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Abstract

The phenomena of influence diffusion on social networks have
received tremendous research interests in the past decade. While
most prior works mainly focus on predicting the total influence
spread on a single network, a marketing campaign that exploits
influence diffusion often involves multiple channels with various
information disseminated on different media. In this paper, we
introduce a new influence estimation problem, namely Content-
aware Multi-channel Influence Diffusion (CMID), and accordingly
propose CMINet to predict newly influenced users, given a set of
seed users with different multimedia contents. In CMINet, we first
introduce DiffGNN to encode the influencing power of users (nodes)
and Influence-aware Optimal Transport (I0T) to align the embed-
dings to address the distribution shift across different diffusion
channels. Then, we transform CMID into a node classification prob-
lem and propose Social-based Multimedia Feature Extractor (SMFE)
and Content-aware Multi-channel Influence Propagation (CMIP) to
jointly learn the user preferences on multimedia contents and pre-
dict the susceptibility of users. Furthermore, we prove that CMINet
preserves monotonicity and submodularity, thus enabling (1 —1/e)-
approximate solutions for influence maximization. Experimental
results manifest that CMINet outperforms eleven baselines on three
public datasets.
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1 Introduction

Online social networks are an integral part of many people’s lives
nowadays. By sharing experiences and opinions in the form of text,
audio, and videos on social media platforms, e.g., Twitter [43], Face-
book [4], and Tiktok [27], users’ social influence may implicitly (or
even explicitly) affect others’ emotions, opinions, or behaviors. Over
the past decade, many research works have been proposed to exploit
social influence in various applications, e.g., recommendation [50],
advertising [38], and social campaigns [37]. For those applications,
modeling the process of influence diffusion is essential and thus
attracts significant interests from the research community. Early ef-
forts on applications exploiting social influence are mainly based on
the Independent Cascades (IC) model [20] and the Linear Threshold
(LT) model [13]. The diffusion process of these models, starting with
a set of pre-selected seed nodes for activation, iteratively activates
the neighbors of active nodes based on some activation criteria,
which generally assume fixed-yet-unknown interpersonal influence.
Since then, several variants of the influence estimation problem
have been formulated to incorporate various contextual features,
e.g., topic [5, 29], location [6, 30], and time [1, 52], to improve
the effectiveness of the diffusion models. However, these methods
usually rely on oversimplified assumptions that do not match the
real-world requirements, i.e., the influence only propagates to the
direct neighborhood with a predefined weight, thereby failing to
model users’ diverse online behaviors, especially under the multi-
media contents [2]. Thus, the accuracy of the spread estimation is
undermined [48].

Generally speaking, prior influence diffusion models rarely con-
sider the following aspects that are prevalent in real-world sce-
narios. 1) Multi-channel Scenario. An online social networking
service, e.g., Facebook [14] or TikTok [47], typically facilitates var-
ious interactive actions, e.g., like, share and comment, and thus
provides different channels for influence diffusion. However, con-
ventional spread estimation methods [36] only focus on one specific
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Figure 1: The illustration of CMINet. i) First, Diffusion Graph Neural Network (Diff GNN) extracts the embeddings of user nodes
{H™},c[1,m] for each channel of the multi-channel network G = {G™},c[1, M- ii) Then, Influence-aware Optimal Transport (I0T)

aligns the user embeddings in each channel of G, - - - ,GM to that of the destination G' to obtain the transported embeddings
{X™} e[1,m]- 1ii) Meanwhile, Social-aware Multimedia Feature Extractor (SMFE) aggregates diverse types of multimedia contents

C = {c1,-- ,cn} to a content embedding ¢ by considering the seed set s in the m'" diffusion channel. iv) Content-aware
Multi-channel Influence Propagation (CMIP) predicts the probability §I" of node v; on the m'" channel by social propagation

and channel propagation.

action on a single-channel network or assume different actions in-
cur independent influence diffusion processes and thus use separate
networks to model each type of influential activity. Realistically,
the different interactive actions may all influence the user and thus
likely affect each other in the diffusion process. While most prior in-
fluence diffusion models [5, 11] progressively estimate the diffusion
probability on individual social connections, they do not adequately
incorporate other influence factors, e.g., the correlation between
different actions. Thus, we explore a multi-channel network to cap-
ture correlated actions jointly. 2) Multimedia Content. In addition
to the topology of the underlying social network, the user-to-user
influence diffusion usually depends on the diverse multimedia con-
tent of campaign materials [34]. For example, a sports fan may be
inclined to retweet a poster of shoes endorsed by basketball stars,
while a fashion lover may be attracted to some videos of boutique
events. While several prior works on topic-aware models [5, 11]
explore tagged contents, e.g., advertorial and campaign, to obtain
the probabilistic models for diffusion, they are usually constrained
by the limited number of topic/themes and thus can not process
multimedia to support a fine-grained susceptibility prediction.

In this paper, we introduce a new influence estimation prob-
lem, Content-aware Multi-channel Influence Diffusion (CMID), which
predicts the influenced users given the following two inputs: i)
Multi-channel Seed Set (i.e., the initially activated nodes of a
multi-channel network), and ii) Multimedia Contents (i.e., the
initial representations of contents, extracted from the campaign
materials, corresponding to various types of multimedia). CMID
is a challenging problem since users have diverse personal pref-
erences on multimedia contents and varied influences on friends
in a multi-channel network. For social influence diffusion, Graph
Neural Network (GNN) [22, 41] is a natural tool that aggregates
multi-hop neighbors’ information by stacking multiple layers as
the influence diffuses across many users. Each layer may model
the users’ interactions with the multimedia contents of various
campaigns to estimate the spreading process on the multi-channel
network. Exploiting the strength of GNN, we propose a new learn-
ing framework, namely CMINet. As illustrated in Fig. 1, CMINet
consists of four components: i) Diffusion Graph Neural Network
(DiffGNN), i) Influence-Aware Optimal Transport (IOT), iii) Social-
based Multimedia Feature Extractor (SMFE), and iv) Content-Aware
Influence Multi-channel Propagation (CMIP).
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We first propose DiffGNN to encode the user influence in sep-
arate embedding spaces of different diffusion channels into user
embeddings for other components of CMINet. Unlike conventional
GNNs, which only aggregate the 1-hop information using uniform
weights [22] or an attention mechanism [40], a number of DiffGNNs
collectively capture the user behaviors in the diffusion process to
measure the global influence of each node (user). After encoding
the user influence as the node embedding by DiffGNNs, one for
each diffusion channel, an issue is how to aggregate node embed-
dings across the multi-channel network. While a straightforward
approach is to concatenate the embeddings obtained for the same
user from DiffGNNs, the embeddings generated for different dif-
fusion channels may exhibit distribution shifts due to the inherent
characteristics of different diffusion channels. Thus, the learned em-
beddings are located in different spaces and thus degrade the model
performance, especially in estimating the influence in the multi-
channel network [10]. Therefore, we address the issue by designing
IOT to stage various embeddings in the same latent space.

As users may act differently upon various multimedia con-
tents [34], SMFE is introduced to aggregate various types of con-
tents by considering the social structure of the multi-channel net-
work. The generated content, in the form of an embedding, is fed
along with the user embeddings from IOT to capture the user pref-
erence on contents in influence diffusion. Since the impact of mul-
timedia contents and user preferences on influence diffusion are in-
herently intertwined, we propose CMIP model the influence upon a
user by enabling a fine-grained estimation. CMIP transforms CMID
to a node classification problem (i.e., influenced or not) and mod-
els the process of influence propagation in two aspects: i) social
propagation (i.e., the influence from the neighbors in the same
diffusion channel), and ii) channel propagation (i.e., the impact
from different channels of the same user).

In summary, CMINet embeds all factors, including multi-channel
seed nodes and multimedia contents, into a shared embedding space
and inductively predicts the susceptibility, i.e., the activation prob-
ability of each user, based on aggregated influences from various
channels. Compared to previous learning-based frameworks [48],
which do not analyze the correctness of the susceptibility, we theo-
retically prove that GNN is a promising tool for modeling the influ-
ence spread on the social network. More importantly, we show that
CMINet preserves monotonicity and submodularity, thus enabling
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(1 — 1/e)-approximate solutions in influence maximization [20].
The contributions made in this work are summarized as follows.

e We formulate a new problem, namely Content-aware Multi-
channel Influence Diffusion (CMID), and introduce a novel
learning framework, CMINet, for CMID by modeling the content-
aware influence diffusion processes in a multi-channel network.

e The novelty of CMINet lies in the design of its components: i)
DiffGNN utilizes a new attention mechanism to encode both in-
fluential power and structural proximity in the user embeddings;
ii) IOT aligns the node embeddings from different channels via
the proposed influence-aware sampling to alleviate the impact
of distribution shift, and iii) SMFE and CMIP together realize the
new idea of capturing complex interactions between multimedia
content and user actions to predict the user susceptibility.

o We theoretically prove that GNN (and thus CMINet) is a promis-
ing tool to model the influence spread on the social network.
Moreover, we prove that CMINet preserves monotonicity and
submodularity, enabling (1 — 1/e)-approximate solutions in in-
fluence maximization.

e Extensive experiments on three benchmark datasets manifest
that CMINet outperforms eleven state-of-the-art baselines.

2 Problem Formulation

First, a multi-channel network is formally defined as follows.

Definition 2.1. Multi-channel Network. A multi-channel network is
an M-layer graph, defined as G = {G™} ;¢ [1,m], Where each channel
is represented by a subgraph G™ = {V,E™}. V is the set of nodes
shared in all channels, and E™ represents the m'" type edges.

For example, Tiktok [27], a popular online platform, provides

three actions (channels), i.e., like, comment, and share. Thus, a
multi-channel network of Tiktok users has three types of edges
corresponding to these actions. While previous influence estimation
models [5, 11] mainly focus on one specific action only (ie., a
single-channel network), behaviors in different channels may affect
each other through cross-channel diffusion, e.g., users are likely to
comment on information shared by their friends.
Definition 2.2.  Multi-channel Seed Set. A multi-channel seed
set S = {S™}me[1,m)] is @ multi-channel node set, where S™ C
V represents the initially activated nodes on the m*"-channel. The
initially activated nodes S™ for different channels are not required to
be the same and usually much smaller than V.

Consider a social marketing event. The campaign material usu-
ally contains rich multimedia contents, e.g., text, image, and video.
With multimedia contents, users may show varied behavior and
susceptibility in different channels, e.g., a fashion lover tends to
share photos and videos from a boutique show than simply likes
them.

Definition 2.3. Multimedia Content. A multimedia content is a
set C = {cn}tne[1,N]> Where cn represents the ntP-type of multimedia
content.

One may employ various pre-trained feature extractors to obtain
the features in terms of embeddings for each type of content [34],
which constitutes the above-defined multimedia content. Due to
the diverse interests of users in various types of media and content,
they may spread differently on different diffusion channels. In the
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following, we introduce the Content-aware Multi-channel Influence
Diffusion problem.

Definition 2.4. Content-aware Multi-channel Influence Diffusion
(CMID). Given a multi-channel seed set S and a multimedia con-
tent set C, we denote the state of node v; on the mth channel as
y" = 0(0ilS,C), where 0 is the influence diffusion model to be
learned. CMID aims to predict the susceptibility of every node under
the setting, i.e., if v; is influenced by the multi-channel seed set S
with the content C on the mth—channel, y{" =1 and 0 otherwise. The
obtained susceptibility of nodes may in turn be used to derive the
influence spread of seeds on m*"-channel as (S, C) = Zoev Yt

Instead of only predicting the influence spread in a channel [26],
i.e., the number of influenced nodes ¢(S), or only predicting the
influenced probability [29, 36] for each node on a single channel,
i.e., yi, we model the diffusion process in a fine-grained manner to
predict the probability for each node v; to be influenced on every
channel m, i.e.,, y". For example, given the multimedia contents
extracted from photos and texts in a marketing campaign and multi-
channel seed nodes (e.g., some users have commented, shared, or
liked the campaign post), CMID aims to identify not only who
are influenced but also what actions are taken to influence which
neighbors according to the given content. As illustrated in Fig. 1, our
goal is to predict whether the inactivated nodes (gray nodes) in each
channel would be influenced by the activated nodes (purple nodes
S!, yellow nodes $™, and pink nodes S) via intertwined channels
with the content C. This prediction is very appealing to real-world
applications, e.g., precision marketing [38] on different channels.

It’s challenging to solve CMID by conventional diffusion mod-
els [5, 11], because they do not model the complex interactions
between users and multimedia content in different channels. More-
over, there are too many combinations to simulate with Monte-
Carlo methods [5]. By contrast, we follow the GNN paradigm in
our proposed framework to model the complex correlation between
high-dimensional multimedia contents and various user actions in
a shared embedding space to learn content and user embeddings
which in turn are used to learn a user’s fine-grained influence diffu-
sion behavior in an end-to-end training manner. Furthermore, we
show the advantages of employing the influence diffusion model
derived by CMID as a core component for Influence Maximization
(IM) [20], as we prove that the IM problem of CMID is NP-hard.
The proposed CMINet is able to preserve monotonicity and submod-
ularity that enable (1 — 1/e)-approximate solutions in IM problem.

3 Related Work

Influence Estimation on Social Network. Influence spread es-
timation aims to approximate the expected number of influenced
nodes given a set of seed nodes without considering the multimedia
content. While computing the influence spread under the indepen-
dent cascade [20] or linear threshold models [13] is a #P-hard prob-
lem, the Monte Carlo simulation with various speed enhancements
are to estimate the influence spread. Several variants have been
proposed by modeling contextual features, e.g., topic [5, 29, 31],
location [6, 30], and time [1, 52], to improve the effectiveness of
the spread estimation model. For example, Chen et al. [11] analyze
the user interest and estimate the influence spread under the given
topic. Later, Aslay et al. [3] model the edges with different propa-
gation probabilities according to a set of topic variables. Chen et
al. [12] adopt the Maximum Influence Arborescence (MIA) model
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and develop a best-effort framework to ensure the approximation
ratio of IM. However, all these methods are based on a probabilistic
model, which may suffer from the combinatorial explosion [36]
considering the high-dimensional multimedia contents. By discretiz-
ing the semantic features to derive the probabilistic model, these
works cannot accurately estimate the influence spread between
node pairs if their interaction did not happen. Another line of re-
search explores network embedding [17, 34, 42, 44] to analyze the
influence spread. Cao et al. [7] and Li et al. [29] encode the cascade
logs via RNN to predict the popularity of social content. Qui et
al. [36] utilize GNN to learn the central node’s activation based on
the neighbor nodes. However, these works consider the diffusion
models on a single-channel network instead of a multi-channel
network, thereby not considering the complex correlation between
users’ various actions on the social platform. In contrast, our model
aims to learn the diffusion process on a multi-channel network
and carefully analyze the personal preferences for spreading con-
tents to find the susceptibility of each node on various channels
in a fine-grained manner. Moreover, these methods do not retain
monotonicity and submodularity, two fundamental properties of
diffusion models [20].

Graph Neural Network. Recently, GNNs [22] have emerged as
a powerful approach for solving many network mining tasks [9,
36, 41, 46], which derive the embedding for a node by aggregating
its own and neighboring node features for node classification. For
example, Hamilton et al. [19], and Velivckovic et al. [41] leverage
different neural networks to aggregate neighbors’ features. While
most GNNs do not scale well to large graphs due to the recursive
neighborhood aggregation, several approaches have been proposed
to improve the efficiency of GNNs [45]. Klicpera et al. [23] uti-
lize this propagation procedure to approximate the personalized
PageRank via an iterative GNN. Wu et al. [45] propose an equiva-
lent simple graph convolution (SGC) model and show that it scales
to large graphs while achieving performance comparable to less
scalable state-of-the-art GNNs. Moreover, Xie et al. [49] and Wang
et al. [46] introduce a hierarchical aggregation scheme to classify
the nodes on a multi-channel network. However, these models are
designed for different missions (e.g., classify neighboring nodes
into the same class) and thereby aggregate the neighbor node’s
features without considering the characteristics of diffusion models.
Besides, they do not carefully analyze the effect of distribution shift
in different channels of a multi-channel network, leading to a less
accurate influence estimation [10].

4 Content-aware Multi-channel Influence
Network

We propose Content-aware Multi-channel Influence Network
(CMINet) to solve the CMID problem. We first introduce Diffusion
Graph Neural Network (DiffGNN) to encode both the global influ-
ence power of a user and information of his network proximity on
a single-channel network into an embedding. Next, to address the
issue of distribution shift, we first introduce optimal transport (OT)
as a preliminary solution and then propose Influence-aware Opti-
mal Transport (I0T) to alleviate intensive computation by sampling
highly influential users. Finally, we propose Social-based Multi-
media Feature Extractor (SMFE) and Content-aware Multi-channel
Influence Propagation (CMIP) to learn the diverse user preferences
on the spreading multimedia content to predict the susceptibility
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of each node in a fine grain manner. Fig. 1 illustrates the overall
architecture of CMINet.
4.1 Diffusion Graph Neural Network

Previous diffusion methods [13, 20] discretize the input data, i.e.,
post topics, to estimate the diffusion probability and solve them
linearly. As the multimedia content is usually high-dimensional, the
above discretization is not able to properly capture the individual
preference for sharing the content of the campaign materials in a
multi-channel scenario. Recently, GNNs [22, 41] have proven their
efficacy in capturing the content and the graph topology, inspir-
ing us to explore GNN to model the interplays between the users
and multimedia contents in order to estimate the influence spread.
While conventional GNNs [22] iteratively aggregate the neighbor-
hoods’ information to compute the node embedding to preserve
local proximity, they cannot correctly capture the global influence
power of each node during the diffusion process [24]. To address
the aforementioned limitations, we introduce Diff GNN to learn the
user (node) embeddings for each channel of the multi-channel net-
work, which consists of two primary components: 1) stacked GNN
layers to derive the node embeddings, and 2) an influence score
to estimate the influence power of each node in a self-supervised
manner, which is used in the cross-channel alignment in Section 4.2.
We also theoretically prove that GNN is a promising tool to model
the diffusion process in Theorem 5.1.

For a single-channel network G™ with m € [1, M], Diff GNN
updates the (I + 1)t" latent vector of node v; € V, denoted as
hé“ € H'*! by aggregating the ['"-layer hidden features, i.e., H,
of v;’s neighboring nodes N (v;), which can be written as follows.

>, . 0

VojeN(v;)

hﬁ“ = rhﬁ +(1-7)

where r = 0.5 is the hyperparameter for the residual connection [40]
to preserve the central node v; information, and afj is the attention
weight between v; and v}, which can be defined as follows.
1
atfj = —exp()/ij) 7> and yjl.k = LeakyRelu(alT[hi-,hi]), 2)
ZﬂkEN(U]‘) eXP(ij)
where a is the attention head to measure the correlation in I*#-
layer, LeakyRelu(-) is a non-linear activation function [22], and [-]
is the concatenation operation. Inspired by PageRank [23], Diff GNN
normalizes the weight yg ; between v; and v; by the neighborhood
of node v; (i.e., N'(v;)), instead of that of the central node v; (i.e.,
N (v;)), since the value of the endorsement, e.g., opinion leader,
depreciates proportionally to the number of edges given out by
the endorsing node. In Fig. 1, the embedding of node v; is updated
by the embedding of the neighborhood nodes, i.e., v, v3, and v4,
with the corresponding weights a12, @13, and a14, respectively. It’s
worth noting that ;2 is normalized by v5 (a25) and vg (26 ), instead
of v3 (a13), and vy (14).

After stacking the L layer, we summarize the embedding vectors
at all depths of the DiffGNN into a single feature vector to capture
patch information at different scales, i.e., h; = Wr[h?, e h{“]
where W’ is a shared projection matrix for all nodes. Then, we
adopt the skip-gram objective [35] as the proximity loss Lyrox to
the structural information on graph G, i.e.,

Lprox = - Z ( Z sigmoid(h] ;) +By,-py,  (sigmoid(~hThj))),
v;€V vjeN(v;)

®)
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where sigmoid is the activation function, and Py (+) is the distri-
bution for the negative sampling of users. After deriving the node
embedding, the next step is to predict the influence score &; € &,
which represents the global influence power of each node v;, i.e.,
& = sigmoid(pTh;). p is a vector to calculate the importance of
each node in the social network. In contrast to traditional GNNs,
which usually require a great effort in collecting labels (e.g., the
importance of each node) [22, 41], we introduce influence loss Linf
to train DiffGNN in a self-supervised manner.

Ling = 3 (1& = &l = Boypyy,, (16 = &l12)).

v; eV

(©

The first part of Eq. (4) minimizes the error between the self score
and the estimated score, and the second part distinguishes the
influence between each node by negative sampling. The estimated
score §l’ is derived from v;’s neighborhoods, i.e.,

exp(ag [hi, h;])E;
oy Nor) SoeN (o) exp(a [hy, he )

&= ©)
where ag is a vector to measure the influence between nodes. While
previous influence diffusion methods [13, 20] need to identify the
influence by some fixed hyperparameters to exploit a specific prop-
erty of the graph, e.g., degree, DiffGNN derives the importance
of each node according to Eq. (2) and thereby is more general to
incorporate high-order proximity. The overall objective of Diff GNN
is

Lgnn :Lprox+/11Linf+AZ‘|§|ll +AS|IH”2’ (6)
where || £]|; is the [; regularization to discretize the output distri-
bution to force the model to concentrate the influence on a few
nodes, and ||H||2 is the I; regularization of node embedding. A1, A2
and A3 are the hyperparameters to determine the trade-off between
the proximity and the influence score. While DiffGNN leverages
the characteristics of the underlying diffusion model, convectional
GNN s capture multi-hop neighbors’ information by stacking mul-
tiple layers with the uniform weight [22] or the attention mecha-
nism [41], undermining the performance of the downstream tasks.

4.2 Influence-aware Optimal Transport

After pretraining the embedding in the single-channel network,
e.g., G™, through DiffGNN, we aim to align the embeddings for
each channel into the same latent space to support users with dif-
ferent actions, and thus the user embeddings learned in different
channels may lie in different latent spaces. For example, some users
like to share the posts while others only comment on them. More-
over, some users may never engage in certain interactions on the
social network, and thus we cannot learn the proper embeddings
from these channels. The unaligned (or even incorrect) embeddings
usually lead to a wrong influence diffusion because the influence
measurements, e.g., the inner product of the embeddings, are inac-
curate [10]. Therefore, we introduce optimal transport (OT) [15],
which is a promising technique for domain adaption to make chan-
nel distributions aligned, i.e., closer to each other, for a better esti-
mation of influence diffusion.

Given the source network G° (i.e., G%...,GM ) and the destina-
tion network G¢ (ie, GY), along with their embedding H® and e,
the objective of optimal transport 7 is formally written as follows.

D o), )

of eés,ufeéd

7" = argmin w(o3, U?)ﬂ'(vf,
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s ,d
where 7 (03, vj)

v;.l, and w(of, v;l) is the distance function, ie., ||h] - h31||§ While

computing the transporting plans of all nodes in G* and G is com-
putationally intensive, especially on a large graph, we propose the
Influence-aware Optimal Transport (IOT) by sampling the top-K
high-influence nodes according to Eq. (5), i.e., GS and Gd, because
they usually contain more information (e.g., active users on the
social platform) [20]. In addition, these high-influence nodes usu-
ally show more authoritativeness to the given content when the
diffusion process converges [5]. By minimizing the cost of trans-
porting G* to G¥, 10T is able to bridge the distribution shift of the
multi-channel network via these nodes. Sinkhorn’s algorithm [25]
is adopted to solve the optimal transport plan 7*.

Equipped with the optimal plan 7*, we transport the embedding
by barycenter mapping [15], defined as follows.

is the transportation probability between v and

R w8 d\hd
. Zv;ieGd i (Z}i,l)j )hj

X; =

®

Zvjlec”d * (23, U;-i)

where x] € X® denotes the transported embedding of source em-
bedding h} € H® by taking the destination embedding h? € H? as
the reference. Therefore, we are able to align the embedding from
G* to G? inductively by the transportation plan 7*.

Note that we select the network with the highest density as
the destination graph, e.g., G!, and align other channels, e.g.,
G2,---,GM on it because the highest density graph usually con-
tains more historical data to learn more robust embeddings.

X! = H!, and X = JOT(H™, H'), Vm € [2, M]. )

Thus, the embeddings obtained by Diff GNNs (for different chan-
nels) all lie in the same embedding space that refers to H'. Fig. 1
illustrates an example of IOT, which alleviates the distribution shift
between the source G™(G) to the destination G (G?). The source
embedding H™ (yellow) is aligned to the destination embedding H!
(purple) to obtain the transported embedding X" (light yellow).

4.3 Social-based Multimedia Feature Extractor

Here, we introduce Social-based Multimedia Feature Extractor
(SMFE). Consider a multimedia content set C of various media
types, extracted from the campaign materials using a suite of pre-
trained feature extractors, e.g., Par2Vec [28] for text and CNN [33]
for images. Due to the heterogeneity of the multimedia content,
SMFE aggregates the extracted contents into an embedding c™
from the given multimedia content C for each channel. Unlike the
previous models [19] that concatenate different contextual features
into a unified vector, we adopt the bilinear attention network [21]
to aggregate different types of content by capturing deep feature in-
teractions among two groups of input features, i.e., the multimedia
contents and the multi-channel social network,

oM = YeneC exp (s Wep) ¢y = 1
T Zepecexp(s™TWe,) T[S

m
2, X"

v;eS™M

(10)

where W is a trainable parameter to find bilinear attention distribu-
tions to utilize the given social-contextual information seamlessly.
¢, denotes the embedding vector of the nth types of content in
C, and s™ represents the embedding of the m' channel seed set
S™.If a content embedding ¢, is located closer to the nodes in
m‘h_channel seed set S™ in the embedding space, it contributes
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more in the final content embedding ¢ in the m’ h channel. For
example, teenagers may show more interests in sharing a video,
while the elders tend to leave comments on a post. Therefore, SMFE
is able to aggregate different types of contextual features guided
by the social structure to derive the content embedding ¢’ of the
diffusion channel m.

4.4 Content-aware Multi-channel Influence
Propagation

By deriving the embeddings from the multi-channel network, we
transform the CMID problem to a node classification task to predict
in Content-aware Multi-channel Influence Propagation (CMIP). Con-
ventional diffusion models [5, 11] are difficult to accurately predict
the influence probabilities (i.e., susceptibility) for all nodes [36],
when the interaction between two nodes does not happen previ-
ously, especially under a multi-channel scenario. CMIP embeds
all implicit (or even explicit) factors, including multi-channel seed
nodes and the multimedia content, in a shared embedding space
and carefully investigates their correlation to predict the suscepti-
bility of each user in a fine-grained manner. To correctly estimate
the activated probability y” of user v; on mth ¢, we model the
influence on v; in two aspects: i) social propagation and ii) channel
propagation.

Given a seed set S™, the social propagation aims to model the
influence spread of the same channel m,

Y = Z pij and pi7 = Relu(x;"Tdiag(cm)x}"), (11)

: m
V€S

where x| and x”" denote the mth-channel embedding of node o;
and v; from IOT, respectively. pg? can be regarded as the influence

from node v; to v; on m* h_channel with the corresponding content
embedding ¢ from SMFE. diag converts the embedding vector
into a diagonal matrix. It is worth noting that previous learning-
based methods [26, 36] only model the node dependencies without
considering the contextual information, i.e., x:"Tx;.". We adopt
Relu activation to ensure the influence pg? > 0. Besides, we use
summation instead of other aggregation functions, e.g., average [22]
or attention [40], to ensure the monotonicity of the function, because
the influence would be accumulated from multiple sources.!

Since influence may spread across the multi-channel network of
an individual, channel propagation aims to capture the correlation
between different behaviors of an individual as follows.

Yo; = Z p™, and p™* = Relu(x["" diag(c')x}),  (12)
te[1,M]Av;eSt

where p;”t measures the influence of node v; on the m*"-channel

that is affected from the activation behavior of the t*#-channel
with the corresponding content embedding ¢?. Conventional influ-
ence estimation models [5, 11] discretize the contextual features
to derive the probabilistic model of diffusion and thus are difficult
to support the high-dimensional multimedia contents. In contrast,
CMIP carefully derives the influence by modeling the correlations

1Since social decisions are influenced only by their near neighbors within the net-
work, following [36, 48], we only consider the seed nodes in the n-hop neighborhoods
for each classified node v; on mthoc ie., N (vi) N 8™, instead of processing the
whole seed set, i.e., 8" in Eq. (11) to reduce the computational cost.
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between the seeds and the contents from the historical events. Com-
bining Eq.(11) and Eq.(12), the predicted probability of node v; being
activated on the m!"-channel of the social network becomes

7" = 2% sigmoid(yg; +yoy) — 1, (13)

where sigmoid serves as the activation function to transform the
influence to the probability, which ensures the submodularity of
the function. While users may share different but related contents
on the multi-channel network, our framework can also support
multiple contents by encoding the personalized social content C
of each user v; (Eq. (10)), and calculating the content-dependent
activation probability (Eq. (11) and (12)).

By ensuring the monotonicity and submodularity of 7", CMINet
is able to provide (1—1/e)-approximate solutions for influence max-
imization [20] (detailed in Theorem 5.2). This is a unique strength
of CMINet, as previous learning-based methods [29, 36] cannot
retain the theoretical guarantees of many greedy algorithms [20].
It’s worth noting that sigmoid(yg; +y.;) € [0.5,1], since y{; and
yl, are greater or equal to 0 through Relu activation. Therefore,
we adopt simple linear transformation to map 3" € [0,1]. Fol-
lowing [26], we progressively derive the activation probability of
each node. Specifically, we first classify the 1-hop neighborhood
of the seed nodes and add the activated nodes into the seed set in
the subsequent prediction. Afterward, we iteratively predict the
higher-order neighbors (e.g., 2-hop, and then 3-hop).

As illustrated in Fig. 1, social propagation yé’)’l analyzes the in-
fluence from the activated nodes with the same actions, e.g., xg’
and x7*, and channel propagation yg,’l represents the influence from

other activated actions of node vy, e.g., x% and XIIVI . Then, we sum
up y and y!”; with the sigmoid activation to predict probability

71" of node v on the mth-channel with the content C.

4.5 Overall Objective

Since CMINet is differentiable, we integrate the propagation scheme
into model training and utilize the final output " to compute
the loss on the m" channel. We adopt the cross-entropy loss to
incorporate the probability estimation error on each node,

1 N
Lprop = =1 2, D, yi'log(g") +2allO]l (14)
me[1L,M] v;eV

where yI" is the ground truth probability, and §I" is the predicted
probability. The I, regularization of model parameters 6 aims to
mitigate the over-fitting and facilitate the convergence process.
Finally, we train our model in two stages. First, we warm up the
model to pretrain Diff GNN by Lgp,. Then, we train the model by op-
timizing a mixed objective function combining Lgnn and Lprop- The
time complexity of DiffGNN is O(MdLD?,,), 10T is O(MDK|V]),
SFME is O(Md?N), and CMIP is O(MdnDyayx). The overall time
complexity of CMINet is O(Md(LD?,,, + dN + K|V| + nDmax)).

5 Theoretical Analysis

CMINet can be employed in various influence maximization applica-
tions, such as precision marketing. Many approximation algorithms
designed for influence maximization achieve certain approxima-
tion ratios. Unlike previous learning-based frameworks [17, 29, 36],
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which are unable to retain the theoretical guarantees, CMINet care-
fully evaluates the influence of each node on the approximation
ratio for influence maximization algorithms. First, we show how
powerful GNN is for estimating the diffusion process.

Theorem 5.1. (Proof in Appendix A.3)

The influence probabilities §;4+1 € RIVI of each node can be es-
timated by GNN, which is an upper bound of the actual influence
probabilities y;41 at time stept +1. As|V| > |S|, the estimation error
19241 = yes1lls — 0.

Compared to previous learning-based frameworks [48], which
do not analyze the correctness of the susceptibility, we prove that
GNN is a promising tool to model the influence spread on the social
network since the network size is typically much larger than the
number of seed nodes [36]. Then, we prove that CMINet can satisfy
two fundamentally important properties: Monotonicity and Submod-
ularity, which are cornerstones for many existing works [5, 20, 52]
to achieve their approximation ratios in influence maximization.
Here, we define the monotonicity and submodularity of a neural
network.

Proposition 5.1. (Proof in Appendix A.4)

Let S denote a set of nodes. Given a nodev ¢ S, a set-to-value
function f : R* — R is monotonic iff f(SU {v}) > f(S). With
the sum pooling over any non-negative parametric function g(-), i.e.,
Dues 9(u), the function f is monotonic.

Proposition 5.2. (Proof in Appendix A.5)

Let S* and S? denote two sets of nodes, where S C S2. Given a node
v ¢ S, a set-to-value function f : R* — R is submodular iff f(S' U
{o}) = f(SY) = f(S% U {v}) — f(S?). With the sigmoid activation
over any non-negative and monotonic function h, the function f is
submodular.

Equipped with these two properties, the following theorem
proves that our model is able to guarantee the approximation ratio.

Theorem 5.2. (Proof in Appendix A.6)
CMINet allows (1 — 1/e)-approximate solutions for influence max-
imization.

6 Experiments

6.1 Setup

Datasets. We employ three real datasets from different social media.
1) Digg [36] (279,630 nodes, 1,548,146 edges, 2 channels, and 24,428
instances) is a news platform that allows people to vote stories up
or down. Each story contains a list of users who have voted for the
story and the time stamp. The voters’ friendship links are also col-
lected. 2) Twitter [43] (456,626 nodes, 12,508,415 edges, 3 channels,
and 499,160 instances) is one of the most popular social network
platforms, which contains three types of actions, i.e., like, comment,
and retweet. Besides, each post also has rich texts. 3) Flickr [8]
(162,663 nodes, 10,226,532 edges, 2 channels, and 14,002 instances)
contains a friendship graph and a list of marking records of photos.
We pre-train feature extractors of the multimedia contents, w.r.t. the
types of content c,. We utilize Par2Vec [28] to embed text contents
and employ CNNs [33] to embed image contents.
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Table 1: Activation Prediction

method Digg Twitter Flickr
AUC | FL | AUC | F_ | AUC | FI
Probabilistic Methods
TIC [5] 0.7677 0.6333 0.7650 | 0.4978 | 0.6621 0.3011
TLT [5] 0.7822 0.6500 | 0.7691 0.5005 0.6654 | 0.3029
INFLEX [3] 0.7902 0.6391 0.7704 | 0.5020 | 0.6533 | 0.3152
TMIA [11] 0.7930 | 0.6587 | 0.7800 | 0.5035 0.6791 0.3081
Learning-based Methods

GCN [22] 0.7830 | 0.6832 0.7724 | 0.5111 0.7491 0.3215
GAT [41] 0.7984 0.6788 0.7771 0.5235 0.7418 0.3376
SGC [45] 0.8198 | 0.6864 | 0.7766 | 0.5294 | 0.7330 | 0.3411
Deeplnf [36] 0.8270 0.7044 0.7924 0.5412 0.7212 0.3520
Inf2Vec [17] 0.8125 0.7012 0.7899 | 0.5433 | 0.7308 | 0.3569
MONSTOR [26] 0.7801 0.7101 0.7799 0.5288 0.7401 0.3552
DIEM [39] 0.8030 | 0.7156 | 0.7825 0.5293 0.7581 0.3590

CMINet [ 0.9191 [ 0.7633 | 0.8308 | 0.5782 | 0.8268 | 0.4121

Baselines and Evaluation. We compare CMINet with four topic-
aware probabilistic models, which estimate the propagation proba-
bility between nodes by different sampling schemes, including i)
TIC [5), ii) TLT [5], iii) INFLEX [3], and iv) TMIA [11]. We also
compare five representative learning-based methods, including v)
GCN [22], vi) GAT [41], vi) SGC [45], vii) DeepInf [36], and ix)
Inf2Vec [17]. While some of the representative learning-based mod-
els are not designed for influence estimation, following [36], we
pretrain the embedding of each node and then employ embeddings
to train a binary classifier to predict the susceptibility. We further
compare two reinforcement learning models, which utilize an agent
network [39] to estimate the influence spread, including x) MON-
STOR [26] and xi) DIEM [39]. Note that all these baselines focus
on single-channel diffusion, thus independently estimating propa-
gation probabilities on each channel. We evaluate all baselines in
terms of Area Under Curve (AUC) and F1-Score (F1). The average
results from 100 runs are reported.

Implementation Details. For the embedding layer, a 128-
dimension network embedding is pre-trained using DeepWalk [35].
For all GNN models, we adopt a two-layer structure, as reported
in their original papers. Both the first and second GNN layers con-
tain 128 hidden units. In addition, the top-K influenced nodes in
IOT and n-hop proportions in CMIP are set to 256 and 3 [36], re-
spectively. The regularization hyperparameters 11, A2, A3, and A4
are set to 1, 0.1, 0.1, and 0.1 by grid search [32]. All parameters
are initialized with Glorot initialization [18] and trained using the
Adagrad [16] optimizer with the learning rate 1072, weight decay
1074, and dropout rate 0.2. The mini-batch size is set to 32 across
all datasets.

6.2 Quantitative Analysis

We consider the following two tasks, including the activation pre-
diction [36] and the diffusion prediction [17]. The former predicts
the susceptibility of each user, i.e., the activation probability that
is influenced by friends, which aims to evaluate the fine-grained
computation. The latter identifies the influence spread by given
seed nodes, validating CMINet for high-order propagation.

Activation Prediction. Following [36], we aim to predict whether
a target user v; is activated by neighboring nodes. We use 80%, 10%,
10% instances for training, validation, and test, respectively. Table 1
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Table 2: Diffusion Prediction

Chen et al.

Table 3: Ablation Studies

method Digg Twitter Flickr thod Digg Twitter Flickr
AUC | FI AUC | FI AUC F1 metno AUC [ F1 AUC [ F1 AUC [ F1
Probabilistic Methods Effect of Influence-aware Optimal Transport (IOT)
TIC [5] 0.7358 | 0.6112 | 0.7242 | 0.4677 | 0.6304 | 0.2872 oT 08310 1 07566 | 08154 | 05623 | 08129 | 0.4029
INTFLLE(?S] g;ig; gz;(z)g g;i; giﬁ; gzg; giziz random | 0.8228 | 0.7266 | 0.8024 | 0.5411 | 0.7889 | 0.3988
: : : : : : degree | 0.8320 | 0.7316 | 0.8052 | 0.5429 | 0.7901 | 0.3990
TMIA [11] 0.7477 | 0.6232 | 0.7201 | 0.4566 | 0.6315 | 0.2793
— pagerank | 0.8341 | 0.7322 | 0.8049 | 0.5444 | 0.7905 | 0.4001
earning-based Methods w/oIOT | 0.8410 | 0.7399 | 0.8091 | 0.5410 | 0.7795 | 0.3879
GCN [22] 0.7582 | 0.6310 | 0.7280 | 0.4212 | 0.6982 | 0.2980
GAT [41] 0.7535 0.6412 0.7091 0.4481 0.7131 0.2817 Eﬁ”ect ofContent-aware Multi-channel Inﬂuence Propagation (CMIP)
SGC [45] 0.7728 | 0.6556 | 0.7098 | 0.4481 | 0.7215 | 0.3170 social 0.8828 | 0.7455 | 0.8001 | 0.5494 | 0.8012 | 0.3302
DeepInf [36] | 0.8207 | 0.6720 | 0.7111 | 0.4554 | 0.7122 | 0.3208 channel | 0.6012 | 0.3006 | 0.7021 | 0.4219 | 0.6901 | 0.2915
Inf2Vec [17] 07921 | 0.6611 | 0.7228 | 0.4523 | 0.7129 | 0.3138 CMINet | 0.9191 | 0.7633 | 0.8308 | 0.5782 | 0.8268 | 04121
MONSTOR [26] | 0.7934 | 0.6677 | 0.7184 | 0.4565 | 0.7040 | 0.3022
DIEM [39] 0.7966 | 0.6790 | 0.7204 | 0.4582 | 0.7120 | 0.3009 6.3 Ablation Studies

CMINet ‘0.8848 0.7301 | 0.7991 | 0.5511 | 0.8127 | 0.3744

shows that the proposed CMINet outperforms all baselines by 9.4%
(Digg), 10.2% (Twitter), and 14.7% (Flickr) in terms of F1-score on
average. Compared with the probabilistic models, CMINet signif-
icantly outperforms all baselines by a large margin of F1-score
(at least 32.9%). In contrast to the probabilistic methods, which
usually oversimplify the cascade in some linear ways and lead to
less accurate estimations, the proposed CMINet learns the diffu-
sion process by DiffGNN and captures the individuals’ preference
under the multimedia content by CMIP from the historical data.
Generally, previous models on the Flickr dataset have relatively
weak performance because the image features are high-dimensional
compared with the text features in Digg and Twitter datasets. How-
ever, CMINet achieves much better improvements on the Flickr
dataset because previous probabilistic models discretize the con-
textual features to derive the diffusion probability, and thus cannot
correctly model the multimedia content. CMINet also outperforms
all representative learning-based methods. While all these base-
lines extract the embedding on each single-channel network and
predict the activation probability independently, CMINet employs
IOT to align the learned embeddings for alleviating the distribution
shift between individual channels Moreover, CMINet achieves a
better performance than the reinforcement learning approaches,
i.e., MONSTOR and DIEM, because these methods aim at predicting
the total influence spread, i.e., the number of influenced nodes.
Diffusion Prediction. Different from activation prediction, dif-
fusion prediction additionally considers the high-order propaga-
tion [26]. For each test episode, we exploit the first 10% of activated
users as the seed users and the rest 90% as the ground truth for each
channel of the multi-channel network. Table 2 shows that CMINet
achieves great improvement over all baselines in all datasets i.e.,
10.2% (Digg), 10.9% (Twitter), and 16.6% (Flickr) in terms of AUC
score, indicating that CMINet captures the high-order influence
propagation effectively. Specifically, CMINet significantly outper-
forms all probabilistic models by at least 31.5% in terms of F1-score,
because they do not accurately predict influence probabilities for all
nodes due to the data sparsity problem. In contrast, CMINet embeds
all factors, including multi-channel seed nodes and the multimedia
content, in a shared embedding space and exploits their correlation
from historical data.
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Here, we analyze the importance of different modules in CMINet
on the activation prediction (in Table 3). First, we evaluate IOT by
comparing CMINet (i.e., with IOT) against five variants, including
i) OT, which employs the original optimal transport [15] without
influence-aware sampling, ii) random, which randomly samples
the nodes on the destination network as anchors, iii) degree and iv)
pagerank, which sample the anchors by the degree and pagerank
centrality, respectively, and v) w/o IOT, which does not align the
embeddings of different channels. Since optimal transport can align
the distribution shift between each channel of the multi-channel net-
work, the OT variant improves over the model w/o IOT by 5.4% in
terms of F1-score. On the other hand, thanks to the idea of sampling
highly influential nodes which usually show more authoritative-
ness to the given content [5], CMINet outperforms the model w/o
10T by 8.2%. Compared to other centrality-based sampling strate-
gies, e.g., degree and pagerank, CMINet models the global diffusion
process via stacked GNN layers to carefully estimate the influence
power of each node and thus outperform them by at least 5.1% in
terms of F1-score on average. We also compare the components of
CMIP as follows: vi) social-propagation, which only models the
influence spread between the users with the same channel, and vii)
channel-propagation, which only models the impact caused by
other actions of an individual. CMINet outperforms the model with
only the social propagation by 6.1%, indicating that modeling the
influence cross multi-channel network can improve the accuracy.
The performance of the model with only the channel propagation
drops significantly by at least 35.1% in terms of F1-score, indicat-
ing that capturing the user-to-user social interactions is obviously
critical.

7 Conclusion

In this paper, to better capture the real world scenarios on influ-
ence diffusion, we propose CMINet to effectively derive the social
influence diffused on a multi-channel network with the multime-
dia content. Moreover, we theoretically prove that GNN is able to
effectively estimate the influence diffusion. We show that CMINet
can retain monotonicity and submodularity of influence diffusion
models, enabling approximate solutions of influence maximization.
Experimental results reveal that CMINet outperforms eleven state-
of-the-art baselines on three real datasets. For future works, an
interesting direction to explore is to predict influence spread under
a multisource scenario in dynamic networks.
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A Detailed Proof
A.1 Proof of Theorem 2.1

By Definition 2.4, we first formulate the Content-aware Multi-
channel Influence Maximization (CMIM) problem.

Definition 2.5. Content-aware Multi-channel Influence Maximiza-
tion (CMIM). Let {w™},,,c[1,pm] denote the influence weight w.r.t. each
channel G'™. The content-aware multi-channel influence maximiza-
tion problem aims to select the multi-channel seed sets S*, such that
the weighted sum over the number of influenced nodes c™ (S, C), on
network G™, is maximized as followed.

S* = arg max Z wma™(S,C),
S.C me[LM]
where 8" = {S™} e 1,m], and each channel m has a corresponding
k™-node budget, i.e., |S™| = k™.

For example, different advertisers may have their individual
social goals on the influence diffusion, i.e., require more users to
share the posts, with varying budgets on each channel [5]. Then,
we introduce the following theorem. Note that, by Definition 2.2,
even if the seed size k™ is the same for every channel, we do not
have to activate the same seed nodes S™ for each channel m.

Theorem 2.1. It is NP-hard to approximate the Content-aware
Multi-channel Influence Maximization (CMIM) problem.

Proor. Given an instance of the conventional influence max-
imization problem, we can construct an instance of our problem
with a single-layer network, i.e., M = 1 and content C = ¢, and
the solution of our problem embeds a solution of the conventional
problem, which is NP-hard. The theorem follows. O

A.2 Proof of Lemma 5.1

Lemma 5.1. The influence probabilities y+1 can be estimated by a
simple GNN model.

ProoF. Given the influenced nodes in step ¢t with activation
probabilities 7, € R!VI, and the propagation probability matrix
P, the cascade model recomputes the probabilities of step ¢ + 1 as
follows.

Ves1 = Pyr.
Intuitively, the message passing in GNN can compute inherently
an approximation of influence diffusion by stacking multiple lay-
ers. We can parameterize it to learn a function that tightens this
approximation based on supervision. In the t* h layer of GNN,

H!*! = Relu(WPH?),

where H!, H!*! € RV*d denote the node feature matrices. By re-
moving the projection matrix W and activation Relu, we can train
a simple linear classifier to predict the influence probability by the
node features, ie., y; = Linear(H?). Then, we have

Viel = Linear(H”l) = Linear(PH") = PLinear(H") = Py;.
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The lemma follows. O

A.3 Proof of Theorem 5.1

Theorem 5.1. The influence probabilities y ;41 € RIVI of each node
can be estimated by GNN, which is an upper bound of the actual
influence probabilities y;41 at time step t + 1. As |[V| > |S|, the
estimation error ||y41 — yr+1ll1 — 0.

PRrROOF. According to [51], we have

i1 = Z Pijlje = Z Pijyjt
UjEN(lJ[)ﬂS UjEN(U[)ﬁS
>1- l_[ (1= pijyjt) = Yir+1s
;€N (v;)NS

where §; ++1 and y; s+1 denote the estimated and actual activation
probabilities of node v; at time step t + 1, respectively. p;; € P
represents the propagation probability from v; to ;. Combining
Lemma 5.1, 441 is the upper bound of y41.

Assume that ||P|[; < 1, we have

1§41 = yeerlls

< Z Pijyjr — (1 - 1_[

;€N (v;)NS ;€N (v;)NS

< ) )

;€N (0;)NS v eN(v;)NS

Y D pupk < Y. pij Y. pik < %

UjEN(Z}[)ﬁSU}CEN(U,‘)ﬂS UjGS vk €S

(1 -pijyje))

PijYjtPikYk,t

Since |V| > |S|, |[J+1 — yz+1ll1 — 0. The theorem follows. O

A.4 Proof of Proposition 5.1

Proposition 5.1. Let S denote a set of nodes. Given a nodev ¢ S, a
set-to-value function f : R* — R is monotonic iff f(SU {v}) > f(S).
With the sum pooling over any non-negative parametric function g(-),
i.e, Yyes g(u), the function f is monotonic.

Proor. By definition, we have
FSU{) = £(S) = gw) +g(v) = D g(w) = g(0).
ues ues
Since g(v) is non-negative, the proposition follows. O

Corollary A.1. The non-negative linear combination of a set of
monotonic functions is also monotonic.

Proor. According to the definition,
fi(Su{o}) = fi(S),Vfi € F,

where F denotes a set of submodular functions. By multiplying a
non-negative scalar w; for each inequality,

wi(fi(SU {o})) = wi(fi(5)),Vfi € FAw; 20.

Summing up the the inequalities, the lemma follows. O
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Figure 2: Running Time.
A.5 Proof of Proposition 5.2

Proposition 5.2. Let S! and S? denote two sets of nodes, where
S! C 82, Given a nodev ¢ S?, a set-to-value function f : R* — R is
submodular iff f(S' U {v}) = f(S1) > f(S? U {v}) — f(S5?). With the
sigmoid activation over any non-negative and monotonic function h,
the function f is submodular.

Proor. Suppose that the function h is first-order differentiable,
af = sigmoid(h)(1 — sigmoid(h))oh.

Since h > 0, sigmoid(h)(1 — sigmoid(h)) is strictly decreasing.
Besides, oh > 0 because g is monotonic, concluding the proof. O

Corollary A.2. The non-negative linear combination of a set of
submodular functions is also submodular.

ProoF. According to the definition,
fi(S1U{o}) = fi(S1) = fi(S2 U {v}) = fi(S2), Vfi € F,

where F denotes a set of submodular functions. By multiplying a
non-negative scalar w; for each inequality,

wi(fi(S1U{oH)—£i(51)) = wi(fi(S20{0})—=fi(S2)). Vfi € FAw; 2 0.

Summing up the the inequalities, the lemma follows. O

A.6 Proof of Theorem 5.2

Theorem 5.2. CMINet allows (1 — 1/e)-approximate solutions for
influence maximization.

Proor. Since the probability yI" supports the monotonicity and
submodularity, the influence spread function 6™ (S, ¢) = Xy, ev YI"
of m*h-channel is also monotone and submodular according to
Corollaries A.1 and A.2. Similarly, the objective

oS)= > whe™(S,c)
me[1,M]
is also monotonic and submodular since w™ > 0,Vm € [1, M].
Following [13], there is a greedy algorithm, s.t. % =1-1/e,

where 8 is the output of the algorithm, and S* is the optimum. O

B Running Time

Fig. 2 compares the running time of different approaches for Digg
and Twitter datasets by varying k, where k is the number of seed
nodes on diffusion prediction. CMINet outperforms all baselines
significantly, by reducing about two orders of magnitude of run-
ning time compared with TIC (91x), TLT (82x), and INFLEX (59x),
which are very inefficient due to the Monte-Carlo simulation [5].
In contrast, CMINet adopts Diff GNN to model the high-order influ-
ence diffusion process and employs CMIP to exploit the correlation
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Figure 3: Sensitivity Test.

between multi-channel seed nodes, and considers the multimedia
content from historical events.

C Sensitivity Tests

We use the Twitter dataset to perform sensitivity tests to evaluate
the impact of various parameter settings on CMINet. Fig. 3(a) re-
ports the performance of CMINet over different numbers of top-K
high-influence nodes in IOT. As shown, the performance of CMINet
improves as K increases but becomes saturated when K is greater
than 256, because we only require 128 nodes in embedding dimen-
sion to form a complete metric space for transportation. Note that
we do not evaluate the model with K smaller than 16 because there
are no sufficient nodes as the anchors for projection. Finally, Fig. 3(b)
evaluates the performance of CMINet over different numbers of
propagation hops in CMIP. Overall, the performance increases with
the increment on n, because the high-order neighborhood nodes
also implicitly influence the target nodes. The improvement be-
comes saturated when n is greater than 4 because the target nodes
are less influenced by nodes far away. By digging into details, we
observe that most of them have similarity smaller than 0 and thus
are ignored by the Relu activation.

D Pseudocode

Algorithm 1 CMINet

Require: The multi-channel network G = {G™},¢[1,m], multifacted
seed nodes S = {S™},;,c[1,m]> and the context C
Ensure: The newly influenced users Y = {Y™},,,c (1 a1 of each channel.
1: for m « 1to M do

2 H™ = Dif fGNN™(G™)

3 X! =H!

4: for m < 2to M do

5. X™=IOT(H™ H')

6: for m < 1to M do

7. ¢ =SMFE(C,X™ 8™)

8: for S € S do

9 for j «— 1tondo

10: for v; «— N;(5™) do

11: Ynteri = Zojesm Relu(x]*  diag(c)xT")
12: Yntrai = Ske[iM]aysevk Relu(x* diag(e)xf)
13: glm =2x Singid(ygllter,i + yl{;:tra,i) -1
14: if §" > 0.5 then

15: S™.append(v;)

16 Yym=g8m
17: return Y
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