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ABSTRACT

Diesel-fueled engines still hold a large market share in the
medium and heavy-duty transportation sector. However, the in-
crease in fossil fuel prices and the strict emission regulations are
leading engine manufacturers to seek cleaner alternatives with-
out a compromise in performance. Alcohol-based fuels, such as
ethanol, offer a promising alternative to diesel fuel in meeting
regulatory demands. Ethanol provides cleaner combustion and
lower levels of soot due to its chemical properties, in particular
its lower level of carbon content. In addition, the stoichiometric
operating conditions of alcohol fueled engines enable the mitiga-
tion of NOx emissions in aftertreatment stage. With the promise
of retrofitting diesel engines to run on ethanol to reduce emis-
sions, the thermal efficiency of these engines remains the primary
optimization target. In order to find the optimal ethanol-fueled
engine design that maximizes the thermal efficiency, a large de-
sign space needs to be investigated using engineering tools.

In this study, previous research by the authors on optimiz-
ing the design of a single-cylinder ethanol-fueled engine was

extended to explore the design space for a heavy-duty multi-
cylinder engine configuration. A heavy-duty engine setup with
multiple operating conditions at different engine speeds and
loads were considered. A design optimization analysis was per-
formed to identify the potential designs that maximize the indi-
cated thermal efficiency in an ethanol-fueled compression igni-
tion engine. First, a computational fluid dynamics (CFD) model
of the engine was validated using experimental data for four
drive cycle points. Using a design of experiments (DoE) ap-
proach and a parameterized piston bowl geometry, the model
was then exercised to explore the relationship among geometric
features of the piston bowl and spray targeting angle and indi-
cated thermal efficiency across all tested operating conditions.
After evaluating 165 candidate designs, a piston bowl geometry
was identified that yielded an increase between 1.3 to 2.2 per-
centage points in indicated thermal efficiency for all tested condi-
tions, while satisfying the operational design constraints for peak
pressure and maximum pressure rise rate. The increased perfor-
mance was attributed to enhanced mixing that led to the forma-
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tion of a more homogeneous distribution of in-cylinder tempera-
ture and equivalence ratio, higher combustion temperatures, and
shorter combustion duration. Finally, a Bayesian optimization
(BOpt) analysis was employed to find the optimal piston bowl
geometry with a fixed spray injector angle for one of the oper-
ating conditions. Using BOpt, a piston candidate was identified
that resulted in a 1.9 percentage point increase in thermal ef-
ficiency from the baseline design, yet only required 65% of the
design samples investigated using the DoE approach.

1 INTRODUCTION

Diesel-fueled compression-ignition (CI) engines are still
heavily used in heavy-duty applications, especially in the hard-
to-electrify sectors such as marine, rail and on-highway trans-
portation [1]. In particular, diesel-fueled CI engines offer high
performance and low maintenance due to their high efficiency,
high power density, and relatively simplistic design. However,
stringent soot and NOx emission requirements are leading engine
manufacturers to explore decarbonization strategies and alterna-
tives to diesel fuel.

Alcohol fuels, such as methanol and ethanol, offer a promis-
ing alternative to diesel fuel in meeting regulatory emission de-
mands. Due to their low soot propensity properties, utilizing al-
cohol fuels can significantly lower soot emissions [2]. In addi-
tion, lowering soot emissions may simplify the exhaust aftertreat-
ment of NOx emissions through three-way catalysis (TWC), a
method otherwise unavailable due to the prohibitively high lev-
els of soot at the stoichiometric air-fuel ratio (AFR) conditions
in diesel-fueled CI engines [3]. These factors make alcohol-
fueled CI engines a promising alternative, with comparable per-
formance and efficiency to diesel-fueled engines. However, a set
of modifications need to be undertaken to allow the usage of al-
cohol fuels in CI engine configurations.

Historically, alcohol fuels have not been used in CI engines
due to their low cetane number and high auto-ignition tempera-
tures [4]. In order to ignite these fuels within a reasonable time
window under compression, higher in-cylinder temperatures are
needed at the time of injection [5]. One method to elevate the
in-cylinder temperature in CI engines is through the application
of thermal barrier coatings (TBCs) on selected surfaces to reduce
the heat loss from the boundaries [6-8]. While this application
may cause overheated charge and tendency to knock in conven-
tional spark ignition (SI) engines, TBCs can enable reliable au-
toignition of alcohol fuels in CI engines [8]. With the mitigation
of ignition and emissions concerns through the use of alcohol
fuels, TBCs, and TWC aftertreatment, the performance metrics
of such a system can be focused on thermal efficiency. In order
to achieve comparable or superior thermal efficiency relative to
a diesel CI engine, an optimization study is needed to explore
the design trade-offs between piston bowl geometries and spray
targeting strategies.

While a design optimization analysis of alcohol-fueled CI
engines is needed to unlock their true potential, experimental
testing with hardware iterations is costly and limits the design
space that can be explored effectively. 3-D computational fluid
dynamics (CFD) simulations are a complementary tool in the
design exploration process. Recently, a number of studies uti-
lized CFD for design optimization process of different engineer-
ing problems. Pei et al. performed a geometry and combustion
recipe optimization of a heavy-duty CI engine using a DoE ap-
proach with 3-D CFD simulations [9]. Moiz et al. utilized a
machine learning genetic algorithm (ML-GA) approach to opti-
mize the combustion recipe of a Cummins ISX15 CI engine [10].
More recently, Owoyele et al. performed simulation-driven de-
sign optimization of CI engine operating conditions (e.g., intake
temperature, injection timing) to optimize soot, NOx and pres-
sure rise rate levels. In their work, different machine learning
based approaches were coupled with the CFD simulations to ex-
plore and identify promising regions of the design space [11,12].
Following their efforts, Badra et al. used a similar approach for
optimizing light and heavy-duty gasoline CI engine designs [13].
Magnotti et al. employed a DoE approach for optimizing an
ethanol fueled engine, laying the groundwork for this study [7].
In summary, coupling CFD simulations with design optimization
strategies is an effective way to perform engine design optimiza-
tion for a given design space and an optimization target.

In this study, 3-D CFD simulations coupled with two dif-
ferent design optimization methods were employed to investi-
gate the piston bowl geometry-injector angle design space and
find candidate designs that maximize the indicated thermal effi-
ciency of an ethanol-fueled CI engine. A sector mesh 3-D CFD
model with 1-D conjugate heat transfer (CHT) boundary con-
ditions was employed to model a CI engine with TBCs applied
to its head and piston bowl boundaries. The model framework
was validated against experimental data at four different engine
operating conditions. After the parameterization of the piston
bowl geometry, DoE and Bayesian optimization (BOpt) methods
were used to find candidate piston bowl-injector angle configu-
rations that maximize the indicated thermal efficiency. A more
in-depth analysis was performed to find underlying design rules
and combustion characteristics that result in thermal efficiency
improvements.

The present study is organized as follows: First, the experi-
mental setup and operating conditions used for CFD model vali-
dation is introduced and described in Section 2. Then, details on
the numerical setup including the CFD framework and utilized
design optimization methods are described in Sections 3 and 4.
Results obtained from the numerical analysis are presented in
Section 5. Finally, Section 6 provides an overall summary of the
findings and the conclusion.
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2 EXPERIMENTAL SETUP

The focus of this study is the characterization and optimiza-
tion of a 6-cylinder Cummins X 15 engine that has been converted
to run on ethanol fuel. A schematic of the engine setup is pre-
sented in Figure 1. Details on the engine and fuel injector, as

well as investigated operating conditions, are provided in Tables
1 and 2.

Cummins HD Injector

Intake \ \ /Exhaust
~Lis
Thermal ‘
barrier

o ( \ -
Ethanol

FIGURE 1: SCHEMATIC OF THE CUMMINS X15 ENGINE
AND ITS INJECTION SYSTEM, WITH THERMAL BAR-
RIER COATING.

To establish and validate a CFD model that can be utilized in
a design optimization study to maximize thermal efficiency, four
different operating conditions over a range of loads and engine
speeds were selected for the experimental analysis, as summa-
rized in Table 2. One of these operating points was also com-
pared to a diesel-fueled simulation and experimental data at the
same speed and load, to enable a comparison between diesel and
ethanol fueled engine performance. For ethanol-fueled condi-
tions, a thin layer of TBCs material was applied on the cylin-
der head and piston bowl to reduce the heat loss, and promote
the ignition of the injected ethanol by increasing the in-cylinder
temperatures. All configurations feature a Cummins heavy-duty
injector with a spray targeting angle of 75°with respect to the
vertical axis.

The engine is fitted with an AVL GH15DK cylinder pres-
sure sensor to record the in-cylinder pressure every 0.25 CAD
using a high-speed data acquisition recorder and averaged over
100 engine cycles. Over the four different operating conditions,
the coefficient of variance (COV) of the peak cylinder pressure
was observed to be less than 0.9%, indicating consistent and re-
liable combustion performance and minimal cycle-to-cycle vari-
ation (CCV).

TABLE 1: ENGINE AND INJECTOR SPECIFICATIONS FOR

THE EXPERIMENTAL STUDY.
Displacement [L] 14.9
Compression Ratio [-] 19.2:1
Bore / Stroke [mm)] 137 x 169
Swirl Ratio [-] 0.8
Injector Type Cummins HD
Number of orifices 8
Orifice diameter [mm] 0.28
Injector angle [deg] 75

Valve Timing [CAD aTDC] | -142.5/145.3

3 NUMERICAL SETUP

All the engine CFD simulations in this study were performed
with CONVERGE v3.0 [14], a commercial software for CFD
simulations. The gas phase flow was solved by the compress-
ible Navier-Stokes equations, consisting of conservation equa-
tions for mass, momentum, species mass fraction and enthalpy
equations. A single-species diffusion model was assumed and
the system of equations was closed using the Redlich-Kwong
equation of state.

The finite-volume method was used to solve the governing
equations using a Pressure-Implicit with Splitting of Operators
(PISO) algorithm and second order spatial central differencing
discretization. The gas-phase flow turbulence was modeled with
the RNG k-¢ turbulence model, and a standard wall function was
used to handle the near-wall treatment. A dynamic refinement
method was adopted at the wall boundaries to restrict the y* val-
ues between 30 and 100 during the combustion process. A com-
putational mesh with a base grid size of A, =2 mm and three level
of fixed refinement near the injectors (A, = 0.25 mm) was used.
The evolution of the injected fuel spray was further tracked in the
combustion chamber using Adaptive Mesh Refinement (AMR)
with two level of refinement based on 2"¢ derivative of velocity
and temperature (A, = 0.5 mm), resulting in a peak cell count
around 1 million cells.

To achieve a balance between computational accuracy and
expense of the simulations, a closed cycle simulation setup with
a 90° sector mesh with two of the eight spray injectors from the
experimental configuration was utilized, as shown in Figure 2.
The closed cycle simulations began at intake valve closing (IVC)
and were simulated until exhaust valve opening (EVO). The IVC
thermophysical conditions (chemical composition, pressure, and
temperature) were obtained by simulating a full-geometry open-
cycle simulation validated by the experimental setup, and using
the in-cylinder conditions at IVC of this simulation to initialize
the closed-cycle simulation. This CFD setup was simulated and
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TABLE 2: THERMODYNAMIC AND INJECTION CONDITIONS FOR THE FOUR OPERATING CONDITIONS INVESTIGATED
IN THIS STUDY.

Case C100 diesel C100 C75 A100 A50
Crank speed [rpm] 1600 1600 1600 1148 1148
Brake torque [Nm] 2277 2277 1708 2508 1254
Injected fuel Diesel* Ethanol Ethanol Ethanol Ethanol
Injector type Cummins HD | Cummins HD | Cummins HD | Cummins HD | Cummins HD
Fuel temperature [K] 312.8 298.7 304.21 296.93 300.54
Total injected fuel mass [mg] 257.68 435.125 318.626 465.98 227.929
SOI,;;,; [CAD aTDC] N/A -9.538 -15.89 -5.7948 -6.96576
Injection duration,,;,, [CAD] N/A 3.559 3.46 3.03 2.686
SOL4in [CAD aTDC] -5.214 -3.395 -5.51 -0.5599 -1.79976
Injection duration,,,;,, [CAD] 23.8 30.297 23.85 28.17 14.602
Fuel rail pressure [MPa] 248.66 170.04 160.0 139.99 139.93
Intake air temperature [K] 336.76 377.37 381.82 396.43 374.43
Global equivalence ratio [-] 0.765 0.803 0.769 0.811 0.839

*Tetradecane and n-heptane were used as the physical and chemical surrogates of diesel fuel.

Cylinder Head (1-D CHT)

Periodic Face

Liner (TCOHSI)

Piston (1-D CHT)

FIGURE 2: A SCHEMATIC OF THE 90° SECTOR GE-
OMETRY USED TO MODEL THE ENGINE WITH PRE-
SCRIBED BOUNDARIES. NOTE THAT THE C100 DIESEL
CASE DOES NOT FEATURE 1-D CHT BOUNDARY CONDI-
TIONS.

the results were compared with the experimental data for further
validation, as presented in Section 5.1.

Direct-injection of the fuel and spray development was mod-
eled using a Lagrangian-Eulerian framework. The liquid fuel
was represented as Lagrangian parcels that interact with the gas-
phase Eulerian domain. The injection of the liquid spray was
performed using the ”blob” injection model [15], while primary
and the secondary atomization of the liquid parcels were mod-
eled using the Kelvin-Helmholtz Rayleigh-Taylor spray breakup
model [16]. Droplet collisions were modeled using the No Time
Counter (NTC) model [17]. Frossling correlation was used to

model the evaporation between the liquid and gas phases [18].
Finally, boundary conditions for fuel-injection mass, duration
and velocity were defined based on the experimentally measured
rate of injection (ROI) profiles.

For ethanol-fueled cases, the injected fuel was represented
as pure ethanol. A finite-rate chemistry approach was used
to model the combustion process of the ethanol, by using a
80 species and 349 reaction chemical mechanism developed by
Wang et al. [19]. For the diesel-fueled case, the physical proper-
ties of tetradecane was used as a diesel surrogate for liquid prop-
erties. N-heptane was used as a surrogate for gas and chemical
properties, via a 42 species 168 reactions mechanism developed
by Chalmers University. The chemistry computation process was
accelerated by using an adaptive-zone model with temperature
and equivalence ratio bin sizes of 5 K and 0.05, respectively.

Finally, to accurately model the heat transfer through the
cylinder head and piston surfaces during combustion in the pres-
ence of TBCs (i.e., ethanol-fueled cases), a 1-D conjugate heat
transfer (CHT) boundary condition was utilized for cylinder head
and piston boundaries. This approach enables the modeling of
the metal engine surfaces and the thinly applied TBCs, provid-
ing more accurate prediction of the surface temperatures by tak-
ing the heat convection between the fluid and solid phases, and
conduction within the solid region in piston and head bound-
aries. Table 3 shows the bulk temperature boundary condition
was assigned to piston and head boundaries for each condition to
provide good agreement with the experimental results. Further
details on the application of this model to the engine numerical
modeling framework can be found in [7].
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TABLE 3: BULK TEMPERATURE BOUNDARY CONDI-
TIONS FOR THE 1-D CHT MODEL FOR ALL ETHANOL-
FUELED OPERATING CONDITIONS.

Case C100 C75 A100 AS0
Head Bulk Temperature [K] 458 428 428 410
Piston Bulk Temperature [K] | 458 428 428 410

4 DESIGN OPTIMIZATION

This section provides a detailed description of the two de-
sign optimization methods, namely design of experiments (DoE)
and Bayesian optimization (BOpt), utilized in this study. DoE
approach is based on sampling design candidates in a multi-
dimensional design space in a structured manner to investigate
the relationship between the design parameters (input) and the re-
sponse (output, merit value). BOpt approach is a sequential strat-
egy for adaptively sampling the design space to maximize the
merit value while using less samples relative to the DoE method.
Further information on both these approaches are given in this
section.

4.1 Design of Experiments

To explore a multi-dimensional design space for identify-
ing an optimal design, sufficient candidates in the design space
are sampled to evaluate their response (i.e., merit value). One
of the most widely used multi-parameter optimization methods
is the DoE approach [20]. This approach is based on sampling
design candidates in a multi-dimensional design space in a struc-
tured manner to investigate the relationship between the design
parameters (input) and the response (output). In this study, a
DoE approach was used to identify design candidates that im-
prove the thermal efficiency of the ethanol-fueled engine in the
piston bowl geometry-spray targeting angle design space. First,
the design geometry was parameterized using 11 independent de-
sign features, as shown in Figure 3. “Lip Radius” and the “Spray
Angle” were defined as dependent input features. Lip Radius
was adjusted separately for any given optimized design in or-
der to create a geometry with the same compression ratio (CR =
19.2:1) of the baseline experimental condition. In addition, the
spray targeting angle was automatically set to target the rim of
the piston bowl for all the designs candidates.

A commercial software for automated design analysis called
CAESES [21] was used to generate candidate designs for differ-
ent piston bowl geometry and spray targeting angle configura-
tions. Using CAESES, candidate designs were created based on
the parameterized geometry described in Figure 3. Ranges were
defined for each design feature characterizing the parameterized
geometry. Using Latin Hypercube Sampling method [22], a to-
tal of 165 candidate designs were sampled. Finally, the piston
geometries along with all the necessary input files for the CON-

stepRadiusDiff1 stepRadiusDiff2

..................... lipRadius
—Jspm,VAnglc ----- IpRadius

1 SN ster ai Aotor = x/v
“bowlRadiush i/ -~stepHeightFactor = x/y
\ \

) lipDepth
/

lipAngle/\\__2 lipCircleRadius

deltaRadius

FIGURE 3: PARAMETERIZED PISTON BOWL GEOMETRY
PROFILE WITH DESIGN PARAMETERS. SPRAY ANGLE
(SHOWN IN COLOR) IS A DEPENDENT DESIGN PARAM-
ETER BASED ON THE OTHER DESIGN FEATURES.

VERGE CFD simulations were generated using CAESES. The
165 unique piston designs that are considered in this study are
illustrated in Figure 4 along with the baseline piston design.

Height [-]

---- Baseline

Radial distance [-]

FIGURE 4: DIFFERENT NORMALIZED PISTON GEOME-
TRIES GENERATED WITH DOE ALONG WITH THE BASE-
LINE PISTON GEOMETRY.

4.2 Bayesian Optimization

While DoE method defines sample points in the design
space, in some cases it may require a large number of samples
to properly sample a multi-dimensional design space, and pro-
duce an accurate response surface model [23]. In contrast to
DoE which relies on an a priori sampling strategy, BOpt is an
active learning based approach that iteratively samples the de-
sign space to maximize the value of a given merit function [24].
BOpt method employs gaussian processes (GP) to represent an
unknown function that maps inputs (i.e., investigated design pa-
rameters) to an output (i.e., target merit value). While a brief
description of GP modeling approach was presented here, more
detailed discussion on GP’s can be found in Mondal et al. [25]
and Rasmussen and Williams [26].

GP approach assumes a jointly Gaussian probability distri-
bution for any finite output collection to be modeled. In this
study, GP’s are used to form a surrogate model on the existing
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FIGURE 5: VALIDATION OF THE ENGINE SECTOR CFD MODEL AGAINST THE EXPERIMENTAL DATA FOR ALL OPER-
ATING CONDITIONS. THE DIFFERENCE IN EXPERIMENTAL AND CALCULATED THERMAL EFFICIENCY, An, IS INDI-

CATED FOR EACH CONDITION.

dataset using a kernel function f. The BOpt approach uses the
GP surrogate model to sample new design candidates that max-
imize the merit function value [27]. BOpt models can be em-
ployed to explore the regions of the design space with no or little
sampled points (exploration), or focus on regions already max-
imizes the target merit value to find more optimal design sam-
ples (exploitation). Balancing exploration and exploitation in the
sampling strategy provides a path to optimally sample a multi-
dimensional design space with less samples than traditional DoE-
based approaches.

In this study, the GPyOpt package developed by University
of Sheffield was used for performing a BOpt analysis [28]. First,
the performance of different acquisition functions were investi-
gated on a test problem [29] to pick the ideal acquisition function
and exploration weight in exploring the multi-dimensional de-
sign space for new candidate designs. Then, the baseline design
was used as an initial condition to find a piston bowl geometry
that maximizes the thermal efficiency with a fixed spray targeting
angle.

5 RESULTS
5.1 Model Validation

The engine modeling setup presented in Section 3 was vali-
dated by comparing the numerical results against the engine ex-
periments at four different operating conditions (and the diesel-
fueled condition). The measured and predicted pressure and ap-
parent heat release rate (AHRR) profiles were compared to en-
sure that the CFD model can accurately represent all the operat-
ing conditions and it is able to capture the changes in operating
conditions described in Table 2.

A comparison of the simulated and experimental pressure
traces of the operating conditions presented in Table 2 is given in
Figure 5. Overall, the model was able to accurately capture the
response of the in-cylinder pressure trace and apparent heat re-
lease rate (AHRR) to changes in engine speed and load. A good
agreement can be observed across all tested operating condi-
tions with a maximum deviation of peak pressure about 0.1 MPa
across all conditions. Although the CFD model predicts higher
early heat release rate (HRR) associated with the first injection
for the lower engine speed cases (A100 and A50), the simula-
tions were able to accurately capture the overall trend in pressure
trace, as well as the HRR, and indicated thermal efficiency. The
level of agreement between the measured and predicted thermal
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efficiency, An was less than 2.5 percentage points across all con-
ditions.

5.2 Piston Bowl and Injector Angle Design Optimiza-
tion

Using the 165 candidate designs generated with CAESES,
a total of 660 3-D engine CFD simulations were performed for
the four ethanol-fueled operating conditions (C100, C75, A100
and A50). For the optimization study, the merit function was
defined as a function of the indicated thermal efficiency 7; at
each operating condition, defined as:

V

" myxLHV

where subscript i is the operating condition (i.e., C100, C75,
A100 and A50), my is the injected fuel mass, and LHV is the
lower heating value of the injected fuel. For the optimization
study, the merit function was defined as 7),,, the weighted aver-
age of the thermal efficiencies 7); calculated across four operating
conditions for each design candidate, as defined in Equation 2. A
larger weight of 40 % was assigned to A50 condition due to its
prevalence in the drive cycle of interest. Two design constraints
for maximum peak pressure (P,4) and maximum pressure rise
rate (PRR,,,,) with respect to baseline conditions were also im-
posed to filter out designs that do not satisfy the mechanical de-
sign constraints. Restricting PRR in the design optimization pro-
cess is important to avoid combustion noise and possible engine
damage. For reference, at baseline conditions investigated the
PRR ranges between 0.7 to 1.1 MPa/CAD between the four op-
erating conditions.

0.4XMNas0+0.2 X Naroo+, if (VBuax < 1.05 X Paxpase) N

= 0.2xNc100+02XNe7s  (VPRRyay < 2.0MPa/CAD) )
-

0, otherwise.

A comparison of the weighted thermal efficiencies across
the design space with respect to the baseline design is presented
in Figure 6. In the sampled design space, candidate designs re-
sult in a distribution of weighted thermal efficiency performance
relative to the baseline design. Design 125 is highlighted in Fig-
ure 6, hereafter named “Best Design”, due its performance in
maximizing the weighted thermal efficiency across all four oper-
ating points, while satisfying the maximum pressure and pressure
rise rate requirements. The piston bowl profiles of the baseline
and best designs are compared in Figure 7. It can be observed

that the Best Design has a piston bowl rim closer to the center-
line (i.e., a lower Lip Radius), as well as a deeper spray targeting
angle compared to the baseline design.

. . T . 25
T R O R SO
& Q s © 2 °% o0 .:'.ﬁo'. :.
B
o\o _]. - o ° ¢ . . ‘
S 2 : .
< ..
_3 — .
_4 -
I .I 1 1
0 50 100 150
Design ID

FIGURE 6: CHANGE IN WEIGHTED THERMAL EFFI-
CIENCY OF THE DOE DATASET WITH RESPECT TO THE
BASELINE DESIGN, Anwy, ACROSS FOUR OPERATING
CONDITIONS.

Height [-]

Best Design
---- Baseline

Radial distance [-]

FIGURE 7: BEST DESIGN AND ITS CORRESPONDING
SPRAY TARGETING ANGLE SELECTED FROM THE DOE
BASED ON THE MERIT FUNCTION DEFINITION.

After the selection of the best design based on the criteria
defined in Equation 2, further analysis was performed to under-
stand the underlying mixing and combustion differences that lead
to higher thermal efficiency. First, the increase in thermal ef-
ficiency across the four operating conditions was calculated, as
presented in Figure 8. In this Figure, An was defined as the rela-
tive improvement in efficiency with respect to the ethanol-fueled
baseline designs, as described in Table 2. First, the C100 con-
dition was evaluated to understand the performance differences
between diesel and ethanol fuels at the same operating point and
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piston bowl design. It was observed that the diesel-fueled setup
shows an increase in efficiency around 2 percentage points with
respect to the ethanol-fueled baseline design. A comparison of
the thermal efficiency performance of the ethanol-fueled Best
Design against the baseline design revealed 1.3 to 2.2 percentage
points increase across all four operating conditions. This analysis
confirms the hypothesis that it is possible to achieve comparable
efficiency as the diesel baseline when the piston bowl and spray
targeting angle is allowed to be optimized for ethanol fuel use at
stoichiometric conditions.

mEm Diesel baseline

2.00 A BB FEthanol best design
1.75 1
1.50 -
1.25
1.00
0.75
0.50
0.25
0.00 -

A50

C100 C75 A100

An [%]

FIGURE 8: CHANGE IN THERMAL EFFICIENCY ACROSS
FOUR OPERATING CONDITIONS WITH RESPECT TO
ETHANOL BASELINE DESIGN. DIESEL CASE IS ALSO
PRESENTED FOR C100 OPERATING CONDITION.
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FIGURE 9: ENERGY BUDGET ANALYSIS OF THE
C100 CASE FOR DIESEL, ETHANOL BASELINE, AND
ETHANOL BEST DESIGN CONDITIONS.
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FIGURE 10: IN-CYLINDER TEMPERATURE DISTRIBU-
TION OF (a) BASELINE AND (b) BEST DESIGN AT 20 CAD
ATDC FOR A50 CONDITION.

To gain a better understanding of the factors driving the ef-
ficiency improvement for the best design, an energy budget anal-
ysis was performed for the C100 operating condition and pre-
sented in Figure 9. C100 condition was chosen due to the exis-
tence of diesel-fueled experimental data at this operating condi-
tion. The energy converted to useful work, heat loss through the
boundaries, liquid parcel heating and evaporation, and increasing
the internal energy of the final gas mixture (exhaust) was calcu-
lated between IVC and EVO, and divided by the total energy
potential introduced to the system:

Qr =mysx LHYV, 3)

where Oy is the total energy potential in the system due to in-
jected fuel. The LHV value was selected to be 27.7 MJ/kg for
ethanol and 43.5 MJ/kg for diesel. It can be observed that the
percentage of heat loss is higher for the diesel case due to lack
of TBCs material applied on the boundaries. This increased heat
loss also presents itself as lower exhaust energy as opposed to
ethanol-fueled conditions. Comparable energy for parcel heat-
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ing was noted across all three conditions. Finally, it can be ob-
served that the ethanol best design demonstrates a higher work
percentage than ethanol baseline, and comparable with the diesel
baseline condition.

The impact of the new piston bowl geometry on in-cylinder
mixing and combustion was investigated to explore its relation-
ship with the increase in thermal efficiency. Figure 10 shows a
comparison of the temperature distributions at 20 CAD aTDC for
the (a) baseline and (b) best designs at the A50 condition. At the
time instant shown, it can be seen that the best design produces a
more uniform temperature distribution relative to the baseline de-
sign, with higher peak temperatures in the central portion of the
piston bowl. These results suggest that the design changes result
in enhanced mixing of fuel and in-cylinder charge. In addition,
for all four operating conditions higher mean temperatures were
observed at the peak of the combustion process, which promotes
higher reaction rates in the combustion chamber, increasing the
indicated thermal efficiency. Although the higher in-cylinder
temperatures lead to higher NOx production of about 10 to 12%
in the best design compared to baseline, the stoichiometric air-
fuel ratio of the investigated operating conditions enable the mit-
igation NOx emissions through a TWC aftertreatment process.

To investigate the relationship between mixing and thermal
efficiency, in-cylinder distributions of equivalence ratio and tem-
perature at key time instances during combustion were investi-
gated. Figure 11 shows the probability density function (PDF)
distribution of equivalence ratio and temperature for the same
condition (A50) at 10 and 30 CAD aTDC to represent the peak
and late stages of combustion. During peak combustion (10 CAD
aTDC), it can be observed that the best design produces a most
probable equivalence ratio of approximately 1.25 and temper-
ature of 1900K. During later stage of combustion (30 CAD
aTDC), it can be seen that for the best design both equivalence
ratio and temperature has higher PDF peak values below stoi-
chiometry (¢ ~ 0.85) and at lower temperatures, respectively.
This indicates enhanced mixing with less stratification, which
leads to more complete combustion and increased thermal effi-
ciency.

The analysis performed in this section identifies differences
between the baseline and best designs that lead to a higher 7,
across all operating conditions. Based on the observations, it is
possible to achieve comparable or superior efficiency to diesel-
fueled CI engines using ethanol if the piston bowl geometry and
spray targeting angle are optimized. The differences in the piston
bowl design and spray targeting from the best design led to im-
proved in-cylinder mixture and temperature distribution, lower
heat loss through the exhaust, and higher thermal efficiency. It
was observed that enhanced in-cylinder mixing leads to less ther-
mal stratification, and overall higher thermal efficiency across all
operating conditions.
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FIGURE 11: PDF DISTRIBUTION OF (a) EQUIVALENCE
RATIO AND (b) TEMPERATURE AT 10 AND 30 CAD ATDC
FOR A50 OPERATING CONDITION. SOLID AND DASHED
LINES REPRESENT BASELINE AND BEST DESIGN, RE-
SPECTIVELY.

5.3 Bayesian Optimization of Piston Bowl for Fixed
Injector Angle

The DoE analysis performed in the previous section features
the spray targeting angle as a dependent parameter that is varied
to ensure spray targeting of the piston bowl rim. Such design
changes would require the manufacturing of a new fuel injector
tip to adjust the spray targeting location. To identify candidate
designs with similar thermal efficiency gains while using the ex-
isting injector hardware, a new design optimization study was
needed for the C100 operating condition where the spray target-
ing angle has been set as a fixed design feature.

The dataset of 165 designs across the 11-D input space was
used to predict an optimal piston bowl geometry for a fixed injec-
tor angle (75°). A Gaussian Process model employing a Matern
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5/2 kernel function was used to construct a response surface that
forms a surrogate model over the 11-dimensional DoE dataset
with varying spray targeting angle. Then, a large number of
design candidates (n = 3e5) were sampled in a 10-dimensional
(fixed spray angle) input space to predict the merit function value
via the surrogate model. The design candidate with the largest
predicted merit value was selected and a CFD simulation was
performed to calculate the true merit value. For basis of compar-
ison, an additional DoE analysis was performed where 165 sam-
ples were selected and simulated within the 10-D design space,
where the spray targeting angle was kept as a fixed design fea-
ture. It can be observed in Figure 12 that while the prediction
based on the 11-D DoE showed an improvement around 1.45 per-
centage points from the baseline condition (blue dotted line), the
improvement obtained with a fixed spray angle 10-D DoE (gray
dashed line) was much higher (around 1.88 percentage points)
due to the increase in the sampling density. However, achieving
this 1.88 percentage points improvement in thermal efficiency
requires a new DoE analysis with fixed spray targeting angle,
which is computationally expensive.

BOpt was explored as a means to identify piston bowl de-
signs with comparable or superior performance with potentially
reduced number of design samples and computational expense.
First, a test problem named “’six-hump camel” [29] was used to
investigate the selection of an acquisition function that balances
exploration and exploitation when selecting additional samples
in the design space. The results of this study, not shown here for
the sake of brevity, indicated that the lower-confidence bound
(LCB) acquisition function ensure convergence to the global
maximum. Using the baseline design with the 75° spray tar-
geting angle as the initial condition, the BOpt model suggests
new design candidates in each design iteration that either show
promise of maximizing the thermal efficiency at the C100 con-
dition, or exist in regions of the design space that have not been
explored and are characterized with merit value estimates with
large uncertainty. At each iteration, a maximum of 8 new design
candidates were generated using local penalization as a part of
the batch optimization strategy in GPyOpt [30]. For each itera-
tion, the design candidates that could not satisfy the compression
ratio requirement of 19.2:1 were discarded. The optimization
process was carried out until convergence in the thermal effi-
ciency predictions was achieved, as defined by no change in the
predicted merit value across five consecutive iterations. It is im-
portant to note that this convergence criteria does not guarantee
convergence to the global maximum. However, careful selec-
tion of the acquisition function that balances exploration and ex-
ploitation and the use of batch optimization, or the evaluation of
multiple design candidates per iteration, seeks to prevent prema-
ture convergence to a local maximum.

Figure 12 shows the evolution of the maximum thermal ef-
ficiency during BOpt analysis (red solid line). It can be observed
that a candidate design was identified at the 5" design itera-
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tion, or after a total of 40 CFD evaluations, that exceed the per-
formance the single design determined from the DoE approach
based on samples within the 11-D design space (1.45 percentage
points), as well as the optimum design identified from the 165-
point DoE analysis performed on 10-D design space with fixed
spray targeting angle (1.88 percentage points). The optimization
was performed for five additional iterations with no increase in
the predicted merit value. The piston bowl visualized in Fig-
ure 13 achieved a thermal efficiency increase of 1.90 percentage
points relative to the baseline design. It can be observed that the
optimal design found by BOpt features a larger lip radius and
a smaller lip radius of curvature with a flatter piston bowl rim
compared to the baseline design.

—== 10D DoE pnax
------ 11D DoE prediction
© Boptmax
194 ¢ S————O_———e_—9
1.8 A
1.7 A
x
= 1.6 1
i<
1.5 A
1.4 A
1.3 4® e e &

1 2 3 4 5 6 7 8 9
Design Iteration

FIGURE 12: THE MAXIMUM INDICATED EFFICIENCY
IMPROVEMENT OBTAINED WITH BAYESIAN OPTIMIZA-
TION, COMPARED WITH THE MAXIMUM VALUES FROM
THE 10-D and 11-D DOE ANALYSES.

6 CONCLUSIONS

Alcohol-fueled compression ignition (CI) engines are a
promising solution for heavy-duty engine applications due to its
fuel chemical characteristics. However, modifications to the ex-
isting CI engine configurations are required to utilize alcohol-
based fuels, due to their low cetane number and high auto-
ignition temperatures. This study builds on upon the previous
work by authors, and investigates design optimization opportu-
nities for alcohol-fueled CI engines used in heavy duty appli-
cations. Due to low soot and easy to perform aftertreatment
NOx emissions, the optimization criteria for the alcohol-fueled
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FIGURE 13: FINAL DESIGNS PROPOSED BY THE

DOE AND THE BAYESIAN OPTIMIZATION. A LOWER-
CONFIDENCE BOUND ACQUISITION FUNCTION WAS
USED, BASED ON THE INITIAL TESTS PERFORMED ON
A SIX-HUMP CAMEL TEST PROBLEM [29].

CI engine was identified as the indicated thermal efficiency. To
identify piston bowl and spray targeting angle conditions opti-
mal for alcohol-fueled CI engine combustion, a 3-D CFD frame-
work coupled with a 1-D conjugate heat transfer (CHT) bound-
ary modeling approach was developed and validated against ex-
periments. In this work, a combined DoE and response surface
methodology was employed as a baseline framework to identify
optimal piston bowl-spray targeting angle configurations within
a multi-dimensional design space that maximize the indicated
thermal efficiency across a range of operating conditions. The
computational expense of the design study motivated the explo-
ration of a BOpt approach to identify high performing designs
with lower computational expense. Based on the findings, the
following conclusions are made:

1. A sector mesh engine CFD model with a 1-D CHT boundary
condition was developed to represent the performance of a
multi-cylinder engine using diesel and ethanol fuels across
arange of operating conditions representing a drive cycle of
interest. These simulations require ~400 times less CPU-
hours than their 3D open-cycle engine simulation counter-
parts, while providing a pressure trace profile with less than
1% deviation from fully open-cycle simulations. The sector
mesh engine simulations agree with the experimentally mea-
sured peak pressure and indicated thermal efficiency within
0.1 MPa and 2.5 percentage points, respectively.

2. The 11-D DoE analysis investigating 165 designs revealed
a candidate design that increases the ethanol-fueled CI ther-
mal efficiency between 1.9 to 2.2 percentage points across
four different operating conditions compared to the baseline
piston bowl-spray targeting angle design. The proposed de-
sign features a smaller lip radius and a larger spray targeting
angle relative to the baseline design.

3. The proposed candidate design results in the formation of
a more homogeneous distribution of equivalence ratio and
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combustion temperature, and subsequently higher indicated
thermal efficiency compared to the baseline design. All of
these factors contribute to the decrease in exhaust temper-
atures and overall higher thermal efficiency in the optimal
design across all operating conditions.

4. Bayesian optimization method was employed to find a can-
didate piston bowl design that uses the baseline spray tar-
geting angle to avoid manufacturing a new injector. This ap-
proach revealed a candidate piston bowl design that provides
a 1.9 percentage point increase in thermal efficiency, using
the baseline spray targeting angle. The number of CFD sim-
ulations in this analysis required 65% less data samples rel-
ative to the 10-dimensional DoE analysis and avoided the
computational cost of running a new DoE campaign.

The Bayesian optimization approach demonstrated in this
work is a promising tool for guiding design improvements in CI
engines operated with alternative fuels. In the future, the au-
thors plan to extend this framework to investigate optimal com-
bustion recipes for alcohol-fueled CI operating conditions (e.g.,
intake temperature, injection timing, injection pressure, injected
fuel mass, swirl ratio).
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