2022 IEEE International Conference on Cluster Computing (CLUSTER) | 978-1-6654-9856-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CLUSTER51413.2022.00047

2022 IEEE International Conference on Cluster Computing (CLUSTER)

SVAGC: Garbage Collection with a Scalable
Virtual Address Swapping Technique

Ismail Ataie
Department of Computer Science
Florida State University
Tallahassee, USA
ataie@cs.fsu.edu

Abstract—Managed programming languages including
Java and Scala are very popular for data analytics and
mobile applications. However, they often face challenging
issues due to the overhead caused by the automatic memory
management to detect and reclaim free available memory. It
has been observed that during their Garbage Collection (GC),
excessively long pauses can account for up to 40% of the total
execution time. Therefore, mitigating the GC overhead has
been an active research topic to satisfy today’s application
requirements. This paper proposes a new technique called
SwapVA to improve data copying in the copying/moving
phases of GCs and reduce the GC pause time, thereby
mitigating the issue of GC overhead. Our contribution is
twofold. First, a SwapVA system call is introduced as a zero-
copy technique to accelerate the GC copying/moving phase.
Second, for the demonstration of its effectiveness, we have
integrated SwapVA into SVAGC as an implementation of
scalable Full GC on multi-core systems. Based on our results,
the proposed solutions can dramatically reduce the GC pause
in applications with large objects by as much as 70.9% and
97%, respectively, in the Sparse.large/4 (one quarter of the
default input size) and Sigverify benchmarks.

Index Terms—GC optimization, virtual address swapping,
zero-copying, large objects, Full GC, Java garbage collection

I. INTRODUCTION

Cluster computing is progressing rapidly with the use
of Big Data frameworks such as Apache Spark, Hadoop,
and Flink, which are based on managed languages, such
as Java and Scala [1], [2], and virtual machines (VM) for
data analytics and machine learning.

VMs can utilize the Full GC algorithms that collect all
heap memory, not just part of it. GC algorithms including
Full GCs, in general, operate in aperiodic cycles such that
VMs initiate the GC cycle while objects, either live or

This work is supported in part by the National Science Foundation
awards 1744336 and 1763547. This research has used the NoleLand fa-
cility that is funded by the U.S. National Science Foundation award CNS-
1822737. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Weikuan Yu
Department of Computer Science
Florida State University
Tallahassee, USA
yuw @cs.fsu.edu

dead, use up all available space, and the system cannot
respond to any new memory allocation request. The Full
GC process uses the Stop The World (STW) mechanism to
stop all mutators (application threads) to maintain memory
consistency. The VM can then proceed with a Full GC
cycle shortly after STW is completed.

However, two cost issues arise from VM Garbage Col-
lection: 1) To detect and reclaim the wasted memory
allocation at run-time, VM garbage collection (GC) can
significantly cause overheads on system throughput [3]. 2)
When some Full GC cycles are running, excessively long
pauses can be imposed upon the applications.

For the first issue, GC throughput is a critical per-
formance factor in large-scale data analytics applications.
Therefore, several research studies were conducted to im-
prove throughput through the timely collection of garbage
in predefined regions [4]-[7]. Performance can be im-
proved by optimizing Full GC algorithms to maximize
resource utilization. Researchers have investigated how to
allocate resources fairly among GC threads or how to
increase the parallelism of GC threads [8]-[10]. However,
Gog et al. [11] have enabled off-heap memory management
to provide more flexibility and eliminate some of GC costs.
The downside to this is that managed languages lose the
advantages of automatic memory management.

Regarding the second issue (GC pauses), real-time and
interactive systems can be adversely affected by STW
pauses during Minor or Full GCs. Accordingly, many
modern GC algorithms have concentrated on reducing the
pause time, including G1 [12], C4 [13], ZGC [14] and
Shenandoah [15] through concurrently running some parts
of GC workloads with applications, which sacrifices VM
throughput for the GC pause time. Concurrently running
the moving/copying phase [14], [15], a.k.a evacuation, with
application threads can reduce the pause time significantly.
GCs that trace live objects in memory heaps can be
categorized into two groups; moving and non-moving. In

2168-9253/22/$31.00 ©2022 IEEE 357
DOI 10.1109/CLUSTERS51413.2022.00047
Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

moving GCs, all live objects are copied contiguously into
available free space. The non-moving GC, in contrast,
does not move live objects and may result in memory
fragmentation [16]. But even non-moving GCs have to
copy live objects when memory exhausted or fragmented.
Immix [17], as a non-moving collector, attempts to reduce
the fragmentation by performing partial defragmentation
on smaller regions, a coarse-grained memory allocation
unit. However, the allocation of large objects (i.e., objects
larger than one memory page in size) in non-copying Large
Object Spaces (LOSs) to avoid copying costs results in
the fragmentation of these allocations, as well as increased
maintenance costs and eventual compactions [16], [17].

The purpose of this paper is to investigate the cost of
memory operations in moving GCs, particularly for large
objects in Full GC compaction, and to propose a solution
that could be extended and applied to other phases of
GC algorithms, whether it is a parallel or a state-of-the-
art concurrent GC, even non-moving GCs that need heap
compaction, either fully or partially. Thus, our system
call, SwapVA, allows the copying or moving of large
objects by swapping their mappings of virtual memory
pages instead of moving the bytes verbatim. It can optimize
Full/Major GC algorithms and improve performance by
reducing memory bandwidth requirements and the time
required for moving objects in the compaction phase.
Additionally, it makes large objects behave as small objects
for GC and prevent the need to store them in LOS. On
multi-core systems, GC activity from running multiple Java
applications can dramatically increase memory bandwidth
requirements. Reducing the GC pause time via increasing
the concurrency of GC threads [8], [10] still suffers from
memory bandwidth [18]. Consequently, we have further
optimized SwapVA to make it more scalable on multi-core
systems. Due to fewer memory operations, it can greatly
reduce the required memory bandwidth for JVMs running
on multicore processors. On top of the proposed system
call, we have developed a novel GC implementation called
SVAGC to take advantage of its performance benefits.
Since data copying/moving is a common characteristic of
all GC algorithms, our SwapVA technique can also be
applied to other algorithms such as concurrent GCs.

Our contribution is twofold. First, we introduce a new
system call, SwapVA, that provides a zero-copy tech-
nique to support the moving/copying of large objects
through the swapping of their page table entries (PTES).
The technique can replace and speed up memory content
moving/swapping operations during the compaction and
evacuation phases of GCs. Second, we propose a scalable
Full GC prototype in multi-core systems by utilizing the
SwapVA system call, which shows the potentiality of our
approach in designing GCs.

The rest of this paper is organized as follows. Section II

358

provides an overview of GC in Java. Section III describes
the design of SwapVA system call. Section IV presents
the integration of SwapVA into a prototype Full GC algo-
rithm called SVAGC. Section V provides our experimental
evaluation. Section VI reviews related studies. Finally, we
conclude the paper in section VII.

II. BACKGROUND OF JAVA GARBAGE COLLECTION

Generally, a full Java Garbage Collection (GC) detects
live objects and compact (defragment) heap memory. A
regular Full GC, based on LISP2 algorithm [19], performs
in four phases, including I) marking, II) forwarding address
calculation, IIT) adjusting pointers, and IV) compaction.

1. Marking. In this phase, all heap’s live objects are
identified, and their addresses are marked in some related
data structures such as bitmaps.

I1. Forwarding Address Calculation. The phase calcu-
lates and determines the final location of live objects. Live
objects are located on the first empty spaces of the heap
from beginning to end, respectively.

II1. Adjusting Pointers. After determining the new
address of objects, references must be updated. The same
as the previous phase, this one starts with the beginning of
the heap and updates each referencing field of objects to a
new address. In actuality, the updated address is available
at a particular location of the referenced object that was
calculated during the previous phase.

IV. Compaction. Afterward, some live objects would
be moved into new memory locations, whose addresses
are stored, for example, in the object headers. The cost of
this phase varies with the size of the working set.

The following section will discuss two concerns related
to GCs: compaction costs and scalability.

Compaction (Copying) Cost in GC: In applications
with large working sets, including a high number of
large objects, the compaction can significantly impact the
GC time and VM performance. We examine the impact
by running FFT.large and Sparse.large, with an average
object size of 64KB and S0KB [20], respectively, from the
SPECjvm2008 suite. The applications are run on top of
OpenJDK15 VM using an adapted LISP2 GC prototype.
This is done to measure the exact weight of each phase
and to determine the effect of compaction on the overall
Full GC time. As shown in Fig. 1, the most of the GC
time, about 79.33%-84.76% for Sparse.large and FFT.large
respectively, is spent in the compaction phase.

GC Scalability Issue: In today’s prevalent multi-core
systems, GC scalability is another key factor for supporting
applications with intensive parallelism [21]. In fact, ap-
plications with high memory bandwidth requirements will
make scaling much more difficult. In order to examine GC
scalability, we run multiple instances of a single-threaded

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

B FFT.large
H Sparse.large

Execution Time (s)

2.155

2.308
1.221 2.049

1.672 2237

[
Marking (1) ing Calc. (Il)

Fig. 1. Execution time of the full GC phases (Tested on Intel® Core™
i5-7600 @3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).

Add. (1) Compaction (IV)

——
A

——

Application
GC (Max Latency)
GC (Total)

Normalized Average Exec. Time

Number of JVM (App)s

Fig. 2. Scalability issue in LRUCache benchmark (run on 32 cores dual
Intel® Xeon Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4
@2666MHz). To mitigate context switching overhead on GC perfor-
mance, each GC tuned to use 4 Cores by setting the GCThreadsCount
parameter to 4.

memory-intensive application simultaneously, working as
a LRU cache, and then benchmark the impact of multi-
JVMs on each of the application and GC time. In this test,
applications are run on the OpenJDK15 VM by using its
ParallelGC algorithm. According to Fig. 2, by increasing
the number of running applications, which is equivalent
to the number of JVMs, both GC latency (maximum and
total) and application execution time increase significantly.

Considering these two issues, we deem that it is desirable
to optimize the compaction phase to improve both GC and
application execution time.

III. DESIGN OF SWAPVA

In this section, we first present the design of SwapVA for
swapping the virtual memory address of objects, and then
describe a few performance and scalability optimizations.

A. Overview of SwapVA

As mentioned, regardless of heap organization and ap-
plied algorithms, GC performance can be significantly
reduced by delay in object moving and copying operations
during a GC compaction or copying phase. By devising
some strategies to decrease operations’ delay, GC pause
times could be effectively moderated. To this end, a number
of GC algorithms have been designed to avoid these
excessive copy operations within big data applications [5].
Instead, we focus on reducing the operation’s cost, which

359

Memory

Heap Data
- Page
4 Adjusting Add. P Frame
= >
&l Compaction
SwapVA Aggregation A
memmove /
{ -
1 - User level
V. . Kernel level
i \ = .
! SwapVA) j
| PMD Cachi |
| m PTE > Page
| { Overlapping Opt. W ! Table
; i PTE
! \ Multi-Core Scalability Y, :
- - i | Heap Page Tables
.. Kernel AN .

Fig. 3. Software architecture of SVAGC.

is the copying time, rather than controlling the frequency
of copy operations. By directly improving the copying, the
method can be applied to all GCs, regardless of their heap
organization and algorithm.

Fig. 3 presents an overview of the SwapVA system
call and its integration into our prototype GC, SVAGC.
SwapVA provides a technique for swapping virtual ad-
dresses, i.e., exchanging two memory areas with minimal
memory operations. When the values of the source operand
are not in demand after the operation, it can also be used as
a move operation. Within SwapVA, two internal optimiza-
tions are provided: PMD caching and Overlapping. There
are also some related mechanisms for scaling SwapVA in
multicore systems, which will be discussed in section IV.

B. SwapVA and Internal Optimizations

Modern operating systems and CPU architectures both
provide a memory management unit (MMU) that maps
virtual/logical addresses into physical/real ones. The virtual
memory addresses are divided into smaller subgroups to
serve as indexes for mapping tables. The last part, typically
the least significant bits (12 bits for 4KB pages), is used
to determine the offset in the page’s physical address.
The mappings are stored in the memory as hierarchically
organized directories, which are called page tables. To
improve performance and avoid the MMU recalculations,
the Translation Lookaside Buffer (TLB) could cache each
virtual-to-physical address mapping.

The design of this architecture ensures that applications
can only use virtual addresses and not physical addresses.
When an application needs to swap two memory areas, it
must exchange them word by word. This practice generates
significant overhead for applications when copying/moving
large chunks of memory.

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

Page Frame A

Logical Address A |

Logical Page A| Offset | Virtual to Physical

\Mapping

v pte A

a) ¥ L

A pte B
‘ Page Frame B
Logical Page B| Offset

Logical Address B []

Logical Address A [!
Logical Page A| Offset ‘ !/f’"‘"_/ to Physical

w pte B

b) 4 —

Page Frame B

Logical Page B| Offset L1/ ‘

Logical Address B [

Fig. 4. Swapping virtual addresses.

To resolve the aforementioned issue, we propose a
mechanism to swap memory areas based on exchanging
the last level of virtual-to-physical address mappings, i.e.,
PTEs, as shown in Fig. 4. Conceptually, by using our
technique to swap memory regions, we can reduce a large
part of the costs associated with naive copy operations. For
example, to swap the contents of two virtual pages, A and
B, the cost consists only of exchanging their PTESs. There is
however an obstacle as PTEs are protected in kernel space,
so manipulations must be performed in privileged mode.
In this regard, some OS extension mechanisms could be
leveraged, such as system calls or loadable kernel modules
(LKM), to lift the restriction.

Algorithm 1 illustrates simple steps for swapping two
memory areas identified by two sets of continuous virtual
addresses. In each step, through looking at the page tables,
it determines which pair of PTEs should be swapped and
then locks them. Once they are swapped, the locks are
released. Finally, it invalidates all TLBs of calling process
by flush_tlb_local function.

SwapVA Aggregation: For a single-core architecture,
the execution time of SwapVA might be calculated as
follows:

TSwapVA = TSystemCall+Tflush_tlb+TFunctz'onBody (1)

Practically, swapping a large number of pages is highly
efficient; however, if there are few pages, then the cost of
system call invocation, Tsystemcalr, can make up a large
portion of the overall execution time. We addressed the
issue by aggregating multiple swapping operations into
a single SwapVA invocation. In turn, context switching
overhead can be reduced across multiple system calls, lead-
ing to improved GC performance for frequent data object
copying. Fig. 5 illustrates how to aggregate multiple small-
sized swapping operations into one system call invocation
(see Fig. 5 (b)). According to Fig. 6, reducing overall call

Algorithm 1 SwapVA on Intel x86-64 Architecture
1: procedure SWAPVA(vAddl,vAdd2, pages)
function GETPTE(vAdd, ptip)
pgd < pgd_of fset(vAdd)
pdd « pdd_of fset(pgd,vAdd)
pud < pud_of fset(pdd,vAdd)
pmd < pmd_of f set(pud,vAdd)
pte + pte_of fset_map_lock(pmd, vAdd, ptlp)
return pte
end function
10: spinlock_t = ptipl, ptip2
pid < getPID() > find the current process id

R I A o

—_
—_

12: for : < 0,...,pages — 1 do

13: j+ i< PAGE_SHIFT

14: ptel < GETPTE(vAddl + j, ptipl)

15: pte2 < GETPTE(vAdd2 + j, ptip2)

16: temp < pte2; pte2 < ptel; ptel < temp
17: pte_unmap_unlock(ptel, ptipl)

18: pte_unmap_unlock(pte2, ptip2)

19: flush_tlb_local(pid) > flush the process’s TLBs
20: end procedure

C mEmen | e
‘01 Oz‘ 0 ‘ Ho;\oz\ o, | |

(a) (b)
Fig. 5. Aggregation of SwapVA requests (O stands for object/data). a)
Separated SwapVA calls b) Aggregated SwapVA calls.

Average Req. =10
Average Req. =20
Average Req. =30
Average Req. =40
Average Req. =50
Aggregation (= All Req.)

5%10* -

4x10°

3x10* -

Time (ns)

2x10° -

I
1 10 50 100 500 1000

Data Size (page)
Fig. 6. Aggregated vs Separated SwapVA Calls (Tested on Intel® Core™
i5-7600 @3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).
costs can be achieved by increasing the average input size
of SwapVA.

PMD Caching: As an additional enhancement to
SwapVA, we introduce PMD (Page Mid-Level Directory)
caching for swapping memory areas with a large number of
page frames. Fig. 7 illustrates how PMD caching works.

In large-scale swapping operations, since addresses are
accessed sequentially, it is most likely that prefixes are the
same, so a calculated pmd value can be reused. Therefore,
caching the last pmd to the base address of current page
table entries can shorten numerous memory accessing op-

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

fixed variable

[Reséfved PGD | P4D | PUD | PMD | PTE | Offvet |

—
‘ find_pmd
pmd_ k=

N ¢
Caching pte

Fig. 7. SwapVA optimization by PMD caching.

10°g
f —®&— No-Caching
[—®— PMD Caching

Time (ns)
)

1000

100 1 1 1
1 10 100 1000 10* 10°

Data Size (page)
Fig. 8. Benefits of PMD caching (Tested on Intel® Core™i5-7600
@3.50GHz with 24GB DRAM, DDR4 @2400 MT/s).

erations to locate the table of PTEs. For example, locating
the pte of a virtual address needs to find pmd first, Fig. 7(1),
and then use it to obtain the pre, Fig. 7(2). But, the result of
step 1 could be kept in some pmd variable for the following
iterations. Accordingly, in subsequent iterations, only step
2 is required, and all step 1 sequences could be eliminated.

The effectiveness of PMD caching is shown in Fig. 8.
This optimization improves the performance of SwapVA
by up to 52.48% and an average of 36.73% for multi-page
copying operations.

Overlapping Areas: In some cases, two areas can share
some page table entries due to overlapping address ranges.
We can detect such overlaps and optimize the swapping for
their PTEs, thus it could reduce the cost of data copying
even further. For example, by applying this optimization,
the cost of swapping 2n pages reduces from O(2n) to
O(n + 6); 0 is the distance between the swapping areas,
0<d<n.

Practically, Algorithm 2 presents a unique design to swap
two overlapping areas using a few, around four, temporary
memory words to track all PTEs. It also uses a gcd function
to control the iteration. The low memory requirement of
SwapVA allows it to perform at higher efficiency. The
inner loop of Algorithm 2 works as a cycle. The cycle
starts from a PTE A to find its target PTE B. It copies the
target PTE B into a temporary variable and then updates
the target by PTE A. Now this routine is repeated for the
PTE B. These replacements are continued until a chain
of PTEs are replaced by each others. Similarly, the outer
loop of Algorithm 2 controls and starts a new cycle of
such replacements. Note that getPTE can be replaced with
its Algorithm 1’s version for synced accesses.

Algorithm 2 Swapping Overlapping Areas
1: procedure SWAPOVERLAP(vAdd]1, vAdd2, pages)

2: function FINDSWAPPLACE(S, j, pages)

3: if i<j then return 7 4 pages

4: return ¢ — j

5: end function

6: addldx2 <+ |(vAdd2 — vAddl)/|PAGE||

7: upCurldx + ged(addIdx2, pages)

8: for curldx < 0...upCurldx do

9: vAddlcur < vAddl + curldz - |PAGE]
10: pteCur + GETPTE (vAddleur)

11: pteTemp <+ pteCur

12: k < FINDSWAPPLACE(curldz, addIdx2, pages)
13: while %k # curldx do

14: vAdd1K < vAddl + k- |PAGE|

15: pteKTemp < GETPTE(vAdd1K)

16: pteK < pteTemp

17: Sflush_tlb_page(vAdd1K)

18: ptelTemp < pte KTemp

19: k < FINDSWAPPLACE(k, addIdx2, pages)
20: pteCur < pteTemp
21: flush_tlb_page(vAddlcur)
22: end procedure

In terms of data security, since all swapping opera-
tions take place within the same address space of an
application, page permissions and access controls should
not be a concern. If there is a need to prevent data
breaches between threads, the system call can be extended
to clean up memory after each swapping in multi-threaded
applications. In a summary, due to the significant drop in
memory access frequency, SwapVA could provide a zero-
copying mechanism for GC operations in data-intensive
applications.

IV. SVAGC: INTEGRATION OF SWAPVA FOR GC

In this section, we describe the integration of SwapVA
into a GC to reduce its pause time and improve its perfor-
mance. In order to accomplish this, we can replace the large
sequential memory copy operations in the GC with the
virtual address swapping calls, SwapVA. Algorithm 3 (see
MoveObject procedure) shows how to utilize the SwapVA
call in the primary copy operation of GCs, MoveObject, for
data objects that are bigger than a configurable threshold.

There are a few prerequisites and adaptations to consider
prior to applying SwapVA as a bulky copier. First, the can-
didate object and the next immediate one must be located
in page-aligned addresses. At allocation time, therefore,
an object larger than the threshold, which may be one or
more physical pages, must be placed on the first free page
in memory (see Algorithm 3 Line 16).

Second, to keep the consistency of memory layout after
each SwapVA call, the system allocates the next object on

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 MoveObject, Memory Allocation, and For-
warding Address Calc.
1: procedure MOVEOBJECT(source, dest,length)

2: pages < [length/|PAGE]|]

3: if pages > Thresholdsyapping then

4: SWAPVA (source, dest, pages)

5: else memmove(source,dest,length)

6: end procedure

7: function IFSWAPALIGN(object, address)

8: if |object| > Thresholdsyapping - |PAGE| then
9: | return align(address,|PAGE)|)

10: return address

: end function

: procedure ALLOCMEM(object, heap)

newT op < IFSWAPALIGN(object, heap.top)

14: if newTop + |object| > heap.end then

15: Ielely > Call GC to free memory

16: heap.top <— IFSWAPALIGN(object, heap.top)
17: object.address < heap.top

18: heap.top + = |object]

19: heap.top < IFSWAPALIGN(object, heap.top)
20: end procedure

21: procedure CALCNEWADD(object, compPnt)

22: compPnt < IFSWAPALIGN(object, compPnt)
23: object.address < compPnt

24: compPnt + = |object|

25: compPnt «+ IFSWAPALIGN(object, compPnt)
26: end procedure

—_ =
O I S

the first free page adjacent to the current object position
(see Algorithm 3 Line 19). It protects the next objects
from side effects of applying the call. Finally, during the
compaction phase, relocating objects to the new addresses,
large objects need to be defined in a paged-aligned format
(see Algorithm 3 Line 22 and 25).

Memory Fragmentation Issue: Memory address re-
quirements of SwapVA could raise some issues related to
memory fragmentation. Page-aligned objects may create
some external fragmentation between a new allocated large
object and previous small object. In heap memory alloca-
tion, objects are usually allocated from the thread’s TLAB
(Thread Local Allocation Buffer) to reduce synchronization
issues between different threads at allocation time. If TLAB
is exhausted or object is too big to be placed in TLAB,
allocation will be failed and object will be allocated from
a new TLAB or shared space of heap. Accordingly, an
effective solution is to allocate large page-aligned objects
from the end to the beginning of the TLAB and also smaller
ones from the beginning to the end. As a result, all large
and small objects are placed separately. When objects are
too large and need to be allocated from the shared space
of the heap, the vicinity of large objects is also guaranteed.

This can remove the external fragmentation. Allocating
new large objects with proper swapping thresholds can
also help control the rate of fragmentation. For example, in
our evaluations, by setting the threshold value to ten pages
we could reduce possible internal fragmentation about less
than 5% of heap size, statistically up to half a memory
page could be wasted for every ten pages or more.

Multi-Core Scalability of SwapVA: Flushing TLB
entries can increase memory access time on single-core
systems since evicted virtual address mappings must be
re-translated and re-cached. However, this cost per page
is relatively low. For example, for each page, 4KiB of
memory in x86-64, MMU wastes roughly a five-fold mem-
ory access time to walk through the page tables, find the
physical address, and finally cache it in the core’s TLB
for further references. In this scenario, after updating a
PTE, the corresponding TLB entry must be invalidated or
flushed. The flushing costs may be manageable in a single-
core system, but in multi-core environments they would rise
dramatically since all TLBs of a process on all cores must
be flushed. Besides, multi-core OSs utilize a mechanism
called inter-processor interrupt (IPI) to execute a piece of
code remotely on a specific core. OSs use IPI to flush
some TLB entries of other cores. Nevertheless, IPI calls can
be costly operations, affecting the system’s performance
and scalability. Therefore, to precisely calculate the cost
of flushing in multi-core systems, we should combine the
cost of all local core TLB flushes with their peer IPI calls.
For instance, each invocation of the swapping system call
on a typical eight-core CPU triggers seven subsequent IPIs
that force other cores to clean their TLBs. As a result,
it requires an overall eight local TLB flushing operations.
For this purpose, the kernel would send IPIs to all online
processors to clean their own TLBs. Thus, this would result
in a huge impact on total execution time.

Moreover, there are some complications in the imple-
mentation of SwapVA to avoid races. For instance, its
caller needs to be pinned during SwapVA execution on the
current core and invoke kernel function, flush_tlb_others,
to flush all other cores TLBs at the end of the system call.
These constraints increase the cost of SwapVA adversely.

SwapVA should be used with caution in applications
such as GCs. The copying process might update some
PTEs and, in the meantime, be migrated to other cores.
So, it could result in an inconsistent view of virtual address
mappings cached in the TLBs on different cores. To ensure
that applications, such as VMs, see the most recent updates
of address mappings (PTEs) on each core, all cores’ TLBs
must be flushed after each change. This functionality can
also be integrated into SwapVA implementation.

The following two complementary techniques can
improve SwapVA’s scalability. These techniques help
SwapVA to reduce both costly IPIs and TLB flush requests.

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

The first technique, to be integrated in SwapVA, is
achieved by sending many IPIs to flush all TLB entries that
belong to the current process on other cores. Afterwards,
the relevant TLBs are flushed locally without doing any
global flushes. This approach will assist in reducing the
cost of broadcasting requests after each TLB invalidation.
It also removes redundant TLB flushes on other cores.

The second technique is similar to the first, but it is
carried out on a much larger scale. This technique pins the
entire compaction process in the same core throughout each
GC cycle. At the beginning of the compaction phase, the
process only broadcasts a flushing request toward all cores
to invalidate its TLB entries (see Algorithm 4 Line 5). This
assures us that other cores’ processes refer to the updated
PTEs. Next, during invocation of the swapping system calls
and updating PTEs, only the current core TLBs are flushed.

Algorithm 4 Optimized Compaction Phase
: procedure COMPACTIONOPT(liveObjects)
: pid < getPID() > find the process id
cpuid < getCPU() > find the CPU id
pin(cpuid, pid) > pin the process
flush_tlb_all_cores(pid) > flush TLB (all cores)
while liveObjects.hasNext() do
object < liveObjects.next()
obj Add < object.currentAddress()
newAdd + object.newAddress()
MOVEOBIECT(0bj Add, new Add, |object|)

> unpin the process

1
2
3
4
S:
6
7
8
9

10:
11:
12:

unpin(pid)
end procedure

Therefore, by utilizing the optimized version of the
compaction phase, as shown in Algorithm 4, the number
of I PIs, and their subsequent flushes will be reduced from
[-ctoc cand ! denote the core count and the average
number of live swappable objects, respectively. So the gain
is calculated as:

#IPIUnoptimized
#IPIOptimized

Fig. 9 shows the cost of running non-optimized SwapVA
in a multi-core system. By limiting the broadcasting of
both TLB flushes and IPI calls, the results also display the
advantage of a scalable SwapVA implementation over a
non-optimized one. Note that the number of live swappable
objects is set to 100 in our evaluation.

TLB Shootdown Approaches: As a brief overview,
some studies introduced techniques such as [22] to improve
TLB shootdown by running them in parallel or [23] to
track page accesses to prevent unnecessary issuance of TLB
flushes. Even [24] introduced a timer-based self-flushing
technique to reduce the cost. However, due to the lower cost

- C

i
— Zn:lc —

= =1 @
C

gain =
c

363

18 r

No Optimization
Multi-Core Optimized

o

Execution Time (us)

6 18 20 22 24 26 28 30 32
Cores

Fig. 9. Benefits of multi-Core optimizations to SwapVA (Tested on
Intel® Xeon Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4
@2666MHz).

of implementation and lower complexity, we have adapted
the pinning technique as tool to mitigate and control the
cost of broadcasting TLB shootdowns and corresponding
TLB flushes. We will demonstrate the versatility of this
approach in our evaluation.

A. The Applicability of SwapVA and its Optimizations

In Table I, we summarize the applicability of SwapVA
and its optimizations to different GC cycles/phases. The
basic SwapVA call could be applied to all GC cycles/phases
with various heap organizations, both generational and non-
generational heaps. However, some other optimizations
have their respective limitations. SwapVA aggregation is
ideal in the compaction phase of a Full/Major GC since
more data copying requests increase the chance of grouping
SwapVA calls. However, since each copying operation is
independent during the evacuation phase of concurrent
GCs, the aggregation technique is not effective. Finally, the
overlapping optimization is not applicable for the copying
and evacuation phases of Minor or Concurrent GC, whereas
source and destination have no shared addressable area.
Note that since SVAGC has Full GC cycles, it utilizes all
proposed optimizations.

TABLE 1
THE APPLICABILITY OF SWAPVA AND OPTIMIZATIONS

Optimization
GC (Phase)
Full & Major (Compact, Moving)
Minor (Copying)
Concurrent (Evacuation, Reloc.)

<|| Overlapping

1< § Aggregation

§ § § PMD Caching

§ § § SwapVA

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

V. EVALUATION

SwapVA, as a system call, has been implemented in
Linux 4.17.0-rc2. We choose OpenJDK 15 and Epsilon
memory allocator to integrate with SwapVA. Consider-
ing Epsilon works mainly as a simple memory allocator
wrapped by a standard GC interface, it has been extended
with a parallel version of LISP2 algorithm (see section II)
that is optimized by parallelized phases, same as Paral-
lelGC. The swapping threshold in MoveObject algorithm
is set to ten pages as a break-even point that makes
SwapVA more affordable than memmove. This threshold
also determines the minimum size of large objects which
is ten pages in our evaluations. As shown by Fig. 10,
CPU performance and memory bandwidth can impact on
threshold value and define it.

We have evaluated the performance of multiple garbage
collection algorithms based on the SPECjvm2008 bench-
marks designed for large (Big) objects, on average 1KB+
in size [20]. Some of these benchmarks are useful in the
core of ML algorithms including FFT [25]-[28], Sparse
(SpMV) [29]-[32], SOR [33], and LU (matrix factoriza-
tion). To cover more cases, we also add some extra bench-
marks from other suites such as JOlden, OpenJDK, and
Spark-bench that have large objects. The benchmarks run
in a multi-threaded paradigm to set up a sufficient workload
for the evaluation. We run benchmarks by setting the heap
size to 1.2x and 2x of minimum required size. We have
also modified the default workloads of Sigverify, which
have 1MiB objects, to include larger objects of 10MiB
and 100MiB. The heap size and the number of threads
are listed in Table II. All evaluations are completed on a
machine with 32-Core Dual Intel® Xeon Gold 6130 CPU
@2.10GHz with 192GB DRAM, DDR4 @2666MHz. To
study the impact of object size on the performance of
GCs, we have tuned the benchmarks with different object
sizes. For example, F'F'T.large is customized with two
other different variants, including 1/8, 1/16 of the default
input size. Similarly, we have made some customization
with Sparse.large and SOR.large. So, again we have
created a version of SOR.large, ten times as large as its
default input size. Moreover, the input size of Bisort and
Parallelsort is set to 2M entries, and for LRUCache the
cachable object size is selected from [1, 2M] bytes with
2K entries. PR benchmark also works on random graphs
with 78K nodes and 780K edges.

A. GC Throughput and Pause Time

The first measured parameter is the throughput of
the system based on the pause time. As shown by
Fig. 11, the throughput improvement ranges from 3.44 X
(Sparse.large/4) to 33.3x (Sigverify). This can be
explained by the fact that applications with both fewer and
larger objects can benefit more from our implementation.

1400 —@&— SwapVA —4&— memmove

[JF /
1200
10001 / 11 /]
8007 / 1t /
o0l P]! el

Time (ns)

o IV
2 4 6 8 10 2 4 6 8 10

Data Size (page) Data Size (page)
(a) ()
Fig. 10. Threshold value for SwapVA in different CPU/memory con-
figurations (Tested by a single-threaded application). a) Intel® Xeon
Gold 6130 CPU @2.10GHz with 192GB DRAM, DDR4 @2666MHz.
b) Intel® Xeon Gold 6240 CPU @2.60GHz with 192GB DRAM, DDR4
@2933MHz.

TABLE II
BENCHMARKS CONFIGURATION

[Benchmark] Suite | Threads | Heap (GiB) |
FFT.large SPECjvm2008 576 19.2 - 40
Sparse.large SPECjvm2008 576 5-85
SOR.large SPECjvm2008 32 51.5-85.8
LU.large SPECjvm2008 224 3-5
Compress SPECjvm2008 640 19 - 32
Sigverify SPECjvm2008 256 28 - 56.7
CryptoAES SPECjvm2008 96 5.2 - 8.67
PageRank (PR) Spark 288 4-65
Bisort JOlden 896 8§-19.2
Parallelsort OpenJDK 896 16 - 50
LRUCache _ 1 4.5

In these applications, the most expensive compaction and
moving phases can take advantage of SwapVA calls. Ac-
cordingly, applications such as FFT with a small number
of larger objects have an advantage over others, including
Sparse.large/4, with numerous smaller ones.

The SVAGC throughput has also been evaluated against
several state-of-the-art GC algorithms, including Shenan-
doah as a region-based concurrent and parallel pause-
oriented collector [15], and ParallelGC as a matured gen-
erational throughput-oriented GC. Furthermore, since our
focus is on evaluating Full GC performance, in particular

M Comapction Phase M GC Phases (Excluding Compaction)

]

s = o
IS EN %

Normalized Total GC Time
=
o

Q""Q Q‘b‘s“ ¢ zb‘b e\’: * &;‘\\b% &\"‘ i \% &% & %‘%
WY PRIy 2 Q s‘o & \,
& & & VS & S % ¢
PG M\ RN & <
KR K S

Fig. 11. Evaluation of GC time -/+ SwapVA on SVAGC (at 1.2x
minimum heap); In each group left bar is the total GC time with just mem-
move, and the right one is the GC with our optimized moving/compaction
phase including both SwapVA and memmove. Each bar is broken down
into compaction phase (in blue), and all GC phases except compaction
phase (in red).

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

on Large Objects (LO), and since G1GC does not regularly
trigger the Full GC in our benchmarks, we did not include
it in our analysis. As results in Fig. 12(a) show, the average
latency of Full GC has been reduced 3.82x and 16.05x
compared to ParallelGC and Shenandoah, respectively. As
shown in Fig. 12(b), by increasing heap size the average
latency has been reduced 2.74x and 13.62 X%, respectively,
compared to ParallelGC and Shenandoah.

Finally, Fig. 13 (a) shows SVAGC has more improve-
ment for maximum GC latency that is more important for
pause sensitive applications. Accordingly, in SVAGC, the
maximum pause time of Full GC has been reduced 4.49x
and 18.25x in comparison to ParallelGC and Shenandoah,
respectively. Of course, by increasing heap size to 2x min-
imum size, as shown by Fig. 13(b), these gains are slightly
decreased to 3.60x and 12.24x, respectively. Therefore,
larger heaps do not help ParallelGC and Shenandoah con-
siderably to improve their performance against SVAGC.
SVAGC does indeed maintain its performance gains since
the hefty cost of moving (copying) LOs is the most influ-
ential factor in the compaction/moving phase. Furthermore,
Shenandoah’s copying phase is worst since it does not
utilize the work-stealing mechanism and parallelism in its
compaction (copying) phase.

1 B Compaction/Moving Phase B GC Phases (Excluding Compaction/Moving)
0.8
0.6

(@
0.4

0.2

ALLLL]

Normalized Average Full GC Latency

Q,\"“é éé §°§} ‘
LR \‘b o < \‘b &’ (
ﬁ@@“’ Q&s“ %@‘2‘3@.\’ Q@ﬂ' & oq\" o Q %\o,, C“ \»
N ¢

B Compaction/Moving Phase B GC Phases (Excluding Compaction/Moving)

(W \L |

(b)

Normalized Average Full GC Latency

& & S S & &
Q;s‘p &5 ‘,& \9(\‘b‘% & (’o \‘b‘ ‘q}.l' VS' & Q\Q,,&
5@ é ,‘\ Y @2 A dQ G_,~ o S
e&"‘ 9&“"5 SR

Fig. 12. Average latency of SVAGC vs. Shenandoah/ParallelGC at a)
1.2x minimum heap. b) 2X minimum heap. The first, second, and
third bar of each group shows the average GC time of Shenandoah,
ParallelGC, and SVAGC, respectively. Each bar is broken down into
moving/compaction phase (in blue), and all other GC phases except
moving/compaction phase (in red).

365

@ Shenandoah
1

E Parallel

BSVAGC

(CY

Normalized Maximum Pause Time

3> c} \6 \
o O £ 0 A\ M
¢ @ z@& Q\sv‘% ‘&)&\%&? \%&1 Q«
L
] & RTS8 6
& Shenandoah _ BSVAGC
=)
208
=
-9
E o6
£
(b)
&
S 04
=
]
=02
£
s
z 0 Bl B 3 3 N
NN v "o B @ P & & & &
o \‘B‘% ! és\‘}&&o}\&\‘@é‘\m&ﬁ e°§) < o Q\S
O oy @ A S ¢ 3
PO R SR 3
A & o [P TAAY %

Fig. 13. SVAGC maximum latency vs. Shenandoah/ParallelGC at a) 1.2x
minimum heap size. b) 2X minimum heap size.

B. Scalability

We have evaluated the scalability of SwapVA and
SVAGC on multi-core systems. The tests include a syn-
thesized single-threaded benchmark, a LRU caching as
memory-bound application, to create and access a range
of small to large objects randomly.

Since the optimized version of the compaction phase
reduces the number of IPIs, it would minimize the over-
head of running multiple VMs on multi-core systems
concurrently. Moreover, as each IPI might trigger a TLB
flush on another core, limiting the IPIs in the pinned
version could further reduce the delays of calls. So more
GC time gains through IPI reductions are expected. In
addition, very small bandwidth requirements of SwapVA
for copying objects during GC cycles, decrease the pressure
on memory subsystem and scales better in comparison
to naive memory copy operations. As shown by Fig. 14,
although the application execution time surges by 327.5%,
the GC time gradually increases by 52%.

C. Cache Performance and Application Time

Flushing TLBs could have a potential side effect on
system performance. To evaluate the impact of SwapVA
on cache and TLB performance, we run benchmarks using
the Linux perf tool, to sample the cache and DTLB
misses. Table III, shows some advantages of SwapVA
over memmove. The results on cache misses indicates that
SwapVA leads to less cache pollution than memmove. It
results in a better cache performance and fewer cache
misses. DTLB performance is also improved by SwapVA

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

Normalized Average Exec. Time
w
T

—e— Application

—-A-— GC (Max L
—&— GC (Total)

atency)

12

16

20
Number of JVM (App)s

24

28

32

Fig. 14. Scalability of SVAGC in single/multi-JVM setting (run on the
32-Core configuration).

TABLE III

CACHE & DTLB MISSES EVALUATION AT 1.2 X (2X) MINIMUM HEAP

Cache Misses (%) DTLB Misses (%00)
Benchmark
memmove SwapVA memmove SwapVA
Bisort 91.4(89.8) 89.4(89.8) 0.12(0.05) 0.05(0.04)
Parsort 89.94(83.5) 82.1(81.7) 1.25(0.72) 0.45(0.57)
Sparse.large/4 | 74.47(73.83) 71.83(71.79)| 0.43(0.37) 0.29(0.28)
Sparse.large/2 87.40(86.16) 85.1(85.2) 0.95(0.54) 0.49(0.33)
Sparse.large 95.09(94.30) 92.32(93.22)| 4.6(1.6) 0.68(0.4)
FFT.large/16 13.82(12.19) 10.70(10.66) 0.38(0.3) 0.29(0.26)
FFT.large/8 18.70(17.59) 16.58(16.84)| 1.12(0.99) 0.89(0.9)
FFT.large 78.94(78.40) 78.27(78.18)| 136.9(182.1) 139.9(183.4)
SOR.largex10 | 96.19(96.32) 96.44(96.52)| 3.17(1.41) 1.21(1.1)
LU.large 96.62(96.90) 95.26(96.43)| 6.51(3.01) 1.53(1.22)
CryptoAES 88.32(87.17) 85.90(86.57)| 0.08(0.05) 0.03(0.03)
Sigverify 96.87(95.94) 94.97(95.47)| 1.41(0.32) 0.15(0.08)
Compress 79.30 (75.25) 72.24(72.65)| 0.504(0.346) 0.328(0.291)
PR 91.49 (91.37) 89.87(90.60)| 1.68(1.05) 0.44(0.34)
min 13.82(12.19) 10.70(10.66)] 0.08(0.05) 0.03(0.03)
max 96.87(96.32) 96.44(96.52)| 136.9(182.1) 139.9(183.4)
geomean 69.32(67.48) 65.71(65.99)| 1.28(0.74) 0.52(0.44)

since virtual copies do not pollute the DTLB excessively
due to fewer memory accesses and VA-to-PA translations.

Finally, we have measured the benefits of SVAGC to
the overall application time. Admittedly, the improvement
to the application execution time reflects the benefits of
SVAGC to the GC time. Note that the overall benefits
from SwapVA are achieved despite the cost of using TLB
flushing, which incurs an extra cost on application threads
after GC cycles.

The results in Fig. 15 indicate, applying SwapVA and its
optimizations lead to the system throughput improvement,
ranging from 15.2% (CryptoAES) to 86.9% (Sparse.large).
Furthermore, the results in Fig. 16(a) show SVAGC, in
mentioned benchmarks, could outperform the throughput of
ParallelGC and Shenandoah by an average of 30.95% and
37.27%, at 1.2x minimum heap configuration, respectively.
As Fig. 16(b) shows at the 2x minimum heap the results
are decreased to 15.26% and 16.79%, respectively. The
reason is that the larger the heap size, the lower the
frequency of costly Full GCs. Briefly, the variation in
application throughput improvement among benchmarks

366

VAGC (memmove) M SVAGC (memmove+SwapVA)

1
0 |
\‘be}\“

o = =
IS EN

Normalized App Execution Time
=
I

& &

‘

Q’ \\2’ \‘b‘ \‘3' <°} ‘5\
€°‘:@‘i§‘%‘ %Q“;Q‘ ‘5 6 c,‘*Q °° v

Fig. 15. Application throughput of SVAGC at 1.2X minimum heap size.

can be attributed to the frequency and time at which GC
phases are invoked. In other words, if the ratio of memory
(de)allocation to application computation increases, then
GC cycles are more likely to be run. Therefore, in more
memory-intensive applications such as SOR, Sparse,
and Sigverify, our application throughput improvement
would be higher than more compute-intensive ones such
as CryptoAES and F'FT.

VI. RELATED WORKS

GC Optimization Efforts. Numerous applications and
frameworks running on top of VMs depend greatly on
GC performance. Researchers have tried to analyze and
improve GC algorithms in different cases. Bruno et al. [4]-
[6] proposed a pre-tenuring mechanism to reduce excessive
object copying in generational GCs. Nguyen et al. [7]
optimized a GC for big data application using the temporal

& Parallel = Shenandoah

HSVAGC

(@

Normalized App Execution Time

& Shenandoah

HSVAGC

"
g
N
3
s
s
N
3
2

(b)

Normalized App Execution Time

< Q) &
Qeév

0 \b K
& 8 \«»‘°" &
T &S cx“ o o®

Fig. 16. Throughput of SVAGC vs. Shenandoah/ParallelGC at a) 1.2x
minimum heap size. b) 2X minimum heap size.

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

locality and life-span of objects in analytical applications
to develop a region-based GC called Yak. Morikawa et
al. [34] presented a adaptive technique, heap and bitmap
scanning, for reducing the time of marking live objects and
GC time in LISP2 GC algorithms. Su et al. [8] recognized
and addressed some issues on PS to utilize all multi-
threading capacity of the system. Li et al. [9], [10] pointed
out some deficiency in the compaction phase of Full GC
and introduced a memory cache to resolve dependency
between copying threads. To reduce the GC pause time,
some algorithms support multi-threading and concurrent
GC phases, such as marking and/or copying phases. A few
examples of initiatives designed to reduce the application
pause time are Flood et al. in Shenandoah [15], Detlefs et
al. in G1 [12], and Tene et al. [13] in C4. Meantime, several
researchers tried to remove GCs, including Broom [35],
from VMs by using run-time facilities. There were also
many attempts to create a run-time support such as Deca,
by Shi et al. [36], to optimize GC for some frameworks
such as Apache Spark. Wegiel et al. [37] proposed a non-
moving approach using VM remapping, however, it has
some synchronization issues in multi-threaded applications,
and it requires STW compactions at VM address exhaus-
tion.

Our approach uniquely and directly addresses the cost
of copying/moving operations, which could be expensive in
most GC algorithms. We use the virtual address swapping
technique to perform a zero-copying operation toward
replacing naive copy/move operations. The approach is
orthogonal to any GC algorithm, including parallel and
concurrent ones, and any heap organization, including
(non)generational. Therefore, it can be adopted in GC
compaction/evacuation phases to make them more afford-
able. Column-based databases, analytics frameworks with
large buffers, and scientific computing applications work-
ing with large matrices are all examples of applications
with large objects. Our technique allows large objects to
be returned to conventional heap spaces, preventing LOS
issues. Moreover, a recent trend of combining DRAM and
Non-Volatile Memory, as a hybrid memory, results in novel
heap designs and GC algorithms [38], [39]. Therefore,
hybrid heaps and GCs could use our improvement to reduce
frequency of writing cycles and mitigate wear-out issues.
Also, GC implementations may increase their performance
by replacing costly write operations of NVMs with our
zero-copying ones on collecting large objects.

Zero-Copying Efforts. To reduce the cost of both copy-
ing and sharing data, previous studies such as COW [40]-
[42], have focused on the copy by value semantic. In
addition, some mechanisms such as mmap and pmap [40]
have introduced as a by-reference sharing semantic be-
tween processes. These tools can be employed as an
inter-process facility to achieve a zero-copying ambition.

367

However, our work is focused on single-process address
space in either single or multi-threaded applications. As
well as, all previous efforts generally are either directed
toward sharing physical address space by virtual page
remapping [43] to communicate messages or addressed
transferring data between processes and kernel by sharing
buffers [44]. Though, in our effort, we have focused on
an intra-process zero-copying mechanism based on data
swapping operations in a single process address space. So,
as an advantage, there is no need to get involved in data
protection and security issues. Besides, it eliminates the
need to invalidate CPU caches which is necessary for inter-
process virtual address remapping implementations.

VII. CONCLUSION

GC compaction and evacuation phases could be the
most costly operations in garbage collectors, especially in
running applications with large working sets. Therefore,
applying any optimization on them would reduce the
GC’s overhead, regardless of heap organization and their
designated algorithms. Our results show that employing
the proposed mechanism to swap virtual addresses could
reduce the copying phase’s operation cost, mainly in ap-
plications containing large objects. It also promises some
specific improvements for the scalability of GCs in multi-
core/multi-VM settings.

REFERENCES
[1] C. Flood, D. Detlefs, N. Shavit, and X. Zhang, “Parallel garbage
collection for shared memory multiprocessors,” in Symposium on
Java Virtual Machine Research and Technology Symposium, 2001.
B. Hayes, “Using key object opportunism to collect old objects,”
in Object Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pp. 33 — 46, 1991.
Y. Bu, V. R. Borkar, G. H. Xu, and M. J. Carey, “A bloat-aware
design for big data application,” in ISMM’13, 2013.
R. Bruno and P. Ferreira, “POLM2: Automatic profling for object
lifetime-aware memory management for hotspot big data appli-
cations,” in the 18th ACM/IFIP/USENIX Middleware Conference,
pp. 147 — 160, 2017.
R. Bruno, L. P. Oliveira, and P. Ferreira, “NG2C: Pretenuring
garbage collection with dynamic generations for hotspot big data
applications,” in ACM SIGPLAN Notices, 2017.
R. Bruno, D. Patricio, J. Simao, L. Veiga, and P. Ferreira, “Runtime
object lifetime profiler for latency sensitive big data applications,”
in EuroSys’19, 2019.
K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian,
and O. Mutlu, “Yak: A high-performance big-data-friendly garbage
collector,” in the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16), 2016.
K. Suo, J. Rao, H. Jiang, and W. Srisa-an, “Characterizing and op-
timizing hotspot parallel garbage collection on multicore systems,”
in EuroSys’18, 2018.
H. Li, M. Wu, and H. Chen, “Analysis and optimizations of java
full garbage collection,” in APSys’18, Article No.: 18, 2018.
H. Li, M. Wu, B. Zang, and H. Chen, “ScissorGC: Scalable
and efficient compaction for java full garbage collection,” in the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE), pp. 108 — 121, 2019.

[2

—

[3]
(4]

[3]

(6]

(7]

[8

[hutrt

[9]

[10]

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

1. Gog, J. Giceva, Schwarzkopf.M., K. Vaswani, D. Vytiniotis,
G. Ramalingan, M. Costa, D. Murray, S. Hand, and M. Isard,
“Broom: Sweeping out garbage collection from big data systems,”
in the 15th USENIX conference on Hot Topics in Operating Systems
(HOTOS’15), 2015.

D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first
garbage collection,” in the 4th International Symposium on Memory
Management (ACM), pp. 37 — 48, 2004.

T. Gil, I. Balaji, and W. Michael, “C4: The continuously concurrent
compacting collector,” in the International Symposium on Memory
Management, 2011.

P. Liden and S. Karlsson, “JEP 333: ZGC: A scalable low-latency
garbage collector (experimental).” http://http://openjdk.java.net/jeps/
333, 2018. Accessed: 2021-03-19.

C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin,
“Shenandoah: An open-source concurrent compacting garbage col-
lector for openjdk,” in PPPJ’16, 2016.

M. Hicks, L. Hornof, J. T. Moore, and S. M. Nettles, “A study
of large object spaces,” in Proceedings of the Ist International
Symposium on Memory Management, ISMM’98, (New York, NY,
USA), pp. 138 — 145, Association for Computing Machinery, 1998.
S. M. Blackburn and K. S. McKinley, “Immix: A mark-region
garbage collector with space efficiency, fast collection, and mutator
performance,” in Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI'08, (New York, NY, USA), pp. 22 — 32, Association for
Computing Machinery, 2008.

D. Chen and K. Ken, “The memory bandwidth bottleneck and its
amelioration by a compiler,” in the International Symposium on
Parallel and Distributed Processing, pp. 181 — 189, 2000.

R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley, 1st ed., 1996.

P. Lengauer, V. Bitto, H. Mossenbock, and M. Weninger, “A com-
prehensive java benchmark study on memory and garbage collection
behavior of dacapo, dacapo scala, and specjvm2008,” ICPE’17,
(New York, NY, USA), pp. 3 — 14, Association for Computing
Machinery, 2017.

J. Singer, G. Kovoor, G. Brown, and M. Lujan, “Garbage collection
auto-tuning for java mapreduce on multi-cores,” in Proceedings of
the International Symposium on Memory Management, ISMM 11,
(New York, NY, USA), pp. 109 — 118, Association for Computing
Machinery, 2011.

N. Amit, A. Tai, and M. Wei, “Don’t shoot down tlb shootdowns!,”
in Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys’20, 2020.

N. Amit, “Optimizing the tlb shootdown algorithm with page
access tracking,” in the 2017 USENIX Annual Technical Conference
(USENIX ATC’17), 2017.

A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. Loh, “Avoiding
tlb shootdowns through self-invalidating tlb entries,” pp. 273 — 287,
09 2017.

K. Chitsaz, M. Hajabdollahi, N. Karimi, S. Samavi, and S. Shirani,
“Acceleration of convolutional neural network using fft-based split
convolutions,” arXiv preprint arXiv:2003.12621, 2020.

J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon, “Fnet: Mixing
tokens with fourier transforms,” arXiv preprint arXiv:2105.03824,
2021.

S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan,
“Falcon: A fourier transform based approach for fast and secure
convolutional neural network predictions,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8705 — 8714, 2020.

S. Lin, N. Liu, M. Nazemi, H. Li, C. Ding, Y. Wang, and M. Pedram,
“Fft-based deep learning deployment in embedded systems,” in 2018
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1045 — 1050, IEEE, 2018.

E. Nurvitadhi, A. Mishra, and D. Marr, “A sparse matrix vector mul-
tiply accelerator for support vector machine,” in 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), pp. 109-116, IEEE, 2015.

368

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

(391

(40]

(41]

[42]

[43]

[44]

W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and
L. Zhou, “Tux2: Distributed graph computation for machine learn-
ing,” in Proceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation, NSDI'17, (USA), pp. 669 —
682, USENIX Association, 2017.

S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring spar-
sity in recurrent neural networks,” arXiv preprint arXiv:1704.05119,
2017.

S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Proceedings of
the 28th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, (Cambridge, MA, USA), pp. 1135 —
1143, MIT Press, 2015.

O. L. Mangasarian and D. R. Musicant, “Successive overrelaxation
for support vector machines,” IEEE Transactions on Neural Net-
works, vol. 10, no. 5, pp. 1032-1037, 1999.

K. Morikawa, T. Ugawa, and H. Iwasaki, “Adaptive scanning
reduces sweep time for the lisp2 mark-compact garbage collector,”
pp. 15 — 26, 06 2013.

M. Maas, K. Asanovié, T. Harris, and J. Kubiatowicz, “Taurus:
A holistic language runtime system for coordinating distributed
managed-language applications,” in ASPLOS’16, 2016.

X. Shi, Z. Ke, Y. Zhou, H. Jin, L. LU, X. Zhang, L. He, Z. Hu,
and F. Wang, “Deca: A garbage collection optimizer for in-memory
data processing,” in ACM Transactions on Computer Systems, Vol.
36, No. 1, 2019.

M. Wegiel and C. Krintz, “The mapping collector: Virtual mem-
ory support for generational, parallel, and concurrent compaction,”
SIGPLAN Not., vol. 43, pp. 91 — 102, mar 2008.

S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Write-
rationing garbage collection for hybrid memories,” SIGPLAN Not.,
vol. 53, pp. 62 — 77, jun 2018.

A. M. Yang, E. Osterlund, J. Wilhelmsson, H. Nyblom, and
T. Wrigstad, “Thingc: Complete isolation with marginal overhead,”
in Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2020, (New York, NY, USA),
pp. 74 — 86, Association for Computing Machinery, 2020.

D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson,
“Tenex, a paged time sharing system for the PDP-10,” Commun.
ACM, vol. 15, pp. 135 — 143, Mar. 1972.

R. Fitzgerald and R. F. Rashid, “The integration of virtual mem-
ory management and interprocess communication in accent,” ACM
Trans. Comput. Syst., vol. 4, no. 2, pp. 147 — 177, May 1986.

D. Murphy, “Origins and development of TOPS-20.” https://
opost.com/tenex/hbook.html, 1989,1996. Accessed: 2021-05-13.

P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-
domain transfer facility,” in Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles, pp. 189 — 202, Dec 1993.
Y. A. Khalidi and M. N. Thadani, An Efficient Zero-Copy 1/O
Framework for UNIX. Sun Microsystems, Inc., 1995.

Authorized licensed use limited to: Florida State University. Downloaded on May 21,2023 at 13:03:31 UTC from IEEE Xplore. Restrictions apply.

