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ABSTRACT: Chemists have long benefitted from the ability to understand and interpret the predictions of computational models.
With the current shift to more complex deep learning models, in many situations that utility is lost. In this work, we expand on our
previously work on computational thermochemistry and propose an interpretable graph network, FragGraph(nodes), that provides
decomposed predictions into fragment-wise contributions. We demonstrate the usefulness of our model in predicting a correction to
density functional theory (DFT)-calculated atomization energies using A-learning. Our model predicts G4(MP2)-quality
thermochemistry with an accuracy of <1 kJ mol™ for the GDB9 dataset. Besides the high accuracy of our predictions, we observe
trends in the fragment corrections which quantitatively describe the deficiencies of B3LYP. Node-wise predictions significantly
outperform our previous model predictions from a global state vector. This effect is most pronounced as we explore the generality by
predicting on more diverse test sets indicating node-wise predictions are less sensitive to extending machine learning models to
larger molecules.
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1. INTRODUCTION In our published work in 2021, we developed a graph-network
based deep learning model, FragGraph. This model was used in
a manner similar to a fingerprint encoder in which a global
(state) vector was learned from the structure and features of a
molecular graph. This work showed the benefit from embedding

Machine learning (ML) models have become increasingly more
available and used for a wide variety of applications in diverse
disciplines.' "> Although these models have become invaluable

for many, the field is moving towards deeper, more complex i i
models. While this is advantageous to learn complex patterns node attributes to represent local fragments rather than starting
. )

oftentimes the models are black-box and their predictions from a s1mPle graph and allowing th? model to learn its own
cannot easily be understood or explained by the user.)*! In represer_lta_tlon. Although we s.howed its excellient performance
contemporary applications, complex models are necessary for at p Fedlctl.ng C.}4<MP.2)-quahty thermochemlstFy, the n}o.del
the advanced tasks on which machine learning and artificial provided little insight into the learned patterns in the training
intelligence are being applied. While acceptable in data-driven data. In the graph neural network model used in FragGraph,
applications such as computer vision and language models, updated edge, node, and global state vectors are all learned
scientific applications would highly benefit from a more through eac'h graph updat'e SteP' After the final graph up dat.e, a
explainable set of predictions. Furthermore, the adoption of full graph 18 embedded into its latent space rep resentatl.on.
some state of the art graph-based models has been slow for Although this can be advantage.ous for generality, since multll?le
certain applications such as drug discovery, in part, for this lack decoders could be used to predict any edge-, node-, or state-wise
of interpretability.”’ Chemists and other scientists have used
simple statistical models, such as regression and decision trees, Received: December 24, 2022
long before the rise in popularity of deep learning models. These

models and algorithms have an inbuilt explainability and

interpretability due to their overall simplicity. These attributes

have allowed scientists to reason through many problems and

form a more advanced chemical intuition.
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Figure 1. Architecture schematic for graph network.
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property, the full extent of the graph network’s predictability has
yet to be explored. In this work, we explore and extend the
usefulness of the FragGraph model by predicting the machine
learned corrections to DFT as a sum of node-wise contributions.

There is a growing number of research groups working
towards developing explainable artificial intelligence (XAI)
techniques which can be applied to scientific problems. In drug
discovery, for example, the integrated gradients approach was
used in conjunction with a graph network to identify
pharmacophore motifs and activity cliffs by assigning
importance to structural features in the predicted pharmacol-
ogy-related end points.”> Some graph-based methods aim to
identify node importance through various down sampling or
pooling layers and have been used to distinguish important
structural features in relation to properties such as molecular
toxicity.”” > Other methods have been used to identify
important molecular descriptors for the prediction of the
permeabilities of polymer membranes using the SHAP
analysis.”>*’

While these methodologies have seen success in providing a
qualitative interpretation, this work aims to reframe the
interpretability to obtain an explicit quantitative picture along
with the useful qualitative explanation of the molecular
predictions. Herein, we strive to develop on our recent
FragGraph model into an explainable machine learning model
in which a prediction can be decomposed into contributions
based on chemical structure. We focus on correcting the errors
of approximate methods, i.e, DFT, and draw parallels to

fragmentation-based methodology. The fundamental nature of
fragments as they relate to systematic error correction allows for
the identification of deficiencies in the chosen approximate
method and we propose our model may be further utilized to
study the deficiencies of other approximate methods.

2. METHODS

The present study focuses on two FragGraph models. To
minimize the number of variables between the two models, all
latent space sizes and neural network layers are kept consistent
throughout each architecture. The general architecture used for
this work is similar to the previously used FragGraph model
consisting of seven individual neural networks, with the
difference being solely in the decoder stage. An overview of
the architecture is shown in Figure 1 and in more detail in our
previous work. The model consists of three parts: encoder, graph
update, and decoder. In each portion, there are up to three
neural networks corresponding to the three parts of a molecular
graph. The encoder converts the initial representation into the
correct latent space. Then, message-passing graph updates are
performed for each node, edge, and global vector (in that order)
to learn from the local graph structure and attributes. After 3
recurrent steps, the graph is finalized and can be used to predict
any property of the system via a readout in the decoder stage.
The first model used in this work is identical to the global
FragGraph model in our previous work, while the second model
incorporates node-wise predictions for the atomization energy
using a shared decoder neural network for all atom types.
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For the FragGraph representation, each heavy atom is
represented as a node in a molecular graph, and bonds between
them are represented as edges. These nodes are then attributed
with a local description of the chemical environment. In the
previous work, we demonstrated the importance of the initial
description of the chemical environment. The fragment
embedded graph performed with an accuracy of around 0.5 kJ
mol™! for the prediction of atomization energy and a simple
graph with atomic number information was only able to achieve
around 2 k] mol™' on average. Although impressive, the
automatic feature-learning present in many deep learning
models benefitted greatly from information about the local
fragment. Thus, atomic environment representations of CBH-2
fragments were used by passing each fragment through the
pretrained mol2vec model. The molecular graphs used here are
complete graphs, ie., each node is connected to every other
node. These fully connected graphs provide more three-
dimensional (3D) structural information to the model and
allow it to learn from non-bonded interactions as well as bonded.
Edges are encoded with one-hot encoded atom types involved in
the bond, bond order (non-bonded 0, single bond 1, double
bond 2, or triple bond 3), as well as gaussian expanded bond
distance between atom centers. Although the new models have
the capability to return edge and global feature vectors, since
there are no direct decoders, they are disregarded. Additionally,
since the global vector is not involved in the update of the nodes
and edges, the new FragGraph models do not have a global
vector.

The main dataset used for this work is the openly available
GDB9 set of 130k molecules containing up to 9 C, N, O, and F
heavy atoms.””® This dataset was curated to represent the
chemical space of small organic molecules including small amino
acids and pharmaceutically relevant building blocks. All 130K
molecules are neutral species with 1705 of them being
zwitterionic. The models featured herein were trained on 117k
training molecules with the remaining 13k of the GDB9 dataset
acting as the out-of-sample generalization set. The same train-
test split was used from previous studies for consistency.””*’
Two external test sets were also used to test the generality of
each model. These include the GDB10—13 data set of 1500
molecules with 10—13 heavy atoms sampled from the GDB17
set.’’ Additionally, the PDS10—14 set of 191 molecules with
10—14 non-hydrogen atoms was also used.”” This test set was
curated from the Pedley compilation of experimental gas-phase
enthalpy of formation data for organic molecules. The 191
molecules were chosen as having experimental values with low
uncertainty 1 kcal mol™ as well as a close agreement with the
G4(MP2) calculated enthalpies. All molecules were optimized
with B3LYP/6-31G(2df,p), and the atomization energies of all
molecules were calculated with both G4(MP2) and B3LYP.*>**

3. RESULTS AND DISCUSSION

3.1. FragGraph Model Performance. The performance of
the two FragGraph models is summarized in Table 1. Each
model had the same training set of 117k molecules from the
GDB9 dataset and all displayed numbers are mean absolute
errors of holdout sets. On the GDB9 test set, the new
FragGraph(nodes) model slightly outperforms the original
global model with a mean absolute error (MAE) of 0.16 kcal
mol ™! compared to 0.18 kcal mol™". These results are consistent
to the previous FragGraph study.”® Both models had errors close
to zero. Additionally, we found that no further benefit is gained
from adding decoder complexity by having a different neural

Table 1. Mean Absolute Errors in kcal mol™" of
FragGraph(global) and FragGraph(nodes) on the GDB9,
GDB10—-13, and PDS10—14 Datasets

GDB9 GDB10-13 PDS10—-14

model (N=13024) (N = 1500) (N =191)
FragGraph(global) 0.18 1.19 1.25
FragGraph(nodes) 0.16 1.01 1.07

network for each atom type. Thus, moving forward the decoder
will be kept as the single shared neural network for all atom
es.

While the performance is excellent on small molecules, the
errors increase substantially for predicting the atomization
energies of larger molecules with about a 7-fold increase in
errors. We note that a slight increase in error is typically expected
for larger molecules, as the systematic errors will grow with
system size. Indeed, scaling each error by the number of heavy
atoms results in a MAE of 0.020 kcal mol ™" atom™" for the GDB9
data set along with 0.087 and 0.094 kcal mol™" atom™ for the
GDB10—-13 and PDS10—14 datasets, respectively. Although
there is still a discrepancy between the Ny, < 10 and Ny, > 9
groups, this difference is lowered to ~4-fold increase in error
rather than the previous 7-fold.

Machine learning models tend to perform best on
interpolation rather than extrapolation. In principle, one could
train a general model which would work on any system
regardless of size or composition to rival modern quantum
mechanical methods, but this is currently unfeasible. Addition-
ally, the FragGraph models in this case may be overfit to the
GDB9 dataset and are not size extensive since training on small
molecules and predicting on larger molecules is more of an
extrapolation. To test this hypothesis, larger molecules from the
GDB10—13 test set were added to the training set. We tested
adding various percentages including 20, 50, and 80%. Even at
the smallest addition to the training set, the test error on the
GDB10—13 data set dropped from 1.01 to 0.67 kcal mol™" for
the FragGraph(nodes) model. This decrease is somewhat
surprising since the ratio of larger molecules to the Ny, < 10
is about 1:400. Upon training with 50% of the larger molecule
test set, the performance improved slightly to a MAE 0.56 kcal
mol~". Adding additional molecules to the training set showed
little to no improvement leading to the final FragGraph models
in Table 2. The performance on the completely held out
PDS10—14 test set also improved by 0.4 kcal mol™" for the
global model and 0.3 kcal mol™" for the node-wise FragGraph
model.

Table 2. Mean Absolute Errors in kcal mol™ of
FragGraph(global) and FragGraph(nodes) on the GDB9,
GDB10—13, and PDS10—14 Datasets with Larger Molecules
Added to the Training Set

model GDB9 GDB10-13 PDS10-14

(N =13024) (N = 300) (N =191)
FragGraph(global) 0.18 0.58 0.87
FragGraph(nodes) 0.17 0.53 0.76

FragGraph models trained solely on the Ny, < 10 data set
performed similarly for both the GDB10—13 and PDS10—-14
test sets. However, this is not case upon the addition of larger
molecules in the training set. Since we have already accounted
for poor performance due to size, there must be another source
of error. To further understand where the errors from the
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Figure 2. Principal component analysis distribution of the GDB9, GDB10—13, and PDS10—14 datasets.

PDS10—14 dataset are coming from, we can visualize the
datasets using principal component analysis (PCA). The global
mol2vec vector was generated for each molecule and reduced to
2 principal components, shown in Figure 2.

Unsurprisingly, the GDB9 and GDB10—13 datasets had
roughly similar distributions, most likely because they were both
sampled from the same parent collection. While the majority of
the distribution of the PDS10—14 test set falls within the other
two distributions, there are many more outlying molecules.
Upon further inspection, these systems contain fragments which
were previously unseen by the model. For example, one of the
many molecules below PC 1 = —20, CCCCCCC(N(F)F)N-
(F)F, contains two fluorinated nitrogen groups. This shows the
GDB9 training is insufficient for generality, or at least in the case
of the PDS10—14 test set.

We observed that if we sample the PDS10—14 to include
these unseen fragments, the performance of the FragGraph
model increased further to 0.57 kcal mol™" on average for the
node-wise model, which agrees more with the GDB10—13
dataset. The performance of these models is shown in Table 3

Table 3. Mean Absolute Errors in kcal mol™" of
FragGraph(global) and FragGraph(nodes) on the GDBY,
GDB10-13, and PDS10—14 Datasets with Larger and More
Diverse Molecules Added to the Training Set

model GDB9 GDB10-13 PDS10-14

(N =13024) (N =300) (N=171)
FragGraph(global) 0.18 0.56 0.7§
FragGraph(nodes) 0.17 0.52 0.57

with only 10% of the PDS10—14 set added to the training set.
These molecules were sampled as the furthest distance (or most
dissimilar) molecules from the GDB9 distribution. The global
model still had a larger discrepancy, which may be due to the
inability for one global vector to capture newer fragments. We
propose the node-wise model is more flexible for generality than
the global model due to the node-wise contributions.

3.2. Model Explainability. One unique advantage to the
node-wise predictions is the added explainability. Black-box

machine learning models are often criticized for the inability to
understand why they are making each prediction. Although this
mystery is not necessarily a downside for many models, having
the ability to explain and understand a prediction can be a plus.
The FragGraph(nodes) model inherently provides explain-
ability since it returns the node-wise contributions for any given
molecule. Since the models are trained on the difference
between B3LY and G4(MP2), these numbers correlate to an
atom-wise or fragment-wise correction to DFT. For example, the
node-wise contributions are given for one of the molecules from
the GDB9 test set in Figure 3. The enthalpy of formation for this

7.95 7.95

-5.36

Negative

Positive

Figure 3. Fragment-wise contributions from the trained FragGraph
model for a triazole compound from the GDB9 test set.

molecule (calculated at G4(MP2)) is —139.20 kJ mol ™", while
the DFT calculated value is —177.86 kJ mol™' giving an
approximate error of 38 kJ mol™". Using the FragGraph model,
the sum of these contributions make a AML correction of 39 kJ
mol ™!, predicting the enthalpy within 1 kJ mol™" of the reference
value.

These generated heat maps give a visual representation of the
error correction and can show which groups contribute most to
the approximation errors of DFT. Since the FragGraph model is
rooted in fragmentation and error cancellation, these contribu-
tions can be directly correlated with the initial fragment each
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node represents. In the previous example, our FragGraph model
learned a large positive correction for N-containing heterocycles
and a large negative contribution for hydroxyl groups.
Traditionally in fragmentation-based methods, each fragment
contributes a set value calculated as the difference between two
levels of theory. Our FragGraph model is not restricted to a
single value per fragment, since no explicit energy calculations
are performed on the fragments. For any given initial fragment, a
distribution of contributions will be learned based on the
surrounding fragments. In this way, the graph network learns
from somewhat of a larger fragment space and can augment the
correction based on the relationships between fragments in the
same molecule. For example, the common propene-like
fragment, shown in Figure 4, would be restricted to a single

fragment-wise contributions shed light into the errors of
B3LYP. Indeed, many studies have pointed out the deficiencies
of the popular density functional B3LYP including systemati-
cally underestimating the heat of formation of hydro-
carbons.’* ™%’ Furthermore, these errors are even more
pronounced in larger, branched systems. B3LYP and several
density functionals often fail at correctly capturing medium-
range electron correlation and many ongoing developments in
DFT have focused on correcting for this well-known error.”>*”
Our results here are in line with this observation, as many of the
branched fragments correct for this underestimation. On the
other end of the spectrum, B3LYP over-stabilizes the heat of
formation for highly energetic systems leading to a positive
correction to the thermochemical properties (Table 4b).
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Figure 4. Fragment-wise contributions from the trained FragGraph
model for a variety of propene-like fragment containing molecules.

value in the traditional fragmentation sense. As seen in three
molecules displayed in Figure 4, this fragment contribution
value can have a large distribution for more negatively
contributing groups such as the nitrile group or contribute
more positively when found in a N-containing heterocycle
(Figure 4).

The full fragment-wise contribution statistics are given in
Supporting Information. For each initial fragment formed from a
heavy atom, the average and standard deviation of the final node-
wise contributions were calculated for the full GDB9 dataset.
Interestingly, patterns in the fragments contributions and
composition begin to emerge. This is illustrated in Table 4a

Table 4a. Average Fragment Contributions from the
FragGraph(nodes) Model for Alkyne and Some Branched
Fragments

fragment contribution
c=C —9.92
Ccc(c)(0)o —5.52
cc(e)c -326
cc(c)(c)o —3.18
CC(C)(C)N -3.02

for a select set of illustrative fragments. For example, branched
systems and fragments containing triple bonds tend to
contribute more negatively while more highly energetic
functional groups such as fragments containing multiple
nitrogen atoms or fluorine tend to contribute more positively
to the full correction. Since the models in the study were trained
on the difference between B3LYP and G4(MP2), these

Table 4b. Average Fragment Contributions from the
FragGraph(nodes) Model for Some Highly Energetic
Fragments

fragment contribution
CC(F)(F)F 19.97
CN(N)N 18.31
CN=0 18.15
NC(N)N 16.90
CN(C)N 16.86

4. CONCLUSIONS

The present work illustrates the utility of our interpretable
fragment-based graph machine learning model FragGraph.
Using the sum of contributions from node-based vectors was
found to be more effective at generalizing to large and more
complex molecules than the corresponding global vector
prediction model. Our model achieves excellent results on
molecules with less than 10 heavy atoms at around 0.17 kcal
mol ™" compared to high level reference heats of formation and
approximately 0.5 kcal mol™" on molecules larger than 10 heavy
atoms and a MAE of 0.6 kcal mol™" on the challenging Pedley
data set. Through training set design and unseen fragment
sampling, we were able to improve the predictive value to an
error of 0.04 kcal mol ™ per heavy atom. Additionally, our model
was able to replicate known trends in the deficiencies of B3LYP.
We propose the FragGraph model can be further utilized for
other density functionals to understand the systematic errors in a
structure-based manner and could be useful in developing new
models.
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