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Abstract—This research involves developing a drone control
system that functions by relating EEG and EMG from the
forehead to different facial movements using recurrent neural
networks (RNN) such as long-short term memory (LSTM) and
gated recurrent Unit (GRU). As current drone control methods
are largely limited to handheld devices, regular operators are
actively engaged while flying and cannot perform any passive
control. Passive control of drones would prove advantageous in
various applications as drone operators can focus on additional
tasks. The advantages of the chosen methods and those of some
alternative system designs are discussed. For this research, EEG
signals were acquired at three frontal cortex locations (fp1, fp2
and f},, ) using electrode from an OpenBCI headband and
observed for patterns of Fast Fourier Transform (FFT) frequency-
amplitude distributions. Five different facial expressions were
repeated while recording EEG signals of 0- 60Hz frequencies with
two reference electrodes placed on both earlobes. EMG noise
received during EEG measurements was not filtered away but was
observed to be minimal. A dataset was first created for the actions
done, and later categorized by a mean average error (MAE), a
statistical error deviation analysis and then classified with both an
LSTM and GRU neural network by relating FFT amplitudes to
the actions. On average, the LSTM network had classification
accuracy of 78.6%, and the GRU network had a classification
accuracy of 81.8%.

Keywords— RNN, LSTM, GRU, Drone Control, EEG,
Machine Learning

I. INTRODUCTION

A. Motivation and Literature Review

Current abilities in automated control systems can be at-
tributed to the availability of computing power, decades of
research, and government interests. In principle, automated
flight requires a control system which can sense, at minimum
what a pilot can and replicate at minimum the logic and
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actuation which a pilot can perform. The difficulty does not
lie in the formulation of such a system, moreover in the
optimization thereof to face adverse conditions to adhere to
safety standards. Today, machine-learning (ML) classification
methods are frequently used in the medical field, advanced
aircraft, and autonomous vehicles. The use of traditional
computing logic to classify sensor inputs is robust and
complicated while the use of novel machine learning algorithms
is less robust but also less complicated. Their difference in setup
complexity results from traditional computing logic requiring
manual interpretations of optimal flying conditions and controls,
while machine learning methods can automatically interpret
these optimal conditions. Their difference in robustness results
from manually set evidence or model-based thresholds being
fully explainable compared to the complex automatic thresholds
defined by a machine learning algorithm. Naturally, a manually
configured classification system is fully understood as someone
having to set up the thresholds. All applications must still be
suitable for ML assistance, given reliability requirements.
Considering traditional and machine learning classification
advantages and disadvantages, they should be implemented in
their ideal scenario.

Electroencephalography (EEG) signals are externally
probed scalp voltage fluctuations (~100 pV amplitude) of
general brain activity with limited applications due to high
impedance and electromyography (EMG) noise [1]. However,
the current understanding of EEG signals suggests that motor
movements are captured in the rates of general and externally
probed electric signal fluctuation coming from the human
skull’s skin, both EEG and EMG [1], [2], [3]. Given a machine
learning algorithm's ability to find multi-dimensional, nonlinear
correlations independently, it is a plausible method to classify
features of an EEG signal. Other works have also effectively
demonstrated multichannel EEG to emotion classification [3].



Brain EEG signals are a control method for aircraft that is
not widely used to enhance safety systems. This work presents
a working EEG signal classification method using RNN-LSTM
neural networks and validates the application in drones able to
receive flying commands. A computer-aided detection system
developed for the detection of focal EEG signals was proven
successful in the detection of concealed nonlinear features of the
EEG signals [4]. Robust motor-imagery-related EEG signal
feature extraction and classification were achieved using LSTM
neural networks, and when the results were compared to other
classification techniques, the LSTM method outperformed in
accuracy and had low standard deviation [S]. An LSTM deep
learning algorithm developed for the recognition of emotions
performed with an average accuracy of 86.36% was developed
in [6]. An effective EEG-based emotion recognition method
uses a preliminary feature attention LSTM network to decipher
emotion-related electrodes [7]. Similarly, LSTM RNNs were
used to correctly classify five sleep stages and based
on the time domain input of a single-channel EEG signal
86.7% of a test sequence was correctly classified [8].

Time is a very important factor to consider when processing
EEG signals as most of the research points to the fact that time
dependent neural networks can outperform non-time-dependent
neural networks in the classification of EEG signals [9].
Furthermore, Large existing datasets of EEG signals can be
implemented with transfer learning for better EEG classification
accuracy of simple thoughts of left- and right-hand movements
[10].

B. EEG Signals

Electroencephalography (EEG) is a non-intrusive method to
measure electrical brain activity from electrodes resting on the
scalp. Electroencephalograms have been used to diagnose and
recognize brain-related medical conditions such as epilepsy and
strokes [14]. During EEG, electrical activity from a person’s
brain is measured using electrodes that rest externally on the
head. EEG signal measurement are possible by measuring a
potential difference between a region on the skull and an
carlobe. A depiction of the internationally accepted EEG
electrode designations can be seen in Fig. 1.

EEGs are designed to detect general brain activity from desired
brain sections, not specific neurons or their groups. Though
more precise brain activity measurement methods exist to target
specific neuron groups in the brain, they involve surgical
implants. Nevertheless, a general understanding of EEG exists,
categorizing signals in four main frequency ranges when
measured in human brains. Delta is the range from 0.1 Hz to 4
Hz and is the highest amplitude wave. It is found in all sleep
stages and represents the brain's gray matter. Theta range is from
3.5 to 8 Hz and relates to subconscious activity. It is abnormal
for adults to have these signals, but they are expected for
children under 13. Finally, the alpha range is between 8 and 13
Hz and represents white matter in the brain. It acts as a
connection between the conscious and subconscious mind. The
Beta range is from 13 to 30 Hz and is associated with actions
and thinking. It is connected to the five senses and occurs in
conscious states when problem-solving, talking, decision-
making, or making judgements. Finally, the Gamma range is
from 30 to 100Hz and is linked to perception and consciousness

Fig. 1. 10-20 EEG Electrode Placement Designations [8]

(30-70 Hz) area. It connects senses and memory and occurs
during hyper-alertness and when sensory inputs are integrated
[13].

C. Existing Drone Control Methods

Manual human flight control has been the most prevalent
method of aerial control throughout human flight history.
The intricate details and problem-solving associated with
maintaining a  safe  flight were trusted  with
highly trained pilots with minimal computational assistance.
For commercial air travel, this is strictly still the standard even
though companies are successfully developing and testing
autonomous aircraft. As flight dynamics became better
understood, technologies like autopilot became prevalent in
commercial aircraft. These technologies added -electronic
actuators or an added layer to existing electronically actuated
control systems to let a computer send commands based on
sensor readings.

Current control developments and technology selling points
are polarized in intelligent flight systems, fully allowing
autonomous control, or disregarding it as unsafe for its
application. Systems not adhering to either ultimatum could
receive more approval than a fully autonomous control system
while outperforming a human in speed and accuracy. This
work’s classification framework can be utilized in systems on
the more manual side of the spectrum, as pilots must make an
input to receive the desired output. While facial gestures are
more suitable for this type of manual control, pattern recognition
techniques presented are expected to have similar results in
detecting other facial or mental states of the pilot.

D. Machine Learning Classification

Established EEG applications have mostly been limited to
clinical settings where patients are screened for EEG signal
patterns indicating a limited number of diseases. With today’s
improved computational power and neural network designs



relating EEG with emotions, movements, and visualizations is
possible. EEG patterns also differ according to cognitive
behavior and can act as an indicator of specific cognitive
gestures.

Artificial neural networks (ANNs) are a subset of a machine
learning system involving its wunderlying node-layered
algorithms that are inspired by the human brain. These networks
replicate the method in which biological neurons transmit
signals to one another. First, nodes are connected and possess a
specific threshold. It begins with inputs, follows with layers of
nodes, and ends with an output. If any individual node surpasses
its threshold, it is activated, and data is transferred to the next
layer of nodes. Once all layers of nodes have been completed,
outputs are determined, given the path of activated nodes.

ANNSs are not limited to this simplified computing process;
many modified versions of the same idea are designed for
specific uses. For example, RNNs are modified ANNs that
maintain history information from initial hidden layers and add
them to current hidden layers during computation. This time-
dependent looping constraint separates the normal ANNs from
RNNSs. Because of their design, RNNs are very good at feature
recognition in instances where information is received over time
and patterns exist relative to time. LSTM neural networks are a
particular type of RNN known for their advantages in effective
recurrent neural network implementation. Its design was
motivated by the issues present in simple RNNs. For example,
RNN issues involved failure to learn in the presence of time lags
greater than 5-10 discrete steps [11]. LSTM cells mostly employ
sigmoid and tangent functions.
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Where:
o = sigmoid
tanh = tanget activation function
i = input gate
f = forget gate
0 = output gate

¢ = intermidate gate

h = cell memory

t = time step

T = length of window

w = layer weight representing input x

b = threshold of the output gate

LSTMs work well to allow the effective use of an RNN
architecture. However, they involve considerable time-related
complexity, which is only sometimes needed for a proper RNN
performance. GRUs solve this problem by using a less complex
function inspired by LSTM RNNs while ensuring comparable

performance. The following are the ways in which GRU differs
from LSTM:
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Where:
1, = reset gate
z; = update gate
0, = output gate
&® = element — wise multiplication
t = time step
T = length of window
w = layer weight representing input x

b = threshold of the output gate

A simple diagram comparing the node architectures of an
RNN, LSTM, and GRU can be seen in Fig. 2. The comparison
in performance will be evaluated to better understand the EEG
and EMG time-related complexity and give insight into the
design of such classification systems.

II. METHODOLOGY
A. EEG Data Acquisition

EEG data for all experiments were taken using a dry
electrode headband equipped with three electrodes and two
reference electrode clips for both ears. The OpenBCI device
measured the electrode's voltages and sampled data from this
electrode at a sampling frequency of 250 Hz. The samples were
then wirelessly transferred to the OpenBCI software, which
applied a notch filter and a band pass filter to the received signal
in real time. Three locations on the subject's forehead (Fp1, Fpz,
and Fp2) were measured using electrodes in relation to the
voltages of both earlobes. Depicted in Fig. 3 is the EEG
headband described with each electrode’s placement. For each
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Fig. 2. Simple RNN, LSTM, and GRU Structure [13]
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gesture, the subject wearing the headset clenched their teeth
firmly. The Blinking gesture was performed with two second
gesture followed by a four second rest in between gestures. The
subjects had to perform the gesture repetitively and rhythmically
over an approximate interval of thirty seconds. The thirty-
second recordings comprises of a two second gesture being
performed followed by a four seconds rest, and that is repeated
for the entire 30 seconds span . These gestures are chosen based
on a visual distinction of EEG wave patterns when performing
them. Other gestures are possible with the platform developed,
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however attention must be given to whether or not brain activity
can be recognized at the electrode positions or with EEG. Each
gesture’s three voltage channels were recorded at 3Hz for their
spectral transformations done with a Fast Fourier Transform on
MATLAB.

B. Feature Extraction

A MATLAB script was developed to automate the dataset
labeling process, and a baseline was created by finding the
average resting signal over a period of 3 minutes, figure 9 shows
this average data for two participants. This baseline FFT was
compared to incoming FFT datasets each containing one action
done repetitively with resting performed in between. The
difference between gesture and baseline frequencies was
established using three different error methods: root mean
squared error (RSME), mean average error (MAE), and mean
squared error (MSE). Incoming datasets were automatically
labeled as the dataset’s action or rest for network training by
seeing if a data point’s error relative to the baseline was large
enough. The results for the feature extraction process can be
seen in Fig. 5,6,7, and 8.
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C. LSTM and GRU Algorithm

In this stage, the GRU network's parameters were adjusted
to employ a mini-batch size of 300, with each ideal parameter
being discovered experimentally. To avoid overfitting, a drop
frequency of 0.5 was employed. The schedule for the learning
rate was set to piecewise, and the learning rate was set at
0.00099. Both the validation frequency and the validation
patience were set to 30. 90 Maximum Epochs was chosen.



Additionally, a mini-batch size of 60 was used for the LSTM
network, to avoid overfitting, a drop frequency of 0.5 was
employed. The schedule for the learning rate was set to
piecewise, and the learning rate was set at 0.000999. Both the
validation frequency and the validation patience were set to 25,
and 28 respectively. Maximum Epochs was set to 300.

III. RESULTS
A. Datasets

Two volunteers provided the data set for this experiment,
which was then randomly separated into training, testing, and
validation sets. The total number of samples used and the data
distribution for training, testing, and validation are shown in
Table 1.

B. Discussion

As seen in Fig. 5, 6, 7, and 8, the feature extraction process's
output completely distinguishes between an actual gesture being
done and the rest of the data. Ignore-rest classification was used
as an outlier since it was observed that certain spikes are present
in Fig. 9 when compared to results from a single user in Fig. 10
when results from averaging rest data over ten samples for two
groups of users. The two separate networks LSTM and GRU
were trained using the categorized dataset. Although there are
some variations, both networks exhibit adequate overall
accuracy, with LSTM showing an accuracy of 78.6% and GRU
to be 81.82% as seen in the confusion matrices in Fig. 11 and
Fig. 12 for LSTM and GRU, respectively.

1. Forpredicted class, the outlier, ignore-rest for GRU will see
around 82.6% of data classified as outliers, implying certain
spikes different from rest and up to 73.5% for LSTM. This
means that when user wear the EEG headband and are in
rest position, and certain gestures are made unintentionally,
these datasets will be ignored with LSTM performing
better. For true classification for both networks, the
percentage of true classification was somewhat similar,
which was 78.1% correct classification with a 21.9%
misclassification with a 6.8% misclassification for the
LSTM network.

2. For predicted class, the outlier, ignore-rest for GRU will see
around 82.6% of data classified as outliers, implying certain
spikes different from rest and up to 73.5% for LSTM. This
means that when user wear the EEG headband and are in
rest position, and certain gestures are made unintentionally,
these datasets will be ignored with LSTM performing
better. For true classification for both networks, the
percentage of true classification was somewhat similar,
which was 78.1% correct classification with a 21.9%
misclassification for the GRU network, and 93.2% correct
classification with a 6.8% misclassification for the LSTM
network.

3. Actual rest data classification is seen to perform better with
GRU with up to 84.4% being classified correct as opposed
to 94.3% accurate classification for the LSTM model when
looking at predicted classification. For true classification
for both networks, the percentage of true classification was
somewhat similar, which was 79.1% correct classification
with a 20.9% misclassification for the GRU network, and a

Table 1: Dataset Distribution

Total Training Test Validation categories
data data data data

Datal 1,250 70% 15% 15% 5

Table 2: Model for LSTM Network Algorithm

Input: the sequence of gesture FFTs

Output: categorization of gesture

Learning rate, batch size

Drop out Layer (0.5)

LSTM (hidden units, batch size)

Drop out Layer (0.5)

Softmax

Return Output

Table 3: Model for GRU Network Algorithm

Input: the sequence of gesture FFTs

Output: categorization of gesture

Learning rate, batch size

Drop out Layer (0.5)

GRU (hidden units, batch size)

Drop out Layer (0.5)

Softmax

Return Output

lower 75.9% correct classification with a 24.1%
misclassification for the LSTM network.

When comparing the predicted classification results for the
bite gesture for the two networks, the GRU network had a
classification accuracy of 80.5% and a misclassification
rate of 19.5%, LSTM had a classification accuracy of
81.9% and a misclassification rate of 18.1%. In contrast,
while examining real classification, it was found that biting
gesture classification was correctly classified 88.9% of the
time for GRU classification was incorrect 11.1% of the time
and LSTM network classification was incorrect 9.6% of the
time with correct classification of 90.4%.

For predicted classification for blink gesture for both
networks, 87.5% of the dataset were correctly classified
with a misclassification of 12.5% for the GRU network and
88.5.9% correct classification for LSTM and a
misclassification of 11.5% observed. On the other hand, the
results from true classification indicated a 88.8% correct
classification with a 13.2% misclassification for GRU
network, and 95.9% correct classification for LSTM
network with a 4.1% misclassification for the same
network.

Finally, the predicted classification for the gesture of raising
the eyebrows was observed for the GRU network to be
87.2% correct with a misclassification of 17.4% and for the
LSTM network to be 95.3% correct with a misclassification
of 4.7%. While the GRU network had a correct
classification rate of 99.2% and a misclassification rate of
0.8%, the LSTM network had a correct classification rate of



99.2% and a misclassification rate of 0.8% according to the

results from the true classification.
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Confusion Chart for LSTM
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Fig. 11. LSTM Classification Confusion Matrix
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IV. CONCLUSION

A facial movement classification algorithm is possible when
using recurrent neural networks to extract and classify based on
spectral EEG and EMG data received from frontal lobe
electrodes. The facial movements used in our experiments were
raising eyebrows, biting, accidental gestures, and resting. Out
of the utilized recurrent neural networks, LSTM and GRU,
LSTM performed better. LSTM superiority shows that
EEG/EMG signals received from these facial movements
involve time-related complexity, making it likely worth the
additional computational load of LSTM to better classify
incoming spectral EEG data. Further work in this project
includes adding other mental states and actions, RNN
classification time response analysis, RNN classification
process predictability, and further reliability testing.
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