DFMan: A Graph-based Optimization of Dataflow
Scheduling on High-Performance Computing
Systems

Fahim Chowdhury’ Francesco Di Natale?
Florida State University
{fchowdhu, yuw}@cs.fsu.edu

Abstract—Scientific research and development campaigns are
materialized by workflows of applications executing on high-
performance computing (HPC) systems. These applications con-
sist of tasks that can have inter- or intra-application flows of
data to achieve the research goals successfully. These dataflows
create dependencies among the tasks and cause resource con-
tention on shared storage systems, thus limiting the aggregated
I/O bandwidth achieved by the workflow. However, these 1/O
performance issues are often solved by tedious and manual efforts
that demand holistic knowledge about the data dependencies in
the workflow and the information about the infrastructure being
utilized. Taking this into consideration, we design DFMan, a
graph-based dataflow management and optimization framework
for maximizing I/O bandwidth by leveraging the powerful storage
stack on HPC systems to manage data sharing optimally among
the tasks in the workflows. In particular, we devise a graph-
based optimization algorithm that can leverage an intuitive graph
representation of dataflow- and system-related information, and
automatically carry out co-scheduling of task and data placement.
According to our experiments, DFMan optimizes a wide variety
of scientific workflows such as Hurricane 3D on Cloud Model 1
(CM1), Montage Carina Nebula (NGC3372), and an emulated
dataflow kernel of the Multiscale Machine-learned Modeling
Infrastructure (MuMMI I/O) on the Lassen supercomputer, and
improves their aggregated 1/0 bandwidth by up to 5.42x, 2.12x
and 1.29x, respectively, compared to the baseline bandwidth.

I. INTRODUCTION

Inter-disciplinary scientific research campaigns take place
regularly to solve important problems in medical science,
environmental science, astrophysics, etc. [1], [2]. Generally,
researchers and scientists solve real-world problems via the
workflows of applications executing on HPC infrastructures.
These applications usually have thousands to millions of inter-
dependent tasks and can transfer terabytes or even petabytes
of data [3], [4]. For instance, the cancer research workflow
for investigating the interaction of RAS proteins and the
cell membrane managed by a Multiscale Machine-Learned
Modeling Infrastructure (MuMMI) [4] demands 154 PB of
usable storage with 1.5 TB/s peak bandwidth from Sierra [5].
Besides the sheer volume of data, another limiting factor in
HPC workflows is the data dependencies among the tasks
of the applications. These dependencies generate a highly-
convoluted relationship between task and data that is difficult
to manage [6]. This situation mandates using shared storage
systems for data movement and limits the I/O performance

Adam Moody!
"Lawrence Livermore National Laboratory
{dinatale3, moody20, mohrorl } @lInl.gov

Kathryn Mohror! ~Weikuan Yu!

due to resource contention issues. Hence, data movement’s
volume and velocity often hinder the pace and quality of
crucial scientific research advancements via HPC workflows.

Data management is considered one of the most challenging
tasks in scientific and industry application development for
HPC systems [4], [7], [8]. Even though this I/O maintenance is
usually kept untouched until it becomes a potential bottleneck
in application performance, many efforts have taken place over
the years that address the understanding and exploration of
I/0 workloads [6], [9], [10]. Moreover, efficient scheduling
of tasks on distributed systems is vital for reaching HPC
performance targets, such as maximizing task parallelism,
I/0, and communication bandwidth [11]-[14]. Efficient data
management in HPC workflows requires the development of
not only optimized scheduling strategies for data placement,
but also proper assignment of computation resources to tasks.
This scenario demands the development of optimal task-data
co-scheduling policies.

In an HPC workflow, there can be thousands of producer-
consumer data dependencies among the tasks. Proper under-
standing of the task-data dependencies exposes the complexity
of the dataflow and helps extract the semantics of the workflow
I/O behavior. On the other hand, the latest HPC systems with
heterogeneous computation and storage resources have dense
relationships. Both the task-data and computation-storage re-
lationships can be organized using graph data structures.
Careful use of this workflow- and system-specific information
is required to design optimized co-scheduling strategies for
assigning tasks and data to computation and storage resources,
respectively. This task-data co-scheduling can be formulated
as a general assignment problem [15], which is an NP-hard
combinatorial optimization problem [16].

Taking the need for HPC dataflow optimization into con-
sideration, we design and develop DFMan, a dataflow man-
agement system to provide task-data co-scheduling strategies
for resource management systems using the information about
the dataflow structures and systems resource hierarchy. We
devise methods for representing the task-data dependencies
in a workflow as a graph and extracting the directed acyclic
graph (DAG). Additionally, DFMan provides a system in-
formation management module to maintain another graph
for keeping track of the computation and storage resource

relationships. We construct a variable space with the task-data
and computation-storage pairs and formulate the assignment
problem as a constrained max bipartite graph matching prob-
lem. We use linear programming to find optimal task-data to
computation-storage mapping that maximizes the aggregated
I/O bandwidth in the workflow.

We evaluate DFMan’s automatic scheduling policies by
using synthetic workflows built by Wemul [6], two HPC
application workflows: Hurricane 3D on CM1 [17] and Carina
Nebula image mosaic visualization workflow on Montage [18],
and two HPC dataflow kernels: the I/O module of Hard-
ware/Hybrid Accelerated Cosmology Code (HACC I/O) and
MuMMI I/O [4]. According to our experiments on the Lassen
supercomputer [19], we achieve optimized I/O performance
in all cases using DFMan’s strategies and match the informed
policies applied manually to leverage the system’s resources
optimally.

In summary, we make the following key contributions.

o We introduce a method for representing HPC workflow
as a graph, managing task-data dependency information,
and extracting important DAG for scheduling.

o We design the system’s resource hierarchy information
management module for constructing the computation-
storage resource relationship graphs.

e Most importantly, we develop a novel technique for
formulating the task-data co-scheduling on computation-
storage as a general assignment problem, redefining it as
a bipartite graph matching problem, and solving it using
linear programming methods.

e We develop a prototype and evaluate its efficacy in
solving dataflow management issues by leveraging the
modern HPC storage stack.

II. BACKGROUND
A. HPC Workflow and Dataflow

A scientifically important objective or a scientific campaign
can be operated by a set of single or multiple applications [1].
These applications are often executed by a complex network
of thousands to even millions of inter-dependent or indepen-
dent tasks [2]. These sets of applications running on HPC
systems create HPC workflows. A task in a workflow can
depend on or consume the data produced by other tasks. This
situation creates sharing data among the tasks in different or
the same application causing inter- or intra-application data
dependencies. The data movement caused by this data-sharing
among the tasks, or the inter-task data transfer in a workflow,
is referred to as dataflow in this paper. Usually, dataflows
in different HPC workflow types, such as simulation, and
experimental and observational data analysis, can be organized
by DAGs. More complicated workflows with feedback mech-
anisms create cyclic dependencies that pose more challenges
in handling the tasks and data efficiently [4], [6].

B. Scheduling in Resource and Workflow Managers

Batch job scheduling in distributed HPC supercomputers is
mainly handled by resource management software systems.

These systems are responsible for allocating HPC resources
to jobs or tasks while considering administrative policies
and resource availability [7]. Classic resource management
systems like SLURM [20], IBM Spectrum LSF [21], etc., are
frequently used in leadership supercomputers for scheduling
batch jobs for executing scientific application workflows.
Flux is an emerging workload manager that can allocate
resources into even finer granularity by allowing hierarchical
task scheduling per core in addition to that per node [22].
These resource managers generally provide some built-in
scheduling schemes, such as first-come, first-served (FCFS),
ALCF WFP [23], Conservative and EASY Backfilling, etc.,
for managing resource utilization in large workflows.

Workflow management systems, such as Pegasus [24],
MaestroWF [25], Cylc [26], etc., can simplify job and data
management complexities in HPC workflows. These workflow
managers provide user-friendly syntax to define a workflow
and often deal with challenges, such as basic task schedul-
ing [27], tracking dataset [24], fault-handling, etc. Most of
the workflow managers, except Cylc, expect a workflow to be
acyclic. Cylc requires information about the starting tasks of
a cyclic workflow from the workflow developers. However,
none of the present managers has support for automatically
determining optimized task and data co-scheduling strategies
using dataflow representation of a workflow and underlying
storage stack information.

C. I/O Acceleration Opportunities in HPC Infrastructure

HPC storage stack typically contains fast ephemeral node-
local storage devices on I/O nodes, parallel file systems,
campaign, and archival storage systems. The storage capacity
and data lifetime increase from top to bottom in the stack,
while the latency and bandwidth performance degrade. At
the top of the stack, node-local storage systems and storage-
class memory devices, such as 3D XPoint, Z-NAND flash
memory, etc., have the fastest performance with the lowest
capacity and data lifetime. Applications can access these
storage devices directly through I/O libraries or file systems
on top of device drivers. Most of the modern supercomputers
are equipped with disaggregated storage through dedicated I/O
nodes, usually handled by burst-buffer management systems,
such as Cray DataWarp. Parallel file systems (PFS) sit on the
next level of the hierarchy built on top of network-attached
storage devices and handled by PFS client and server software.
PFS can usually have up to several months of data lifetime,
depending on the system’s administrative policies Campaign
storage systems are kept one step lower in the hierarchy for
supporting long-running application campaigns. Finally, the
archive storage system is situated at the bottom of the stack,
usually consisting of magnetic tape devices. It has plodding
access speed but almost infinite data lifetime and capacity
for keeping huge archival scientific data. It is essential for
any data-intensive workflow to be designed and executed to
effectively leverage the rich storage stack present in modern
HPC systems.

III. MOTIVATION
A. Why Intelligent Scheduler: An Illustrative Example

1) System Specification: Let us assume an HPC cluster has
three available nodes, n1, ne, and ng, with two compute cores
each, ¢; and ¢, on ni, c3 and ¢4 on nsy, and c¢; and cg
on ng. The system has three types of storage systems such
as node-local ram disk (RD), shared burst buffer file system
(BB), and global parallel file system (PFS). As shown in
TABLE 2(b), let us assume s, s and sz are instances of
node-local RD accessible from nj, ne and ng, respectively.
Each of those RD instances has a read bandwidth of 6 data
units per time unit (size/time) and 3 size/time write bandwidth.
s4 1s a BB instance accessible from no and n3 with read and
write bandwidth of 4 and 2 size/time, respectively. Lastly, ss
is the PFS instance accessible from all three nodes and has
read and write bandwidth of 2 and 1 size/time, respectively.

2) Workflow Definition: As shown in Fig. 1(a), the work-
flow has four applications, a1, a2, ag and a4. a; runs one task,
ti1. as runs to, and t3. agz and a4 runs three tasks each, t4-tg
and t7-tg, respectively. We assume that the size of each data
instance is the same, i.e., 12 data units. As a result, RD, BB
and PFS take 2, 3 and 6 time units to read, and 4, 6 and 12
time units to write a data instance, respectively.

(a) Original graph

(b) Extracted DAG

Fig. 1: Representation of task-data dependencies in workflow
as graphs. Round and square vertices specify tasks and data;
solid and dashed edges represent required and optional depen-
dencies, respectively. See § IV-B1 for more details.

TABLE 2(a) shows the estimated duration for each task
when a task uses a specific storage system. We extract the
DAG in Fig. 1(b) from the cyclic graph in Fig. 1(a) using the
techniques discussed in § IV-B1. The starting vertices of each
iteration of the cyclic workflow are ¢5 and t3 tasks, and the
ending vertices are dg, dg, dig, d1; data instances.

3) Scheduling Strategies: We consider a naive strategy
where the tasks are triggered serially from ¢; to t9 and
assigned to the computation resources on an FCFS basis.
On the other hand, the scheduler is not aware of the task-
data dependencies and the storage stack information; hence, it
places all the data to the PFS so that the data can be accessed
from any computation resource. As demonstrated in Fig. 2(c),

Task Est. I/0 time (s) Storage Storage B/W (size/time) Data
D RD BB PES ID type Read Write instances
t1 14 21 42 e RD 6 3 -

t; | 10 | 15 [30 2 RD 6 3 s

t3 10 15 30 s3 RD 6 3 dg., d7
tq 6 9 18 do

ts 6 9 18 sS4 BB 4 2 ds

tg 6 9 18 dyg

tr 10 15 30 dy

tg 10 15 30 s5 PFS 2 1 dg, dg
tg 10 15 30 dio, d11

(a) Estimated I/O time of (b) Optimal placement of data on the available
tasks for storing related data storage systems.
on each storage type.

NN Waiting

I Running

NN Waiting

BB Running

3]
O Ce O Ce
= =
= =
2 Cs 2¢s
IS IS
cCa cCa
o k]
A A
5 5
a2 a2
g g
ga g4

0 20 40 60 80 100 120

Time (seconds)

0 20 40 60 80 100 120
Time (seconds)

(c) Naive scheduling (d) Task-data co-scheduling

Fig. 2: Benefits of using an intelligent task-data co-scheduler.

the I/O time taken for an iteration of the example workflow
is 120 seconds. The runtime degradation happens because the
consumer tasks wait for the producer tasks to finish.

Let us consider an intelligent scheduler that uses the task-
data dependencies and systems’ information. This scheduler
lessens the I/0 wait time in consumer tasks by alleviating re-
source contention using node-local storage systems. As shown
in Fig. 2(d), this type of intuitive scheduling can improve the
runtime of the example workflow to 87 seconds. In this case,
the scheduler uses all the storage systems available to opti-
mally store the data instances and collocates the tasks accord-
ing to the task-data relationships. We observe 27.5% runtime
improvement in this tiny illustrative workflow iteration. This
observation sets up a plot for the performance opportunities
using a similar informed and optimized scheduling in real-
world scenarios.

B. Key Takeaways

The above discussion demonstrates that:

o Existing resource and workflow management systems
do not generally consider the powerful storage systems
available on modern supercomputers.

o HPC workflows suffer I/O issues due to complex data
dependencies among the tasks and resource contention
for storing data in shared storage systems.

« HPC dataflows can be managed efficiently by an intel-
ligent dataflow- and system-aware scheduler providing
optimized task-data co-scheduling strategies to alleviate
I/O performance issues.

IV. DESIGN AND METHODOLOGY
A. DFMan Overview

We design DFMan to ensure efficient data movement among
the tasks of an HPC workflow by leveraging the dataflow infor-

&—{ Workflow definition }
,,,,,,,,,,,,,,,,,,, ———— | DFMan]

[o DAG representation } Task
i allocation
and data
Graph-based optimization F— placement
of task-data co-scheduling policies

| i] |
@ _ (@ system information } [0 Policies to job }

: provision specification
System |-
Admln @@@ h
HPC system manager

Fig. 3: DFMan graph-based optimization framework design.

mation from the workflow developers and the system’s infor-
mation from the administrators. Fig. 3 depicts an overview of
the key techniques used in DFMan. Four building blocks work
together to achieve and deploy the optimized co-scheduling of
tasks and data. (1) The user defines an HPC workflow along
with the data dependencies among the applications or tasks.
DFMan determines if there is any cycle in the graph represen-
tation of the dataflow and extracts the DAG from the original
graph. (2) On the other hand, system administrators maintain
the information about the computation and storage resources’
relationships. DFMan manages these relationships with graph
data structures and constructs auxiliary in-memory hashmaps
for fast data retrieval. (3) The main component of DFMan de-
vises the graph algorithm formulation and linear programming
optimization of the co-scheduling problem. DFMan feeds the
extracted workflow DAG and system information graph to
the optimization component for deducing task assignment
and data placement policies to improve workflow runtime by
maximizing the aggregated I/0O bandwidth. (4) Finally, DFMan
maps the scheduling policies provided by the optimizer to job
specifications that are comprehensible to the HPC workflow
and resource managers.

B. Graph-based Optimization Framework Design

1) Dataflow Graph Construction and DAG Extraction:
DFMan constructs a directed graph for assisting the optimiza-
tion component to deduce the task-data co-scheduling policies.
The graph consists of two types of vertices to represent tasks
and data instances. Edges connect the vertices in the directed
graph to specify the relationships among tasks and data. A
flow of data is represented by an edge between a task vertex
and a data vertex. An incoming edge to a task vertex from a
data vertex means the task consumes the data instance. The
incoming edges can be of two types: required (task needs to
consume the data to start) and optional (task can start without
the input data). An outgoing edge from a task vertex to a data
vertex means the task produces the data instance. If an edge
is between two task nodes, it simply specifies the order of
execution of the tasks. In the graph representation, there can
be no edge between two data vertices because a data instance
cannot create another data instance without the help of a task.

DFMan constructs a complete picture of the workflow, in-
cluding the data transfers among its modules. To programmat-
ically schedule a cyclic workflow without human intervention,
it uses an efficient linear-time graph coloring algorithm with
depth-first search (DFS) to find if any back-edge exists in the
graph [16] and removes the optional edges in the cyclic path to
extract the DAG. DFMan automatically detects the starting and
ending vertices of the workflow graph. While traversing the
graph with DFS, it creates a topologically sorted list of tasks
by assigning producer tasks of a data instance higher priority
scores than the consumer tasks. Later, task-data dependency
information from this DAG is passed to the optimization
component. This component obtains the optimal co-scheduling
policies for the extracted DAG. The final workflow goal is
achieved by executing the DAG for multiple iterations.

2) Organizing Systems’ Information for Scheduler: DFMan
manages the information about the computation and storage
resources of an HPC system as a tree of the resource hierarchy.
For instance, it maintains the data about the compute nodes,
the storage stack and the accessibility of each computation
resource to storage systems. Besides, it keeps track of several
auxiliary information, such as system administrator’s data and
available I/O libraries. DFMan analyzes the elements of the
tree and internally constructs a bipartite graph to specify the
computation to storage resource accessibility. DFMan feeds
this graph representing the computation-storage relationship
to the optimization component for building the variables and
constraints of the task-data co-scheduling optimization model.

3) The Intelligent Task-data Co-scheduler:

a) Problem Specification: The principal target of DFMan
is to automatically improve the dataflow in an HPC workflow
by leveraging cutting-edge storage resources on modern su-
percomputers. For reaching this target, DFMan co-schedules
the data placement to the appropriate storage system while
ensuring task assignment to the proper computation resources.
These assignments and placements need to work under some
strict constraints. For instance, if there is a dependency of
a task to a particular data or vice versa, the computation
resource running the task should have access to the storage
where the corresponding data is situated. The data placement
policy must ensure enough space in the storage system on
which a data instance is scheduled to be stored. Moreover,
The task assignment strategy needs to check if the scheduling
exceeds the estimated wall time specified by the user. There
can be multiple combinations of these task-data co-scheduling
strategies on computation-storage resources. DFMan deter-
mines the co-scheduling policy that maximizes the aggregated
/O bandwidth to execute an I/O efficient workflow with
the improved data transfer time. Therefore, the task-data co-
scheduling is a combination of two generalized assignment
problems (GAP) [15] with multiple constraints, which is a
complex NP-hard combinatorial problem [28].

To mathematically express the GAPs, let us assume a
dataflow is defined by 1" and D, and an HPC system is defined
by C and S. The details of the basic mathematical notations
are described in TABLE 1. To solve these GAPs, we need

Category Notation | Definition Description

T T={t;:i€N} A set of all tasks, where N is the set of all natural numbers.

v TY ={t? i€ {1,2,...,|T|}} A set of estimated wall time for each task.

D D ={d;:ieN} A set of all data instances.

Ds# D® ={d;:i€{1,2,...,|D|}} A set of sizes for each data instance.

Dataflow R R={r;:1={1,2,...,|D|}} A set of binary numbers to specify if a file is read from the storage by
specification a task, where r; is 1 if d; is read, O otherwise.

w W ={w;:i={1,2,...,|D|}} A set of binary numbers to specify if a file is written to the storage by
a task, where w; is 1 if d; is written, O otherwise.

Drt Drt ={drt:ie{1,2,...,|D|}} A set of number of reader tasks per data instance.

Dwt Dwt = {d¥t:ie{1,2,...,|D[}} A set of number of writer tasks per data instance.

C C={c:ieN} A set of computation resources.

S S ={s;:i €N} A set of storage system instances.

Se Se={s{:ie{1,2,...,|S|}} A set of capacity for each storage instance.

System B" BT = {b] :i€{1,2,...,|S|}} A set of read bandwidths for each storage instance.
information Bv BY ={bY:i€{1,2,...,|S|}} A set of write bandwidths for each storage instance.
SP SP={sl:ie{1,2,...,|5]}} A set of the maximum number of tasks on the same topological level
recommended for each storage instance. sf < ppn for node-local and
sf < ppn X ny for global storage, where ppn is the number of
processes per node and n,, is number of nodes.
TDb TDb = {tdi’j : (td?j € [0,1]) A 3(ti,d;) A | A setof binary numbers to indicate task-data dependencies, where tdi?j
(ti € T) A (dj € D)} is 1 if there is dependency between ¢; and d;, O otherwise.

TD TD = {td;; : tdy; = (t;,d;) N (t; € T) A | A set of task-data pairs, where the task in each pair reads or writes the

Task.d (dj € D) A (td,ll?j =1) A (td’i’j € TD®)} | data instance.
ask-data
co-scheduling cst csb = {cs?j : (cs?j € [0,1]) A F(ci,s5) A | A setof binary numbers to specify computation-storage resource acces-

(c; €C) A (s5€8)} sibilities, where cs’i’j is 1 if s; is accessible from c;, 0 otherwise.

cs CS = {csij : csii = (ci,s5) AN (¢; € C) A | A set of computation-storage resource pairs, where the computation
(55 € 8) A (esyy=1) A (cs,’fj c CS} resource in each pair can access the storage.

TABLE I: Description of basic mathematical notations used in the task-data co-scheduling optimization model.

to deduce two sets of binary numbers, i.e., AT¢ and PP?,
while reaching the objective of maximum aggregated read
and write bandwidth for ensuring minimum I/O time. Here,
ATC ={al®: (alF €0, 1)) A (i €{1,2,...,|T]}) A(j €
{1,2,...,|C])}}. So, there can be |T| x |C| elements in A7C,
and ag;»c is 1 if task ¢; is assigned to computation resource
¢j, and 0 otherwise. PPS = {p[5 : (pJ% € [0,1]) A (i €
{1,2,...,|D|}) AN(F € {1,2,...,|S]})}. Hence, there can
be |D| x |S| elements in PP%, and pgs is 1 if data d; is
placed on s;, and 0 otherwise. Hence, the objective of the

basic optimization model can be defined as:
i=|D| j=I5|
maximize Z Z pgs X (b;’ X 1 + b} X w;) (1)
i=1 j=1

We first devise a binary integer linear programming [29] opti-
mization strategy to solve this problem from a straightforward
perspective. Unfortunately, this approach needs exponential
time complexity and requires to satisfy quadratic constraints.
According to our empirical experiments, it is not feasible for
a variable space with even thousands of tasks and data.

b) Bipartite Graph Matching Formulation: The task-
data inter-dependencies for a specific HPC workflow and
computation-storage accessibility in an HPC system are usu-
ally invariable for a particular workflow campaign. We lever-
age this property and carefully rethink the co-scheduling
optimization method by reducing the original multiple assign-
ment problems into one. Besides, this technique allows us to

transfer the task-data and computation-storage relationships
from constraints’ to variables’ space; hence, we can avoid the
cost of satisfying quadratic constraints. The idea is to construct
a set of pairs of interrelated tasks and data by extracting the
information from dataflow specification and treat this set as
the set of agents in the assignment problem. We create another
set of computation and storage resources pairs in the system
information provision module. The storage system in a pair is
accessible from the computation resource. Consequently, the
environment is reduced to a bipartisan system where we need
to assign a set of task-data pairs to a set of computation-
storage resource pairs. Hence, we redefine the co-scheduling
issue as a bipartite graph matching optimization problem with
constraints.

While constructing the graph from the dataflow specifica-
tion, as discussed in § IV-B1, we build a data structure, 7D,
to indicate the task-data dependency. Similarly for express-
ing computation-storage accessibility compiled from system
information provision module, see § IV-B2, we define another
set C'S. T'D and C'S are defined in TABLE 1. DFMan finds
the optimal assignments for the elements of 7T'D to that of
C'S by achieving the objective expressed in Equation 1, while
satisfying the dataflow- and system-related constraints, see
§ IV-B3c.

In Fig. 4, we demonstrate an optimal assignment of task-
data to computation-storage resources in the problem space
defined in § III-A. We specify a bipartite directed graph where

(t, dy) (cy s5)
o) Otesd
(t; dy) (€
(&, dy) (cs, s5)

(ts, dz)O——/O (ca S4)
(ts dS)O\g (c5, 52)
(cs 55)
Fig. 4: Max bipartite graph matching to maximize the aggre-
gated I/O bandwidth.

the edge represents an assignment. There can be multiple
possible assignments, as indicated by the fade edges, but the
optimizer selects the one that results in maximum aggregated
I/O bandwidth. For instance, the pair of task-data (to,d;)
is assigned to computation-storage (nici,ss), as it reaches
the optimal objective value and satisfies all the constraints.
We cannot use classic polynomial-time methods, such as
Hungarian algorithm [30], for solving this optimization issue
due to the dataflow- and system-related constraints that the
problem needs to satisfy.

c) The Linear Programming Optimization Model: We
solve the constrained bipartite graph matching optimization
by a linear programming (LP) model. Note that we do not
need quadratic constraints for task-data dependencies and
computation-storage accessibility; hence, we can now formu-
late a model with simple linear constraints. We utilize the
mathematical expressions discussed in TABLE I to define a set
of continuous variables X to express the assignments of task-
data to computation-storage. We avoid taking integer variables,
as it is not time-efficient for large variable space [31]. This
variable set is defined as,

X ={z:2=_tdjk,cs1m) N 0<z<1A

(2)
tdjr, € TD N cSim € CS}

where x is 1 if ¢; is assigned to ¢; and d}, is assigned to s,
0 otherwise.

The objective function in Equation 1 is expressed using X
as below.

mazximize Z x X (b, X T+ by X wy,) 3)
zeX

The constraints of the optimization model are stated below.

1) Placing data instance to a storage system should not
overflow the available storage capacity.

> wxd; <88, (4)
zeX
2) Estimated I/O time should not exceed the task’s walltime
limit.

Zxxdix(rk/bfn—kwk/b%)gt}” 3)
reX

3) One task-data pair should be assigned to at best one
storage system.

S axsn<1 ©)
csim€CS

4) The number of tasks on the same topological level
associated with a data instance should not exceed the
maximum parallelism recommended for the storage sys-
tem that holds the data.

Z xx dit < s
zeX

andedetgsfn
zeX

)

DFMan provides the optimal placement of all the data and
one task associated with each data instance. After returning
from the LP model, DFMan traverses through the topology of
tasks and checks the associated data with the unassigned tasks.
Then, it finds the available computation resources accessible
from the storage that holds the data. Then, DFMan assigns the
task such that no two tasks on a particular topological level are
assigned to the same core. Finally, DFMan performs a sanity
check to see if the storage is accessible from the computation
resource for each task-data assignment. If any of those is not
a valid co-scheduling scheme, DFMan falls back to default by
moving the data to the global storage system.

d) Complexity Analysis: We employ interior-point
method [32], based on Karmarkar’s algorithm [33], to solve
the LP optimization problem. The worst-case time complexity
of this algorithm is O(n5L?), where n is the dimension of
the problem and L is the binary bits encoding length of the
input data. In our use case, n can be specified by the sizes of
C, S, T and D, which are the sets of computation resources,
storage systems, tasks and data, respectively. In the worst-case
scenario, if each computation resource accesses all the storage
systems, and every task in a workflow is related to all the data
instances, n can be denoted by |C|x |S|x|T'| x|D|. In practice,
n is equal to |ATC| x |PPS| as described in § IV-B3a, which
is much less than |C| x |S| x |T| x |D|. The term L is a
constant for fixed precision variable and objective function
values [33]. Besides, the task to the computation resource
assignment and fallback mechanism discussed in § IV-B3c is
O(|C|x|S|x|T|x|D|) because we use auxiliary hashmap data
structures with constant search time complexity to maintain the
computation-storage and task-data relationships’ information.
Hence, the total time complexity of our optimization model is
O((IC| x IS x T x |D|)** + (IC| x |S| x |T| x |D])) or
O((|C] x |S]| x |T| x |D])3) overall.

V. IMPLEMENTATION DETAILS
A. Graph Representation of Dataflow

The graph representation of an HPC dataflow is expressed
and handled by three Python classes in the DFMan proto-
type. Firstly, the graph class implements the basic graph
manipulation techniques, such as finding all cycles in a
graph, removing the cyclic patterns, and extracting the DAG.

Secondly, the dag_parser class has the logic of parsing
the dataflow specification file and storing the information as
an adjacency list via a hashmap of parent to a vector of
children vertices. Besides, it extracts the information about the
application to tasks mapping, relationships among tasks and
data, and HPC dataflow structure-related metadata. Finally, the
dag_generator class contains graph and dag_parser
class instances as members and is the entry point for the op-
timizer to access the graph manipulation-related mechanisms.
The LP optimizer fetches the information about the task and
data dependencies using the APIs in this module.

B. System Information Hashmap

DFMan manages the system’s information using an XML
database handled by cElementTree package in Python.
The system administrators have provision for accessing and
updating the contents in the database. DFMan’s optimizer can
use the API in this module to extract the data required for
the optimization. DFMan maintains a collection of in-memory
hashmaps to manage the system’s data. Hence, the optimizer
obtains O(1) access to the hashmap with information about the
mapping to depict the accessibility of a certain storage system
from a computation resource.

C. Optimization Model

We use Pyomo-6.1.2 [34] for solving the LP optimization
problem. In particular, we leverage the pyomo Python package
to use the APIs to define and execute the LP formulation. We
implement the optimizer module that internally uses the
dag_generator to extract the DAG from the user-defined
dataflow and construct the variable space of optimization that
represents the task and data dependency. The optimizer
also utilizes the system_info_db module to build the com-
putation and storage accessibility-related variables. Finally,
it outputs the task-data co-scheduling strategies that provide
tasks to computation resources and data to storage placement
policies for an optimal aggregated I/O bandwidth in the HPC
workflow under consideration.

D. Interaction with HPC Resource Managers

The optimization model works on pre-allocated computation
and storage resources for the corresponding workflow and
reruns when the allocation changes. DFMan deals with the
output from the model on two fronts. Firstly, it applies the task
to computation resource assignment strategies by constructing
MPI rankfiles [35] for each application involved in the
workflow. These rankfiles are parameterized to the application
execution commands in the batch scheduling scripts for the
workflow. Hence, any HPC resource manager supporting MPI,
such as LSF, SLURM, Flux, etc., can be used effectively.
Secondly, DFMan materializes the data to storage resource
placement policies by configuring the applications’ data ac-
cess. We modify the source of each application workflow for
DFMan’s evaluation. We will utilize a middleware [36] to
intercept I/O requests and automatically redirect data to proper
storage systems in the future.

VI. EXPERIMENTAL EVALUATION

We evaluate the task-data co-scheduling policies from DF-
Man using synthetic and real HPC application workflows on
the Lassen supercomputer [19]. Lassen is an IBM Power9
machine with 44 cores and 256 GB memory per node. In
our experiments, we use the three layers of storage systems
that Lassen has, such as a 24 PiB global IBM General
Parallel File System (GPFS), node-local 256 GiB per node
ram disk (tmpfs), and node-local 1 TiB per node IBM burst
buffer (BB). We leverage Wemul [6] to generate synthetic
HPC workflow workloads. We further experiment with two
application workflows: Hurricane 3D on CM1 and NGC3372
on Montage; and two HPC dataflow kernels: HACC I/O and
MuMMI I/O. We compare I/O time and bandwidth against a
baseline, where workflow is unaware of the task-data depen-
dencies and system’s information. It always uses the globally
accessible storage system, and the task assignment depends
on the resource manager’s scheduling policy. Then, we man-
ually tune the workflow to leverage the system’s maximum
possible benefits. Finally, we apply the automatic task-data
co-scheduling strategies from DFMan to run the workflows.

A. Synthetic Workflows

1) Workloads: We generate two types of synthetic dataflow
workloads solely performing I/O operations. The first type
of dataflow (type 1) has a three-stage cyclic workflow. Each
stage creates producer-consumer data dependency, and the data
access pattern is posed alternatively as file-per-process and
shared file access on every stage. The output data of the third
stage are fed to the first stage with non-strict dependency
for creating the cycle. We extract the DAG from type 1
workflow and run it for ten iterations. We increase the number
of tasks per stage with increasing nodes. The second type of
workload (type 2) represents a best-case scenario, where all
the stages consist of file-per-process data access patterns. We
keep the number of resources fixed and vary either the width
or height of the dataflow for further synthetic experimentation.
We report the aggregated I/0 bandwidth and total runtime for
read and write across all the stages. The runtime includes I/O
time and I/O wait time, i.e., the time that the consumer task
waits after being scheduled until the data is produced. The time
taken by the resource manager processing, DAG extraction,
etc., is referred to as “other”.

2) Three-stage Workflow with Cycle: We demonstrate a
runtime breakdown for type 1 workload in Fig. 5(a). In this
case, each data file is 4 GiB, and the total data size reaches up
to 2 TiB for 32 nodes. We allocate 300 GB burst buffer space
per node and allow 100 GB ram disk (tmpfs) space per node.
We observe that the total workflow runtime improves when
we incorporate DFMan task-data co-scheduling strategies. The
benefit comes from taking advantage of the dataflow structure
and systems’ information, and utilizing the node-local faster
storage devices, along with the global PFS. In particular,
automatic scheduling policies of DFMan help the workflow
achieve 51.4% runtime improvement compared to the baseline.

—_ m Olher”
& =3 1/0 wait time
° 500 =ZZ2 /0 time ’Q —#- baseline (gpfs only)
/) manual (tmpfs + bb + gpfs)
E 400 g 52 A k- dfman
c 7 =
=1 7 .
2 300 lom = -
z v ov
S 200 N/ N
g v, B |/ -
%
§ 100 §éé 4glo i .
- S = <
0l e Bl @ NN ¢ .
£35 £3§5 £3§ 23§ £3F £3F D s
1 T2 T4 T8 16 32 L 2 e
Number of nodes Number of nodes

(a) Three-stage workflow (b) Three-stage workflow

Fig. 5: Benefits of DFMan’s automatic task-data co-scheduling
on cyclic workflows.

In the case of manual workflow tuning, keeping file-per-
process data on tmpfs and shared files in GPFS, we can achieve
53.9% improvement. We notice a significant improvement
in I/O wait time, i.e., 31.3% for baseline to 19.9% and
19.3% for manual and automatic by DFMan, respectively. As
shown in Fig. 5(b), the bandwidth does not scale well for
the workflow under consideration with increasing resources
for all the cases. However, we observe significant aggregated
bandwidth improvement in DFMan scheduling strategies, i.e.,
1.74 x the baseline bandwidth. The manual tuning achieves up
to 1.85x bandwidth improvement on average.

mm Other
SS3 1/0 wait time
1/0 time

o
=3
S

—#-- baseline (gpfs only)
manual (tmpfs + bb + gpfs)
~4- dfman

IS

o

S
~
o

O
v Q
£ g 2
€ g Q60 s
2 300 7=
2 7 =50
7 (3]
S0 7
g 5 T 401 = \
S 100 W &
N%: 30 N N
>kl LB e
olﬁnﬂﬁ N o0 N SpocgEsAmssg
£35 f55 35 £35 o35 55 £55 fT5 Y .
S2€ S2E $2E S SoE Sek Sek Sek =26 S .
85 BFS oS b i im IS iE B <1 i
%1% %5 % %5 % 7 ° 9 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 10
Number of stages Number of stages

(a) Variable stages (b) Variable stages

Fig. 6: DFMan’s automatic task-data co-scheduling on variable
number of stages.

3) Variable Dataflow with Fixed Resources:

a) Varying the Number of Stages: We evaluate DFMan’s
co-scheduling policies by varying the structure of type 2
workflow while keeping the number of nodes fixed to 16 with
eight processes per node. We allocate 100 GB burst buffer
space and allow 100 GB tmpfs space to be used per node. As
shown in Fig. 6(a), we change the number of stages in the
dataflow from one to ten and report the runtime breakdown.
We observe significant runtime improvement of 50.6% using
DFMan, and we achieve 53.7% in the manual-tuning case. The
aggregated I/O bandwidth lessens with an increasing number
of stages as we reach the maximum capacity of the node-
local storage systems and end up using GPFS. Nevertheless,
we observe 1.91x bandwidth improvement in DFMan’s case,
where it is 2.12x the baseline bandwidth via manual tuning.

b) Varying the Number of Tasks per Stage: We keep
the number of stages fixed to ten and change the number of

W Other

'G = wait time
‘q—; 1000 :;g Um;‘ E 50 ~* baseline (gpfs only) s
E / / @ manual (tmpfs + bb + gpfs)
= 800 . 7 Vi k- dfman /
: L el /
2 600 2 U 9B = ’
: ANl :
3 ml 1l E ‘
g AN E
= Vi dy N N = 20 = -
S 200 277) N4 N
NZZBNZZANSSINN) .
= K N NN A MY AN 2 "
238 556 312 io24 5048 4096 128 256 512 1024 2048 4096
Tasks per stage Tasks per stage

(a) Variable tasks per stage (b) Variable tasks per stage

Fig. 7: DFMan’s automatic task-data co-scheduling on increas-
ing number of tasks per stage.

tasks per stage; hence, we vary the width of the dataflow to
experiment further. We keep the resources fixed to 16 nodes
and eight processes per node. As depicted in Fig. 7(a), we
reach the maximum capacity for node-local storage systems
for tasks per node more than 512. Hence, we observe 36.6%
runtime improvement using DFMan’s policies, where the man-
ual tuning case runtime improvement is 34.9%. As shown in
Fig. 7(b), the bandwidth scales well with increasing tasks per
node and reaches up to 52.03 GiB/s for 4096 tasks per stage.
The aggregated bandwidth improvement is 1.49x and 1.52x
the baseline with DFMan and manual tuning, respectively.

B. HPC Application Workflows and Dataflow Kernels

1) HACC I/0: Hardware/Hybrid Accelerated Cosmology
Code (HACC) [37] is an N-body cosmological simulation
framework. It simulates the structures’ formation in collision-
less fluids in the universe. HACC I/O is an I/O kernel and
popular HPC I/O benchmark that captures the I/O patterns of
HACC framework. We run it with a file-per-process check-
point/restart pattern to evaluate DFMan in a simple workflow
scenario. As depicted in Fig. 8, the automatic task-data co-
scheduling suggestions from DFMan assist HACC /O to
achieve I/O performance almost the same as that attained by
manual data management. HACC I/O chooses to use node-
local tmpfs suggested by DFMan’s optimizer achieving 2.96 x
more bandwidth than the baseline, and the total I/O time
decreases up to 11.44% of baseline I/O time.

[write
== read

12001 —4- baseline (gpfs only)
manual (tmpfs only)
- dfman

=
o
<3
S
'

-

©
o
=]

W
W
™
=

Aggregated B/W (GiB/s)
g

400 o 4
255 235 28§ 238§ 200 -
$2E §3E §aE saf [
8E° 2E° 2E° EE® 0
4 8 16 32 2 8 16 32
Number of nodes Number of nodes

(a) Total I/O time (b) Aggregated read and write band-

width

Fig. 8: I/O time and bandwidth improvement in HACC /O
using DFMan.

2) Hurricane 3D on CMI1: Cloud Model 1 (CM1) [17] is
an MPI and OpenMP-enabled data-intensive application for
atmospheric research. It runs a three-dimensional non-linear
numerical model for analyzing phenomena like thunderstorms,
hurricanes, etc. We run a model called Hurricane 3D that
produces mainly two types of files in a user-defined frequency,
i.e., file-per-process output files and node-per-process check-
point files. As shown in Fig. 9, CM1 application workflow exe-
cution using DFMan’s co-scheduling policies achieves similar
performance as manual-tuning. It maximizes the aggregated
I/O bandwidth by up to 5.42x more than the baseline. DFMan
chooses node-local tmpfs on Lassen to store both output and
checkpoint files. The I/O time decreases up to 19.08% of the
baseline I/O time.

M outfile
24 checkpoint .
=20 L 141 -4 baseline (gpfs only) e
n o .
~ 5 12 manual (tmpfs only) 4
216 S -#- dfman p
.
512 E 10
o m g py
= 8 - x
S
4 ©
D 4
]] - S
$2€ 2 2E < < o 2{e - .-
8E° SE E° <
1 2 4 1 2 8 16 32
N e

4
Number of nodes

c
3
<3

(a) Write time breakdown (b) Write bandwidth

Fig. 9: I/O performance improvement in Hurricane 3D on
Cloud Model 1 (CM1) using DFMan.

3) Montage NGC3372 Mosaic Formation: Montage is a
popular astronomical image mosaic engine that employs mul-
tiple applications to assemble flexible image transport system
(FITS) images into human-perceivable image mosaic. It is
used to visualize various parts of the galaxies, such as the
Milky Way, by running a chain of parallel or sequential
applications that share data. Hence, it creates complex dataflow
and is an interesting candidate for evaluating the efficacy of
DFMan’s optimization strategies. We build a parallel work-
flow using Montage applications to generate grayscale image
mosaic for Carina Nebula (NGC3372) in Milky Way Galaxy.
It reads FITS files in parallel and feeds the data for further
information extraction and final visualization generation via a
six-stage dataflow.

We run the Montage NGC3372 workflow experiments on
Lassen and profile the I/O behavior of all the applications
on Montage using Recorder [38] tracing tool. As shown in
Fig. 10, DFMan’s optimization technique achieves almost the
same I/O bandwidth as manual workflow tuning. In particular,
DFMan automatically chooses faster node-local tmpfs on
Lassen over GPFS and minimizes the resource contention
due to data sharing. Besides, it collocates the tasks in a
set of producer and consumer applications to lessen data
movement through shared storage systems. Due to DFMan’s
strategy, aggregated read and write I/O bandwidth in the
Montage NGC3372 workflow scales smoothly 9.89 GiB/s to
119.36 GiB/s for 2 to 32 nodes on Lassen and achieves 2.12x

[write
read
@ K4 1201 4~ paseline (gpfs only)
~ o
- | (tmpfs only)
100 manual
g S -4~ dfman
=] S 80
o o
= - 60 = .
]
ﬁ © 40 .
ﬁ ()] e
(9]
¥ss 235 235 235 gzs O 20 —a
SEE SSE $EE 35E BEE O e
88 8ES EE® gES zE® <L ols
2 4 8 16 32 2 4 8 16 32
Number of nodes Number of nodes

(a) Total I/O time (b) Aggregated read and write band-

width

Fig. 10: Benefits of using DFMan for Montage NGC3372
workflow.

more than the baseline bandwidth. Consequently, the total I/O
time drops to 37.15% of baseline.

4) MuMM!I I/0: Multiscale Machine-learned Modeling In-
frastructure (MuMMI) [4] is developed as a part of the
Cancer Moonshot Pilot 2 project for assisting cancer diagnosis
research. MuMMI executes a large-scale HPC workflow to
simultaneously investigate the interaction between RAS pro-
tein and cell membrane in experimentally observable (macro)
and molecular-level (micro) scales. It deals with unique data
management challenges posed by petabytes of data generated
during the simulation, complex multi-stage dataflow, and a
cyclic feedback mechanism. We develop MuMMI I/O, an emu-
lated version of the I/O behavior in MuMMI using Wemul [6],
to perform I/O-focused detailed experimentation and address
the data management issues using DFMan’s strategies.

[mm write
200 read —~ 40
Sl - *
.
160 @
0 G309, . . .
120 I
£ c%25
g 80 5 20
9]
0 "1
m 810 -4~ baseline (gpfs only)
0[S iR = manual (gpfs + tmpfs)
235 235 235 £35 £35 s
SZE 2E SE2E SE2E S2E (=)} ~4- dfman
ZES ZES FES 38 §ES <,
1 > 2 s 16 1 2 4 8 16 32
Number of nodes Number of nodes

(a) Total I/O time (b) Aggregated read and write band-

width

Fig. 11: I/O time and bandwidth improvement using DFMan
in the dataflow emulation of MuMML.

We run MuMMI I/O with Recorder on Lassen and per-
form weak scaling experiments. As demonstrated in Fig. 11,
DFMan’s scheduling policies assist MuMMI to achieve simi-
lar aggregated I/O bandwidth as that by employing manual
data management strategies. DFMan suggests using node-
local tmpfs to manage data production and consumption in
the micro-scale applications and collocate the simulation and
analysis tasks on the same node. DFMan’s task-data co-
scheduling policies help MuMMI I/O achieve up to 1.29x
the baseline aggregated I/O bandwidth and 21.28% improved
I/O time.

VII. RELATED WORK

a) Data Management in HPC Systems: Data migration
among and retrieval from storage systems has been a focused
research area in HPC [39], [40]. For instance, Data Elevator is
an I/O abstraction library to intercept HDF5 I/O requests and
move data among burst buffers and PFSs [41]. Hermes offers
optimized data placement policies for maximizing bandwidth
and data locality [42]. Univistor improved the ease of use
by providing a unified single mount point for the entire
storage stack with I/O acceleration mechanisms [43]. Besides,
there have been projects on innovative and flexible data
representation for enabling I/O asynchrony [44]. Tanaka et
al. utilized multi-constraint graph partitioning in Pwrake, and
leveraged the locality information provision feature in Gfarm
FS for data movement minimization [45]-[47]. However, these
data management strategies do not consider intuitive task-
data co-scheduling by using the dataflow- and system-related
information simultaneously.

b) Data Management as an Optimization Problem:
Optimization techniques are generally applied to manage
heterogeneous computation resources. Alsched [14] and
TetriSched [48] formulate optimization methods to sched-
ule tasks using a bin-packing algorithm and mixed-integer
linear program (MILP), respectively. AlloX addresses the
non-polynomiality issue posed by solving combinatorial task
scheduling problems using MILP and proposes a fair and
efficient scheduling optimization policy through formulat-
ing and solving a min-cost bipartite graph matching prob-
lem [13]. Recently, Adaptive Scheduling Architecture (ASA)
leverages reinforcement learning to optimize computation re-
source usage [12]. Besides, recent works have taken place on
application-specific scheduling schemes specially designed for
workloads like deep learning training [49]. Utilizing intelligent
analytical methods can be effective in data management [50].
Netco solves a MILP constrained by network bandwidth and
storage capacity to maximize the number of jobs reaching
deadline and prefetch data from slow remote storage to faster
local storage in the cloud [31]. BBSched formulates job
scheduling and data placement on burst-buffer storage as
a multi-objective optimization problem and uses a genetic
algorithm to find optimal resource utilization [7].

Nevertheless, most optimization strategies for data-intensive
task scheduling are developed for cloud computing or data
analytics frameworks. On the other hand, the data management
projects on HPC systems mainly provide ease of use through
I/O abstraction with various I/O acceleration methods or focus
on using only one type of storage system for I/O improvement.
None of these address dataflow management by lessening the
semantic gap between task scheduling and data allocation by
considering the dataflow information in HPC workflows and
the complexity of involving multiple modules in the storage
stack. To the best of our knowledge, our work uniquely
addresses this issue by devising graph-based optimization
techniques to automate task-data co-scheduling and improve
HPC workflow I/O performance.

10

VIII. FUTURE OPPORTUNITIES

A few limitations are present in DFMan that give us many
opportunities for future work. Firstly, the optimizer in DFMan
is an offline scheduler. If the workflow is dynamic where
the number of stages and width of the workflow changes in
runtime, the optimizer needs this updated information from the
user. DFMan depends on user input for getting the information
about the task and data dependencies in the workflow. In the
future, we will work on incorporating automation to extract
useful information about the dataflow using I/O tracing and
interception tools like Recorder [38]. Secondly, the system
information provision module does not automatically update
the information while the workflow runs. Multiple concurrent
workflows using DFMan can create consistency issues in the
capacity detection of the storage stack. Dynamically using
functionalities in modern resource managers [22] to detect
the system’s current status in finer detail can overcome this
limitation. Lastly, in exceptional cases, when the task-data
co-scheduling scheme is deemed invalid, DFMan reallocates
the data to the globally accessible storage system. Hence, this
fallback mechanism will not work if a cluster does not have
global storage. Fortunately, most HPC systems at least have
one global network-attached file system.

IX. CONCLUSION

The performance hindrance in HPC workflows due to rapid
data movement among workflow applications and its tasks
often hampers the scientific research momentum. Solving
this issue requires careful observation and understanding of
dataflow and HPC storage stack through manual effort. In this
paper, we introduce DFMan that offloads the data management
responsibilities from the workflow research and development
cycle. The novel technique of using classic graph algorithms
in solving the NP-hard task-data co-scheduling problems fa-
cilitates the optimization process and helps it execute feasibly.

Applying DFMan’s optimization strategies demonstrates
promising I/O bandwidth maximization by automatically pri-
oritizing node-local storage systems over shared ones, which
alleviates resource contention. We establish the theoretical
basis of the optimizer and evaluate its efficacy using data-
intensive HPC workflows. In the future, we will extend this
work by applying DFMan’s scheduling policies on a larger
scale and critical scientific application workflows with more
complex data dependencies. We will introduce further automa-
tion by upgrading DFMan to an online task-data co-scheduler
for handling more dynamic scenarios.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-CONF-
827797. This material is based upon work supported by
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research under the DOE
Early Career Research Program. This work is supported in
part by the National Science Foundation awards 1561041,

1564647, and 1763547, and has used the NoleLand facility
that is funded by the U.S. National Science Foundation grant
CNS-1822737. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

[1]

[2]

[3]
[4]

[5]
[6]

[8]
[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]

[17]
[18]

[19
[20]
[21]
[22]

[23]

[24]

REFERENCES

R. Ross, L. Ward, P. Carns, G. Grider, S. Klasky et al., “Storage
Systems and I/O: Organizing, Storing, and Accessing Data for Scientific
Discovery,” 2019.

E. Deelman, T. Peterka, 1. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159-175, 2018.
“The Compact Muon Solenoid experiment at CERN,” http://cms.cern.
F. Di Natale, H. Bhatia, T. S. Carpenter, C. Neale et al., “A massively
parallel infrastructure for adaptive multiscale simulations: Modeling ras
initiation pathway for cancer,” in International Conference for High
Performance Computing, Networking, Storage and Analysis. New York,
NY: ACM, 2019.

“Sierra,” https://hpc.llnl.gov/hardware/platforms/sierra.

F. Chowdhury, Y. Zhu, F. Di Natale, A. Moody, E. Gonsiorowski,
K. Mohror, and W. Yu, “Emulating i/o behavior in scientific workflows
on high performance computing systems,” in 5th International Parallel
Data Systems Workshop. 1EEE, 2020.

Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin,
and D. Paul, “Scheduling beyond cpus for hpc,” in 28th International
Symposium on High-Performance Parallel and Distributed Computing.
New York, NY: ACM, 2019, pp. 97-108.

“Maestro Data Orchestration,” https://www.maestro-data.eu.

F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance Evalu-
ation of BeeGFS for Deep Learning,” in 48th International Conference
on Parallel Processing. New York, NY: ACM, 2019, pp. 80:1-80:10.
F. Chowdhury, J. Liu, Q. Koziol, T. Kurth, S. Farrell, S. Byna, and W. Yu,
“Initial characterization of i/o in large-scale deep learning applications,”
2018.

M. Fatih Aktas, G. Haldeman, and M. Parashar, “Scheduling and flexible
control of bandwidth and in-transit services for end-to-end application
workflows,” Future Gener. Comput. Syst., vol. 56, no. C, pp. 284-294,
Mar. 2016.

A. Souza, K. Pelckmans, D. Ghoshal, L. Ramakrishnan, and J. Tordsson,
“Asa - the adaptive scheduling architecture,” in 29th International
Symposium on High-Performance Parallel and Distributed Computing.
New York, NY: ACM, 2020, p. 161-165.

T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: Compute allocation
in hybrid clusters,” in 15th European Conference on Computer Systems.
New York, NY: ACM, 2020.

A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch, “Alsched:
Algebraic scheduling of mixed workloads in heterogeneous clouds,” in
3rd ACM Symposium on Cloud Computing. New York, NY: ACM,
2012.

“Generalized assignment problem,”
Generalized_assignment_problem.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

“Cloud Model 1,” https://www2.mmm.ucar.edu/people/bryan/cml.

R. Sakellariou, H. Zhao, and E. Deelman, “Mapping workflows on grid
resources: Experiments with the montage workflow,” in Grids, P2P and
Services Computing, F. Desprez, V. Getov, T. Priol, and R. Yahyapour,
Eds. Boston, MA: Springer US, 2010, pp. 119-132.

“Lassen,” https://hpc.1Inl.gov/hardware/platforms/lassen.

“SLURM,” https://en.wikipedia.org/wiki/Slurm_Workload_Manager.
“IBM Spectrum LSF,” https://www.ibm.com/docs/en/spectrum-1Isf.

D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein et al.,
“Flux: overcoming scheduling challenges for exascale workflows,” in
2018 IEEE/ACM Workflows in Support of Large-Scale Science. 1EEE,
2018, pp. 10-19.

W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-based
job scheduling on blue, gene/p systems,” in 2009 IEEE International

Conference on Cluster Computing and Workshops, 2009, pp. 1-10.
“Pegasus,” https://pegasus.isi.edu.

https://en.wikipedia.org/wiki/

11

[25]
[26]
[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]
(35]
[36]

(37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

“MaestroWF,” https://github.com/LLNL/maestrowf.

“Cylc,” https://cylc.github.io.

J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for
grid computing,” SIGMOD Rec., vol. 34, no. 3, pp. 44-49, Sep. 2005.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. USA: Prentice-Hall, Inc., 1982.

H. P. Williams, Logic and Integer Programming, ser. Logic and
Integer Programming. Springer, 2009, vol. 130. [Online]. Available:
https://doi.org/10.1007/978-0-387-92280-5

H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.

V. Jalaparti, C. Douglas, M. Ghosh, A. Agrawal, A. Floratou, S. Kandula,
I. Menache, J. S. Naor, and S. Rao, “Netco: Cache and i/o0 management
for analytics over disaggregated stores,” in ACM Symposium on Cloud
Computing. New York, NY: ACM, 2018, pp. 186-198.

1. Dikin, “Iterative solution of problems of linear and quadratic program-
ming,” in Doklady Akademii Nauk, vol. 174, no. 4. Russian Academy
of Sciences, 1967, pp. 747-748.

N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in 16th annual ACM symposium on Theory of computing, 1984,
pp. 302-311.

“Pyomo,” http://www.pyomo.org.

“IBM Spectrum MPIL,” https://www.ibm.com/docs/en/smpi.

Y. Zhu, T. Wang, K. Mohror, A. Moody, K. Sato, M. Khan, and
W. Yu, “Direct-fuse: Removing the middleman for high-performance
fuse file system support,” in 8th International Workshop on Runtime
and Operating Systems for Supercomputers. New York, NY: ACM,
2018.

“HACC I/0,” https://github.com/glennklockwood/hacc-io.

“Recorder,” https://github.com/uiuc-hpc/Recorder.

P. Subedi, P. Davis, S. Duan et al., “Stacker: An autonomic data move-
ment engine for extreme-scale data staging-based in-situ workflows,” in
International Conference for High Performance Computing, Networking,
Storage, and Analysis. 1EEE Press, 2018.

D. Ghoshal, L. Ramakrishnan, and D. Agarwal, “Dac-man: Data change
management for scientific datasets on hpc systems,” in International
Conference for High Performance Computing, Networking, Storage, and
Analysis. 1EEE Press, 2018.

B. Dong, S. Byna, K. Wu, H. Johansen, J. N. Johnson, N. Keen et al.,
“Data elevator: Low-contention data movement in hierarchical storage
system,” in IEEE 23rd International Conference on High Performance
Computing. 1EEE, 2016, pp. 152-161.

A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A heterogeneous-
aware multi-tiered distributed i/o buffering system,” in 27th International
Symposium on High-Performance Parallel and Distributed Computing.
New York, NY: ACM, 2018, pp. 219-230.

T. Wang, S. Byna, B. Dong, and H. Tang, “Univistor: Integrated
hierarchical and distributed storage for hpc,” in 2018 IEEE International
Conference on Cluster Computing, 2018, pp. 134—144.

A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun, “Labios: A
distributed label-based i/o system,” in 28th International Symposium on
High-Performance Parallel and Distributed Computing. New York,
NY: ACM, 2019, pp. 13-24.

M. Tanaka and O. Tatebe, “Workflow scheduling to minimize data move-
ment using multi-constraint graph partitioning,” in 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), May 2012, pp. 65-72.

“Gfarm File System,” https://en.wikipedia.org/wiki/Gfarm_file_system.
M. Tanaka, O. Tatebe, and H. Kawashima, “Applying pwrake workflow
system and gfarm file system to telescope data processing,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2018,
pp. 124-133.

A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger, “Tetrisched: Global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters,” in /1th European Conference
on Computer Systems. New York, NY: ACM, 2016.

S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for deep
learning,” in Fifteenth European Conference on Computer Systems. New
York, NY: ACM, 2020.

A. Nachman, G. Yadgar, and S. Sheinvald, “Goseed: Generating an opti-
mal seeding plan for deduplicated storage,” in /8th USENIX Conference
on File and Storage Technologies (FAST 20). Santa Clara, CA: USENIX
Association, Feb. 2020, pp. 193-207.

