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ABSTRACT: While accurate wave function theories like CCSD-
(T) are capable of modeling molecular chemical processes, the
associated steep computational scaling renders them intractable for
treating large systems or extensive databases. In contrast, density

N\ >
+ atom pop.
difference

functional theory (DFT) is much more computationally feasible
yet often fails to quantitatively describe electronic changes in
chemical processes. Herein, we report an efficient delta machine

learning (AML) model that builds on the Connectivity-Based [ ] [ l l ] [ l

AML+

N0 v 0.
Hierarchy (CBH) scheme—an error correction approach based on
systematic molecular fragmentation protocols—and achieves
coupled cluster accuracy on vertical ionization potentials by
correcting for deficiencies in DFT. The present study integrates

concepts from molecular fragmentation, systematic error cancella-

tion, and machine learning. First, we show that by using an electron population difference map, ionization sites within a molecule
may be readily identified, and CBH correction schemes for ionization processes may be automated. As a central feature of our work,
we employ a graph-based QM/ML model, which embeds atom-centered features describing CBH fragments into a computational
graph to further increase accuracy for the prediction of vertical ionization potentials. In addition, we show that the incorporation of
electronic descriptors from DFT, namely electron population difference features, improves model performance well beyond chemical
accuracy (1 kcal/mol) to approach benchmark accuracy. While the raw DFT results are strongly dependent on the underlying
functional used, for our best models, the performance is robust and much less dependent on the functional.
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Figure 1. Isodesmic bond separation reaction scheme for 2-
methylbut-2-ene.

1. INTRODUCTION

In recent decades, the field of theoretical quantum chemistry
has made tremendous strides toward the development of
methods that can be applied on fairly large molecules to
achieve reasonable accuracy without incurring prohibitive
computational costs.' Today, hybrid and range separated
DFT methods are ubiquitous in computational studies of large
molecules, and fast semiempirical methods are becoming
increasingly accurate.”” Nonetheless, computational results on
par with those obtained from highly accurate, correlated
methods like coupled cluster theory are still largely
unattainable if one wishes to tackle extensive databases or
consider systems with more than a handful of heavy atoms.*~”

Before the debut of high-speed computing, calculating highly
accurate thermodynamic properties of molecular systems was
largely impractical. In 1970, John Pople introduced the
isodesmic bond separation (IBS) scheme (example in Figure
1), improving the accuracy of calculated thermodynamic
properties using simple theoretical models, e.g., Hartree—Fock

theory with a moderate basis set.” In an IBS reaction, bonds
between heavy atoms are extracted as molecular fragments
containing two heavy atoms, and all formal bond types are
preserved. For these types of reactions, errors specific to local
molecular units are well-balanced in reactants and products,
and highly accurate reaction energies may be achieved even
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with lower levels of theory. As such, the heat of an IBS reaction
is a measure of the departure from additivity of bond energies.
The advent of IBS schemes revealed that appropriately
balanced reaction energies could be exploited for error
cancellation, improving accuracy in computational thermo-
chemistry.

Many researchers have furthered the foundational work by
Pople, developing improved methods such as the hybrid-
ization-based homodesmotic scheme by George and co-
workers.” Various derivative methods founded on error
cancellation and bond type matching have evolved from the
IBS scheme, including the hyperhomodesmotic, semihomo-
desmotic, quasihomodesmotic, and homomolecular homodes-
motic schemes to name a few.'”"" In an effort to lend order to
this myriad of methods, the generalized and systematic
Connectivity-Based Hierarchy (CBH) scheme was developed
in our group.'”” CBH defines an intuitive protocol by which
corrections to low-level theoretical methods may be con-
structed from IBS-like reaction schemes based solely on
connectivity and bond-types. Central to CBH is a hierarchy of
reaction schemes, whose sequential levels incorporate larger
portions of the molecular environment, thus providing greater
error cancellation leading to higher accuracy.

The CBH protocol is well-defined, and a thorough
explanation of the method and its applications can be found
in a string of papers by Raghavachari and co-workers."*~"°
While advancing through the ranks of the hierarchy, fragment
size increases systematically, with CBH-0 units consisting of a
single heavy atom, CBH-1 units consisting of two heavy atoms,
and CBH-2 units consisting of one heavy atom along with all
heavy atoms in its immediate bonding environment. Larger
fragments capture larger portions of the molecular environ-
ment and are expected to provide better error cancellation
between reactants and products. An example of the CBH-2
fragmentation scheme is shown in Figure 2.

Figure 2. Atom-centered CBH-2 fragmentation scheme for 2,S-
dimethylhex-3-ene.

Despite its simplicity, CBH achieves high accuracy. Chemi-
cally meaningful correction schemes are attained using the
basic building blocks of chemical structure. The method has
been applied successfully to predict a range of thermochemical
problems with coupled cluster accuracy, including heats of
formation of neutral and charged organic molecules, bond
dissociation energies, pK,s, and redox potentials."*~"”

Complementary techniques distinct from the usual tools of a
theoretical chemist have also shown promise in the ongoing
battle between accuracy and efficiency. In particular, several
studies have achieved high accuracy in chemical prediction
using schemes based on machine learning (ML)."*7** ML
techniques offer reasonable accuracy along with fast computa-
tional speeds.””*® Various ML models have been developed to
predict a range of chemical properties; however, many are
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trained on DFT data and thus cannot compete with the high-
level accuracy of correlated QM methods. Methods which
attain such high-level accuracy are named “chemically
accurate” (typically defined to be +1 kcal/mol) and are
needed for a strong match to experiment.

Alongside IBS-like reaction schemes, hybrid QM/ML delta
machine learning (AML) techniques have emerged to correct
for deficiencies in low-level electronic structure calcula-
tions.”’~>* DFT is capable of capturing a high fraction of the
true molecular energy. However, there is a portion of the
energy which can only be captured using the most
sophisticated correlated methods.”***® Unfortunately, deter-
mining this portion of the energy can be prohibitive for larger
molecules. AML has shown promise in its ability to accurately
and efficiently determine differences between such highly
accurate methods and DFT. Under the AML framework, ML
is used to generate a correction term, A, for a low-level
calculation:

ML
AT R Ehigh-level = Epu-tevel

(1)
While developed in completely different contexts, both CBH
and AML view low-level methods such as DFT as a suitable
foundation to be exploited for more accurate chemical
prediction. While CBH is capable of correcting many of the
deficiencies of low-level methods, it may fail when CBH
fragments cannot fully capture the molecular environment.
While CBH corrects errors specific to local molecular units,
ML has, in principle, no such restriction. In a 2021 study, we
drew a direct connection between AML and CBH with our
FragGraph model, which encodes CBH fragments as
descriptors in a graph neural network regime.’”’ We
demonstrated that molecular units created during CBH
fragmentation function as effective molecular descriptors in
the prediction of atomization energies when coupled to AML
strategies and graph neural networks.

In the present study, we apply our methods more broadly
and demonstrate their performance for an electronic property.
We adopt a graph AML method for the prediction of vertical
ionization potentials. In a 2020 study, CBH was used to
calculate redox potentials of 46 C-, O-, N-, Cl-, F-, and S-
containing molecules with an accuracy within ~0.09 V of G4."*
In the current work, additional improvements to the CBH-
Redox method are made via two distinct routes. First, CBH-
Redox requires electron loss to be localized on a particular
fragment. This fragmentation protocol requires a chemist’s
intuition to determine the most likely site of oxidation, and so
is ill-suited for direct automation. Included in the current work
is an automated method to identify oxidation sites using an
electron population difference map constructed from atomic
electron populations of neutral and ionized species. Second, we
merge our expertise in QM calculations with new advance-
ments in ML to develop a AML method which uses a graph
model along with CBH-like features to predict vertical
ionization potentials (IPs) with high-level accuracy. As a final
point, we take full advantage of AML by adding features taken
from low-level electronic structure calculations to our models.
By incorporating QM-based features, we observe a significant
improvement in performance.

2. METHODS
2.1. CBH-Redox. In the CBH framework, a molecule is
broken down into smaller units according to the fragmentation
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Figure 3. Illustration of the calculation of ACBH,,,,..0n and E“®¥ for 2,5-dimethylhex-3-ene.
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Figure 4. (a) Ionization process for 2,5-dimethylhexane modeled with CBH-2 before elimination of common fragments and (b) the net CBH-2
correction to the ionization energy after elimination of common fragments.

scheme prescribed by a particular rung in the hierarchy, and
resultant fragments are used to construct a correction to the
total low-level energy. The CBH correction and approximate
high-level energy are calculated as

Ehigh (full) - Eluw (ﬁlll)

~ Z Ejign(i) — Z E,,(i)

= ACBH,

correction

2)

©)

where Ej,,(full) is the energy of the full molecule calculated at
the high-level of theory, E,,,(full) is the energy of the full
molecule calculated at the low-level of theory, Ejy(i) is the

H
— ECB

Hcorrection

Epg(full)  Ep,,(full) + ACB
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energy of the ith fragment calculated at the high-level of
theory, E,,,,(i) is the energy of the ith fragment calculated at
the low-level of theory, and ACBH,,,,.,, is the total CBH
correction to the full low-level energy. Hydrogens are added as
needed to preserve the original hybridization. CBH is an
energy correction which considers the local molecular
environment of each fragment, removing a fragment’s low-
level energy and replacing it with its high-level energy. Figure 3
shows how ACBH,,,.ion and EPH are calculated for the
molecule 2,5-dimethylhex-3-ene. CBH is a chemically intuitive
approach to obtain highly accurate thermochemical calcu-
lations, using structure-based information to derive local
corrections to the electronic environment of a molecule.

As one advances through the hierarchy, i.e., CBH-0 - CBH-
1 — CBH-2, etc, the protocol systematically generates
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fragments of increasing size, with CBH-0 units consisting of a
single heavy atom, CBH-1 units consisting of two heavy atoms,
and CBH-2 units consisting of one heavy atom along with all
heavy atoms in its immediate bonding environment. CBH
improves the accuracy of QM calculation by exploiting the
systematic cancellation of error that occurs in reactions that
balance local chemical environments.

The CBH protocol for calculating accurate energies can be
extended to calculating accurate reaction energies. For
example, the CBH-2 protocol for an ionization process is
shown in Figure 4. For the molecular processes considered in
this work, the initial and final structures differ only by a single
electron. This similarity in structure leads to a cancellation of
fragments between reactants and products, and only a small
number of high-level calculations of fragment molecules are
needed, providing a considerable computational advantage.
The CBH correction for ionization after elimination of
common fragments is illustrated in Figure 4b. Our previous
implementation of CBH-Redox required a chemist’s expertise
in order to determine the most appropriate fragment to
undergo oxidation.'* In the current work, we present an
automated method for identifying sites of oxidation, expanding
the applicability of our protocol. Specifically, the most likely
site for electron loss is determined by taking the difference of
atomic populations for the neutral and ionized species. In this
way, a population difference map is created whereby electron
loss can be localized to atoms (Figure S). The atom which

Figure S. S,5-dimethylcyclopenta-1,3-diene (with carbon atoms in
blue). The numbers in circles show the loss in atomic population
(NPA) on the heavy atoms due to ionization (B3LYP-D3BJ).

experiences the greatest loss in electron population serves as
the center of the CBH-2 fragment which undergoes ionization.
If atoms have identical populations, as in Figure 5, the atom
listed earliest in the xyz file is taken as the site of ionization.
Natural population analysis (NPA), which has been shown to
be less sensitive to basis set choice, is used for calculating
atomic populations.***’

2.2, Data Set and Electronic Structure Methods.
Molecules from the QM7b data set were chosen as the focus
for the present study.””*' The QM7b database contains 7,211
molecules with a maximum size of 7 C, N, O, S, and Cl atoms.
The size of the molecules is large enough that the CBH-2
approach lends a considerable computational advantage. Using
these reference molecules, we compare the performance of
DFT, CBH-corrected DFT (CBH-Redox), and AML using
graph neural networks.

All calculations were performed using the Gaussian 16 suite
of programs.”” G4(MP2), which is known to reproduce
experimental thermochemical data within ~1 kcal/mol was
chosen as the reference theory for the calculation of vertical
IPs.* The B3LYP-D3B]J functional was chosen as the low-level
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method to test overall performance of CBH-Redox and
AML.*"* In previous studies, adding dispersion slightly
improved the performance of CBH.* In order to determine
the effect of basis set size, we ran low-level calculations with
the 6-31G(d) basis set as well as with the larger 6-31G(2df,p)
basis set. An unrestricted Kohn—Sham wave function was used
for all radical species. Additional calculations were also run at
the ®B97X-D/6-31G(2df,p) level of theory to test functional
dependence.”

Optimizations of the full molecules and the fragments were
performed at the B3LYP/6-31G(2dfp) level of theory to
match G4(MP2), with frequencies of the full molecules being
scaled by 0.9854. This is the same level of theory used to
determine the geometries and thermochemical corrections in
the G4 family of methods, leading to balanced energy
comparisons between DFT and G4(MP2).>"** All structures
were verified to be local minima. Following optimization,
single-point calculations of full molecules and fragments were
performed at the low and high levels of theory for both ionized
and neutral species. In the present work, we consider only
vertical ionization potentials, as opposed to adiabatic ionization
potentials which are more relevant for redox potential
calculations. As such, only a single optimization was needed
for each molecule.

2.3. AML: CBH and Electronic State Difference
Descriptors. In a 2021 study, we demonstrated the
advantages of our AML FragGraph model for predicting
atomization energies.37 In this work, we were able to achieve
chemical accuracy, with an out-of-sample mean absolute error
(MAE) well below 1 kJ/mol compared to target G4(MP2)
calculated energies for molecules in the relatively large QM9
data set of ~130,000 systems. In the FragGraph model, heavy
atoms are represented as nodes in a computational graph, and
covalent bonds are represented as edges, although fully
connected (FC) graphs are also possible. Local descriptions
of each atom’s chemical environment are then numerically
encoded to form node-wise descriptors. In the above-
mentioned study, vector representations of CBH-2 fragments
were obtained by passing fragments to the pretrained mol2vec
model and were then embedded in nodes in the computational
graph.”>> These CBH descriptors run parallel to various other
circular fingerprints, ie.,, Morgan ﬁpﬁgerprints and extended
connectivity fingerprints (ECFP).>* >

Since there is less data for training in the present study, we
elected to simplify our ML model, being cautious of overfitting.
Therefore, we simplify our input as well as the architecture
itself. First, we describe initial CBH-2 fragments via the
traditional atomic features which contribute to the ECFP
fingerprint, i.e., atomic number, number of attached atoms,
number of attached heavy atoms, number of attached
hydrogens, if the atom is in a ring, and if the atom is aromatic,
encoded as one-hot vectors. Additional connectivity informa-
tion encoded in CBH fragments is presumed to be captured via
the convolutional steps of the graph network. DFT calculated
bond distances were used as edge features. We also decreased
the complexity of the ML model, reducing the number of
parameters by an order of magnitude.

CBH-2 fragment features based on structure alone proved
sufficient for our previous study, in part because atomization
energies are highly dependent on structure. Ionization
processes, however, have an additional layer of complexity
since they involve a change in charge state and multiplicity. We
assert that ML models trained to produce reaction energies
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Figure 6. Steps taken in AML protocol. (a) Atomic feature vectors containing structural and electronic information embedded in graph network.
(b) Illustration of node updates via a graph convolutional step. (c) Illustration of final model layers which take a graph representation with updated
node vectors and output a scalar (IP). Color indicates feature vector class, i.e., which CBH-2 fragment and population difference contributes to it.
Color striations illustrate information that has been passed between neighbors in convolutional steps.

involving a change in charge/multiplicity may be improved by
augmenting its descriptors with electronic information. Our AML
model requires low-level energy calculations; thus atom- and
bond-centered electronic features may be conveniently
calculated for little additional computational cost.

Central to any ionization process is the loss of an electron.
From the CBH-Redox protocol, we see that an oxidation site
may be identified by calculating atomic populations and
constructing a charge difference map. Extending our CBH-
Redox protocol for ML, we use atomic population differences
as systematic attributes to boost learning via AML. More
specifically, for learning ionization potentials (IP), we enhance
our CBH-2 based features with information describing the
change in atomic electronic populations (Figure 6a). Electron
loss is thus smeared over all atoms in a molecule, rather than
on a single fragment. A similar approach is found in the DFT-
LOC method for calculating IPs.”’

2.4, AML: Graph Model Architecture and Training
Procedure. The Python Spektral library was used to build the
graph network employed for the present study.”®
Python library for graph deep learning, based on the Keras API
and TensorFlow 2.°°7°" The model consists of three edge-
conditioned convolutional (ECC) layers from the paper by
Simonovsky and Komodakis as implemented in Spektral,
followed by a global pooling layer and a single dense neural
network.”>*® Batch normalization was used between each ECC
layer. Each ECC layer makes vector updates (Figure 6b) for a

Spektral is a

given node i according to eq 4,
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x = W, + Z ijLP(ej_)i) +b
JEN()

(4)

where x; contains attributes for node i, W, is a weight matrix,
x; contains attributes for node j, which is contained in the
neighborhood of node i, MLP is a multilayer perceptron that
outputs an edge-specific weight as a function of edge attributes
for the edge connecting node i and j, and b is the bias term.
Only covalent bonds were considered edges. Each ECC layer
was implemented with a channel dimension of 64, along with
the ReLU activation function. The output of the convolutional
steps was passed to a GlobalAttentionPool layer from the
paper by Li et al. as 1mplemented in Spektral whose output
channel dimension was 32.%® Finally, the output of the pooling
layer was passed through a single dense neural network in
order to obtain the final IP prediction (Figure 6¢c). A batch size
of 64 was used.

ML models were trained to reproduce the difference
between G4(MP2) and DFT calculated IPs, where the IP is
calculated as the difference between neutral and cationic
energies. The data was split 70:10:20 for training, validation,
and testing, respectively. The mean absolute error was chosen
as the loss function for model training. The Adamax optimizer
in Keras, a variant of Adam, was used in training, and the initial
learning rate was set to 0.001.° Durlng optimization, if the
validation error did not improve by the user-provided
threshold (0.0001 kcal/mol) within 25 epochs, then the
model weights were reset to those yielding the lowest recorded
error on the validation set, and the learning rate was decreased
by half. Optimization stopped when the learning rate decreased
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Figure 7. Kernel density estimation plots showing distributions of absolute errors against G4(MP2) reference for CBH-2 corrected neutral energies
(purple), CBH-2 corrected cationic energies (red), uncorrected IPs (yellow), and CBH-2 corrected IPs (green) for (a) B3LYP-D3BJ/6-31G(2df,p)

and (b) ®B97X-D/6-31G(2dfp) for 7,174 molecules
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Figure 8. Comparison of MAEs for CBH-2 (purple) and CG-CBH-2 (cyan) for (a) B3LYP-D3BJ/6-31G(2df;p) and (b) ®B97X-D/6-31G(2df,p)

for 2,482 molecules.

to 1077, resulting in ~500—600 training epochs. In order to
test the model sensitivity with respect to training data, an
ensemble of 10 models was trained, whose members were each
trained on a random distribution of 70% of the total data set.
Results for individual runs, as well as averages are given below
as well as in the Supporting Information.

3. RESULTS AND DISCUSSION

3.1. CBH-2 Energies and IPs. Fragments formed from
CBH-2, the second rung of CBH, typically provide sufficiently
accurate corrections to DFT energies while lowering computa-
tional cost. We examined the performance of CBH-2 in
correcting QM7b neutral and cation DFT energies, as well as
in correcting vertical ionization potentials. 37 species, being
too small to perform CBH-2, were omitted during analysis,
leaving a total of 7,174 pairs of neutral and cationic molecules,
with CBH-2 IPs calculated as the difference between the CBH-
2 neutral and cation energies.
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Figure 7a illustrates the distribution of absolute errors (eV)
for CBH-2 corrected B3LYP-D3BJ/6-31G(2dfp) energies
compared to G4(MP2). Errors for the QM7b data set are
higher than previously reported benchmarks of CBH-2, which
typically range between ~0.04 and 0.09 eV. In general, CBH-2
performs better on neutral species, with a MAE of 0.085 eV.
The CBH-2 error for cations is approximately double that of
the neutral species. This effect is likely due to a mismatch of
charge distribution between fragments and the full molecule. A
larger CBH-2 error indicates a departure from strict bond
additivity, which is expected to be greater for molecules having
a net charge. Nonetheless, CBH-2 decreases the overall MAE
of B3LYP IPs versus G4(MP2) by more than 0.4 eV (0.166 vs
0.612 eV).

In previous studies, CBH was shown to have a slight
dependence on low level functional choice. Figure 7b shows
kernel density estimation plots for absolute errors of CBH-2
corrected wB97X-D/6-31G(2dfp) energies compared to
G4(MP2). Here again CBH-2 neutral energies have less
error than CBH-2 cation energies, though poor performance
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Figure 9. (a) MAE and (b) RMSE plots comparing the performance of

uncorrected B3LYP-D3BJ/6-31G(2df,p) (yellow), CBH-2 corrected

(pink), AML corrected (purple), and AML+ corrected (cyan) values for 10 random distributions of 20% of the QM7b data set. For the ML

models, this 20% represents the test set.

for cations is far less severe for @B97X-D. Improvement in
cation energies leads to an increase in accuracy for CBH-2 IPs,
with a MAE of 0.09 eV. This error falls much closer to the
previous CBH-2 benchmark on redox reactions. Even in the
absence of CBH corrections, ®B97X-D IPs have a greatly
reduced MAE as compared to B3LYP-D3B], which likely
contributes to improved CBH-2 performance.

We also evaluated CBH’s performance when the smaller 6-
31G(d) basis set was used in the low level. Overall, results
remained similar between basis sets, with MAEs of 0.173 and
0.095 eV for B3LYP-D3BJ/6-31G(d) and wB97X-D/6-
31G(d), respectively, compared to 0.166 and 0.094 eV for
B3LYP-D3BJ/6-31G(2df,p) and @B97X-D/6-31G(2dfp), re-
spectively. This result is useful, indicating that large improve-
ments to accuracy can be made even when lower levels of
theory are chosen.

3.2. Coarse-Grained CBH. One major advantage of CBH
is the generality of its fragmentation scheme. However,
schemes which cut strong or delocalized bonds may result in
fragments unrepresentative of the local bonding environment
in the parent molecule. For example, fragments formed by
cutting the NO bond of a nitro group may give potentially
erroneous energy corrections. Approximately 2,500 molecules
of the QM7b data set contain at least one such problematic
functional group, namely nitro groups, sulfoxides, nitriles, and
alkynes. To mitigate the errors associated with these groups,
we adopted a coarse-grained version of CBH (CG-CBH) in
which S=0, N=0, C=N, and C=C bonds are all kept
intact.

The effect of coarse-graining is shown in Figure 8 for CBH-2
corrected B3LYP-D3BJ/6-31G(2df,p) and wB97X-D/6-31G-
(2dfp) energies. We see a reduction in error for neutral
species, decreasing by ~0.06 eV for both functionals. Using
CG-CBH-2, errors in cation energies are reduced by ~0.07 eV
and ~0.05 eV for B3LYP-D3BJ and wB97X-D, respectively.
CG-CBH-2 cation energies still display a higher overall error,
stemming from a greater mismatch in charge distribution
between full molecules and their fragments. Compared to
absolute energies, CG-CBH-2 IPs show a smaller overall
improvement, with errors decreasing by ~0.03 eV for B3LYP-
D3B] and @wB97X-D errors largely unchanged. It is
hypothesized that CBH-2 IPs, being reaction energies rather
than total molecular energies, already benefit from a large
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degree of error cancellation, resulting in a diminished impact
from coarse-graining.

3.3. AML. CBH-2 corrects for systematic errors inherent to
local chemical units, bringing uncorrected DFT IP errors down
substantially. Wishing to push accuracy thresholds further, we
introduce a progression of methods aimed at systematically
improving DFT IP prediction, incorporating established QM
principles and more recent ML techniques. From previous
results, we see that CBH offers a systematic and intuitive take
on DFT correction schemes, illustrating that much of DFT’s
failing lies in the treatment of local bonding environments.
With this in mind and as a final step in the progression toward
chemical accuracy, we next tested the performance of graph
neural networks in producing corrections to DFT. By encoding
node and edge features, graph networks naturally leverage
connectivity information, much like CBH. However, our ML
protocol includes an electronic descriptor coming from a
population analysis on the full molecule and knows about bond
distances rather than bond orders. Thus, our ML-protocol does
not have the limitations resulting from the multiple resonance
structures of CBH fragments.

Figure 9 compares MAEs and root mean squared errors
(RMSE) for uncorrected DFT (B3LYP-D3BJ/6-31G(2dfp))
as well as for several different correction schemes over a series
of test runs, each considering 10 random distributions of 20%
of the QM7b data set (~1,500 molecules). This 20%
represents the test set in the case of ML models. Three
correction schemes are shown, namely CBH-2, AML, which
features only structure-based node descriptors, and AML+,
which features structure-based node descriptors along with
atomic population differences as calculated by DFT on the full
molecule. For AML(+) models, the remaining portion of the
data set was used in training and validation. Thus, the figure
illustrates the sensitivity of each scheme to which molecules are
included in the test set as well as the sensitivity to which
molecules are used in training/validation.

Each subsequent scheme edges closer toward chemical
accuracy. Along the increasingly sophisticated series of
methods from uncorrected DFT — CBH-2 — AML —
AML+, the average MAEs shrink from 0.611 eV — 0.164 eV
— 0.062 eV — 0.024 eV. The RMSE likewise decreases
successively. Models which use ML display steady MAEs and
RMSEs across runs. Importantly, the incorporation of
electronic population difference features reduces the AML
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model MAE by nearly two-thirds, and the RMSE is reduced by
more than half. By encoding ionization processes at the atomic
(node) level via NPA population differences, model perform-
ance improves. Additionally, unlike in CBH, ionization is not
localized to one portion of the molecule, giving a more realistic
picture of electron loss.

The advantage of using DFT atomic features in the model is
highlighted in Figure 10, which shows the distribution of
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Figure 10. Kernel density estimation plots showing distributions of
errors for uncorrected DFT (red), AML corrected (purple), and
AML+ corrected (green) IPs for ~1500 molecules from run 1 test set.

signed errors for uncorrected, AML corrected, and AML+
corrected DFT IPs for molecules in the test set of run 1. After
AML corrections are applied, errors are centered around zero
and exhibit a narrowed distribution. The spread of errors is
decreased even further for AML+, illustrating the value of
DFT-based descriptors. DFT-based atomic descriptors grant a

tremendous advantage during model training as well. Training
and validation errors for the AML+ model fall significantly
below that of AML. Moreover, the variance between training
and validation MAE is lesser for the AML+ model, indicating a
more general model. Training and validation curves are
provided in Figure S1.

The following analyses provide further insight into the AML
+ model and its predictions. Figure 1la displays the overall
correlation between G4(MP2) and AML+ corrected DFT IPs
for the test set molecules in run 1 (~1,500 molecules).
Uncorrected DFT values are shown in gray. ML removes
outliers and decreases the overall spread, with AML+
corrected IPs having an R* value of essentially unity. Most
values lie along the diagonal, with the color gradient indicating
density of points. Figure 11b displays the correlation in the
predicted deltas themselves. It is worth noting that model
performance remains consistent across the full range of
corrections (~1 eV).

Finally, the functional dependence of AML+ was tested.
Figure 12 compares the MAEs and RMSEs for uncorrected
B3LYP-D3BJ and @B97X-D IPs as well as for AML+ corrected
IPs. AML+ (B3LYP-D3BJ) and AML+ (wB97X-D) were
trained on B3LYP-D3BJ and @wB97X-D calculated IP data,
respectively. Error metrics deviate substantially between
uncorrected DFT functionals (average MAE across 10 runs
of 0.61 eV for B3LYP-D3BJ and 0.42 eV for wB97X-D).
However, the AML+ corrected counterparts are well matched
(0.024 eV for B3LYP-D3BJ and 0.026 eV for wB97X-D),
which is notable because the raw errors are very different.
Moreover, deviations in MAE are no greater than 0.004 eV
between the two functionals considering all 10 runs. Thus,
AML shows promise in reducing the variation between results
calculated with different DFT methods. Additionally, ML models
are not especially sensitive to the choice of basis set, and results
supporting this conclusion are shown in Tables S1 and S2.
This again is a valuable result, indicating that low-level
methods may be used to generate training data without
substantial loss in accuracy.

Deep learning models are highly complex and are often
considered “black box” methods. As such, techniques which
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Figure 11. (a) AML+ predicted B3LYP-D3BJ/6-31G(2df,p) IPs plotted against G4(MP2) reference IPs (in color). Uncorrected DFT values are
plotted in gray for comparison. (b) AML+ predicted deltas for DFT (B3LYP-D3BJ/6-31G(2df,p)) IPs versus target correction. ~1500 molecules

from the run 1 test set were used in each plot.
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Figure 13. UMAP projection to two dimensions of latent space of last internal layer of AML+ network trained with BALYP-D3/6-31G(2dfp) as
the low-level theory. Color indicates size of target delta, with red symbolizing a higher delta than blue.

assist in model interpretability are highly valuable. 2D
visualization of the internal network is one way to decipher
predictions made by deep learning models. Each intermediate
layer of the network, between the input and the output layer,
encodes a latent (or hidden) representation of the input. This
latent representation expresses learned relationships between
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data points. However, this high dimensional representation
must be condensed before visualization is possible. Thus, we
carried out Uniform Manifold Approximation and Projection
(UMAP) dimension reduction analysis (n_neighbors = 15,

min_dist = 0.2) on the last internal layer of the AML+ model
165

in order to visualize the relationships learned by the mode
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UMAP is a dimension reduction technique that seeks to
preserve a data set’s overall structure and can be used to show
how a model organizes data prior to output prediction.

Figure 13 shows the UMAP projection of the model’s last
internal layer to two dimensions for molecules contained in the
test set, with color indicating the size of the predicted delta.
The latent space organizes the test set according to size of the
predicted delta as well as by trends in chemical structure,
showing that the network has learned intelligible relationships,
and that its internal representation is general enough to
capture the structure—activity relationships of unseen mole-
cules. Proximate groupings of data points display similar
chemical makeup and have similar predicted corrections. In
general, cyclic compounds are found on the upper half of the
plot, while acyclic compounds are found on the lower half.
Rather distinct clusters are evident for hydrocarbon chains,
non-sulfur-containing aromatic heterocycles, sulfur-containing
heterocycles, and sulfones. Interestingly, the model manages to
separate aromatic heterocycles from nonaromatic heterocycles,
with each group making up a totally distinct cluster, despite
having similar predicted deltas. Overall, model visualization
provides a birds-eye view of the relationship between
morphing chemical structure and DFT accuracy.

4. CONCLUSIONS

By integrating concepts from the quantum chemist’s toolbox,
i.e., molecular fragmentation, systematic error cancellation, and
machine learning, chemical accuracy is achievable. Though its
performance is often unsatisfactory, DFT error is systematic,
providing an excellent springboard to achieve high-level results
via systematic correction schemes. A large portion of DFT
error can be traced to the incorrect treatment of the local
chemical environment, and correction schemes which leverage
this fact can be extremely useful to the quantum chemist.

In this study we have shown that by using an electron
population difference map, ionization sites within a molecule
may be readily identified, and CBH correction schemes for
ionization processes may be automated. In addition, we show
that the incorporation of electronic descriptors from DEFT,
namely electron population difference features, improves
model performance beyond chemical accuracy (1 kcal/mol)
to approach benchmark accuracy. While the raw DFT results
are strongly dependent on the underlying functional used, the
performance of our best AML models is robust and much less
dependent on the functional. The sensitivity of the results on
the basis set used also appears to be substantially reduced.
Finally, as an exciting new tool, ML is capable of capturing the
relationship between DFT accuracy and chemical structure.
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