
GCN for HIN via Implicit Utilization of Attention
and Meta-Paths

Di Jin , Zhizhi Yu , Dongxiao He , Carl Yang,

Philip S. Yu , Fellow, IEEE, and Jiawei Han, Fellow, IEEE

Abstract—Heterogeneous information network (HIN) embedding, aiming to map the structure and semantic information in a HIN to

distributed representations, has drawn considerable research attention. Graph neural networks for HIN embeddings typically adopt a

hierarchical attention (including node-level and meta-path-level attentions) to capture the information from meta-path-based neighbors.

However, this complicated attention structure often cannot achieve the function of selecting meta-paths due to severe overfitting.

Moreover, when propagating information, these methods do not distinguish direct (one-hop) meta-paths from indirect (multi-hop) ones.

But from the perspective of network science, direct relationships are often believed to be more essential, which can only be used to

model direct information propagation. To address these limitations, we propose a novel neural network method via implicitly utilizing

attention and meta-paths, which can relieve the severe overfitting brought by the current over-parameterized attention mechanisms on

HIN. We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each

layer, along with stacking the information propagation of direct linked meta-paths layer-by-layer, realizing the function of attentions for

selecting meta-paths in an indirect way. We then give an effective relaxation and improvement via introducing a new propagation

operation which can be separated from aggregation. That is, we first model the whole propagation process with well-defined

probabilistic diffusion dynamics, and then introduce a random graph-based constraint which allows it to reduce noise with the increase

of layers. Extensive experiments demonstrate the superiority of the new approach over state-of-the-art methods.

Index Terms—Heterogeneous information networks, graph neural networks, network embedding

Ç

1 INTRODUCTION

HETEROGENEOUS information networks (HINs) [1],
[2], [3], which involve a diversity of node types and rela-

tionships between nodes, can better model and solve many
real-world problems than homogeneous networks. For HIN
analysis, an important concept is meta-path [4], [5], which is
composed of a sequence of relationships between two nodes.
For example, themovie network of IMDB contains three types
of nodes, includingmovies, directors and actors. The relation-
ship between two movies can be described by meta-paths
such as Movie-Actor-Movie (MAM) and Movie-Director-
Movie (MDM), where MAM denotes the movies starring the
same actor, and MDM denotes the movies directed by the
same director.

Network embedding [6], [7], which aims to learn the dis-
tributed representations of nodes in networks, is considered
as an effective method for network mining and has been
widely studied in homogeneous networks. Recently, rese-
archers have also proposed some methods for HIN emb-
edding, such as random walk-based methods [8], [9] and
relation learning basedmethods [10], [11], many ofwhich rely
on the concept of meta-path. In particular, with the great suc-
cess of deep learning, graph neural network-based HIN
embedding methods (such as HAN [12] and MAGNN [13])
have been proposed very recently. Thesemethods often adopt
a hierarchical attention structure, which uses the node-level
attention to aggregate information inside each meta-path and
utilizes the meta-path-level attention to fuse information of
differentmeta-paths.

While these graph neural network-based methods have
achieved great success in HIN embedding, they still suffer
from some essential issues. First, while attention has been
widely used in fields such as NLP, the use of the compli-
cated hierarchical attention structure may be not so effective
in HIN embedding, since there are often little training data
available in HINs and information from one network can be
hardly transferred to another. In this way, it will be difficult
for graph neural networks to train well these hierarchical
attentions (particularly for the meta-path-level attention,
which is to evaluate the essential importance of different
meta-paths), making them hard to really achieve the goal of
selecting meta-paths, especially when there is often severe
overfitting in practice. At the same time, these existing
methods often treat meta-paths with different lengths, such
as direct linked meta-paths (e.g., Movie-Director) and
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indirect linked meta-paths (e.g., Movie-Director-Movie),
indistinguishably for information propagation. However,
from the perspective of network science, while direct links
can propagate information directly, indirect links should
propagate information indirectly, and the information prop-
agation on direct links is more essential. Therefore, for
meta-paths with lengths longer than one (which makes the
paths indirect), it is intuitive that the information should be
propagated indirectly rather than directly. Fortunately, we
find that graph convolutional network (GCN) [14] itself can
partly overcome this limitation. It can realize that direct
linked meta-paths propagate information directly at each
layer, and indirect linked meta-paths propagate information
indirectly via the stacked layers of deep neural networks.
More importantly, it has already encoded the information
of all meta-paths via the multi-layer propagation in an
implicit way. However, GCN does not distinguish the
importance of information from different meta-paths in
both its propagation and aggregation processes, which
makes it not directly suitable for HIN embedding.

To utilize the advantages of GCN of implicitly encoding
all meta-paths as well as overcome the difficulty of distin-
guishing their importance in an effective way, we propose a
novel GCN-based approach for heterogeneous information
network via Implicit utilization of Attention and Meta-
paths, referred to as GIAM. We first introduce a naive
model. It uses the direct linked meta-paths alone for infor-
mation propagation, and utilizes a new aggregation mecha-
nism for each-layer, along with the stacked-layer
propagation, to implicitly achieve the role of attention for
selecting meta-paths. In this way, we realize the selection of
different meta-paths in GCN itself (rather than using atten-
tion directly which may lead to overfitting). Meanwhile, we
make an effective refinement. That is, we replace the spec-
tral filter of GCN from the symmetric normalized graph
Laplacian to an equivalent asymmetric one, along with
removing activation, modeling the propagation with contin-
uous Markov dynamics. We then introduce an effective
Random graph-based Propagation Constraint principle,
namely RPC, i.e., if a propagation path on the given net-
work is no better than that on the corresponding random
graph, there is no reason to continue this path propagation,
which makes the whole propagation process more effective
via filtering more impurity information.

To summarize, the main contributions of this paper are
as follows:

� We find that, the hierarchical attention structure
adopted by many HIN-specific graph neural net-
works is hard to really achieve the function of essen-
tial selections of meta-paths (due to severe
overfitting); and meanwhile, they do not distinguish
one-hop and multi-hop meta-paths in the propaga-
tion process.

� We propose a new approach to solve these problems.
It uses only direct linkedmeta-paths for direct propa-
gation and realizes indirect propagation by stacking
layers of direct propagations. We distinguish the im-
portance of information from different meta-paths (in
this process) via effective algorithmic mechanisms
rather than using attentions directly.

� Extensive experiments on different network analy-
sis tasks demonstrate the superiority of the pro-
posed new approach over some state-of-the-arts.

2 A MOTIVATING EXAMPLE

To verify whether using meta-path-level attention can
effectively evaluate the importance of different meta-
paths, we conduct experiments on two widely-used het-
erogeneous information networks, i.e., IMDB and DBLP.
We select three graph neural network-based HIN embed-
ding methods, i.e., HAN, MAGNN and our new
approach GIAM (which will be introduced in Section 4
below). Since HAN and MAGNN require a candidate
meta-path set, and our GIAM can also support this
option, we use the same choices according to the existing
work [12], [13], i.e., {MDM, MAM} for IMDB (’M/D’
stands for Movie/Director and ’A’ stands for Actor) and
{APA, APVPA, APTPA} for DBLP (’A/P’ stands for
Author/Paper and ’V/T’ stands for Venue/Term), which
are often believed to be the essential meta-paths for node
classification in networks. We compare HAN (and
MAGNN) of using and not using meta-path-level atten-
tion, as well as our new idea (GIAM) of using algorithmic
mechanisms (rather than attention) to learn relationships
of meta-paths. We first get each method’s embedding on
each dataset (according to the experimental settings in
Section 5), and then feed them to SVM classifier with dif-
ferent ratios (i.e., 5%-80%) of supervised information. We
report the average accuracy over these ratios, in terms of
Macro-F1 and Micro-F1, as shown in Table 1; and show
the detailed accuracy on each ratio of the supervised
information in Appendix B, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2021.3130712.

As shown, on IMDB, it is surprising that, the methods
(HAN and MAGNN) of using meta-path-level attention are
always no better than those of not using it. Concretely, for
HAN of using meta-path-level attention, it is easy to obtain
the staple attention distribution, where one dominant meta-
path has the dominated attention value (i.e., the distribution
[0.78, 0.22] on {MDM, MAM}). Though this seems to achieve
a well evaluation of the importance of different meta-paths,

TABLE 1
The Performance of HAN and MAGNN of Using (and not Using)

Meta-Path-Level Attention, as Well as Our New Approach
GIAM on IMDB and DBLP

“Y” denotes the method of using meta-path-level attention and “N” not. “-”
denotes our new idea of using algorithmic mechanisms rather than attention to
learn relationships of meta-paths. Attention distribution is denoted by the
learned weights of importance of different meta-paths.
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the accuracy is surprisingly reduced. This may be mainly
due to overfitting, preventing the method from really select-
ing correct meta-paths. Differently, MAGNN with meta-
path-level attention is easy to get the smooth attention dis-
tribution, i.e., [0.57, 0.43] on {MDM, MAM}. While the
learned attention values differ slightly, the accuracy is still
not improved when comparing with that of not using atten-
tion. On the other hand, on DBLP, the methods (HAN and
MAGNN) of using meta-path-level attention perform
slightly better than those of not using it. Since these models
on DBLP can be trained much better with a high accuracy
(compared with those on IMDB), they may relieve overfit-
ting and make attention effective to some extent. But any-
way, in both these two settings, our new approach GIAM of
using the specially designed algorithmic mechanisms
(rather than attention) to learn relationships of meta-paths
stably performs the best.

To further verify whether overfitting is the main reason
that meta-path-level attention does not help evaluate the
importance of different meta-paths effectively, we conduct
extra experiments on IMDB by using HAN as an example.
We show the training loss (and validation loss) as a
function of the number of train iterations. Fig. 1a shows
the result of HAN of using meta-path-level attention,
and Fig. 1b shows that of not using meta-path-level
attention. As shown, when using meta-path-level atten-
tion, with the decrease of the training loss, the validation
loss first decreases but then increases significantly, which
is a highly overfitting phenomenon. Differently, the over-
fitting issue is relative slight when not using the meta-
path-level attention. This partly validates that the meta-
path-level attention may not be able to achieve well the
essential selection and evaluate the importance of differ-
ent meta-paths, especially when the model is hard to be
trained well (which is often the real life in many net-
work analysis tasks).

3 PRELIMINARIES

We first introduce the problem definition, and then discuss
GCN which serves as the base of our new approach.

3.1 Problem Definition

Definition 1. Heterogeneous Information Network. A het-
erogeneous information network is defined as a network
GðV;E; F;R;f;’Þ, where V represents the set of multiple types
of nodes, E the set of multiple types of edges, and F and R the

set of node and edge types. Each node u 2 V is associated with
a node type mapping function f : V ! F , and each edge e 2 E
is associated with an edge type mapping function ’ : E ! R.
G is defined as a heterogeneous information network when
jF j þ jRj > 2.

Definition 2. Adjacency Matrix of Heterogeneous Informa-
tion Network. Inspired by homogeneous network, we define
the adjacency matrix of heterogeneous information network G
as A ¼ ðauvÞn�n, where auv ¼ 1 if there is an edge between
nodes u and v, or 0 otherwise, and n ¼ jV j the number of nodes.
Thus, the degree distribution of G can be defined as D =
diagðd1; . . . ; dnÞ, where du ¼

P
v auv, i.e., we sum up the num-

ber of edges associated with node u.

Definition 3. Meta-path. A meta-path m is defined as a path in

the form of F1 �!
R1

F2 �!
R2

. . .�!
Rl

Flþ1 (abbreviated as
F1F2 � � � Flþ1), where F and R are node and edge types, respec-
tively. It represents a compositional relation between two given
node types.

Definition 4.Meta-path-based Neighbors. Given a meta-path
m of a heterogeneous information network, the meta-path-based
neighbors Nm

u of node u are defined as the set of nodes which
connect with node u via meta-path m. Note that Nm

u include u
itself ifm is symmetric.

Definition 5. Heterogeneous Information Network Embed-
ding. Given a heterogeneous information network G, this task
is to learn the d-dimensional distributed representation H 2
R

jV j�dðd � jV jÞ that is able to capture rich structural and
semantic information involved in G.

3.2 Graph Convolutional Network

Graph Convolutional Network (GCN) [14] learns represen-
tation of each node by iteratively aggregating feature infor-
mation from its topological neighbors. Mathematically, let
Hð0Þ be the node feature matrix, the classic two-layer GCN
can then be defined as:

bY ¼ softmaxð bAReLUð bAHð0ÞW ð0ÞÞW ð1ÞÞ; (1)

where bA ¼ eD�1=2 eA eD�1=2 ( eA ¼ Aþ I stands for the adja-
cency matrix with self-loops, and eD = diagðed1; . . . ; ednÞ
with edu ¼

P
v eauv), W ð0Þ (and W ð1Þ) the weight parameter

of neural networks, ReLU the non-linear activation func-
tion, and bY the final output for the assignment of node
labels. While GCN works very well on homogeneous

Fig. 1. The results of training loss (and validation loss) as a function of
the number of train iterations by using HAN on IMDB. (a) shows the
result of using meta-path-level attention and (b) shows that of not using
meta-path-level attention.

Fig. 2. An illustrative example of using GCN on a heterogeneous infor-
mation network DBLP. The inner (red) circle represents the first layer
and the outer (black) circle the second layer.
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networks, it is not directly suitable for heterogeneous
information networks with different types of nodes and
edges [15].

We now analyze the advantages and disadvantages of
using GCN on HINs (by taking DBLP with four types of
nodes: author, paper, venue and term as an example). As
shown in Fig. 2, in the first layer of GCN (the inner circle in
the figure), we can realize the direct information propaga-
tion via direct linked meta-paths (e.g., Paper-Author). By
stacking the second layer (the outer circle), we can achieve
the indirect information propagation of meta-paths with
length 2, such as meta-paths Term-Paper-Author and
Venue-Paper-Author, with the help of stacked direct linked
meta-path propagation. By adopting a multi-layer GCN, we
can then realize that the direct linked meta-paths propagate
information directly while indirect link meta-paths propa-
gate information indirectly, along with covering meta-paths
with different lengths. However, for heterogeneous infor-
mation networks, GCN often treats the infor-mation from
different meta-paths equally in the process of both propaga-
tion and aggregation, without distinguishing the difference
of their importance, which is a challenge and correctly the
main limitation we will overcome in this work.

4 METHODOLOGY

We first propose a naive model to solve the issue of GCN
on heterogeneous information networks (HINs), then
refine the model by introducing a continuous Markov
propagation process, and finally give optional tricks in
implementation.

4.1 The Naive Model

In the first model, we use the classic multi-layer GCN as a
basic framework, and then introduce a discriminative mech-
anism to aggregate information from the neighbors with
direct linked meta-paths. The structure of this model is
illustrated in Fig. 3.

The novel aggregation mechanism consists of two
parts, including the aggregation of instances under the
same meta-path (which we call the intra aggregation) and
the aggregation of different meta-paths (which we call
the inter aggregation). Specifically, in the intra aggrega-
tion, we adopt the same summation as GCN to aggregate
the information from the same direct linked meta-path-

based neighbors. Mathematically, let t : ðu; vÞ ! m 2 M
be the meta-path mapping function, where M is the set
of direct linked meta-paths. It inputs a node pair ðu; vÞ,
and outputs a variable m which indicates the direct
linked meta-path between nodes u and v. Simultaneously,
let hðk�1Þ

u be the embedding of node u at the (k-1)th layer,
and hð0Þ

u the node’s feature vector. Then, for each u, its
embedding of the direct linked meta-path m at the kth
layer eðm;kÞ

u can be updated as:

eðm;kÞ
u ¼

X

v2Nu

dðtðu; vÞ; mÞðeduedvÞ
1
2hðk�1Þ

v 8m 2 M; (2)

where edu is the degree of node u of G with self-edges (as
defined in (1)),Nu is the set of direct linked meta-path-based
neighbors of node u, and dð�; �Þ a Kronecker delta function
that only allows nodes with the direct linked meta-path m
to node u to be included. Since there are jMj different direct
linked meta-paths, then for each node u, we will get jMj
meta-path-type embeddings. Considering that these meta-
path-type embbeddings play a different role and show dif-
ferent importance in learning node embedding. In this case,
we adopt another aggregation function, i.e., concatenation
k , to aggregate the embeddings of different direct linked
meta-paths, that is

gðkÞu ¼ k
m2M

eðm;kÞ
u ; (3)

which makes the embedding dimension from f to jMj �
f , where f is the node embedding dimension of hidden
layer.

Then, different from [16] which only distinguish the dif-
ference of different meta-paths in the process of propaga-
tion, we also distinguish them in the process of aggregation.
With the obtained gðkÞu , the kth layer embedding of node u
can be given by using a mapping function along with a non-
linear transform as:

hðkÞ
u ¼ sðgðkÞu �W ðk�1ÞÞ; (4)

where W ðk�1Þ is the mapping matrix and sð�Þ the non-linear
activation function. To simplify expression, we use a new
operator ’�’ to denote the incorporation of the above two
types of aggregations on matrices. Then, the matrix form of
the kth layer embeddings can be defined as:

Fig. 3. The structure of the naive model. It propagates and aggregates the information of direct linked meta-path-based neighbors repeatedly via k
layers. The part in red box is the core content.
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HðkÞ ¼ sðð bA �Hðk�1ÞÞW ðk�1ÞÞ: (5)

To better understand how this naive model distinguishes
the importance of information from different meta-paths
during both propagation and aggregation, we give a brief
explanation on a heterogeneous information network
(DBLP) as an example. As shown in Fig. 4, in each layer, we
use the direct linked meta-paths within the black circle to
propagate information. Since different types of meta-path-
based neighbors of each node typically have different fea-
ture distributions, we adopt the summation to aggregate
information from each type of neighbors linked by the same
one-hop meta-path (e.g., Author-Paper), and use concatena-
tion to aggregate information from different one-hop meta-
paths (e.g., Author-Paper and Term-Paper), so as to retain
as much information as possible from different one-hop
meta-paths. Then we feed it to the neural network, distin-
guishing the importance of information from different
meta-paths in an implicit and indirect way. That is, utilize
the new discriminative aggregation as well as the mapping
function of neural networks, rather than using attention
directly. Furthermore, we extend the propagation range by
stacking layer by layer, and then realize the distinction of
meta-paths with different lengths (e.g., Author-Paper-Term

and Author-Paper-Term-Paper), with the help of the inter-
action of the multi-layer propagation of the one-hop meta-
paths as well as the bi-level aggregation mechanism in
each-layer.

In fact, while this naive model seems to be able to cover
different meta-paths as well as distinguish their importance
in both propagation and aggregation in an ideal way, it,
however, possesses an inherent limitation, i.e., many nodes
do not have the same (or complete) types of one-hop meta-
paths due to the sparsity of HIN, making an effective con-
catenation in this new aggregation process difficult. Take
DBLP as an example, some paper nodes may not have links
under meta-path Paper-Author while some other nodes
may not have links under Paper-Term. In this case, we can-
not achieve the alignment of these nodes’ embeddings after
concatenation. So, one can only use non-informative vectors
(e.g., vectors with all 1 or 0) to fill in these missing types to
make them complete. This, however, significantly lowers
the performance of the model especially when stacking
multi-layers.

4.2 The Improved Model

To overcome the limitation of the naive model, we intro-
duce an effective relaxation and improvement. That is, we
first perform a k-step propagation, and then the discrimina-
tive aggregation. In the new propagation process, we
replace the spectral filter of GCN from the symmetric graph
Laplacian to an equivalent asymmetric one, and then
remove activation, in order to make it a continuous Markov
dynamics. We then introduce a random graph-based cut
mechanism to constrain its free expansion, enabling the
propagation to escape from including too many harmful
information with the increase of layers. The structure of this
model is illustrated in Fig. 5. In the following, we will intro-
duce it from two perspectives, i.e., probabilistic propagation
and discriminative Aggregation.

4.2.1 Probabilistic Propagation

First we refine the propagation process of GCN. We adopt

an asymmetric normalized graph Laplacian P ¼ eD�1 eA,
which is also called the Markov transition probability
matrix, as the filter to perform propagation, where eA ¼

Fig. 4. An illustrative example of using the naive model on DBLP. The
blue arc (of using summation) represents the aggregation of information
from the same type of neighbors linked by a one-hop meta-path, the
green arc (of using concatenation) denotes the aggregation of informa-
tion from different one-hop meta-paths, and the brown arc (of using the
neural network mapping and activation) denotes the selection of differ-
ent meta-paths by utilizing the inherent algorithm mechanism (i.e.,
implicit utilization of attention).

Fig. 5. The structure of the model with constrained Markov propagation. The part in the red box is the core improvement and relaxation compared to
the naive model.
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Aþ I (A is the adjacency matrix of G and I the identity
matrix), and eD = diagðed1; . . . ; ednÞ with edu ¼

P
v eauv. Accord-

ing to spectral graph theories [17], P has the same spectrum
range with the original spectral filter bA of GCN (defined in
(1)), and thus possesses the same ability of serving as a low-
pass-type filter for propagation. Meanwhile, we remove
activation functions on all layers expect for the output layer
(that uses softmax), which will not decrease the model’s
performance, as guaranteed by [17]. Then, these two steps
make the propagation a continuous Markov dynamics pro-
cess. The new propagation rule can be defined as:

P ðkÞ ¼ P ðk�1Þ � P; (6)

where P ð0Þ ¼ I.
On the other hand, the above propagation process in

graph convolution can be also taken as a k-step Markov ran-
dom walk from the perspective of probabilistic diffusion.
Formally, given a heterogeneous information network G,
the transition probability from nodes u to v within one step
random walk can be formulated as:

puv ¼
eauvP
r eaur

: (7)

Then, after walking k steps, the transition probability from
nodes u to v can be calculated iteratively by

zðkÞuv ¼
Xn

r¼1

zðk�1Þ
ur prv; (8)

where zð0Þuu ¼ 1 and zð0Þuv ¼ 0, for u 6¼ v. The above process can
also be taken as a matrix form as

ZðkÞ ¼ Zðk�1Þ � P s:t:; Zð0Þ ¼ I; (9)

where the k-step transition probability matrix ZðkÞ equals to
the propagation matrix P ðkÞ in (6) in graph convolution.
More interestingly, according to spectral graph theories [18],
the number of steps of random walk in the range of entering
and exiting times of the cth local mixing state (of thisMarkov
dynamics) can show the clearest c categories structure. So,
this new probabilistic perspective brings a byproduct that
we can evaluate the optimal number of propagation layers of
graph convolution. To be specific, given a network G with
the Markov matrix P , the local mixing times of random
walks on it can be estimated by using the spectrum of its cor-
responding Markov generator M ¼ I � P , where M is posi-
tive semi-definite and has n non-negative real-valued
eigenvalues (0 ¼ �1 � �2 � � � � �n � 2). Let T ent

c and T ext
c be

the entering and exiting times of the cth local mixing state,
we have T ext

c ¼ 1
�c
ð1þ oð1ÞÞ. Reasonably, we can use the exit-

ing time of the (c+1)th local mixing state to estimate the
entering time of the cth local mixing state, which can be rep-
resented as T ent

c ¼ T ext
cþ1 ¼ 1=�cþ1. Then, the calculated T ent

c

and T ext
c can be taken as the floor and ceiling of the optimal

number of propagation layers for a c-classification problem.
However, first, it is too time consuming to calculate the

eigenvalues for determining the number of propagation layers,
which often needs Oðn3Þ time. Second, even in the expected
range of the optimal number of layers, the propagation will
still introduce impurity information inevitably, whichwill also

decrease the convolution’s performance. To further overcome
those drawbacks, we introduce the new RPC principle, i.e., if a
propagation path on a given network (with clusters) is no bet-
ter than that on its corresponding random graph, we will have
no reason to continue this propagation path. This will not only
enable the propagation to filter more noise information, but
also make it not so sensitive to the number of layers (which
may be set a relative large value, e.g., 10). To be specific, given
a heterogeneous information network G ¼ ðV;EÞ, we first cal-
culate its corresponding random graphG0 ¼ ðV;E0Þwhich has
the same node degree distribution withGwhile contains none
structural information for classification. We adopt the popular
null model of modularity [19] that describes random graphs
by rewiring edges randomly among nodes with given node
degrees, which is correctly suitable for this work. Let eA ¼
ðeauvÞn�n be the adjacency matrix ofGwith self-edges, and eD =

diagðed1; . . . ; ednÞ the degree matrix with edu ¼
P

v eauv. Then,
based on this null model, the expected number of links (or
expected linkweight) betweennodes u and v can bewritten as:

a0uv ¼
eduedvPn
r¼1

edr
; (10)

which forms the adjacency matrix A0 ¼ ða0uvÞn�n of G0. On
this random graph, the one step transition probability from
nodes u to v can be written as

quv ¼
a0uvP
r a

0
ur

: (11)

Using it as a constraint on each step of the random walk on
G, we then get a constraint Markov dynamics. That is, the
transition probability from nodes u to v after k steps of the
constraint walk, i.e., sðkÞuv , can be calculated iteratively by

s0ðkÞuv ¼ maxð
Xn

r¼1

sðk�1Þ
ur prv �

Xn

r¼1

sðk�1Þ
ur qrv; 0Þ;

sðkÞuv ¼
s0ðkÞuvPn
r¼1 s

0ðkÞ
ur

;

(12)

where
Pn

r¼1 s
ðk�1Þ
ur prv denotes the k-step transition probabil-

ity from nodes u to v on G while
Pn

r¼1 s
ðk�1Þ
ur qrv the probabil-

ity on the corresponding random graph G0, after k-1 steps of
the constraint walk. We remove negative values of sðkÞuv and
normalize it after each step (since the probability distribu-
tion should be non-negative and sum to 1). Then, let SðkÞ ¼
ðsðkÞuv Þn�n, P ¼ ðpuvÞn�n, Q ¼ ðquvÞn�n and Ds = diagðds1; . . . ;
dsnÞwith dsu ¼

P
v suv, the above process can be rewritten in

the matrix form as:

S0ðkÞ ¼ maxðSðk�1Þ � P � Sðk�1Þ �Q; 0Þ;

SðkÞ ¼ D�1
s � S0ðkÞ:

(13)

When performing 1-step constrained Markov propagation,
take IMDB which contains three types of nodes: movie (M),
actor (A) and director (D), and two types of edges: moive-
director (MA) and movie-actor (MD) as example, it may
form a heterogeneous randomwalkwithMA orMD. Finally,
we derive the k-step transition probability matrix SðkÞ based
on the constraint Markov dynamics, which is to serve as a
better propagationmatrix for graph convolution.
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To illustrate how the propagation matrix based on the
unconstrained (and constrained) Markov dynamics changes
with the number of layers, we take a simple Newman artificial
network [20] as an example. The network consists of 128 nodes
divided into four categories of 32 nodes. Each node has on
average 14 edges connecting to nodes of the same category
and 2 edges connecting to nodes of other categories, as shown
in Fig. 6a. For this four-classification problem,wefirst calculate
the spectrum of itsMarkov generator (Fig. 6b), and then derive
the entering time and exiting time of the 4th local mixing state,
i.e., 2 and 6, corresponding to the floor and ceiling of the opti-
mal number of layers (Fig. 6c). Figs. 6d, 6e and 6f show the
propagationmatrices of 2, 6 and 10 steps (or layers) of random
walk. As shown, while the propagation matrices between the
2th and 6th layers are relatively clear, some impurity informa-
tion is still introduced. But with the increase of propagation
layers, e.g., reaching 10 layers, it will become hard to filter
impurity information any more. However, after introducing
the constraint mechanism, the propagation matrices of the 2th
and 6th layers are much clearer (Figs. 6g and 6h). More impor-
tantly, it will almost not introduce impurity information with
the increase of layers, e.g., reaching 10 layers as shown in
Fig. 6i. This further verifies that the new constrained Markov
dynamics can suppress the integration of impurity information
when propagation,making itmore robust and effective.

4.2.2 Discriminative Aggregation

After the k-step propagation above, we then perform a dis-
criminative aggregation, which forms the relaxation and
improvement of the naive model. To be specific, we use the

same aggregation as the naive model while aggregating
embeddings of the k-step propagated neighbors. Then, the
final embeddings can be defined in one time as

HðkÞ ¼ sððSðkÞ �Hð0ÞÞW Þ: (14)

While the model may not distinguish information from dif-
ferent meta-paths in propagation, it does distinguish them
in aggregation, achieving the essential selection of different
meta-paths. In this way, we can further solve the inherent
limitation of the naive model (the difficulty of concatenation
in the new aggregation because most nodes do not have the
same and complete types of one-hop meta-paths), since we
can often get the complete types of neighbors after some k
steps of constraint propagation.

Here, one may also concern that the propagation matrix
SðkÞ may become very dense in this case, making the prop-
agation introduce too much noise. But in fact, it is not this
case. Thanks to the new constraint mechanism, our SðkÞ

can still remain sparse. Here take a first node v1 in the first
category of a complex Lancichinetti artificial network as
an example (Fig. 7a). After many steps (e.g., k = 10) of
propagation, when using the unconstraint random walk,
the propagation probability of this node to all the other
999 nodes are positive, showing a dense result (Fig. 7b).
However, the propagation probability produced by our
constraint walk is still sparse (Fig. 7c). As shown in Fig. 7c,
our propagation probability of v1 to 766 out of the total 999
are 0; while that to the other nodes are positive. Moreover,
the red values (the probability of v1 to nodes in the same
category) are often much larger than the blue values (the
probability of v1 to nodes outside this category). This dem-
onstrates that our new propagation mechanism can not
only obtain a sparse propagation matrix, but also well fil-
ter impurity information, making the propagation more
effective.

We define the loss function by using cross entropy as:

L ¼ �
X

l2yL

Y llnðC �H lÞ; (15)

where C denotes the set of parameters of the classifier, yL
the set of node indices that have labels, Y l and Hl the labels
and embeddings of the labeled nodes. We use back propa-
gation and Adam optimizer to optimize the model.

Fig. 6. An example illustrating that the propagation matrix changes with
increasing the number of propagation layers based on the unconstrained
(and constrained) Markov dynamics. (a) shows a simple Newman artifi-
cial network, (b) the spectrum of its Markov generator, and (c) the exiting
(and entering) time of each local mixing state. (d), (e) and (f) show the
propagation matrices after 2, 6 and 10 layers of the unconstrained Mar-
kov propagation (corresponding to the entering time and exiting time of
the 4th local mixing state, as well as a longer time). (g)-(i) show the prop-
agation matrices by introducing the new constraint mechanism, corre-
sponding to (d)-(f) respectively.

Fig. 7. An example of illustrating the sparsity of the propagation matrix
using our constraint propagation. (a) shows an artifical network of 1000
nodes with power-law distribution of degree and category size, generated
by Lancichinetti’s model [21]. Here we only use the first category with 97
nodes which are put on the top of the node sequences. We focus on the
first node v1 in this category with maximum degree. (b) shows the propa-
gation probability of node v1 to others based on the unconstrained random
walk, and (c) that using our constrainedwalk. Red points denote probabili-
ties of node v1 to nodes in the same category and blue points outside.
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4.3 Implementation

It is also quite easy to introduce some tricks when imple-
menting our method. The tricks include, for example, sup-
porting the use of candidate meta-path sets and the (multi-
head) node-level attention, which are often used in the exist-
ing HIN embedding approaches.

First, existing HIN embedding methods often need to
use a candidate meta-path set. To make our method sup-
port this option, we can adopt only the meta-paths in this
candidate set to construct the k-step propagation matrix,
and then use an aggregation to fuse information from
these k-step propagated neighbors to derive the final
embeddings.

Second, existing graph neural network-based HIN
embedding methods usually adopt the node-level attention
for fine-tuning. Our method can also introduce the node-
level attention, working together with its inherent algorith-
mic mechanism of implicitly selecting meta-paths, to further
improve performance. To be specific, given a node pair (u,
v) and a specified meta-path m, the importance coefficient
between nodes u and v can be formulated as:

emuv ¼ LeakyReLUðmT
m½WhujjWhv	Þ; (16)

where mm is the parameterized attention vector for meta-
path m, and W the mapping matrix applied to each node.
After obtaining the importance between nodes u and v, we
can then use softmax to normalize them to get the weight
coefficient as:

am
uv ¼ softmaxvðe

m
uvÞ ¼

expðemuvÞP
r2Nm

u
expðemurÞ

: (17)

Then, the embedding of node u for meta-path m can be
aggregated by the neighbor’s embeddings with its corre-
sponding weight coefficients as:

hm
u ¼ sð

X

v2Nm
u

am
uvWhvÞ: (18)

Finally, we can also extend the node-level attention to a
multi-head attention, as done in many existing methods
[12], [13], in order to stabilize the learning process and
reduce the high variance (brought by the heterogeneity of
networks). That is, we repeat the node-level attention K
times, and then concatenate their output as the final embed-
dings:

hm
u ¼ k

K

k¼1

sð
X

v2Nm
u

am
uvWhvÞ: (19)

5 EXPERIMENTS

We first give the experimental setup, and then compare
our GIAM with some state-of-the-art methods on three
network analysis tasks, i.e., node classification, node
clustering and network visualization. We finally give an
in-depth analysis of different components of our new
approach.

5.1 Experimental Setup

5.1.1 Datasets

We adopt two widely-used heterogeneous information net-
works from different domains, as shown in Table 2, to eval-
uate the performance of different methods.

� IMDB is an online database about TV shows and
movie productions. We extract a subset of IMDB
with 4278 movies (M), 2081 directors (D) and 5257
actors (A). The movies are divided into three classes
(Action, Comedy, Drama) based on their genre. Each
movie is described by a bag-of-words representation
of its plot keywords. The same to [13], we use the
candidate meta-path set {MAM, MDM} for algo-
rithms that require such information, and select 400,
400 and 3478 movies as training, validation and test-
ing sets, for semi-supervised learning.

� DBLP is a computer English literature database
with authors as its core. We extract a subset of
DBLP with 4057 authors (A), 14328 papers (P),
7723 terms (T) and 20 venues (V). The authors are
divided into four classes (Database, Data Mining,
Artificial Intelligence and Information Retrieval) based
on their research areas. Each author is described
by a bag-of-words representation of his/her paper
keywords. Also the same to [13], we adopt the can-
didate meta-path set {APA, APCPA, APTPA}, and
select 400, 400 and 3257 authors as training, valida-
tion and testing sets.

5.1.2 Baselines

We compare our new approach GIAM with eight existing
methods. They include: 1) the homogeneous network
embedding methods DeepWalk [22], Node2vec [23], GCN
[14] and GAT [24], and 2) the HIN embedding methods
Metapath2vec [9], HetGNN [25], HAN [12] and MAGNN
[13]. Especially, GCN is the base of our GIAM, and HAN
and MAGNN are the state-of-the-art graph neural net-
work-based HIN embedding methods which adopts the
hierarchical attention structure. Also of note, we use
homogeneous network embedding methods on the HIN
structure directly by ignoring the difference of types of
nodes and edges.

5.1.3 Parameter Settings

For the methods based on semi-supervised graph neural
networks (including GCN, GAT, HAN, MAGNN and our
GIAM), we set the dropout rate to 0.5 and use the same

TABLE 2
Datasets Description

Datasets No. of Nodes No. of Edges Meta-paths

IMDB
#movie(M): 4278
#director(D): 2081
#actor (A): 5257

#M-D: 4278
#M-A: 12828

MDM
MAM

DBLP

#author (A): 4057
#paper (P): 14328
#term (T): 7723
#venue (V): 20

#A-P: 19645
#P-T: 85810
#P-V: 14328

APA
APTPA
APVPA
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splits for training, verification and testing sets. We
employ the Adam optimizer with the learning rate setting
to 0.005 and apply early stopping with a patience of 50.
For GAT, HAN and MAGNN, we set the number of
attention heads to 8. For HAN and MAGNN, we set the
dimension of the meta-path-level attention vector to 128.
For the methods based on random walk (including Deep-
Walk, Node2vec, HetGNN and metapath2vec), we set the
window size to 5, walk length to 100, walks per node to
40, and the number of negative samples to 5. In addition,
we set the propagation step k according to the maximum
length of the meta-paths used in the existing work [12],
[13], i.e., 2 for IMDB and 4 for DBLP. For a fair compari-
son, the embedding dimension of all methods mentioned
above is set to 64.

5.2 Comparisons to Existing Methods

We first make a quantitative comparison on node classifica-
tion and clustering, and then a qualitative comparison on
visualization.

5.2.1 Node Classification

On the node classification task, for eachmethod, we first gen-
erate the embeddings of the labeled nodes (i.e., movies in
IMDB and authors in DBLP), and then feed them to SVM by

using different training ratios from 5% to 80% (as done in the
most existing works). Since the variance of the graph struc-
ture data can be quite large, we repeat this process 10 times
and report the averageMacro-F1 andMicro-F1.

The results are shown in Table 3. As shown, the proposed
method GIAM always performs the best across different train-
ing ratios and datasets. On the IMDB dataset, GIAM is 1.15-
2.88% and 0.32-4.42% more accurate than the best baselines
HAN and MAGNN, which are also the heterogeneous graph
neural network methods (while they use mate-path-level
attentions directly). On the DBLP dataset, GIAM is 0.71-1.44%
and 0.20-0.72% more accurate than the best baselines HAN
andMAGNN in the case of an already very high base accuracy
(
 91.80%), making our improvement still nontrivial. These
results not only demonstrate the superiority of the new propa-
gation and aggregationmechanism, but also validate the effec-
tiveness of our main idea of using algorithmic mechanisms
(rather than themeta-path-level attentiondirectly) to implicitly
achieve the role of attention of selecting meta-paths. In addi-
tion, the performance of GIAM is much better than that of
GCN (i.e., 3.27-4.42% and 5.64-7.65% more accurate than
IMDB and DBLP), which further demonstrates the effective-
ness of our new mechanism for distinguishing importance of
information with respect to different meta-paths in both prop-
agation and aggregation.

TABLE 3
Comparisons on Node Classification
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5.2.2 Node Clustering

We also conduct comparisons of these methods on node clus-
tering. In this task, for each method, we first generate embed-
dings of the labeled nodes, and then feed them to K-Means
algorithm. The number of clusters K is set to the same as the
ground-truth, i.e., 3 for IMDB and 4 for DBLP. Since the perfor-
mance of K-Means is easily affected by the initial center, we
repeat the process 10 times and report the average normalized
mutual information (NMI) and adjusted rand index (ARI).

The results are shown in Tables 4 and 5. As shown, the pro-
posed method GIAM performs the best on IMDB. While
GIAM performs the second best on DBLP, its performance is
still very competitive with that of the best baseline MAGNN.
On average on both these two datasets, GIAM is 10.67%,
6.77%, 14.66%, 7.75%, 9.11%, 9.48%, 3.76% and 0.47% more
accurate than Deepwalk, Node2vec, GCN, GAT,

Metapath2vec, HetGNN,HANandMAGNN in terms ofNMI;
and 0.1212, 0.0694, 0.2247, 0.1111, 0.0938, 0.0875, 0.0303 and
0.0114 better than thesemethods inARI (in the range of -1 to 1).
Moreover, (on average) GIAM is still better than the methods
using meta-path-level attentions directly (i.e., HAN and
MAGNN). This further validates the soundness of using algo-
rithmic mechanisms to evaluate importance of different meta-
paths. Neither GCN nor GAT is so competitive here. This is
mainly because they fail to distinguish importance of informa-
tion with respect to different meta-paths, which significantly
compromises their performance in the unsupervised clustering
setting.

5.2.3 Visualization

For a more intuitively comparison, we also visualize the
embeddings of author nodes of some representative network
embedding methods (i.e., GCN, HetGNN, HAN and our
GIAM) on the DBLP dataset as an example. We utilize the
well-known t-SNE tool [26] to project node embeddings to
two dimensions. Different colors correspond to different
research areas of these nodes.

As shown in Fig. 8, GCN (which ignores the heterogene-
ity of nodes) does not perform well, i.e., the author nodes
belong to different research areas are sometimes mixed
with each other. HetGNN performs much better than GCN,
but its boundary is still blurry. While both HAN and our
GIAM separate the author nodes in different research areas
reasonably well, our GIAM has a more distinct boundary
and denser cluster structures in visualization.

5.3 A Deep Analysis of GIAM

Similar to most deep learning models, GIAM also contains
some important components that may have significant
impact on the performance. To test the effectiveness of each
component of GIAM, we conduct experiments on compar-
ing GIAM with four variations. The variants are as follows:
1) GCN which serves as the base framework of GIAM of not
distinguishing importance of information with respect to
different meta-paths, 2) the naive model of GIAM, named
as GIAM-1, 3) GIAM of removing node-level attention (by

TABLE 4
Comparisons on Node Clustering in Terms of NMI (AVG Shows the Average Result)

Datasets NMI (%)

Deepwalk Node2vec GCN GAT Metapath2vec HetGNN HAN MAGNN GIAM

IMDB 0.55 5.34 10.42 10.02 0.43 0.46 13.02 13.77 15.41

DBLP 71.78 74.80 53.93 68.15 75.02 74.26 73.13 78.97 78.27 (2)
AVG 36.17 40.07 32.18 39.09 37.73 37.36 43.08 46.37 46.84

TABLE 5
Comparisons on Node Clustering in Terms of ARI

Datasets ARI [-1,1]

Deepwalk Node2vec GCN GAT Metapath2vec HetGNN HAN MAGNN GIAM

IMDB -0.0014 0.0642 0.0661 0.0744 0.0005 0.0048 0.1282 0.1206 0.1552

DBLP 0.7415 0.7796 0.4670 0.6859 0.7945 0.8028 0.7938 0.8392 0.8273 (2)
AVG 0.3701 0.4219 0.2666 0.3802 0.3975 0.4038 0.4610 0.4799 0.4913

Fig. 8. The visualization of author nodes of the embeddings learned by
(a) GCN, (b) HetGNN, (c) HAN and (d) GIAM on DBLP. Different colors
correspond to different research areas in ground truth.
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assigning the same importance to each neighbor node),
named as GIAM-2, and 4) GIAM of adding the meta-path-
level attention, named as GIAM-3. We take their compari-
son on node classification as an example.

As shown in Table 6, compared to GCN, the naive model
GIAM-1 (which distinguishes meta-paths) has an obvious
improvement, i.e., 0.86-1.15% and 4.18-5.25% more accurate
on IMDB and DBLP. However, due to the sparsity of HINs,
GIAM-1 inevitably needs to add a large number of non-infor-
mative features, so as to fill in embeddings of themissing types
of one-hop meta-paths during aggregation. While its result is
basically satisfactory, this limitation compromises perfor-
mance inevitably. We overcome this limitation by introducing
a new mechanism of relaxation and improvement, deriving
GIAM-2, which further improves performance of the naive
model, i.e., 2.35-3.63% and 0.02-2.76% more accurate on IMDB
and DBLP. Furthermore, by introducing the fine-turning
node-level attention, the derived GIAM improves GIAM-2 on
DBLP (i.e., 0.63-0.87% more accurate), while the improvement
on IMDB is not so obvious (because IMDB is harder to be
trained well with a relative low accuracy, easier leading to
overfitting). This further demonstrates that the node-level
attention indeed plays a fine-tuning role when the model can
be well trained (such as on DBLP with a relative high accu-
racy). Finally, GIAM-3 of adding the meta-path-level attention
hardly changes the performance of GIAM. This further vali-
dates that our algorithmic mechanism has already played a
significant role in selecting meta-paths, compared to the
explicit meta-path-level attention approach.

6 RELATED WORK

Existing heterogeneous information network (HIN) embedding
methods can bemainly divided into three categories, including

the random walk-based methods, the relation learning-based
methods and the graph neural network-basedmethods.

The random walk-based methods first utilize random walk
on a HIN to generate the node walk sequences, and then feed
them to the subsequent model to obtain node embeddings.
JUST [8] adopts the jump and stay strategies on a HIN, which
selects the next node based on the probability of the jump or
stay operation, to perform randomwalk. SHNE [27] introduces
a semantic-aware heterogeneous network embedding model
which performs joint optimization of heterogeneous skip-gram
and deep semantic encoding to capture both structural close-
ness and unstructured semantic relations in a HIN. Further-
more, HetGNN [25] develops a sampling strategy based on
random walk with restart to sample neighbors for each node,
anduses a heterogeneous neural network architecture to aggre-
gate the feature information of those sampled neighbor nodes.

The relation learning-based methods aim to learn a scor-
ing function which evaluates an arbitrary triplet composed
of two nodes and an edge type, and output a scalar to mea-
sure the acceptability of this triplet. For example, DistMult
[10] adopts a similarity-based scoring function to learn the
edge possibility between arbitrary two nodes of the HIN.
ConvE [11] proposes a deep neural model instead of the
simple similarity function to score the edge possibility
between two nodes. TransE [28] learns the edge possibility
between two nodes by using a translational distance.

The graph neural network-based methods aim to learn
node embeddings by aggregating the information from neigh-
bor nodes of a HIN. For example, GTNs [29] generate a new
network structure which involves identifying useful meta-
paths and multi-hop connections for learning effective node
embeddings on a HIN. HAN [12] proposes a hierarchical
attention mechanism, including the node-level and semantic-
level attentions, to aggregate the information from meta-path-
based neighbors. MAGNN [13] employs three major compo-
nents, i.e., the node-type specific transformation, the node-
level meta-path instance aggregation and the meta-path-level
embedding fusion, to obtain the node embeddings of heteroge-
neous graphs. While those graph neural network-based meth-
ods can often derive satisfactory node embeddings, they still
have some essential limitations. That is, the complicated hier-
archical attention structure often makes these methods diffi-
cult to really achieve the goal of selecting meta-paths, partly
due to the highly overfitting (as shown in Fig. 1a as an illustra-
tive example). Meanwhile, those methods treat the one-hop
and multi-hop meta-paths indistinguishably to propagate
information, which may be not so intuitive from the perspec-
tive of network propagation dynamics in network science.

7 CONCLUSION

We propose a novel GCN-based method, namely GIAM,
via implicitly (rather than explicitly) utilizing attention
and meta-paths, in order to effectively achieve HIN
embedding. We use the direct linked meta-paths, a dis-
criminative aggregation, along with the stacked layers of
propagation, to distinguish the importance of different
meta-paths. We further give an effective relaxation and
improvement by introducing a new multi-layer propaga-
tion which is separated from the aggregation. That is, we
first replace the spectral filter of GCN from the

TABLE 6
Comparisons of Our GIAM with Four Variants (GCN, GIAM-1,

GIAM-2 and GIAM-3) on Node Classification
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symmetric normalized graph Laplacian to an equivalent
asymmetric one and remove activation functions, making
it a well-defined probabilistic propagation process. We
then introduce a random graph-based constraint mecha-
nism RPC on this probabilistic propagation, to avoid
importing too much noise with the increase of propaga-
tion layers. Empirical results on various graph mining
tasks, including node classification, node clustering and
graph visualization, demonstrate the superiority of our
new approach over some state-of-the-art methods.
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