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Abstract—Managed programming languages including
Java and Scala are very popular for data analytics and
mobile applications. However, they often face challenging
issues due to the overhead caused by the automatic memory
management to detect and reclaim free available memory. It
has been observed that during their Garbage Collection (GC),
excessively long pauses can account for up to 40% of the total
execution time. Therefore, mitigating the GC overhead has
been an active research topic to satisfy today’s application
requirements. This paper proposes a new technique called
SwapVA to improve data copying in the copying/moving
phases of GCs and reduce the GC pause time, thereby
mitigating the issue of GC overhead. Our contribution is
twofold. First, a SwapVA system call is introduced as a zero-
copy technique to accelerate the GC copying/moving phase.
Second, for the demonstration of its effectiveness, we have
integrated SwapVA into SVAGC as an implementation of
scalable Full GC on multi-core systems. Based on our results,
the proposed solutions can dramatically reduce the GC pause
in applications with large objects by as much as 70.9% and
97%, respectively, in the Sparse.large/4 (one quarter of the
default input size) and Sigverify benchmarks.

Index Terms—GC optimization, virtual address swapping,
zero-copying, large objects, Full GC, Java garbage collection

I. INTRODUCTION

Cluster computing is progressing rapidly with the use

of Big Data frameworks such as Apache Spark, Hadoop,

and Flink, which are based on managed languages, such

as Java and Scala [1], [2], and virtual machines (VM) for

data analytics and machine learning.

VMs can utilize the Full GC algorithms that collect all

heap memory, not just part of it. GC algorithms including

Full GCs, in general, operate in aperiodic cycles such that

VMs initiate the GC cycle while objects, either live or

This work is supported in part by the National Science Foundation
awards 1744336 and 1763547. This research has used the NoleLand fa-
cility that is funded by the U.S. National Science Foundation award CNS-
1822737. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

dead, use up all available space, and the system cannot

respond to any new memory allocation request. The Full

GC process uses the Stop The World (STW) mechanism to

stop all mutators (application threads) to maintain memory

consistency. The VM can then proceed with a Full GC

cycle shortly after STW is completed.

However, two cost issues arise from VM Garbage Col-

lection: 1) To detect and reclaim the wasted memory

allocation at run-time, VM garbage collection (GC) can

significantly cause overheads on system throughput [3]. 2)

When some Full GC cycles are running, excessively long

pauses can be imposed upon the applications.

For the first issue, GC throughput is a critical per-

formance factor in large-scale data analytics applications.

Therefore, several research studies were conducted to im-

prove throughput through the timely collection of garbage

in predefined regions [4]–[7]. Performance can be im-

proved by optimizing Full GC algorithms to maximize

resource utilization. Researchers have investigated how to

allocate resources fairly among GC threads or how to

increase the parallelism of GC threads [8]–[10]. However,

Gog et al. [11] have enabled off-heap memory management

to provide more flexibility and eliminate some of GC costs.

The downside to this is that managed languages lose the

advantages of automatic memory management.

Regarding the second issue (GC pauses), real-time and

interactive systems can be adversely affected by STW

pauses during Minor or Full GCs. Accordingly, many

modern GC algorithms have concentrated on reducing the

pause time, including G1 [12], C4 [13], ZGC [14] and

Shenandoah [15] through concurrently running some parts

of GC workloads with applications, which sacrifices VM

throughput for the GC pause time. Concurrently running

the moving/copying phase [14], [15], a.k.a evacuation, with

application threads can reduce the pause time significantly.

GCs that trace live objects in memory heaps can be

categorized into two groups; moving and non-moving. In
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moving GCs, all live objects are copied contiguously into

available free space. The non-moving GC, in contrast,

does not move live objects and may result in memory

fragmentation [16]. But even non-moving GCs have to

copy live objects when memory exhausted or fragmented.

Immix [17], as a non-moving collector, attempts to reduce

the fragmentation by performing partial defragmentation

on smaller regions, a coarse-grained memory allocation

unit. However, the allocation of large objects (i.e., objects

larger than one memory page in size) in non-copying Large

Object Spaces (LOSs) to avoid copying costs results in

the fragmentation of these allocations, as well as increased

maintenance costs and eventual compactions [16], [17].

The purpose of this paper is to investigate the cost of

memory operations in moving GCs, particularly for large

objects in Full GC compaction, and to propose a solution

that could be extended and applied to other phases of

GC algorithms, whether it is a parallel or a state-of-the-

art concurrent GC, even non-moving GCs that need heap

compaction, either fully or partially. Thus, our system

call, SwapVA, allows the copying or moving of large

objects by swapping their mappings of virtual memory

pages instead of moving the bytes verbatim. It can optimize

Full/Major GC algorithms and improve performance by

reducing memory bandwidth requirements and the time

required for moving objects in the compaction phase.

Additionally, it makes large objects behave as small objects

for GC and prevent the need to store them in LOS. On

multi-core systems, GC activity from running multiple Java

applications can dramatically increase memory bandwidth

requirements. Reducing the GC pause time via increasing

the concurrency of GC threads [8], [10] still suffers from

memory bandwidth [18]. Consequently, we have further

optimized SwapVA to make it more scalable on multi-core

systems. Due to fewer memory operations, it can greatly

reduce the required memory bandwidth for JVMs running

on multicore processors. On top of the proposed system

call, we have developed a novel GC implementation called

SVAGC to take advantage of its performance benefits.

Since data copying/moving is a common characteristic of

all GC algorithms, our SwapVA technique can also be

applied to other algorithms such as concurrent GCs.

Our contribution is twofold. First, we introduce a new

system call, SwapVA, that provides a zero-copy tech-

nique to support the moving/copying of large objects

through the swapping of their page table entries (PTEs).

The technique can replace and speed up memory content

moving/swapping operations during the compaction and

evacuation phases of GCs. Second, we propose a scalable

Full GC prototype in multi-core systems by utilizing the

SwapVA system call, which shows the potentiality of our

approach in designing GCs.

The rest of this paper is organized as follows. Section II

provides an overview of GC in Java. Section III describes

the design of SwapVA system call. Section IV presents

the integration of SwapVA into a prototype Full GC algo-

rithm called SVAGC. Section V provides our experimental

evaluation. Section VI reviews related studies. Finally, we

conclude the paper in section VII.

II. BACKGROUND OF JAVA GARBAGE COLLECTION

Generally, a full Java Garbage Collection (GC) detects

live objects and compact (defragment) heap memory. A

regular Full GC, based on LISP2 algorithm [19], performs

in four phases, including I) marking, II) forwarding address

calculation, III) adjusting pointers, and IV) compaction.

I. Marking. In this phase, all heap’s live objects are

identified, and their addresses are marked in some related

data structures such as bitmaps.

II. Forwarding Address Calculation. The phase calcu-

lates and determines the final location of live objects. Live

objects are located on the first empty spaces of the heap

from beginning to end, respectively.

III. Adjusting Pointers. After determining the new

address of objects, references must be updated. The same

as the previous phase, this one starts with the beginning of

the heap and updates each referencing field of objects to a

new address. In actuality, the updated address is available

at a particular location of the referenced object that was

calculated during the previous phase.

IV. Compaction. Afterward, some live objects would

be moved into new memory locations, whose addresses

are stored, for example, in the object headers. The cost of

this phase varies with the size of the working set.

The following section will discuss two concerns related

to GCs: compaction costs and scalability.

Compaction (Copying) Cost in GC: In applications

with large working sets, including a high number of

large objects, the compaction can significantly impact the

GC time and VM performance. We examine the impact

by running FFT.large and Sparse.large, with an average

object size of 64KB and 50KB [20], respectively, from the

SPECjvm2008 suite. The applications are run on top of

OpenJDK15 VM using an adapted LISP2 GC prototype.

This is done to measure the exact weight of each phase

and to determine the effect of compaction on the overall

Full GC time. As shown in Fig. 1, the most of the GC

time, about 79.33%-84.76% for Sparse.large and FFT.large
respectively, is spent in the compaction phase.

GC Scalability Issue: In today’s prevalent multi-core

systems, GC scalability is another key factor for supporting

applications with intensive parallelism [21]. In fact, ap-

plications with high memory bandwidth requirements will

make scaling much more difficult. In order to examine GC

scalability, we run multiple instances of a single-threaded
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Fig. 1. Execution time of the full GC phases (Tested on Intel® Core™

i5-7600 @3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).

Fig. 2. Scalability issue in LRUCache benchmark (run on 32 cores dual
Intel® Xeon Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4
@2666MHz). To mitigate context switching overhead on GC perfor-
mance, each GC tuned to use 4 Cores by setting the GCThreadsCount
parameter to 4.

memory-intensive application simultaneously, working as

a LRU cache, and then benchmark the impact of multi-

JVMs on each of the application and GC time. In this test,

applications are run on the OpenJDK15 VM by using its

ParallelGC algorithm. According to Fig. 2, by increasing

the number of running applications, which is equivalent

to the number of JVMs, both GC latency (maximum and

total) and application execution time increase significantly.

Considering these two issues, we deem that it is desirable

to optimize the compaction phase to improve both GC and

application execution time.

III. DESIGN OF SWAPVA

In this section, we first present the design of SwapVA for

swapping the virtual memory address of objects, and then

describe a few performance and scalability optimizations.

A. Overview of SwapVA

As mentioned, regardless of heap organization and ap-

plied algorithms, GC performance can be significantly

reduced by delay in object moving and copying operations

during a GC compaction or copying phase. By devising

some strategies to decrease operations’ delay, GC pause

times could be effectively moderated. To this end, a number

of GC algorithms have been designed to avoid these

excessive copy operations within big data applications [5].

Instead, we focus on reducing the operation’s cost, which

Fig. 3. Software architecture of SVAGC.

is the copying time, rather than controlling the frequency

of copy operations. By directly improving the copying, the

method can be applied to all GCs, regardless of their heap

organization and algorithm.

Fig. 3 presents an overview of the SwapVA system

call and its integration into our prototype GC, SVAGC.

SwapVA provides a technique for swapping virtual ad-

dresses, i.e., exchanging two memory areas with minimal

memory operations. When the values of the source operand

are not in demand after the operation, it can also be used as

a move operation. Within SwapVA, two internal optimiza-

tions are provided: PMD caching and Overlapping. There

are also some related mechanisms for scaling SwapVA in

multicore systems, which will be discussed in section IV.

B. SwapVA and Internal Optimizations

Modern operating systems and CPU architectures both

provide a memory management unit (MMU) that maps

virtual/logical addresses into physical/real ones. The virtual

memory addresses are divided into smaller subgroups to

serve as indexes for mapping tables. The last part, typically

the least significant bits (12 bits for 4KB pages), is used

to determine the offset in the page’s physical address.

The mappings are stored in the memory as hierarchically

organized directories, which are called page tables. To

improve performance and avoid the MMU recalculations,

the Translation Lookaside Buffer (TLB) could cache each

virtual-to-physical address mapping.

The design of this architecture ensures that applications

can only use virtual addresses and not physical addresses.

When an application needs to swap two memory areas, it

must exchange them word by word. This practice generates

significant overhead for applications when copying/moving

large chunks of memory.
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Fig. 4. Swapping virtual addresses.

To resolve the aforementioned issue, we propose a

mechanism to swap memory areas based on exchanging

the last level of virtual-to-physical address mappings, i.e.,

PTEs, as shown in Fig. 4. Conceptually, by using our

technique to swap memory regions, we can reduce a large

part of the costs associated with naive copy operations. For

example, to swap the contents of two virtual pages, A and

B, the cost consists only of exchanging their PTEs. There is

however an obstacle as PTEs are protected in kernel space,

so manipulations must be performed in privileged mode.

In this regard, some OS extension mechanisms could be

leveraged, such as system calls or loadable kernel modules

(LKM), to lift the restriction.

Algorithm 1 illustrates simple steps for swapping two

memory areas identified by two sets of continuous virtual

addresses. In each step, through looking at the page tables,

it determines which pair of PTEs should be swapped and

then locks them. Once they are swapped, the locks are

released. Finally, it invalidates all TLBs of calling process

by flush tlb local function.

SwapVA Aggregation: For a single-core architecture,

the execution time of SwapVA might be calculated as

follows:

TSwapV A = TSystemCall+Tflush tlb+TFunctionBody (1)

Practically, swapping a large number of pages is highly

efficient; however, if there are few pages, then the cost of

system call invocation, TSystemCall, can make up a large

portion of the overall execution time. We addressed the

issue by aggregating multiple swapping operations into

a single SwapVA invocation. In turn, context switching

overhead can be reduced across multiple system calls, lead-

ing to improved GC performance for frequent data object

copying. Fig. 5 illustrates how to aggregate multiple small-

sized swapping operations into one system call invocation

(see Fig. 5 (b)). According to Fig. 6, reducing overall call

Algorithm 1 SwapVA on Intel x86-64 Architecture

1: procedure SWAPVA(vAdd1, vAdd2, pages)

2: function GETPTE(vAdd, ptlp)

3: pgd ← pgd offset(vAdd)
4: p4d ← p4d offset(pgd, vAdd)
5: pud ← pud offset(p4d, vAdd)
6: pmd ← pmd offset(pud, vAdd)
7: pte ← pte offset map lock(pmd, vAdd, ptlp)
8: return pte
9: end function

10: spinlock t ∗ ptlp1, ptlp2
11: pid ← getPID() � find the current process id

12: for i ← 0, ..., pages− 1 do
13: j ← i � PAGE SHIFT
14: pte1 ← GETPTE(vAdd1 + j, ptlp1)
15: pte2 ← GETPTE(vAdd2 + j, ptlp2)
16: temp ← pte2; pte2 ← pte1; pte1 ← temp
17: pte unmap unlock(pte1, ptlp1)
18: pte unmap unlock(pte2, ptlp2)

19: flush tlb local(pid) � flush the process’s TLBs

20: end procedure

Fig. 5. Aggregation of SwapVA requests (O stands for object/data). a)
Separated SwapVA calls b) Aggregated SwapVA calls.

Fig. 6. Aggregated vs Separated SwapVA Calls (Tested on Intel® Core™

i5-7600 @3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).

costs can be achieved by increasing the average input size

of SwapVA.

PMD Caching: As an additional enhancement to

SwapVA, we introduce PMD (Page Mid-Level Directory)

caching for swapping memory areas with a large number of

page frames. Fig. 7 illustrates how PMD caching works.

In large-scale swapping operations, since addresses are

accessed sequentially, it is most likely that prefixes are the

same, so a calculated pmd value can be reused. Therefore,

caching the last pmd to the base address of current page

table entries can shorten numerous memory accessing op-
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Fig. 7. SwapVA optimization by PMD caching.

Fig. 8. Benefits of PMD caching (Tested on Intel® Core™i5-7600
@3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).

erations to locate the table of PTEs. For example, locating

the pte of a virtual address needs to find pmd first, Fig. 7(1),

and then use it to obtain the pte, Fig. 7(2). But, the result of

step 1 could be kept in some pmd variable for the following

iterations. Accordingly, in subsequent iterations, only step

2 is required, and all step 1 sequences could be eliminated.

The effectiveness of PMD caching is shown in Fig. 8.

This optimization improves the performance of SwapVA

by up to 52.48% and an average of 36.73% for multi-page

copying operations.

Overlapping Areas: In some cases, two areas can share

some page table entries due to overlapping address ranges.

We can detect such overlaps and optimize the swapping for

their PTEs, thus it could reduce the cost of data copying

even further. For example, by applying this optimization,

the cost of swapping 2n pages reduces from O(2n) to

O(n + δ); δ is the distance between the swapping areas,

0 < δ ≤ n.

Practically, Algorithm 2 presents a unique design to swap

two overlapping areas using a few, around four, temporary

memory words to track all PTEs. It also uses a gcd function

to control the iteration. The low memory requirement of

SwapVA allows it to perform at higher efficiency. The

inner loop of Algorithm 2 works as a cycle. The cycle

starts from a PTE A to find its target PTE B. It copies the

target PTE B into a temporary variable and then updates

the target by PTE A. Now this routine is repeated for the

PTE B. These replacements are continued until a chain

of PTEs are replaced by each others. Similarly, the outer

loop of Algorithm 2 controls and starts a new cycle of

such replacements. Note that getPTE can be replaced with

its Algorithm 1’s version for synced accesses.

Algorithm 2 Swapping Overlapping Areas

1: procedure SWAPOVERLAP(vAdd1, vAdd2, pages)

2: function FINDSWAPPLACE(i, j, pages)

3: if i<j then return i+ pages
4: return i− j
5: end function
6: addIdx2 ← �(vAdd2− vAdd1)/|PAGE|�
7: upCurIdx ← gcd(addIdx2, pages)
8: for curIdx ← 0 . . . upCurIdx do
9: vAdd1cur ← vAdd1 + curIdx · |PAGE|

10: pteCur ← GETPTE(vAdd1cur)
11: pteTemp ← pteCur
12: k ← FINDSWAPPLACE(curIdx, addIdx2, pages)
13: while k �= curIdx do
14: vAdd1K ← vAdd1 + k · |PAGE|
15: pteKTemp ← GETPTE(vAdd1K)
16: pteK ← pteTemp
17: flush tlb page(vAdd1K)
18: pteTemp ← pteKTemp
19: k ← FINDSWAPPLACE(k, addIdx2, pages)

20: pteCur ← pteTemp
21: flush tlb page(vAdd1cur)

22: end procedure

In terms of data security, since all swapping opera-

tions take place within the same address space of an

application, page permissions and access controls should

not be a concern. If there is a need to prevent data

breaches between threads, the system call can be extended

to clean up memory after each swapping in multi-threaded

applications. In a summary, due to the significant drop in

memory access frequency, SwapVA could provide a zero-

copying mechanism for GC operations in data-intensive

applications.

IV. SVAGC: INTEGRATION OF SWAPVA FOR GC

In this section, we describe the integration of SwapVA

into a GC to reduce its pause time and improve its perfor-

mance. In order to accomplish this, we can replace the large

sequential memory copy operations in the GC with the

virtual address swapping calls, SwapVA. Algorithm 3 (see

MoveObject procedure) shows how to utilize the SwapVA

call in the primary copy operation of GCs, MoveObject, for

data objects that are bigger than a configurable threshold.

There are a few prerequisites and adaptations to consider

prior to applying SwapVA as a bulky copier. First, the can-

didate object and the next immediate one must be located

in page-aligned addresses. At allocation time, therefore,

an object larger than the threshold, which may be one or

more physical pages, must be placed on the first free page

in memory (see Algorithm 3 Line 16).

Second, to keep the consistency of memory layout after

each SwapVA call, the system allocates the next object on
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Algorithm 3 MoveObject, Memory Allocation, and For-

warding Address Calc.

1: procedure MOVEOBJECT(source, dest, length)

2: pages ← 	length/|PAGE|

3: if pages ≥ ThresholdSwapping then
4: SWAPVA(source, dest, pages)

5: else memmove(source, dest, length)
6: end procedure
7: function IFSWAPALIGN(object, address)

8: if |object| ≥ ThresholdSwapping · |PAGE| then
9: return align(address, |PAGE|)

10: return address
11: end function
12: procedure ALLOCMEM(object, heap)

13: newTop ← IFSWAPALIGN(object, heap.top)
14: if newTop+ |object| ≥ heap.end then
15: GC() � Call GC to free memory

16: heap.top ← IFSWAPALIGN(object, heap.top)
17: object.address ← heap.top
18: heap.top + = |object|
19: heap.top ← IFSWAPALIGN(object, heap.top)
20: end procedure
21: procedure CALCNEWADD(object, compPnt)
22: compPnt ← IFSWAPALIGN(object, compPnt)
23: object.address ← compPnt
24: compPnt + = |object|
25: compPnt ← IFSWAPALIGN(object, compPnt)
26: end procedure

the first free page adjacent to the current object position

(see Algorithm 3 Line 19). It protects the next objects

from side effects of applying the call. Finally, during the

compaction phase, relocating objects to the new addresses,

large objects need to be defined in a paged-aligned format

(see Algorithm 3 Line 22 and 25).

Memory Fragmentation Issue: Memory address re-

quirements of SwapVA could raise some issues related to

memory fragmentation. Page-aligned objects may create

some external fragmentation between a new allocated large

object and previous small object. In heap memory alloca-

tion, objects are usually allocated from the thread’s TLAB

(Thread Local Allocation Buffer) to reduce synchronization

issues between different threads at allocation time. If TLAB

is exhausted or object is too big to be placed in TLAB,

allocation will be failed and object will be allocated from

a new TLAB or shared space of heap. Accordingly, an

effective solution is to allocate large page-aligned objects

from the end to the beginning of the TLAB and also smaller

ones from the beginning to the end. As a result, all large

and small objects are placed separately. When objects are

too large and need to be allocated from the shared space

of the heap, the vicinity of large objects is also guaranteed.

This can remove the external fragmentation. Allocating

new large objects with proper swapping thresholds can

also help control the rate of fragmentation. For example, in

our evaluations, by setting the threshold value to ten pages

we could reduce possible internal fragmentation about less

than 5% of heap size, statistically up to half a memory

page could be wasted for every ten pages or more.

Multi-Core Scalability of SwapVA: Flushing TLB

entries can increase memory access time on single-core

systems since evicted virtual address mappings must be

re-translated and re-cached. However, this cost per page

is relatively low. For example, for each page, 4KiB of

memory in x86-64, MMU wastes roughly a five-fold mem-

ory access time to walk through the page tables, find the

physical address, and finally cache it in the core’s TLB

for further references. In this scenario, after updating a

PTE, the corresponding TLB entry must be invalidated or

flushed. The flushing costs may be manageable in a single-

core system, but in multi-core environments they would rise

dramatically since all TLBs of a process on all cores must

be flushed. Besides, multi-core OSs utilize a mechanism

called inter-processor interrupt (IPI) to execute a piece of

code remotely on a specific core. OSs use IPI to flush

some TLB entries of other cores. Nevertheless, IPI calls can

be costly operations, affecting the system’s performance

and scalability. Therefore, to precisely calculate the cost

of flushing in multi-core systems, we should combine the

cost of all local core TLB flushes with their peer IPI calls.

For instance, each invocation of the swapping system call

on a typical eight-core CPU triggers seven subsequent IPIs

that force other cores to clean their TLBs. As a result,

it requires an overall eight local TLB flushing operations.

For this purpose, the kernel would send IPIs to all online

processors to clean their own TLBs. Thus, this would result

in a huge impact on total execution time.

Moreover, there are some complications in the imple-

mentation of SwapVA to avoid races. For instance, its

caller needs to be pinned during SwapVA execution on the

current core and invoke kernel function, flush tlb others,

to flush all other cores TLBs at the end of the system call.

These constraints increase the cost of SwapVA adversely.

SwapVA should be used with caution in applications

such as GCs. The copying process might update some

PTEs and, in the meantime, be migrated to other cores.

So, it could result in an inconsistent view of virtual address

mappings cached in the TLBs on different cores. To ensure

that applications, such as VMs, see the most recent updates

of address mappings (PTEs) on each core, all cores’ TLBs

must be flushed after each change. This functionality can

also be integrated into SwapVA implementation.

The following two complementary techniques can

improve SwapVA’s scalability. These techniques help

SwapVA to reduce both costly IPIs and TLB flush requests.
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The first technique, to be integrated in SwapVA, is

achieved by sending many IPIs to flush all TLB entries that

belong to the current process on other cores. Afterwards,

the relevant TLBs are flushed locally without doing any

global flushes. This approach will assist in reducing the

cost of broadcasting requests after each TLB invalidation.

It also removes redundant TLB flushes on other cores.

The second technique is similar to the first, but it is

carried out on a much larger scale. This technique pins the

entire compaction process in the same core throughout each

GC cycle. At the beginning of the compaction phase, the

process only broadcasts a flushing request toward all cores

to invalidate its TLB entries (see Algorithm 4 Line 5). This

assures us that other cores’ processes refer to the updated

PTEs. Next, during invocation of the swapping system calls

and updating PTEs, only the current core TLBs are flushed.

Algorithm 4 Optimized Compaction Phase

1: procedure COMPACTIONOPT(liveObjects)

2: pid ← getPID() � find the process id
3: cpuid ← getCPU() � find the CPU id
4: pin(cpuid, pid) � pin the process

5: flush tlb all cores(pid) � flush TLB (all cores)

6: while liveObjects.hasNext() do
7: object ← liveObjects.next()
8: objAdd ← object.currentAddress()
9: newAdd ← object.newAddress()

10: MOVEOBJECT(objAdd, newAdd, |object|)
11: unpin(pid) � unpin the process

12: end procedure

Therefore, by utilizing the optimized version of the

compaction phase, as shown in Algorithm 4, the number

of IPIs, and their subsequent flushes will be reduced from

l̄ · c to c, c and l̄ denote the core count and the average

number of live swappable objects, respectively. So the gain

is calculated as:

gain =
#IPIUnoptimized

#IPIOptimized
=

∑l̄
n=1 c

c
=

l̄ · c
c

= l̄ (2)

Fig. 9 shows the cost of running non-optimized SwapVA

in a multi-core system. By limiting the broadcasting of

both TLB flushes and IPI calls, the results also display the

advantage of a scalable SwapVA implementation over a

non-optimized one. Note that the number of live swappable

objects is set to 100 in our evaluation.

TLB Shootdown Approaches: As a brief overview,

some studies introduced techniques such as [22] to improve

TLB shootdown by running them in parallel or [23] to

track page accesses to prevent unnecessary issuance of TLB

flushes. Even [24] introduced a timer-based self-flushing

technique to reduce the cost. However, due to the lower cost

Fig. 9. Benefits of multi-Core optimizations to SwapVA (Tested on
Intel® Xeon Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4
@2666MHz).

of implementation and lower complexity, we have adapted

the pinning technique as tool to mitigate and control the

cost of broadcasting TLB shootdowns and corresponding

TLB flushes. We will demonstrate the versatility of this

approach in our evaluation.

A. The Applicability of SwapVA and its Optimizations

In Table I, we summarize the applicability of SwapVA

and its optimizations to different GC cycles/phases. The

basic SwapVA call could be applied to all GC cycles/phases

with various heap organizations, both generational and non-

generational heaps. However, some other optimizations

have their respective limitations. SwapVA aggregation is

ideal in the compaction phase of a Full/Major GC since

more data copying requests increase the chance of grouping

SwapVA calls. However, since each copying operation is

independent during the evacuation phase of concurrent

GCs, the aggregation technique is not effective. Finally, the

overlapping optimization is not applicable for the copying

and evacuation phases of Minor or Concurrent GC, whereas

source and destination have no shared addressable area.

Note that since SVAGC has Full GC cycles, it utilizes all

proposed optimizations.

TABLE I
THE APPLICABILITY OF SWAPVA AND OPTIMIZATIONS

GC (Phase)
Optimization
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V. EVALUATION

SwapVA, as a system call, has been implemented in

Linux 4.17.0-rc2. We choose OpenJDK 15 and Epsilon
memory allocator to integrate with SwapVA. Consider-

ing Epsilon works mainly as a simple memory allocator

wrapped by a standard GC interface, it has been extended

with a parallel version of LISP2 algorithm (see section II)

that is optimized by parallelized phases, same as Paral-

lelGC. The swapping threshold in MoveObject algorithm

is set to ten pages as a break-even point that makes

SwapVA more affordable than memmove. This threshold

also determines the minimum size of large objects which

is ten pages in our evaluations. As shown by Fig. 10,

CPU performance and memory bandwidth can impact on

threshold value and define it.

We have evaluated the performance of multiple garbage

collection algorithms based on the SPECjvm2008 bench-

marks designed for large (Big) objects, on average 1KB+

in size [20]. Some of these benchmarks are useful in the

core of ML algorithms including FFT [25]–[28], Sparse
(SpMV) [29]–[32], SOR [33], and LU (matrix factoriza-

tion). To cover more cases, we also add some extra bench-

marks from other suites such as JOlden, OpenJDK, and

Spark-bench that have large objects. The benchmarks run

in a multi-threaded paradigm to set up a sufficient workload

for the evaluation. We run benchmarks by setting the heap

size to 1.2× and 2× of minimum required size. We have

also modified the default workloads of Sigverify, which

have 1MiB objects, to include larger objects of 10MiB

and 100MiB. The heap size and the number of threads

are listed in Table II. All evaluations are completed on a

machine with 32-Core Dual Intel® Xeon Gold 6130 CPU

@2.10GHz with 192GB DRAM, DDR4 @2666MHz. To

study the impact of object size on the performance of

GCs, we have tuned the benchmarks with different object

sizes. For example, FFT.large is customized with two

other different variants, including 1/8, 1/16 of the default

input size. Similarly, we have made some customization

with Sparse.large and SOR.large. So, again we have

created a version of SOR.large, ten times as large as its

default input size. Moreover, the input size of Bisort and

Parallelsort is set to 2M entries, and for LRUCache the

cachable object size is selected from [1, 2M] bytes with

2K entries. PR benchmark also works on random graphs

with 78K nodes and 780K edges.

A. GC Throughput and Pause Time
The first measured parameter is the throughput of

the system based on the pause time. As shown by

Fig. 11, the throughput improvement ranges from 3.44×
(Sparse.large/4) to 33.3× (Sigverify). This can be

explained by the fact that applications with both fewer and

larger objects can benefit more from our implementation.

Fig. 10. Threshold value for SwapVA in different CPU/memory con-
figurations (Tested by a single-threaded application). a) Intel® Xeon
Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4 @2666MHz.
b) Intel® Xeon Gold 6240 CPU @2.60GHz with 192GB DRAM, DDR4
@2933MHz.

TABLE II
BENCHMARKS CONFIGURATION

Benchmark Suite Threads Heap (GiB)

FFT.large SPECjvm2008 576 19.2 - 40
Sparse.large SPECjvm2008 576 5 - 8.5
SOR.large SPECjvm2008 32 51.5 - 85.8
LU.large SPECjvm2008 224 3 - 5
Compress SPECjvm2008 640 19 - 32
Sigverify SPECjvm2008 256 28 - 56.7

CryptoAES SPECjvm2008 96 5.2 - 8.67
PageRank (PR) Spark 288 4 - 6.5

Bisort JOlden 896 8 - 19.2
Parallelsort OpenJDK 896 16 - 50
LRUCache 1 4.5

In these applications, the most expensive compaction and

moving phases can take advantage of SwapVA calls. Ac-

cordingly, applications such as FFT with a small number

of larger objects have an advantage over others, including

Sparse.large/4, with numerous smaller ones.

The SVAGC throughput has also been evaluated against

several state-of-the-art GC algorithms, including Shenan-

doah as a region-based concurrent and parallel pause-

oriented collector [15], and ParallelGC as a matured gen-

erational throughput-oriented GC. Furthermore, since our

focus is on evaluating Full GC performance, in particular

Fig. 11. Evaluation of GC time -/+ SwapVA on SVAGC (at 1.2×
minimum heap); In each group left bar is the total GC time with just mem-
move, and the right one is the GC with our optimized moving/compaction
phase including both SwapVA and memmove. Each bar is broken down
into compaction phase (in blue), and all GC phases except compaction
phase (in red).
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on Large Objects (LO), and since G1GC does not regularly

trigger the Full GC in our benchmarks, we did not include

it in our analysis. As results in Fig. 12(a) show, the average

latency of Full GC has been reduced 3.82× and 16.05×
compared to ParallelGC and Shenandoah, respectively. As

shown in Fig. 12(b), by increasing heap size the average

latency has been reduced 2.74× and 13.62×, respectively,

compared to ParallelGC and Shenandoah.

Finally, Fig. 13 (a) shows SVAGC has more improve-

ment for maximum GC latency that is more important for

pause sensitive applications. Accordingly, in SVAGC, the

maximum pause time of Full GC has been reduced 4.49×
and 18.25× in comparison to ParallelGC and Shenandoah,

respectively. Of course, by increasing heap size to 2× min-

imum size, as shown by Fig. 13(b), these gains are slightly

decreased to 3.60× and 12.24×, respectively. Therefore,

larger heaps do not help ParallelGC and Shenandoah con-

siderably to improve their performance against SVAGC.

SVAGC does indeed maintain its performance gains since

the hefty cost of moving (copying) LOs is the most influ-

ential factor in the compaction/moving phase. Furthermore,

Shenandoah’s copying phase is worst since it does not

utilize the work-stealing mechanism and parallelism in its

compaction (copying) phase.

Fig. 12. Average latency of SVAGC vs. Shenandoah/ParallelGC at a)
1.2× minimum heap. b) 2× minimum heap. The first, second, and
third bar of each group shows the average GC time of Shenandoah,
ParallelGC, and SVAGC, respectively. Each bar is broken down into
moving/compaction phase (in blue), and all other GC phases except
moving/compaction phase (in red).

Fig. 13. SVAGC maximum latency vs. Shenandoah/ParallelGC at a) 1.2×
minimum heap size. b) 2× minimum heap size.

B. Scalability

We have evaluated the scalability of SwapVA and

SVAGC on multi-core systems. The tests include a syn-

thesized single-threaded benchmark, a LRU caching as

memory-bound application, to create and access a range

of small to large objects randomly.
Since the optimized version of the compaction phase

reduces the number of IPIs, it would minimize the over-

head of running multiple VMs on multi-core systems

concurrently. Moreover, as each IPI might trigger a TLB

flush on another core, limiting the IPIs in the pinned

version could further reduce the delays of calls. So more

GC time gains through IPI reductions are expected. In

addition, very small bandwidth requirements of SwapVA

for copying objects during GC cycles, decrease the pressure

on memory subsystem and scales better in comparison

to naive memory copy operations. As shown by Fig. 14,

although the application execution time surges by 327.5%,

the GC time gradually increases by 52%.

C. Cache Performance and Application Time

Flushing TLBs could have a potential side effect on

system performance. To evaluate the impact of SwapVA

on cache and TLB performance, we run benchmarks using

the Linux perf tool, to sample the cache and DTLB

misses. Table III, shows some advantages of SwapVA

over memmove. The results on cache misses indicates that

SwapVA leads to less cache pollution than memmove. It

results in a better cache performance and fewer cache

misses. DTLB performance is also improved by SwapVA
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Fig. 14. Scalability of SVAGC in single/multi-JVM setting (run on the
32-Core configuration).

TABLE III
CACHE & DTLB MISSES EVALUATION AT 1.2× (2×) MINIMUM HEAP

Benchmark
Cache Misses (%) DTLB Misses (‱)

memmove SwapVA memmove SwapVA

Bisort 91.4(89.8) 89.4(89.8) 0.12(0.05) 0.05(0.04)

Parsort 89.94(83.5) 82.1(81.7) 1.25(0.72) 0.45(0.57)

Sparse.large/4 74.47(73.83) 71.83(71.79) 0.43(0.37) 0.29(0.28)

Sparse.large/2 87.40(86.16) 85.1(85.2) 0.95(0.54) 0.49(0.33)

Sparse.large 95.09(94.30) 92.32(93.22) 4.6(1.6) 0.68(0.4)

FFT.large/16 13.82(12.19) 10.70(10.66) 0.38(0.3) 0.29(0.26)

FFT.large/8 18.70(17.59) 16.58(16.84) 1.12(0.99) 0.89(0.9)

FFT.large 78.94(78.40) 78.27(78.18) 136.9(182.1) 139.9(183.4)

SOR.largex10 96.19(96.32) 96.44(96.52) 3.17(1.41) 1.21(1.1)

LU.large 96.62(96.90) 95.26(96.43) 6.51(3.01) 1.53(1.22)

CryptoAES 88.32(87.17) 85.90(86.57) 0.08(0.05) 0.03(0.03)

Sigverify 96.87(95.94) 94.97(95.47) 1.41(0.32) 0.15(0.08)

Compress 79.30 (75.25) 72.24(72.65) 0.504(0.346) 0.328(0.291)

PR 91.49 (91.37) 89.87(90.60) 1.68(1.05) 0.44(0.34)

min 13.82(12.19) 10.70(10.66) 0.08(0.05) 0.03(0.03)

max 96.87(96.32) 96.44(96.52) 136.9(182.1) 139.9(183.4)

geomean 69.32(67.48) 65.71(65.99) 1.28(0.74) 0.52(0.44)

since virtual copies do not pollute the DTLB excessively

due to fewer memory accesses and VA-to-PA translations.

Finally, we have measured the benefits of SVAGC to

the overall application time. Admittedly, the improvement

to the application execution time reflects the benefits of

SVAGC to the GC time. Note that the overall benefits

from SwapVA are achieved despite the cost of using TLB

flushing, which incurs an extra cost on application threads

after GC cycles.

The results in Fig. 15 indicate, applying SwapVA and its

optimizations lead to the system throughput improvement,

ranging from 15.2% (CryptoAES) to 86.9% (Sparse.large).

Furthermore, the results in Fig. 16(a) show SVAGC, in

mentioned benchmarks, could outperform the throughput of

ParallelGC and Shenandoah by an average of 30.95% and

37.27%, at 1.2× minimum heap configuration, respectively.

As Fig. 16(b) shows at the 2× minimum heap the results

are decreased to 15.26% and 16.79%, respectively. The

reason is that the larger the heap size, the lower the

frequency of costly Full GCs. Briefly, the variation in

application throughput improvement among benchmarks

Fig. 15. Application throughput of SVAGC at 1.2× minimum heap size.

can be attributed to the frequency and time at which GC

phases are invoked. In other words, if the ratio of memory

(de)allocation to application computation increases, then

GC cycles are more likely to be run. Therefore, in more

memory-intensive applications such as SOR, Sparse,

and Sigverify, our application throughput improvement

would be higher than more compute-intensive ones such

as CryptoAES and FFT .

VI. RELATED WORKS

GC Optimization Efforts. Numerous applications and

frameworks running on top of VMs depend greatly on

GC performance. Researchers have tried to analyze and

improve GC algorithms in different cases. Bruno et al. [4]–

[6] proposed a pre-tenuring mechanism to reduce excessive

object copying in generational GCs. Nguyen et al. [7]

optimized a GC for big data application using the temporal

Fig. 16. Throughput of SVAGC vs. Shenandoah/ParallelGC at a) 1.2×
minimum heap size. b) 2× minimum heap size.
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locality and life-span of objects in analytical applications

to develop a region-based GC called Yak. Morikawa et

al. [34] presented a adaptive technique, heap and bitmap

scanning, for reducing the time of marking live objects and

GC time in LISP2 GC algorithms. Su et al. [8] recognized

and addressed some issues on PS to utilize all multi-

threading capacity of the system. Li et al. [9], [10] pointed

out some deficiency in the compaction phase of Full GC

and introduced a memory cache to resolve dependency

between copying threads. To reduce the GC pause time,

some algorithms support multi-threading and concurrent

GC phases, such as marking and/or copying phases. A few

examples of initiatives designed to reduce the application

pause time are Flood et al. in Shenandoah [15], Detlefs et

al. in G1 [12], and Tene et al. [13] in C4. Meantime, several

researchers tried to remove GCs, including Broom [35],

from VMs by using run-time facilities. There were also

many attempts to create a run-time support such as Deca,

by Shi et al. [36], to optimize GC for some frameworks

such as Apache Spark. Wegiel et al. [37] proposed a non-

moving approach using VM remapping, however, it has

some synchronization issues in multi-threaded applications,

and it requires STW compactions at VM address exhaus-

tion.

Our approach uniquely and directly addresses the cost

of copying/moving operations, which could be expensive in

most GC algorithms. We use the virtual address swapping

technique to perform a zero-copying operation toward

replacing naive copy/move operations. The approach is

orthogonal to any GC algorithm, including parallel and

concurrent ones, and any heap organization, including

(non)generational. Therefore, it can be adopted in GC

compaction/evacuation phases to make them more afford-

able. Column-based databases, analytics frameworks with

large buffers, and scientific computing applications work-

ing with large matrices are all examples of applications

with large objects. Our technique allows large objects to

be returned to conventional heap spaces, preventing LOS

issues. Moreover, a recent trend of combining DRAM and

Non-Volatile Memory, as a hybrid memory, results in novel

heap designs and GC algorithms [38], [39]. Therefore,

hybrid heaps and GCs could use our improvement to reduce

frequency of writing cycles and mitigate wear-out issues.

Also, GC implementations may increase their performance

by replacing costly write operations of NVMs with our

zero-copying ones on collecting large objects.

Zero-Copying Efforts. To reduce the cost of both copy-

ing and sharing data, previous studies such as COW [40]–

[42], have focused on the copy by value semantic. In

addition, some mechanisms such as mmap and pmap [40]

have introduced as a by-reference sharing semantic be-

tween processes. These tools can be employed as an

inter-process facility to achieve a zero-copying ambition.

However, our work is focused on single-process address

space in either single or multi-threaded applications. As

well as, all previous efforts generally are either directed

toward sharing physical address space by virtual page

remapping [43] to communicate messages or addressed

transferring data between processes and kernel by sharing

buffers [44]. Though, in our effort, we have focused on

an intra-process zero-copying mechanism based on data

swapping operations in a single process address space. So,

as an advantage, there is no need to get involved in data

protection and security issues. Besides, it eliminates the

need to invalidate CPU caches which is necessary for inter-

process virtual address remapping implementations.

VII. CONCLUSION

GC compaction and evacuation phases could be the

most costly operations in garbage collectors, especially in

running applications with large working sets. Therefore,

applying any optimization on them would reduce the

GC’s overhead, regardless of heap organization and their

designated algorithms. Our results show that employing

the proposed mechanism to swap virtual addresses could

reduce the copying phase’s operation cost, mainly in ap-

plications containing large objects. It also promises some

specific improvements for the scalability of GCs in multi-

core/multi-VM settings.
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