Improving Particle Thompson Sampling through
Regenerative Particles

Zeyu Zhou
Department of Radiology
Mayo Clinic
Rochester, MN, USA
zeyuzhou91 @gmail.com

Abstract—This paper proposes regenerative particle Thompson
sampling (RPTS) as an improvement of particle Thompson sam-
pling (PTS) for solving general stochastic bandit problems. PTS
approximates Thompson sampling by replacing the continuous
posterior distribution with a discrete distribution supported at a
set of weighted static particles. PTS is flexible but may suffer from
poor performance due to the tendency of the probability mass to
concentrate on a small number of particles. RPTS exploits the
particle weight dynamics of PTS and uses non-static particles: it
deletes a particle if its probability mass gets sufficiently small and
regenerates new particles in the vicinity of the surviving particles.
Empirical evidence shows uniform improvement across a set of
representative bandit problems without increasing the number
of particles.

Index Terms—stochastic bandit, Thompson sampling, particles

I. INTRODUCTION

Thompson sampling (TS) is a Bayesian heuristic for solving
general stochastic bandit problems, in which the rewards
are generated according to a given distribution with a fixed
unknown system parameter. TS maintains a posterior distribu-
tion on the parameter and selects an action according to the
posterior probability that the action is optimal. TS is known
for its ability to automatically handle bandit setups with a
complex information structure and its strong empirical per-
formance. However, efficient updating, storing, and sampling
from the posterior distribution in TS are only feasible for some
special cases (e.g. conjugate distributions). For general bandit
problems, one has to resort to various approximations, most of
which require specific problem structures and are complicated.

Particle Thompson sampling (PTS) is an approximation of
TS obtained by replacing the continuous posterior distribution
by a discrete distribution supported at a set of weighted static
particles. Updating the posterior distribution then becomes
updating the particles’ weights by Bayes formula, followed
by normalization. PTS applies to very general bandit setups
and is easy to implement. However, it may seem on the surface
that the crude approximation may bring down the performance
of TS significantly, because the system parameter may live in
a high-dimensional space and the set of particles in PTS is

This work was supported in part by NSF Grant Grant CCF 19-00636. It
was done while the first author was a Ph.D. student at the Electrical and
Computer Engineering Department of UTUC.

Bruce Hajek

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Champaign, IL, USA
b-hajek @illinois.edu

finite and static and may not contain the actual parameter.
Intuitively, the performance of PTS can be improved by
using more particles. However, that comes with an increasing
computational cost.

The main contribution of this paper is the proposal of
regenerative particle Thompson sampling (RPTS), an improve-
ment of PTS without using more particles. RPTS exploits
the particle weight dynamics of PTS observed in [1] that the
weights of all but a few fit particles converge to zero. RPTS is
based on the following heuristic: replace the decaying particles
in PTS with new generated particles in the vicinity of the
survivors. Empirical results show that RPTS outperforms PTS
uniformly for a set of representative bandit problems. RPTS
is very flexible and easy to implement.

The remainder of this paper is organized as follows. Section
reviews some related work and introduces the problem
setup. Section proposes and explains RPTS. Section
empirically evaluates the performance of RPTS. Section
discusses the limitations of RPTS and concludes the paper.

II. RELATED WORK AND PROBLEM SETUP

This paper is a follow up work of [[1]. Much of this section
refers to the corresponding sections of [[1]] to avoid repetition.

See Section II of [1] for a review of related work on
bandit problems, Thompson sampling (TS), particle Thompson
sampling (PTS), and some other approximations of Thompson
sampling.

The fewness of survivors in PTS is proved in [1] for
Bernoulli bandits and speculated for general stochastic bandits.
This suggests the potential of improving PTS by eliminating
some particles. [|1] also shows that the survivor particles tend
to have high fitness in terms of KL divergence.

RPTS proposed in this paper resembles particle fil-
ter/sequential Monte Carlo [2], as both contain particle up-
dating/selection and exploration/mutation processes. However,
they differ much in implementation details. RPTS maintains a
weighted set of particles and only selects/eliminates particles
when the weights satisfy a condition. Particle filter maintains
unweighted particles (after selection) and selects at every time
step. The mutation process in particle filter normally relies on a
Markovian evolution of the hidden state, which is absent in the
version of bandit problems considered here. Fundamentally,

RPTS and particle filter have different problem contexts: the
former needs to balance between exploration and exploitation,
whereas the latter does not consider exploitation.

See Section III of [1f] for the definitions and notation
setup of stochastic bandit problems, Thompson sampling,
and particle Thompson sampling. We add here the definition
of regret, the performance measure of an algorithm for a
stochastic bandit problem. Let a* £ arg maxge 4 Eg-[R(Y)|a]
denote the optimal action that maximizes the mean reward,
assuming complete knowledge about the true system parameter
0*. Let R* = Egp [R(Y)|a*] denote the maximum expected
reward. The regret of an algorithm that selects A; at time ¢
is reg, & R* — Eg- [R(Y)|A], the difference between the
expected reward of an optimal action and the action selected
by the algorithm. The cumulative regret up to time ¢ is

t
27'21 reg,.

III. RPTS: REGENERATIVE PARTICLE THOMPSON
SAMPLING

PTS often suffers from poor empirical performance, espe-
cially when the parameter space © has a high dimension and
the number of particles is not large enough. Simply increasing
the number of particles comes with a higher computational
cost. The potential to improve PTS without using more par-
ticles lies in the observation that usually not many particles
can survive. This phenomenon is proved in [1] for Bernoulli
bandits and can be verified empirically for many other bandit
problems. When the weights of the decaying particles become
so small that they become essentially inactive, continuing
using these particles would be a waste of computational
resource. Also, the survived particles are usually close to 6*
in a certain sense, where the closeness is measured by KL
divergence [1]], related to Cartesian distance in many problems.

We propose Regenerative particle Thompson sampling
(RPTS) based on the following heuristic inspired by biological
evolution: delete decaying particles, regenerate new particles
in the vicinity of the fit surviving particles. See Algorithm [I}

Steps 1-8 of RPTS are the same as PTS (Algorithm 2 in
[1])). The difference is that RPTS adds steps 9-14. Three new
hyper-parameters are introduced: fy.;, the fraction of particles
to delete; w;pqct, the weight threshold for deciding inactive
particles; wyew, the new (aggregate) weight of regenerated
particles. The CONDITION in Step 9 checks if fg; fraction
of the particles become inactive. If so, we find the lowest
weighted fye; fraction of the particles (Step 10), delete them,
and regenerate the same number of particles through RPTS-
Exploration (Step 11). In RPTS-Exploration, we first calcu-
late the empirical mean p; and covariance matrix >, of all
the particles based on their current weights w ie. uy =
ZZN:1 wy;0) and ¥, = sz\; we; (09 —) (0 — Mt)T,
then generate the new particles according to a multi-variate
Gaussian distribution. I is the K x K identity matrix. We

According to the RPTS heuristic, one may expect to calculate p; and
3¢ based on the weights of the surviving particles only, instead of all the
particles. But because the surviving particles have a total weight of at least
1 — Winact, close to 1, the difference is negligible.

Algorithm 1 Regenerative particle Thompson sampling
Input: A,),0 C RX Py(-|a), R, 0%, Pxn
Parameters: NV, fdel € (0, 1) Winact € (0,1), Wpew € (0,1)
Initialize: wo + (4,

1: fort=1,2,--- do

2: Generate 6; from Py according to weights w;_1

.’N

3: Play A; « argmaxge 4 Eg, [R(Y)|A: = d]

4: Observe Y; ~ Py« (-|A¢)

5:. forie{l,2,---,N} do

6: Wy, = Wwe—1,; Py (Ve Ar)

7 end for

8: w; < normalize w;

9: if CONDITION(w¢, N, fael, Winact) = True then

10: Tge; the indices of the lowest weighted [fie; V]
particles in Py

11: {6 4 € Ty} "B RPTS- -Exploration

12: Wi e.% for each i € Ty

13: normalize w;

14: end if

15: end for

CONDITION(U)t, N fdela Winact):

wy < sort wy in ascending order

If er detN] W ; < Winaet: Return True
Else: Return False

RPTS-Exploration:

pit < Egw, [0], Bt < Eow, [(0 — pe) (6 —)"

Generate [fuN| particles %" A(ue, +tr(3) k),
project to ©

use K tr(3;) Ik as the covariance matrix instead of ¥, in case
3 is or close to singular. This particle regeneration strategy
requires that the parameter space © is a subset of R¥. If a
newly generated particle is outside of ©, we project it to ©
in any natural wayE] Step 12 means that the newly generated
[faetN| particles are assigned a total weight of wye,, and
each of them has the same weight.

The recommended numerical values of the three hyper-
parameters for RPTS (Algorithm [T) are fio; = 0.8, Winget =
0.001, and wpey = 0.01. The behavior of the algorithm is
relatively insensitive to these values, but further tuning may
be beneficial in a given application. We comment on how these
values influence the performance of the algorithm in the rest
of this section.

faer: Analysis for Bernoulli bandits (Corollary 7 in [1]) and
empirical evidence for other bandit models indicate that with
high probability all but a few particles eventually decay in
PTS. Hence it may be attempting to make fy.; very large.
However, since the set of decaying particles is random, it may
happen that some fit particles end up decaying. Also, a not-
so-bad particle may have an oscillating weight due to counter-

2 Alternatively, we can reject it and regenerate until it is in ©.

reinforcing effectsﬂ and thus may have low weight at times.
Making f4e; not too large gives those unfortunate fit and not-
so-bad particles a chance to survive. We have tried fgo; = 0.8
and fg.; = 0.5 and both work fine.

Winact: The value of w;yqe; should be small, but if it is
too small, it may take a long time for the CONDITION in
Step 9 to become true, especially when the particles become
concentrated in a small subset of the parameter space.

Wnew: The value of w,e,, should be small, but strictly larger
than w4 There are three aspects of consideration here.
First, it is desirable that the weight re-balancing in Step 13
due to normalization has minimal effect on the weights of the
surviving particles. We discovered through experiments that it
is good for heavy weight particles to remain heavily weighted.
Therefore w;,,, should be small. Second, w,., should be
larger than wjyqc, because otherwise, the newly generated
particles in a step will be immediately deleted in the next
step. Third, the purpose of setting the value of wypeq 1S to
give some initial weights to the new particles so that they can
participate in the weight updating in the subsequent steps. If
a new particle is fit, its weight will boost up exponentially
fast; if a new particle is unfit, it will decay exponentially fast.
Therefore, the initial weights assigned to these new particles
should not significantly affect their chance of survival and their
long-term weight dynamics. Thus, as long as w,e,, is fairly
small and larger than w;yqct, the choice of its actual value
may not make much difference qualitatively.

IV. SIMULATION

We run simulations E] to compare RPTS with PTS and TS
(if possible) on the following representative bandit problems.

Example 1 (Bernoulli bandit). Let K be a positive integer.
A Bernoulli bandit problem depicts a player who picks an
arm indexed by a € {1,---, K} at each step, which gen-
erates a reward of either 0 or 1 according to a Bernoulli
distribution parameterized by 6% € [0, 1], fixed and unknown.
This is a stochastic bandit problem with A ={1,2,--- K},
Yy = {0,1}, © = [0,1]¥, Py(:|]a) ~ Bernoulli(¢,), and
R(y) = y. This is a bandit problem with separable actions
— the observation distribution for each action is parametrized
by a corresponding coordinate of 6*.

Example 2 (Max-Bernoulli bandit). Let K, M be positive
integers with K > 2 and M < K. A max-Bernoulli
bandit problem is similar to the Bernoulli bandit, with arms
indexed by {1,---,K} and each arm is associated with a
Bernoulli distribution with a fixed and unknown parameter
0. The difference is that, in a max-Bernoulli bandit problem,
the player picks M different arms at each step instead of
one. The reward is the maximum of the M binary values

3In brief, this means the weights of a set of particles positively influence
each other. But because they sum up to one, they cannot all keep increasing.
So the particles’ weights do not evolve monotonically, but oscillate unending.
This is explained and illustrated in detail for two-arm Bernoulli bandits in [3]
Appendix B.2.1.

4Code available at: https://github.com/zeyuzhou91/CISS2023_RPTS

generated by the M selected arms. This problem can be
formulated as a stochastic bandit problem with © = [0,1]%,
A= (B = {(Sc[K]:|S|=M}, Y = {0,1}. Given
a = (a1, ,ap) € A, observe Y = max,ein] Xm,
where X, ~ Bernoulli(¢;). That is, the observation model
is Py(-la) ~ Bernoulli (1 —[],,cas(1 = 0a,,)). The reward
function is R(y) = y. Actions in the max-Bernoulli bandit
problem are not separable. The number of actions, (Aif[) can
be much larger than K, the dimension of the parameter space.
The problem is considered in [4].

Example 3 (Linear bandit). A linear bandit problem has
two parameters: a positive integer K and o3, > 0. It is a
stochastic bandit problem with @ = RX, A4 = SK-1 =
{z € RX : ||z||, = 1}, the surface of a unit sphere in R¥,
Y =R and R(y) = y. Given an action a € A, we observe
Y = (6*,a) + W, where §* € ©F is fixed and unknown
and W ~ N(0,0%,) is some Gaussian noise. That is, the
observation model is Py(-|a) ~ N'((#,a) ,0%,). The problem
is named “linear” because the expected reward in each round
is an unknown linear function of the action taken. This is an
example of a bandit problem in which the dimension of the
parameter space is finite, but the number of actions is infinite.

Simulation results are shown in Figure [T} For Bernoulli and
linear bandits, TS is implemented as a benchmark. For max-
Bernoulli bandit, it is not clear how TS can be implemented.
For linear bandit, TS is implemented exactly by a Kalman fil-
ter. Each curve is obtained by averaging over 200 independent
simulations. In each simulation of PTS or RPTS, for Bernoulli
and max-Bernoulli bandits, the initial particles are generated
uniformly at random from [0, 1]%. For linear bandits, the initial
set of particles are generated uniformly at random from the
unit ball in R¥X. That is based on the assumption that we
already know that 6* is in the unit ball before running the
algorithm. In practice, such knowledge may not be available
and a common practice is to use a distribution that spreads
out wide enough so that it should cover 8*. For the purpose
of demonstrating the performance of PTS and RPTS here, our
practice should be acceptable.

Observations: (1) For PTS, the improvement from N = 100
to N = 1000 is marginal in all setups. (2) For RPTS, the
improvement from N = 100 to N = 1000 is non-negligible
in most setups. (3) RPTS outperforms PTS uniformly in all
setups, and in most of them, the improvement is significant.
(4) For Bernoulli bandit with K = 100 (Figure Ekb) and (c)),
RPTS even outperforms TS for a considerably long time. The
reason is unclear.

V. DISCUSSION AND CONCLUSION

Limitations. We don’t have any statistical guarantee for
the performance of RPTS. In fact, in all simulations, the
cumulative regret curves of RPTS eventually grow linearly
at large times. This suggests that RPTS may not be consistent
theoretically. But it doesn’t attenuate the practical value of
RPTS, given the time scale in simulations.

2000

PTS, N = 100
1750 PTS, N = 1000
L 1500 — = RPTS, N =100
£ — RPTS, N = 1000
@ 1250 Ts
o
2 1000
& -
2 750 "
£ ——
=] -
S s00 -
‘ﬂ
"
250 -
0
0 20000 40000 60000 80000 100000
t
(a) Bernoulli bandit, K = 10
0* =1[0.05,0.10,- - - ,0.50].
4000
PTS, N = 100
3500 PTS, N = 1000
. 3000 —= RPTS, N =100
£ — RPTS, N = 1000
& 2500 s
o
2 2000
=
3
2 1500
=1
S 1000
500
0
0 20000 40000 60000 80000 100000
t
(d) Bernoulli bandit, K = 100
0™ consists of N = 100 points uniformly
spaced over [0.5,0.7].
2000
1750
s 1500 ,/’
g -
& 1250 Prs
-
v
_; 1000 ’/’
o - /
2 750 <
E PTS, N = 100
O 500 PTS, N = 1000
== RPTS, N =100
250
—— RPTS, N = 1000
0

0 25000 50000 75000 100000 125000 150000 175000 200000
t

(g) Max-Bernoulli bandit, K = 10, M = 3
0" =[0.51,0.52,---,0.60].

cumulative regret

cumulative regret

cumulative regret

2000

1750

-
w
o
=]

1250

1000

~
a
=}

w
o
IS]

N
v
o

PTS, N =100

PTS, N = 1000
== RPTS, N =100
= RPTS, N =1000
_— TS

8000

7000

6000

0 20000 40000 60000

t

80000 100000

(b) Bernoulli bandit, K = 10
0* =10.51,0.52,---,0.60].

PTS, N =100

PTS, N = 1000
== RPTS, N =100
=—— RPTS, N =1000
— TS

4000
PTS, N = 100
3500 PTS. N = 1000
4 3000 == RPTS, N =100
g —— RPTS, N = 1000
o 2500 TS
W
2 2000
&
3
g 1500
=1
Y 1000
500
)

0 20000 40000

t

60000 80000 100000

(c) Bernoulli bandit, K = 100
0" consists of N = 100 points uniformly
spaced over [0.3,0.8].

7

80000

PTS, N =100

PTS, N =1000
== RPTS, N =100
=—— RPTS, N = 1000
- TS

70000 .
7
60000 7
50000
40000

30000

cumulative regret

20000

10000

a 25000 50000 75000 100000 125000 150000 175000 200000

t

(e) Linear bandit, K = 10, 0%, = 0.1,

4000

0" =10.2,---,0.2].

0 25000 50000 75000 100000 125000 150000 175000 200000

t

(f) Linear bandit, K = 100, o3, = 0.1,
6* =1[0.08,---,0.08].

1000

3500

= = NN w
S & s w o
=3 =} S o =]
s} = e o =]

w
=}
S

" PTS, N = 100
PTS, N = 1000
== RPTS, N =100
=—— RPTS, N =1000

PTS, N =100

PTS, N = 1000
== RPTS, N =100
—— RPTS, N =1000

- o @
o =3 o
=1 S =3

cumulative regret

N
o
=3

0 25000 50000 75000 100000 125000 150000 175000 200000
t

(h) Max-Bernoulli bandit, K = 10, M =3

6* = [0.05,0.10, - -, 0.50].

a 25000 50000 75000 100000 125000 150000 175000 200000
t

(i) Max-Bernoullin bandit, K = 100, M =5
0" consists of N = 100 points uniformly
spaced over [0.3,0.8].

Fig. 1: Simulation results: comparison of RPTS, PTS, and TS for Bernoulli, linear and max-Bernoulli bandits.

Conclusion. This paper proposes RPTS, an improvement of

PTS and a practical variation of Thompson sampling. RPTS
exploits the particle dynamics of PTS and is based on a
simple heuristic that deletes essentially inactive particles and
regenerate new particles in the vicinity of survivors. We show
empirically that RPTS significantly outperforms PTS in a
set of representative bandit problems. This demonstrates the
possibility of improving PTS without using more particles. A
direction for future work is to design a PTS-based algorithm
with non-static particles that has theoretical consistency guar-

antees.

(1]

and Systems, 2023.
[2]

(3]
(4]

32, ser. ICML 14.

thompson sampling,

REFERENCES

Z. Zhou and B. Hajek, “Particle thompson sampling with static particles,”
in Proceedings of the 57th Annual Conference on Information Sciences

A. Doucet, N. De Freitas, N. J. Gordon et al., Sequential Monte Carlo
methods in practice.
Z. Zhou, B. Hajek, N. Choi, and A. Walid, “Regenerative particle
* arXiv preprint arXiv:2203.08082, 2022.

A. Gopalan, S. Mannor, and Y. Mansour, “Thompson sampling for
complex online problems,” in Proceedings of the 3l1st International
Conference on International Conference on Machine Learning - Volume
JMLR.org, 2014, pp. I-100-1-108.

Springer, 2001, vol. 1, no. 2.

	Introduction
	Related Work and Problem Setup
	RPTS: Regenerative Particle Thompson Sampling
	Simulation
	Discussion and Conclusion
	References

