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Abstract—Particle Thompson sampling (PTS) is a simple
and flexible approximation of Thompson sampling for solving
stochastic bandit problems. PTS circumvents the intractability
of maintaining a continuous posterior distribution in Thompson
sampling by replacing the continuous distribution with a discrete
distribution supported at a set of weighted static particles. We
analyze the dynamics of particles’ weights in PTS for general
stochastic bandits without assuming that the set of particles
contains the unknown system parameter. It is shown that fit
particles survive and unfit particles decay, with the fitness
measured in KL-divergence. For Bernoulli bandit problems, all
but a few fit particles decay.

Index Terms—stochastic bandit, Thompson sampling, particles

I. INTRODUCTION

A bandit problem is a sequential decision problem that
elegantly captures the fundamental trade-off between exploita-
tion and exploration. Thompson sampling (TS) is a Bayesian
heuristic for solving bandit problems with an assumption that
the rewards are generated according to a given distribution
with a fixed unknown parameter. TS maintains a posterior
distribution on the parameter and selects an action according
to the posterior probability that the action is optimal. The
biggest advantage of TS is its ability to automatically handle
setups with a complex information structure, where knowing
the performance of one action may inform properties about
other actions. Also, it has strong empirical performance [1].
Theoretical performance guarantees of TS have been estab-
lished for some bandit problems [2]–[5]. However, efficient
updating, storing, and sampling from the posterior distribution
in TS are only feasible for some special cases (e.g. conjugate
distributions). For general bandit problems, one has to resort
to various approximations, most of which are complicated and
have restrictive assumptions.

Particle Thompson sampling (PTS) is an approximation of
TS in which the continuous posterior distribution is replaced
by a discrete distribution supported at a set of weighted static
particles. Updating the posterior distribution then becomes
updating the particles’ weights by Bayes formula, followed
by normalization. PTS applies to very general bandit setups
and is easy to implement. The regret of PTS is analyzed in
[5], with the assumption that the finite support set of the prior
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includes the unknown true system parameter (see Section II for
more discussion). However, for PTS when the true parameter
exists in a continuum, that assumption is unreasonable. In fact,
without that assumption, PTS may be inconsistent, i.e., the
running average regret may not converge to zero.

The main contribution of this paper is an analysis of
the dynamics of the particles’ weights in PTS for general
stochastic bandit problems without assuming that the set of
particles contains the unknown system parameter. The main
result is a drift-based sample-path necessary condition on
the surviving particles, illuminating the phenomenon that fit
particles survive and unfit particles decay (Proposition 1). A
consequent result applied to Bernoulli bandit problems shows
that not many particles can survive in PTS with randomly
generated particles (Corollary 7). The results shed light on
potential improvements of PTS.

The paper is organized as follows. Section II lists some
related work. Section III introduces the general setup and
notation of stochastic bandit problems and PTS. Section IV
provides a sample-path analysis of PTS for general stochastic
bandit problems. Section V draws a corollary of PTS for
Bernoulli bandit problems. Section VI concludes the paper.

II. RELATED WORK

See [6] and [7] for a survey and recent developments in
bandit problems. Upper-confidence-bound (UCB) algorithms
have certain theoretical guarantees for some simple bandit
models [8], [9]. KL-UCB [9] even meets a lower bound on
regret established in [10]. Empirically, UCB algorithms are
not very competitive in the non-asymptotic regime due to their
inefficient exploration and inability to take advantage of the
problem structure for complex bandit problems.

Thompson sampling (TS) [11] has strong empirical per-
formance [1] and can handle rather general and complex
stochastic bandit problems [5], [12]. TS can be implemented
efficiently in setups where a conjugate prior exists for the
reward distribution. In cases where a conjugate prior is not
available, one need to resort to approximations of TS, such
as Gibbs sampling [13], Laplace approximation [1], Langevin
Monte Carlo [14], [15], and boostrapping [16]. These ap-
proximations are either complicated, or rely on restrictive
assumptions. For example, Laplace approximation requires
strict concavity of the log of the posterior distribution and the
calculation of its Hessian. The version of boostrapping studied



in [16] only applies to Bernoulli bandits and does not naturally
generalize to more complex problems. See [12] (Chapter 5) for
a detailed discussion of these approximations.

To the best of our knowledge, the term particle Thompson
sampling first appeared in [17], where the authors apply
PTS as an efficient approximation of TS to solve a matrix-
factorization recommendation problem. In their work, the
particles are not static, but are incrementally re-sampled at
each step through an MCMC-kernel. The re-sampling method
relies heavily on the specific problem structure. It is not clear
how it can be generalized to other bandit problems.

Ensemble sampling [18] is similar to the idea of PTS
because it aims to maintain a set of particles (called “models”
in the paper) independently and identically sampled from the
posterior distribution in order to approximate TS. Particles in
ensemble sampling are unweighted. A major restriction of the
algorithm is that it requires Gaussian noise in the observa-
tion. Also, except in special setups, updating the particles in
ensemble sampling requires solving an optimization problem
that accounts for all the data from the start to the current time.

The version of PTS in this paper is first considered in [5],
which analyzes TS for general stochastic bandit problems.
For technical tractability, [5] assumes the prior distribution
of the parameter is supported over a finite (possibly huge) set
instead of a continuum. Therefore, TS in [5] is tantamount
to PTS, with the finite prior support set equivalent to a
set of particles. The main result in [5] is that with high
probability the number of plays of non-optimal actions is
upper bounded by B + C log T , where B,C are problem-
dependent constants and T is the time horizon. This result
relies on a realizability assumption (called “grain of truth”
in the paper): the finite support set of the prior includes
the true system parameter. However, for PTS when the true
parameter exists in a continuum, the realizability assumption
is unreasonable. In our paper, PTS is analyzed without the
realizability assumption. The analysis is inspired by [5] on
how KL divergence comes into play in the measurement of
the fitness of the particles.

III. SETUP AND PRELIMINARIES

A stochastic bandit problem contains the following el-
ements: an action set A, an observation space Y , a pa-
rameter space Θ, a known observation model Pθ(·|a) and
a reward function R : Y → R. Consider a player who
acts at steps t = 1, 2, · · · . At step t, the player takes an
action At ∈ A, then observes Yt ∈ Y according to the
observation model Pθ∗(·|At) for some fixed and unknown
θ∗ ∈ Θ, independent of past observations. The observation
Yt then incurs a reward Rt = R(Yt). The goal of the
player is to maximize the cumulative reward. 1 For notational

1The problem can be made more general by adding contexts. Let C be a
context set. The observation model becomes Pθ(·|a, c). At each step of the
game, the game player receives an arbitrary context ct ∈ C before taking
action At. The observation Yt follows distribution Pθ∗ (·|At, ct). This is
known as the contextual stochastic bandit model, for which PTS still works.
The reason we do not use this more general model here is that we want to
emphasize the key word stochastic, not contextual.

convenience, we denote an instance of the stochastic bandit
problem by StochasticBandit(A,Y,Θ, Pθ(·|a), R, θ∗). Let
Ht = (A1, · · · , At, Y1, · · · , Yt) denote the history of actions
and observations up to time t. An algorithm is a (possibly
randomized) mapping from Ht−1 to A, for each step t.

Thompson sampling (TS) is an algorithm for solving
stochastic bandit problems, shown in Algorithm 1. TS is often
difficult to implement in practice because πt may not have a
closed form. Even if a closed form can be obtained, it is not
clear how it can be efficiently stored and be sampled from.

Algorithm 1 Thompson sampling
Inputs: A,Y,Θ, Pθ(·|a), R, θ∗

Initialize: prior π0 over Θ
1: for t = 1, 2, · · · do
2: Sample θt ∼ πt−1

3: Play At ← argmaxa∈A Eθt [R(Y )|At = a]
4: Observe Yt ∼ Pθ∗(·|At)

5: Update πt: πt(θ) =
Pθ(Yt|At)πt−1(θ)∫︁

Θ
Pθ(Yt|At)πt−1(θ) dθ

∀θ ∈ Θ.
6: end for

The idea of particle Thompson sampling (PTS) (Algorithm
2) is to approximate πt by a discrete distribution wt =
(wt,1, · · · , wt,N ) supported on a finite set of fixed particles
PN =

{︁
θ(1), · · · , θ(N)

}︁
⊂ Θ, where N is the number of

particles.

Algorithm 2 Particle Thompson sampling
Inputs: A,Y,Θ, Pθ(·|a), R, θ∗,PN

Initialize: w0 ← ( 1
N , · · · , 1

N )

1: for t = 1, 2, · · · do
2: Generate θt from PN according to weights wt−1

3: Play At ← argmaxa∈A Eθt [R(Y )|At = a]
4: Observe Yt ∼ Pθ∗(·|At)
5: for i ∈ {1, 2, · · · , N} do
6: ˜︁wt,i = wt−1,i Pθ(i)(Yt|At)
7: end for
8: wt ← normalize ˜︁wt

9: end for

In practice, one can use a pre-determined set of points PN

in Θ, or randomly generate some points from Θ. Θ may
not contain θ∗. ˜︁wt,i is the unnormalized weight of particle
i at time t. Step 6 can be alternatively implemented by˜︁wt,i = ˜︁wt−1,iPθ(i)(Yt|At), with the initialization ˜︁w0 = w0,
because it yields the same normalized vectors wt. PTS is
very flexible because it does not require any structure on the
observation model Pθ(·|a), as long as the model is given. Steps
5-7 in Algorithm 2 are easy to implement: they require only
multiplication and normalization. For notational convenience,
we denote an instance of particle Thompson sampling with
particle set PN by PTS(PN ).

IV. PTS FOR GENERAL STOCHASTIC BANDITS

This section contains an analysis of PTS for general
stochastic bandits. The main result is a sample-path necessary



condition for surviving particles based on drift information.
Let It ∈ [N ] be the index of the particle chosen at

time t. Thus, It ∼ wt−1. Let At ∈ A be the arm chosen
at time t. Let A : Θ → A be the function mapping
from a particle to the corresponding optimal arm, defined
by A(θ) = argmaxa∈A Eθ[R(Y )|a]. If there are multiple
maximizers, let A(θ) be one of them selected deterministically.
With a slight abuse of notation, we sometimes abbreviate
A(θ(i)) by A(i). So At = A(It). For any x ∈ RN ,
define supp(x) ≜ {i ∈ [N ] : xi ̸= 0} and argmaxx ≜{︁
i ∈ [N ] : xi = maxj∈[N ] xj

}︁
. Recall from Algorithm 2 that

the unnormalized weights of the particles evolve by the
equation ˜︁wt,i = ˜︁wt−1,iPθ(i)(Yt|At), where Yt ∼ Pθ∗(·|At).
Let Lt,i ≜ ln ˜︁wt,i − ln ˜︁wt−1,i and Lt = (Lt,1, · · · , Lt,N ).

Definition 1. (Drift matrix) For a given
StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗) problem and
a set of particles PN ⊂ Θ, the drift matrix D is an N × N
matrix given by:

Dij ≜ E [ln ˜︁wt,j − ln ˜︁wt−1,j |It = i]

= E[lnPθ(j)(Yt|At)|It = i]

= EY∼Pθ∗ (·|A(i)) [lnPθ(j)(Y |A(i))]

for i, j ∈ [N ]. In words, Dij is the (exponential) drift of
particle j when particle i is chosen.

The following properties of D are readily verified: 1) Entries
in D are non-positive; 2) D is independent of time, fundamen-
tally because { ˜︁wt} is a time-homogeneous Markov process; 3)
Row i1 and row i2 of D are the same if A(i1) = A(i2). There-
fore D can have at most |A| distinct rows. In what follows we
consider drift matrices D and D′ to be equivalent if each row
in D′ is equal to the corresponding row of D up to an additive
constant. Therefore, D remains in the same equivalence class
if for each i the constant −E [lnPθ∗(Y |A(i))] is added to row
i. Therefore, a representative choice of D is the following:

Dij
equivalent

= −EY∼Pθ∗ (·|A(i))

[︃
ln

Pθ∗(Y |A(i))

Pθ(j)(Y |A(i))

]︃
= −KL

(︁
Pθ∗(·|A(i))

⃓⃓⃓⃓
Pθ(j)(·|A(i))

)︁
.

Here Dij is the negative of KL divergence between distribu-
tions Pθ∗(·|A(i)) and Pθ(j)(·|A(i)). In this sense, the ith row
of D gives the relative fitness of the particles for action A(i),
and the jth column of D gives the fitness of particle j for
action A(i) varying over all i.

We need the following two assumptions due to technical
tractability for the main result.

Assumption 1 (Sample path assumptions). Consider the prob-
lem StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗) and suppose
PTS(PN ) is run for a set of N particles PN ⊂ Θ. Assume
that the sample path satisfies the following: there exists a non-
empty set S ⊂ [N ] that satisfies

(a) (Non-zero decaying rate gap) For any i ̸∈ S and j ∈ S,
lim supt→∞

1
t (ln ˜︁wt,i − ln ˜︁wt,j) < 0, and

(b) (Existence of survivor limiting distribution) Gt =
(ln ˜︁wt,i − ln ˜︁wt,j : i, j ∈ S) ∈ R|S|×|S| has a limit-
ing empirical distribution µG. In other words, for
any bounded continuous function h on R|S|×|S|,
1
t

∑︁t
τ=0 h(Gτ )→ EµG

[h].
(c)

⃓⃓⃓
1
t

∑︁t
τ=1 1{Iτ=i} − 1

t

∑︁t−1
τ=0 wτ,i

⃓⃓⃓
→ 0 as t → ∞ for

any i ∈ [N ].
(d) For any i ∈ [N ] that is used infinitely many times,

1
M

∑︁M
m=1 Lti(m) → Di as M → ∞, where ti(m) is

the mth time particle i is chosen and Di is the ith row
of the drift matrix D.

The set S can be thought of as the set of surviving particles.
Assumption 1(a) says the (unnormalized) weight decaying
rate of a non-surviving particle is strictly less than that of a
surviving particle. Consequently, the weight of a non-surviving
particle converges to 0 exponentially fast. Assumption 1(b)
says that the process Gt has some ergodicity property. It is
similar to saying that Gt is Harris recurrent, except Gt is not
Markov, because it excludes information about particles not in
S. Note that knowing any row of Gt determines all the other
entries of Gt. 2 In Assumption 1(c), 1{Iτ=i} is a Bernoulli
random variable with mean wτ−1,i for each τ . Therefore
Assumption 1(c) holds with probability one by the Azuma-
Hoeffding inequality. Assumption 1(d) holds with probability
one by the definition of D and the strong law of large numbers.

Assumption 2 (Boundedness of observation model). Assume
that the observation model Pθ(·|a) satisfies: there exists con-
stants b0, B0 > 0, such that for any θ, θ′ ∈ Θ, b0 ≤ Pθ(y|a)

Pθ′ (y|a)
≤

B0 for any y ∈ Y, a ∈ A.

The assumption can be easily verified for problems in which
|Y| <∞ and |A| <∞.

Define a probability vector π over [N ] by πi = limt→∞
1

t+1

∑︁t
τ=0 wτ,i. That is, πi is the limiting running average

weight of particle i, if it exists. Proposition 1 shows the
relationship between π and the drift matrix D and provides a
necessary condition for surviving particles in a sample path.

Proposition 1 (Sample-path necessary surviving condition).
Let StochasticBandit(A,Θ,Y, Pθ(·|a), R, θ∗) be a given
problem and PN ⊂ Θ a given set of N particles. Suppose
Pθ(·|a) satisfies Assumption 2. Let D be the drift matrix.
Consider running PTS(PN ) for the problem. For a sample
path of the algorithm under Assumption 1, π is well defined
and satisfies

argmax(πD) = supp(π) = S , (1)

where S is the set in Assumption 1.

2Remark on Assumption 1(a-b): Roughly speaking, one may show that
1
t
ln ˜︁wt,j converges to an It-dependent weighted average of the jth column

of D, i.e. a sample path average fitness. Assumption 1(a) holds when the
sample path average fitness of each non-surviving particle i is less than that
of each surviving particle j. There are setups in which the weights of the
surviving particles oscillates forever and do not converge. But as long as their
ratios are stochastically bounded, Assumption 1(b) holds. More intuition and
evidence for Assumption 1(a-b) can be found in the analysis of PTS for the
two-arm Bernoulli bandit problem ( [19], Appendix B.1-B.3).



The proposition says that, if a set of particles S were to sur-
vive in a sample path, they must have a limiting average selec-
tion distribution π that satisfies (1). The jth coordinate of πD,
(πD)j , is equal to ⟨π,D·j⟩, where D·j = (D1j , · · · , DNj) is
the jth column of D, the drifts of particle j when particles
1, 2, · · · , N are chosen, which we recall can be interpreted as
the fitness of particle j. Thus, (πD)j is the average fitness
of particle j, assuming distribution π is used to select a
random action A(i). Therefore, (1) means that, with respect
to distribution π, each surviving particle has the same average
fitness, and the average fitness of each non-surviving particle
is strictly smaller. In this sense, fit particles survive, unfit
particles decay. Note the following caveat: Proposition 1 is a
sample-path result. The actual set of survivors may be random.
Thus, there may be more than one π that satisfies (1). If the
surviving particles do not all induce the global optimal action
A(θ∗), then the cumulative regret will grow linearly over time.
Thus, in general PTS can be inconsistent.

The rest of this section is the proof of Proposition 1. All
the lemmas in this section deal with a sample path under
Assumption 1.

Lemma 2. The probability vector π is well defined. In
addition, supp(π) = S. That is, if i ̸∈ S, then πi = 0; if
i ∈ S, then πi > 0.

Proof. For i ̸∈ S,

wt,i =
˜︁wt,i∑︁N

j=1 ˜︁wt,j

=
eln ˜︁wt,i∑︁N
j=1 e

ln ˜︁wt,j

≤ eln ˜︁wt,i

eln ˜︁wt,j0

for any j0 ∈ S. By Assumption 1(a), wt,i → 0. Hence πi =
limt→∞

1
t+1

∑︁t
τ=0 wt,i = 0.

Next, define

w′
t,i ≜

{︄
0 if i /∈ S

wt,i∑︁
j∈S wt,j

if i ∈ S .

Fix i ∈ S.

w′
t,i − wt,i = wt,i

(︄
1∑︁

j∈S wt,j
− 1

)︄
= wt,i

∑︁
j ̸∈S wt,j∑︁
j∈S wt,j

= wt,i

∑︁
j ̸∈S wt,j

1−
∑︁

j ̸∈S wt,j
.

Since the set [N ]\S is finite,
∑︁

j ̸∈S wt,j → 0. It follows
that w′

t,i − wt,i → 0. Hence

1

t+ 1

t∑︂
τ=0

w′
τ,i −

1

t+ 1

t∑︂
τ=0

wτ,i → 0 . (2)

Now, observe that w′
t,i can be determined from {ln ˜︁wt,j}j∈S

by w′
t,i = eln ˜︁wt,i∑︁

j∈S eln ˜︁wt,j
. Therefore, w′

t,i is a continuous and

bounded function of {ln ˜︁wt,j}j∈S , and hence of Gt. We write
this as w′

t,i = w′
i(Gt). According to Assumption 1(b),

1

t+ 1

t∑︂
τ=0

w′
τ,i → EµG

[w′
i] . (3)

Combining (2) and (3), we obtain πi = EµG
[w′

i]. Since w′
i

is a positive function and µG is a distribution, we conclude
that πi > 0 for i ∈ S.

Finally,∑︂
i∈[N ]

πi =
∑︂
i∈[N ]

lim
t→∞

1

t+ 1

t∑︂
τ=0

wτ,i

(i)
= lim

t→∞

∑︂
i∈[N ]

1

t+ 1

t∑︂
τ=0

wτ,i

= lim
t→∞

1

t+ 1

t∑︂
τ=0

∑︂
i∈[N ]

wτ,i = lim
t→∞

1 = 1 ,

where in step (i) we switch the limit and summation because
all summands are non-negative and N is finite. Thus π is well
defined.

Lemma 3. 1
t

∑︁t
τ=1 Lτ → πD as t→∞.

Proof. Let Mi(t) be the number of times particle i has been
played up to time t. Let τi(m) be the mth time that particle i
is played. Then

1

t

t∑︂
τ=1

Lτ =
1

t

N∑︂
i=1

Mi(t)∑︂
m=1

Lτi(m)

=

N∑︂
i=1

Mi(t)

t

1

Mi(t)

Mi(t)∑︂
m=1

Lτi(m) .

Since Mi(t) =
∑︁t

τ=1 1{Iτ=i}, by Assumption 1(c) and the
definition of πi,

Mi(t)
t → πi for all i ∈ [N ]. If particle

i is played infinitely many times in the sample path, then
1

Mi(t)

∑︁Mi(t)
m=1 Lτi(m) → Di as t → ∞ by Assumption 1(d).

If particle i is played finitely many times, thus Mi(t) ≤
C for some constant C for all t, then Mi(t)

t → 0 and
limt→∞

1
Mi(t)

∑︁Mi(t)
m=1 Lτi(m) <∞. Either case, we have

Mi(t)

t

1

Mi(t)

Mi(t)∑︂
m=1

Lτi(m) → πiDi as t→∞ .

It follows that

1

t

t∑︂
τ=1

Lτ →
N∑︂
i=1

πiDi = πD as t→∞ .

Lemma 4. If a real-valued sequence {xt}t≥1 satisfies
(1) {xt} has a limiting distribution µ.
(2) {xt} is B-Lipschitz: there exists some constant B such

that |xt − xs| ≤ B |t− s| for all t, s ∈ N+.
Then limt→

1
txt = 0.

Proof. We show lim supt→∞
1
txt ≤ δ for any δ > 0. Suppose

there exists δ > 0 such that lim supt→∞
1
txt > δ. Condition

(1) implies that, there exists c ∈ R such that

1

t

t∑︂
τ=1

1{xτ≥c} ≤
δ

2B
for all t sufficiently large . (4)



Let {t1, t2, · · · , tn, · · · } be a sequence of positive integers
such that limn→∞ tn = ∞ and 1

tn
xtn ≥ δ for all n. Thus

xtn ≥ δtn for all n. Since {xt} is B-Lipschitz, for any
t ∈ [1, tn],

xt ≥ xtn −B(tn − t) ≥ δtn −B(tn − t) = Bt− (B − δ)tn .

It follows that, if t ≥ c
B +

(︁
1− δ

B

)︁
tn, then xt ≥ c. Therefore,

for tn > 2c
δ ,

1

tn

tn∑︂
τ=1

1{xτ≥c} ≥
1

tn

tn∑︂
τ=1

1{τ≥ c
L+(1− δ

L )tn}

=
1

tn

[︃
tn −

(︃
c

B
+

(︃
1− δ

B

)︃
tn

)︃]︃
=

δ

B
− c

Btn
>

δ

2B
,

which contradicts (4). Therefore, lim supt
1
txt ≤ δ for any

δ > 0. Similarly, we can show that lim inft→∞
1
txt ≥ −δ for

any δ > 0. We conclude that limt→∞
1
txt = 0.

Lemma 5. If i, j ∈ S, then (πD)i = (πD)j .

Proof. Consider i, j ∈ S. Then

1

t

t∑︂
τ=1

Lτ,i −
1

t

t∑︂
τ=1

Lτ,j =
1

t

t∑︂
τ=1

(Lτ,i − Lτ,j)

=
1

t

t∑︂
τ=1

[(ln ˜︁wτ,i − ln ˜︁wτ−1,i)− (ln ˜︁wτ,j − ln ˜︁wτ−1,j)]

=
1

t
[(ln ˜︁wt,i − ln ˜︁w0,i)− (ln ˜︁wt,j − ln ˜︁w0,j)]

=
1

t
(ln ˜︁wt,i − ln ˜︁wt,j) =

1

t
Gt(i, j) .

The third equality above used ln ˜︁w0,i = ln ˜︁w0,j = 0 by
initialization (although that is not important, as long as the
difference is finite). By the dynamics of the weights {wt,i}
and {wt,j}, we have that

Gt+1(i, j) = Gt(i, j) + ln
Pθ(i)(Yt+1|At+1)

Pθ(j)(Yt+1|At+1)
.

By Assumption 2, |Gt+1(i, j)−Gt(i, j)| ≤ B, where B =
max{|ln b0| , |lnB0|}. Thus {Gt(i, j)}t≥1 is an B-Lipschitz
sequence. Therefore

(πD)i − (πD)j
(i)
= lim

t→∞

(︄
1

t

t∑︂
τ=1

Lτ,i −
1

t

t∑︂
τ=1

Lτ,j

)︄
= lim

t→∞

1

t
Gt(i, j)

(ii)
= 0 ,

where equality (i) is due to Lemma 3 and equality (ii) equality
is due to Lemma 4 and Assumption 1(b).

Lemma 6. If i ̸∈ S and j ∈ S, then (πD)i < (πD)j .

Proof. Similar to the proof of Lemma 5, we have

1

t

t∑︂
τ=1

Lτ,i −
1

t

t∑︂
τ=1

Lt,j =
1

t
(ln ˜︁wt,i − ln ˜︁wt,j)

The LHS converges to (πD)i − (πD)j as t→∞ by Lemma
2. The RHS converges to a strictly negative value as t → ∞
by Assumption 1(a). Thus (πD)i < (πD)j .

Proof of Proposition 1. Lemma 2 shows supp(π) = S.
Lemma 5 and Lemma 6 show argmax(πD) = S. Proposition
1 is thus proved.

V. PTS FOR BERNOULLI BANDITS

Let K be a positive integer. A Bernoulli bandit problem
depicts a player who picks an arm indexed by a ∈ {1, · · · ,K}
at each step, which generates a reward of either 0 or 1 accord-
ing to a Bernoulli distribution parameterized by θ∗a ∈ [0, 1],
fixed and unknown. This is a stochastic bandit problem with
A = {1, 2, · · · ,K}, Y = {0, 1}, Θ = [0, 1]K , Pθ(·|a) ∼
Bernoulli(θa), and R(y) = y. This is a bandit problem with
separable actions – the observation model for each action is
parametrized by a corresponding coordinate of θ∗.

Applying Proposition 1 to Bernoulli bandit with randomly
generated particles in PTS yields the following corollary that
says that not many particles can survive.

Corollary 7. Let PN be a set of N points generated inde-
pendently and uniformly at random from [0, 1]K . Consider
running PTS(PN ) for a given Bernoulli bandit problem with
K arms and with θ∗ ∈ [0, 1]K . Suppose that any sample path
satisfies Assumption 1. Then with probability one, at most K
particles can survive, i.e. |supp(π)| ≤ K.

We suspect that something similar can be said about the
fewness of survivors for other bandit problems in which the
action space A has a finite dimension K (the total number of
actions |A| may be much larger). But we don’t have a proof.

For more evidence and intuition of Proposition 1 and
Corollary 7, see [19] (Appendix B), where a thorough analysis
of PTS for two-arm Bernoulli bandit is provided. The rest of
this section is about the proof of Corollary 7.

Proof of Corollary 7. If N ≤ K, then |supp(π)| ≤ N ≤ K
trivially. Let N > K. The observation model of a Bernoulli
bandit problem satisfies Assumption 2 trivially. By Proposition
1, with probability one, for any sample path, the probability
vector π is well-defined and π and S satisfy argmax(πD) =
supp(π) = S, which implies the following constraints on π:

πi = 0 for i ̸∈ S ,

(πD)i = (πD)j for all i, j ∈ S ,
(5)

where S is the subset of [N ] in Assumption 1. Suppose |S| >
K. The remainder of the proof shows that, with probability
one, any π that satisfies (5) is the all-zero vector (thus π cannot
be a probability vector). This leads to a contradiction with
|S| > K and therefore we conclude that |S| ≤ K.

We construct a matrix ˜︁D ∈ RK×N and a probability (row)
vector ˜︁π ∈ [0, 1]K from D and π, as follows.

Recall that, row i1 and row i2 of D are the same if A(i1) =
A(i2). Since there are K arms, there can be at most K unique



rows in D. Let ˜︁D be D reduced to its unique K rows. That is,˜︁Dk = E[Lt|At = k] (which is independent of t) for k ∈ [K].
For k ∈ [K], let ˜︁πk =

∑︁
i:i∈S,A(i)=k πi. That is, ˜︁πk is the

sum of the asymptotic weights of surviving particles with the
optimal arm k. If no i ∈ S satisfies A(i) = k, then ˜︁πk = 0. It
is easy to verify that ˜︁π1 + · · ·+ ˜︁πK = 1.

Now, observe that,

πD =

N∑︂
i=1

πiDi =
∑︂
i∈S

πiDi =

K∑︂
k=1

∑︂
i:i∈S,A(i)=k

πiDi

=

K∑︂
k=1

∑︂
i:i∈S,A(i)=k

πi
˜︁Dk =

K∑︂
k=1

⎛⎝ ∑︂
i:i∈S,A(i)=k

πi

⎞⎠ ˜︁Dk

=

K∑︂
k=1

˜︁πk
˜︁Dk = ˜︁π ˜︁D .

Therefore, the constraints (5) on π imply the following
constraints on ˜︁π:

(˜︁π ˜︁D)i = (˜︁π ˜︁D)j for all i, j ∈ S . (6)

Let ˜︁Di be the ith column of ˜︁D. Then (˜︁π ˜︁D)i =
⟨︂˜︁π, ˜︁Di

⟩︂
.

Constraints (6) can thus be re-written as⟨︂˜︁π, ˜︁Di − ˜︁Dj

⟩︂
= 0 for all i, j ∈ S . (7)

For a Bernouli bandit problem, the entries in ˜︁D =

[ ˜︁Dkj ]1≤k≤K,1≤j≤N are in the form ˜︁Dkj = −d(θ∗k||θ
(j)
k ),

where d(x||y) = x ln x
y + (1 − x) ln 1−x

1−y for x, y ∈ [0, 1]

and θ
(j)
k is uniformly distributed in [0, 1] and is independent

across k ∈ [K] and j ∈ [N ]. Therefore, since |S| > K, with
probability one, the set of vectors { ˜︁Di − ˜︁Dj : i, j ∈ S} spans
RK , in which case the only ˜︁π ∈ RK that satisfies (7) is the
all-zero vector. By construction of ˜︁π, with probability one, the
only vector π ∈ RN that satisfies (5) is the all-zero vector.

VI. CONCLUSION AND DISCUSSION

This paper analyzes the particle dynamics of PTS for
general stochastic bandit problems. It shows a sample-path
particle surviving condition, illuminating the phenomenon that
fit particles survive and unfit particles decay. Applying PTS
with randomly generated particles to Bernoulli bandits with K
arms, it is shown that no more than K particles can survive.

The fitness of a particle is measured in terms of KL
divergence with respect to the true system parameter θ∗, which
in many particular problems translates to spatial closeness to
θ∗. Since results in this paper suggest that not many particles
can survive, continuing using these particles after their weights
become negligible is a waste of computational resources.
One possible improvement of PTS is to periodically delete
unfit decaying particles and regenerate new particles that are
spatially close to the fit surviving particles. In this way, the
set of particles may get closer to θ∗ and induce actions closer
to the global optimal action A(θ∗). We leave this as future
work. Also, the necessary survival condition in Proposition 1
may be further explored to provide insight on which particles
can survive for some specific bandit problems.
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