify
commit messages similar to prior defect categorization re-
search [5], [13]. The keywords are: ‘bug’, ‘defect’, ‘error’,
“fault’, ‘fix’, ‘flaw’, ‘incorrect’, ‘issue’, and ‘mistake’. Using
our keyword search we identify 22,445 commits.

Qualitative analysis: We apply a qualitative analysis tech-
nique called closed coding [15] with commit messages and
corresponding diffs from the set of 22,445 commits. For each
of these commits and their corresponding diffs, two raters indi-
vidually identify if a defect appears in the commit. To identify
defects, we use the IEEE definition [8]: “an imperfection or
deficiency in the code that needs to be repaired”. A rater
determines (i) if problematic code exists in the commit, (ii) if
problematic code leads to an immediate incorrect or undesired
consequence upon execution that is explicitly expressed, and
(iii) if the problematic code was repaired. The first author
and a PhD student in the department are raters. We calculate
Krippendorff’s o [10] o is 0.52, indicating ‘unacceptable’
agreement [10]. Both raters discussed their disagreements, and
upon discussion, they conduct the inspection process again. At
this stage, we calculate Krippendorff’s « to be 1.0, indicating
‘perfect’ agreement [10]. From open coding, we obtain a
mapping between each commit and whether the commit is
defect-related. From this mapping we also identify which
Python files are modified in a commit that is defect-related.
We refer to this set of files as defect-related Python files.

Metrics: We use two metrics: (i) defect proportion, and (ii)
defect density. Defect proportion quantifies the proportion of
defect-related commits. Defect density corresponds to count
of defects that appear in every 1,000 lines of Python code.

B. Methodology for RQ2

RQ2 focuses on identifying the components in the Ansible
infrastructure orchestrator for which defect appears. We use
the Python files that are modified in a defect-related commit
from Section III-A to derive the components. First, from the
collected Python files from Section III-A, we exclude files that
are not part of the orchestrator, such as testing-related files.
Second, we extract the file names for each Python file. Third,
we apply open coding [15] to derive component categories
based on the similarities between names.

The open coding process is conducted by the first author,
which is susceptible to rater bias. We mitigate this limitation
by using another rater who is the last author. We calculate
Krippendorff’s a to be 0.69 between the first and last author,
indicating ‘acceptable’ agreement [10]. Upon completion of
the open coding process, we obtain a mapping between each of
the Python files obtained from Section III-B and a component
category. We use this mapping to quantify the frequency
of each component category by reporting the proportion of
defect-related Python files that map to each identified category.

IV. EMPIRICAL FINDINGS

We provide answers to our research questions as follows:

A. Answer to RQI

In this section, we answer RQ1: How frequently do defects
occur for the Ansible infrastructure orchestrator? We iden-
tify 4,554 defect-related commits. From Table I, we observe
defect density and defect proportion to respectively, be 17.9

and 30.3%. From identified 4,554 defect-related commits we
observe 14,756 Python files to be modified.

TABLE I: Answer to RQ1: Frequency of defects

Metric Value
Defect density 17.9 (per KLOC)
Defect proportion 30.3 %

B. Answer to RQ?2

In this section, we answer RQ2: In what components do
defects appear for the Ansible infrastructure orchestrator?
using Table II. The ‘Definition’ and ‘Frequency’ columns
respectively provides the definitions and proportion of defect-
related Python files that map to each identified category.
For example, 0.06% of the defect-related Python files belong
to ‘Cache’. For ‘Module’, we identify 10,215 defect-related
Python files amongst which 78.6%, 4.9%, and 16.5% are the
types of builtin, core, and plugin.

V. DISCUSSION AND CONCLUSION

We discuss our findings in the following subsections:

A. Implications Related to Future Work

Our empirical findings lay the groundwork for future research:

Construct Defect Taxonomies: Table 1 shows that defects
are prevalent, e.g., 20.3% of the 22,445 commits are labeled
as defective from our qualitative analysis. As defects are
prevalent in the Ansible infrastructure orchestrator, we recom-
mend researchers to gain a systematic understanding of defect
categories to develop a comprehensive taxonomy that will
identify defects unique to IaC’s state reconciliation approach.
Such taxonomy can help the IaC community to advance the
science of TaC quality assurance, as well as develop automated
program repair techniques.

Develop Testing and Verification Techniques: Our results
show that the Ansible infrastructure orchestrator contains
multiple components, each of which performs a distinct op-
eration. Also, results reported in Table II show that defect-
related Python files are not uniformly distributed across the
identified components. We hypothesize that components for
which defect-related files appear more can be prioritized for
performing testing and verification. Furthermore, we hypothe-
size one technique to not discover latent defects with equal
efficacy for all identified components. Future research can
support or refute our hypotheses.

Limitations: We discuss the limitations of our paper below:

Construct Validity: The raters may have implicit biases that
could have affected the labeling process described in Sec-
tion III. We mitigate this limitation by using two raters.
Furthermore, we use commit messages to identify defects that
may not capture the full context of defects for the Ansible
infrastructure orchestrator.

External Validity: Our empirical study is susceptible to exter-
nal validity as we only use the Ansible OSS repository.

TABLE II: Answer to RQ2: Name, Definition, and Frequency of Components for Which Defects Appear

Name Definition Frequency
Cache This component pre-fetches infrastructure-related data so that infrastructure operations are performant. 0.06%
Command Line This component is responsible for running a single task on desired computing infrastructure. 2.39%
Interface (CLI)
Collection This component is responsible to manage Ansible-specific collections, such as roles and plugins. 0.01%
Compatibility This component facilitates execution of Ansible playbooks that are developed using multiple versions of Ansible. 0.06%
Error This component handles and reports errors, such as non-zero return codes, which are generated by the Ansible 0.01%
Management runtime.
Executor This component receives infrastructure configurations parsed from Ansible playbooks, and decides what to execute 6.23%
next.
Galaxy This component manages pre-packaged units of Ansible playbooks, which are called ‘roles’. Ansible Galaxy 0.41%
allows practitioners to find roles, use existing roles with the ansible—-galaxy command, allow practitioners
to create roles, and rank roles based on the user feedback.
Inventory This component manages the computing infrastructure that is specified as inventory files written in INI and YAML. 1.98%
Module This component contains modules that practitioners can use to perform infrastructure-related tasks. Ansible 69.23%
provides two categories of modules: (i) builtin modules, which are code units that perform specific functions, and
users can call existing modules locally or remotely to execute automation tasks without needing all the details;
and (ii) plugins that extend the functionality of Ansible, but can only be executed on the machine running ansible
and not the remote machine.
Parsing This component parses Ansible playbooks written in YAML. Output of this module is later used by the executor 0.94%
component of Ansible.
Play This component determines when and where tasks for each playbooks are completed and by whom. 3.67%
Management
Utils This component contains source code that is used to perform utility-based operations while parsing and executing 15.00%

playbooks.

B. Conclusion

Infrastructure orchestrators play a pivotal role in automated
infrastructure management, which necessitates integration of
quality assurance activities for infrastructure orchestrators. We
have conducted an empirical study with the Ansible infrastruc-
ture orchestrator, for which we have observed a defect density
of 17.9 per KLOC. We also identify 12 component categories
within Ansible, amongst which the ‘Module’ component con-
tains the most amount of defect-related Python files. Based on
our findings, we recommend researchers to (i) construct defect
taxonomies unique to infrastructure orchestrators, (ii) develop
techniques that will test and verify infrastructure orchestrator
components with prioritization heuristics, and (iii) quantify the
correlation between maintenance efforts and quality assurance
concerns for infrastructure orchestrators.

[4]

[5]

[6]

[7]

[8]

[9]

——, “Toward a catalog of software quality metrics for infrastructure
code,” Journal of Systems and Software, vol. 170, p. 110726, 2020.

J. Garcia, Y. Feng, J. Shen, Y. Almanee, Sumaya Xia, and Q. A. Chen,
“A comprehensive study of autonomous vehicle bugs,” in Proceedings of
the 42nd International Conference on Software Engineering, ser. ICSE
’20, 2020.

A. Hortlund, “Security smells in open-source infrastructure as code
scripts: A replication study,” 2021.

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

IEEE, “IEEE standard classification for software anomalies,” IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. 1-23, Jan 2010.

S. Kokuryo, M. Kondo, and O. Mizuno, “An empirical study of utiliza-
tion of imperative modules in ansible,” in 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security (QRS), 2020,
pp. 442-449.

ACKNOWLEDGMENTS [10] K. Krippendorff, Content analysis: An introduction to its methodology.
. . . Sage publications, 2018.
We thank the PASER group at Auburn University for their gp
valuable feedback. This research was partially funded by the [11] H.MohammadMehedi and A. Rahman, "As code testing: Characterizing
. . . test quality in open source ansible development,” in 2022 15th IEEE
U.S. National Science Foundation (NSF) Award # 2247141, Conference on Software Testing, Verification and Validation (ICST). Los
Award # 2310179, Award # 2209637, and the U.S. National Alamitos, CA, USA: IEEE Computer Society, apr 2022.
Security Agency (NSA) Award # H98230-21-1-0175. We also [12] R. Opdebeeck, A. Zerouali, and C. De Roover, “Smelly variables in
thank Farhat Lamia Barsha for her help with the qualitative ansible infrastructure code: Detection, prevalence, and lifetime,” in
analysis 2022 IEEE/ACM 18th International Conference on Mining Software
’ Repositories (MSR). 1EEE, 2022.
REFERENCES [13] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of eight: A
[1] ansible, “ansible/ansible.” https:/github.com/ansible/ansible, 2023, [On- defect taxonomy for infrastructure as code scripts,” in Proceedings of the
line: accessed 02-June-2023]. ACM/IEEE 42nd International Conferech on Software Er'lgmeermg, ser.
ICSE "20. New York, NY, USA: Association for Computing Machinery,
[2] A. Authors, “Verifiability package for paper,” 2020, p. 752-764.
https://figshare.com/s/32b4124f7b99ca521cc0, 2022, [Online; accessed . . B .
01-Dec-2022]. [14] A.Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security smells
in ansible and chef scripts: A replication study,” ACM Trans. Softw. Eng.
[3] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Within- Methodol., vol. 30, no. 1, Jan. 2021.
project defect prediction of infrastructure-as-code using product and N . L
[15] J. Saldafia, The coding manual for qualitative researchers. Sage, 2015.

process metrics,” IEEE Transactions on Software Engineering, vol. 48,
no. 6, pp. 2086-2104, 2022.

