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Abstract—In many training scenarios, and in surgery in particular,
feedback is provided to the trainee after the task has been performed,
and the assessment is often qualitative in nature. In this paper, we
demonstrate the effect of real-time objective performance feedback
conveyed through a vibrotactile cue. Subjects performed a mirror-tracing
task that requires coordination and dexterity similar in nature to that re-
quired in endovascular surgery. Movement smoothness, a characteristic
associated with skilled and coordinated movement, was measured by
spectral arc length, a frequency-domain measure of smoothness. The
smoothness-based performance metric was encoded as a vibrotactile
cue displayed on the user’s arm. Performance on the mirror tracing
task with smoothness-based feedback was compared to position-based
feedback (where the subject was alerted when they moved outside
the path boundary) and to a no vibrotactile feedback control condi-
tion. Subjects receiving smoothness-based feedback altered their task
completion strategies, resulting in faster task completion times, but
their accuracy was slightly worse overall than the other two groups. In
procedures such as endovascular surgery, the reduction of procedure
time that could be achieved with smoothness-based feedback training
may be advantageous, despite the fact that accuracy was inferior to that
observed with no feedback or position-based feedback.

Index Terms—cutaneous haptic feedback, vibrotactile stimuli, move-
ment smoothness, haptic guidance.

1 INTRODUCTION

P ERFORMANCE feedback for training of complex motor
tasks often relies on outcome-based performance mea-

sures delivered to the trainee after the task is completed,
such as task completion time or some type of composite
score of performance. Such outcome-based performance
measures are limited in that they only indicate success ver-
sus failure, and do not necessarily instruct the trainee on how
they should alter their strategy to achieve the desired result.
Technological advancements in sensing and motion capture
offer new opportunities for providing detailed performance
feedback during task performance, and such feedback has
the potential to accelerate the learning process and improve
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training outcomes. This motion-based approach to perfor-
mance evaluation in manual control tasks is gaining traction
in the research community, especially in the domain of
surgical skill assessment. For example, some groups have
measured hand and instrument movements to assess the
skill level of novice and expert surgeons operating the da
Vinci robotic surgical device [1], [2], [3]. Access to larger
quantities of more detailed data about the human’s control
over the task and the task outcomes provides the possibility
to identify performance metrics that offer multiple advan-
tages over outcome-based metrics: insight into task perfor-
mance, the ability to compare the performance of trainees
in a detailed manner, and a mechanism to objectively track
changes in performance as a result of training (e.g., learning
curves).

We wish to further expand the utility of these motion-
based performance metrics by displaying them as feed-
back during surgical skill training. Because traditional train-
ing exercises require an expert surgeon to be present to
provide feedback, coaching time for trainees is expensive
and extremely limited. Moreover, skill assessment is often
provided informally through subjective feedback after the
entire procedure is completed [4]. This delay decouples the
feedback and performance in ways that can impede learning
[5]. A well-designed, performance-based metric rendered as
feedback to the trainee while the task is being conducted
could overcome these limitations.

Our ultimate goal is to improve the efficiency of surgical
skill training through the provision of performance-based
feedback. Specifically, we aim to deliver haptic cues that
convey information about the user’s movement smoothness
during training tasks. We choose a haptic modality for
feedback because the application domain of endovascular
surgery necessitates that feedback be practical in a surgical
setting such as an operating room. These environments are
inherently noisy, prohibiting auditory feedback to the sur-
geon. Further, endovascular surgery is extremely demand-
ing of the visual channel, since the surgeon must observe
two-dimensional live x-ray images and interpret the three-
dimensional anatomy and trajectories of the endovascular
tools in real-time. Movement smoothness is widely regarded
as a hallmark of skilled, coordinated movement [6], [7], and
metrics that capture movement smoothness have been used
to assess motor performance in basic motor control tasks [8],
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Fig. 1. The subject navigates the cursor around the abstract shape using a Novint Falcon as the input device. In the mirror-tracing task, the
movements of the input device are inverted compared to the movements of the cursor on the screen. Tactile feedback of performance is provided
by a C-2 tactor secured to the subject’s non-dominant arm.

rehabilitation applications [9], [10], [11], and robotic laparo-
scopic surgery [2]. In our more recent work [12], [13], we
demonstrated the applicability of motion-based measures
of performance to procedures in endovascular surgery.

Our initial experiments focused on investigating how
to convey motion-based metrics through haptic feedback:
what form should that feedback take, and how should the
information be encoded? As a first step, we identified and
validated a proxy task, mirror tracing (see Fig. 1), that
requires the same types of movement strategies identified
as successful in endovascular surgery [14]. We previously
demonstrated correlations between movement smoothness
and performance in this mirror tracing task that we first
observed for endovascular surgical tasks [15]. Thus, this
proxy task offers a foundational experimental paradigm
upon which we can design motion-based haptic feedback
and evaluate the effect on manual task performance.

In conjunction with this proxy task, we have developed
a system that renders cutaneous haptic feedback in the form
of vibrotactile cues based on the smoothness of the user’s
tracing movement, which is calculated as spectral arc length
[15], while trainees are performing the task. Spectral arc
length (SPARC) is a metric that uses the frequency content
of the velocity signal to evaluate movement smoothness
[16]. As its name suggests, SPARC is computed from the
arc length of the Fourier magnitude spectrum of the ve-
locity signal. Consequently, SPARC values that are smaller
in magnitude correspond to smoother movements. One of
the main advantages of SPARC is its basis in the frequency
domain. Other smoothness calculations, such as minimum-
jerk correlation [6] and submovement decomposition [10],
[17], utilize time-domain characteristics that require the
velocity profile to have starting and ending values close to
0. Thus, these metrics are very sensitive to segmentation
and are more reliable for post-hoc analysis of point-to-point
motions. On the other hand, because SPARC is computed in
the frequency domain, it is largely unaffected by segmenta-
tion and is therefore a better option for online calculation of

smoothness and real-time performance feedback.
Our choice of cutaneous vibrotactile feedback as our

method of haptic guidance, in contrast to haptic guidance
provided via kinesthetic haptic feedback, is intentional.
Kinesthetic feedback requires complex, custom haptic de-
vices unique to a particular task (for example, multi degree-
of-freedom devices to simulate rowing[18], [19] or tennis
swings [20]). Further, some types of kinesthetic haptic guid-
ance, while beneficial for enhancing performance, have been
ineffective when it comes to demonstrating retention of
skill or transfer to a similar task [21], [22]. Tactile feedback,
on the other hand, has already been demonstrated as an
effective technique for improving movement quality [23],
[24]. In particular, tactile feedback has the potential to be
widely applied for the training of complex movements in
later stages of learning, when task execution strategies need
to be refined. For example, studies on drawing different
shapes [25] and on handwriting [26] have demonstrated an
improvement in movement fluidity by the addition of haptic
feedback during training. These findings strongly parallel
our desire to train smooth manipulation of surgical tools
during navigation tasks, wherein trainees are already famil-
iar with the basics of navigating to anatomical locations, but
lack the dexterity to do so efficiently and repeatedly.

To date, there has been little investigation into the effec-
tiveness of vibrotactile feedback for conveying performance
feedback other than positional or trajectory error. Motion-
based feedback has the potential to enhance performance
and training, but as the literature on training has shown
repeatedly (e.g., [27]), the details of how this is done matter
a great deal.

In this paper, we demonstrate the potential for real-
time haptic feedback of movement smoothness, encoded
as a simple vibrotactile cue displayed to the user during
completion of a complex motor control task, represented in
Fig. 1. We show that movement smoothness feedback has
a significant effect on task performance, and changes task
completion strategies compared to a no haptic feedback con-
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trol condition and a position-based feedback condition. This
work paves the way for developing real-time smoothness-
based performance feedback in endovascular surgical simu-
lation environments.

2 METHOD

2.1 Subjects
Subjects were recruited from Rice University undergradu-
ates enrolled in psychology courses. There were 95 partici-
pants ranging in age from 18 to 22 (M = 19; 34 male, 61 fe-
male). Subjects received credit toward a course requirement
for participation. In our previous research, we obtained an
effect size of f = 0.33 (medium-large). According to standard
power calculations, to reach 80% power for an effect of that
size, 93 subjects were required, hence the large sample.

2.2 Design
Subjects were randomly assigned to one of three vibrotactile
feedback conditions: smoothness-based feedback, position-
based feedback, or no vibrotactile feedback (control group).
They then performed 40 trials of an unfamiliar motor learn-
ing task, mirror tracing, while receiving haptic feedback.
All subjects were instructed to execute the tracing task as
quickly and as accurately as possible. The goal of the exper-
iment was to evaluate the differences in completion strategy
and tracing performance across feedback conditions. The
dependent measure, tracing performance, was quantified by
the following metrics:

• Total time: Total trial completion time, in seconds.
• Time in: Total time spent inside the figure, in seconds.
• Time out: Total time spent outside the figure, in sec-

onds.
• Path length out: Total path length of trace falling

outside the figure boundary, in cm.
• SPARC: The spectral arc length value (smoothness)

of the full trial. For consistency across metrics, we
chose to use the positive value of the arc length so
that values decrease as tracing smoothness improves.

2.3 Mirror Tracing Task
The mirror tracing task used for this experiment was a
modern version of Snoddy’s (1926) original mirror tracing
task [28]. Participants were asked to repeatedly trace an
abstract shape displayed on a computer monitor as quickly
and as accurately as possible, as shown in Fig. 1. Instead of
using a mouse to control the cursor, subjects used a Novint
Falcon device, a small, 3 degree-of-freedom (DOF) haptic
manipulator. Position data were acquired at a sampling rate
of 500 Hz. The user’s movement was constrained to the
vertical plane (parallel to the computer screen) by rendering
a stiff virtual spring along the Falcon’s third DOF. Thus, hor-
izontal and vertical movement of the Falcon corresponded
to horizontal and vertical movement, respectively, of the
on-screen cursor. However, unlike the original experiment,
movement along each axis was mirrored so that moving the
Falcon left would cause the cursor to move right (and vice-
versa); similarly, moving the Falcon up would cause the
cursor to move down (and vice-versa). The Falcon’s 7 cm x 7
cm physical workspace was mapped to a virtual workspace
of 1000 pixels x 1000 pixels.

2.4 Feedback Conditions

Haptic feedback was delivered in the form of vibrotactile
cues using a single C-2 vibrotactor (Engineering Acoustics,
Inc.), which was secured to participants’ arms with medical
tape. Pilot testing was conducted to design cues that were
easily distinguishable.

Smoothness-based feedback: For subjects in the
smoothness-based feedback condition (n = 32), a vibrotac-
tile cue was rendered every five seconds to indicate their
movement smoothness during the preceding time window.
Movement smoothness was computed using SPARC with
an amplitude threshold of 0.05, a cutoff frequency of 10 Hz,
and 4 samples of zero padding. Smoothness was determined
by SPARC and binned into three performance levels: good
movement smoothness (SPARC < 3.57), average movement
smoothness (3.57 < SPARC < 3.94), and poor movement
smoothness (3.94 < SPARC). These ranges were determined
from data collected from 28 subjects who participated in a
continuation of the study reported by Pandey et al. [14],
which identified that SPARC values greater than 8 corre-
sponded to poor mirror tracing performance, and SPARC
values below 6 corresponded to good mirror tracing perfor-
mance. Those values of SPARC were post-processed, mean-
ing they were computed based on data for an entire trial
of mirror tracing. Computing SPARC for those participants
based on moving windows of data rather than end-of-trial
data resulted in the thresholds for feedback used in this
work, implemented based on the methods described in
Janstscher et al. [15]. Pilot testing showed that task com-
pletion times and SPARC values observed when tracing the
abstract figure used in this study were comparable to those
observed in both previous studies that required participants
to trace a star-shaped figure.

Each smoothness performance level was mapped to a
specific vibrotactile cue based on the pleasantness of the cue
sensation. Good performance was mapped to the mildest
stimulus, a single vibration pulse rendered at 50% of the
maximum amplitude and a frequency of 200 Hz. Average
performance was mapped to a slightly stronger stimulus,
a double vibration pulse rendered at 60% of the maximum
amplitude and a frequency of 230 Hz. Poor performance
was mapped to the strongest stimulus, a triple vibration
pulse rendered at 100% of the maximum amplitude and
a frequency of 265 Hz. We felt that this mapping was the
most intuitive way to encourage improvement when sub-
jects’ performance was poor. Additional details of the cue
characteristics are summarized in Table 1. Both the SPARC
value ranges and cue stimuli have been implemented in a
previous study [15]. Pilot testing was conducted to verify
that the vibration cues were easily distinguishable.

Participants in this group were instructed that they
would receive haptic feedback based on the smoothness
of their tracing movements. For very smooth movements,
participants were instructed that they would feel one low
intensity pulse. For somewhat smooth movements, they
were told they would feel two pulses of moderate intensity,
and for non smooth movements, they were told they would
feel three pulses of high intensity. In other words, the more
pulses they feel, the less smooth their movements.

Position-based feedback: In the position-based feedback
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TABLE 1
Stimulus characteristics of vibration cues for smoothness-based

feedback.

Smoothness

Good Average Poor

Number of pulses 1 2 3
Separation (ms) N/A 50 50
Duration (ms) 200 100 50
Amplitude (% of max) 50% 60% 100%
Frequency (Hz) 200 230 265

condition (n = 32), the tactor delivered a continuous stream
of 50 ms pulses whenever the cursor position was outside
of the trace boundary. Pulses were separated by 50 ms and
were rendered at maximum amplitude and a frequency
of 265 Hz. Participants in this group were instructed that
they would receive haptic feedback based on their tracing
accuracy (no vibration when inside the shape boundary, and
continuous vibration when outside of the shape boundary).

Control: Subjects in the control group (n = 31) did not
receive any haptic feedback while performing the tracing
task.

2.5 Procedures

2.5.1 Setup
After providing informed consent, participants were seated
in front of the experiment display and given a handout with
instructions based on their assigned feedback condition.
Chair height and Falcon positioning were adjusted so that
they could comfortably maneuver the Falcon with their
dominant hand. Although subjects were allowed to rest
their elbow on the arm of the chair, they were instructed
to keep their forearm and wrist off of the table, as shown in
Fig. 1. For subjects in the smoothness-based and position-
based feedback groups, the tactor was then secured to their
non-dominant arm with medical tape.

A Dell OptiPlex 760 running Windows 7 was used to
present the experiment on a Dell P2217 LCD monitor (55.87
cm or 22 in. diagonal) set to display at a resolution of 1680
by 1050 pixels. The user interface was programmed in Unity.

2.5.2 Protocol
Subjects in the smoothness feedback group were first given
the opportunity to familiarize themselves with the sensa-
tions of the three smoothness-based vibrotactile cues and
their meanings. Subjects in all groups were then allowed up
to three practice trials on a simple square figure to familiar-
ize themselves with the task, GUI, Falcon, and integration of
haptic feedback. The experimenter supervised the practice
trials and provided additional instruction and clarification
as necessary.

Once subjects were comfortable with the experiment
procedures, data collection began. To initiate each trial,
subjects had to move the cursor to the starting point, a circle
located at the twelve o’clock position on the shape, and
hold it there until the circle changed from red, to yellow, to
green. Once the circle turned green, they could begin tracing
in the clockwise direction. A trial was completed once the

cursor returned to the starting point. To discourage non-
compliance by taking shortcuts or skipping sections of the
figure, the length of the trace path was calculated in real
time. If the total path length was less than 9.2, the subject
was required to repeat the trial. This threshold was chosen
through pilot testing such that it was extremely difficult to
miss the cutoff value if an honest tracing attempt was made.

During the tracing task, participants wore headphones
playing pink noise so that they would not be distracted
by any extraneous sounds. They were permitted to take as
many breaks as they needed between trials. The tracing task
was complete once the subject had performed 40 acceptable
trials.

3 RESULTS

Task performance was evaluated by examining the overall
time spent performing the mirror tracing task, the portions
of time spent inside and outside of the path area, and
the path length of the trace falling outside of the shape
boundary. Movement smoothness was measured by spectral
arc length. Results are plotted as a function of trial number,
to allow for examination of learning curves, and the effect
of feedback condition on performance is explored.

3.1 Data Analysis

During the experiments, we collected a total of 3800 data tri-
als. Although the real-time path length criterion successfully
mitigated compliance issues overall, it was clear in post-
processing that some of the trials did not constitute a good-
faith effort. Thus, subjects were removed from the analysis
if 20% of their trials were flagged as non-compliant, which
we defined as Time In less than 60% of the total Trial Time,
or path length greater than 14.7 (60% more than the real-
time cutoff). Based on this criterion, all data for one subject
in the smoothness feedback group were discarded (26 non-
compliant trials out of 40). Data from another subject in
the smoothness feedback group were discarded as well due
to hardware malfunction during data collection. The final
data set included 93 subjects: 30 in the smoothness feedback
group, 32 in the position feedback group, and 31 in the
control group.

Observations more than three IQRs from the subject-
adjusted cell hinges were removed as outliers; this was less
than 0.6% of the data (87 of 14,880 observations).

Data were analyzed using a linear mixed model (LMM)
with three single degree-of-freedom terms in the model:

• Trial. This within-subjects variable treated trial as a
continuous variable from 1 to 40, meaning tests on
this variable are tests of the linear effect of trial.

• Condition, a between-subjects contrast between the
smoothness-based feedback group and the other two
groups. That is, this variable tests if mean perfor-
mance differed between the smoothness-feedback
group and the average of all other subjects.

• An interaction term; the cross-product of the previ-
ous two variables. This is a test of whether the slope
of the trial function is different for the smoothness-
feedback group relative to the other two groups.
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We chose this approach over a more general ANOVA-based
approach because we had specific statistical questions that
are not well-expressed by omnibus tests. For example, we
are not interested in the general question of whether there
are any differences at all between the three conditions,
but specifically whether the more novel smoothness-based
condition differs from more traditional treatments. Note that
“subject” was included in the model as a random effect.
Degrees of freedom were estimated using the Kenward-
Roger procedure. One LMM was fit for each performance
metric.

3.2 Total Time
Overall, subjects’ tracing performance became smoother
and faster over the course of the 40 trials, regardless of
feedback group. However, the smoothness-based feedback
group improved more than the others. Fig. 2 shows the
learning curves for total time for each of the three feedback
conditions. As can be seen on the graph, all three groups
had similar average times for the first and second trials, and
all showed considerable speedup from the first trial to the
second. Past that, the smoothness-based condition separates
from the other conditions. In fact, the overall slope of the
learning curve for the smoothness-based feedback condition
was steeper than for the average of the other two; interaction
b = 1.44, t(3600) = 2.21, p = .027.

While the interaction is the primary result, the main
effect of trial was also significant, b = -.39, t(3600) = 42.96,
p < .001, indicating that all groups improved. While the
overall mean performance for the smoothness-based group
was somewhat faster than the other groups, this difference
did not reach the conventional significance level, b = 1.22,
t(99) = 1.87, p = .065.

3.3 Time Inside the Figure
While the total task time is important, it is also important
to examine the constituents of that time: time spent inside
the bounds of the figure and time spent outside. Because
the total times for each group varied significantly, we report
time inside the figure, which highlights changes in speed,
and time outside the figure, which highlights changes in
accuracy, as two additional performance metrics. These are
reported in units of seconds, rather than percentages. If we
were to report the percentage of time spent inside the figure,
it would be unclear if changes would be attributable to the
numerator or the denominator varying. Presenting the raw
time inside and outside the figure allows for more insight
into the behavior of each group, something that would be
masked by measuring the percentage of time inside the
figure.

Fig. 3 shows the learning curves for time spent inside
the figure for each of the three feedback conditions. Clearly,
the results here are quite similar to the results for total
time, showing a large drop at the second trial, and then a
separation between the group receiving smoothness-based
feedback and the other two. Again, the learning slopes are
different, interaction b = -0.013, t(3610) = 1.99, p = .047. Both
main effects were also significant: for trial, b = -0.39 , t(3610)
= 33.56, p < .001; for the test of mean smoothness-based vs.
the other groups, b = -1.49, t(98) = 2.15, p = .034.

3.4 Time Outside the Figure
Time spent outside the figure is akin to accuracy, the more
time is spent outside the bounds, the less well the bounds
are being tracked.

Fig. 4 shows the learning curves for time outside for
each of the three feedback conditions. The first thing to
note here is the overall time spent outside the figure was
small; subjects in all groups did not spend much time out-of-
bounds. The trajectory over time was also less smooth and
consistent than for time inside the figure, with more peaks
and valleys. On average, all groups did slightly improve on
this measure as there was a significant main effect of trial,
b = -1.53, t(3590) = 7.53, p < .001. However, there was no
evidence for differential learning, as the interaction was not
significant, b = -0.0004, t(3590) = 0.42, p = .67.

Overall, the group that received smoothness-based feed-
back did do somewhat worse on average than the other two
groups, main effect b = 0.26, t(101) = 2.51, p = .014. However,
as they did improve on this measure, it seems unlikely that
they were strictly trading speed for accuracy, because both
speed and accuracy improved for subjects who received
smoothness-based feedback. In fact, speed and accuracy
improved for all three groups; it is just that speed improved
more for the smoothness-based group, which they managed
without showing a decrease in accuracy over time. They
simply showed somewhat worse overall accuracy than the
other two groups.

3.5 Path Length Outside the Figure
Time outside the figure is not the only possible measure
of accuracy; this can also be measured spatially. We also
measured the total length (in cm) of all path segments when
subjects were outside of the figure. If subjects were trading
speed for accuracy, one would expect that as their speed
increased, the distance traveled outside the figure would
also increase. As shown in Fig. 5, this does not appear to
be what happened. While overall the group that received
smoothness-based feedback did have a higher overall av-
erage for outside-the-figure path length, b = -0.15, t(9830)
= 2.70, p = .008, there was no evidence that this changed
over the course of 40 trials for the subjects overall (main
effect of trial b = -0.0002, t(3530) = 0.30, p = .76) or that
there was differential change between the smoothness-based
group and other groups (interaction b = -0.0009, t(3530)
= 1.65, p = .10). That is, according to this measure, all
groups maintained their level of accuracy throughout the
experiment.

This is consistent with the results of time spent outside
the figure in that overall the smoothness-based group was
somewhat worse on average than the other two groups, but
there is no evidence that they did worse on this measure of
accuracy as a result of a trade-off with speed.

3.6 SPARC
Movement smoothness was measured using SPARC. Fig. 6
shows the learning curves for SPARC for each of the three
feedback conditions. On average, movement smoothness
improved for all conditions (effect of trial, b = -0.039, t(3610)
= 24.96, p < .001) and the smoothness-based feedback con-
dition had more smooth movement than the other groups
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Fig. 2. Average total time to complete tracing the figure as a function of condition and trial. Error bars show standard error of the mean. The average
standard error of the mean across all conditions was 1.8.
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Fig. 3. Average time spent inside the figure as a function of condition and trial. Error bars show standard error of the mean. The average standard
error of the mean across all conditions was 1.9.
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(contrast b = -0.15, t(106) = 2.17, p = .033. There was no ev-
idence for differential improvement (interaction b = 0.0007,
t(3610) = 0.75, p = .45).

This last finding is particularly surprising. Because sub-
jects are given explicit feedback regarding their movement
smoothness, one would expect them to improve smoothness
more than the other conditions. Instead, while there is evi-
dence their overall smoothness is better, there’s no evidence
that their overall learning curve is any steeper.

This may be because of extremely rapid adaptation in the
initial trial. While for the other measures, the improvement
from trial 1 to trial 2 was similar across groups, here the
improvement in the smoothness-based group was signifi-
cantly larger than the average improvement in the other two
groups, t(91) = 2.31, p = .023. Obviously, this is a selective
post-hoc analysis and this is at best suggestive. However,
what it suggests is there may be differential improvement
in smoothness, but only in the earliest part of the training.
Future research should investigate whether there are partic-
ular differences early in training for movement smoothness.

4 DISCUSSION

In this work, we explored the effect of movement-
smoothness based feedback, displayed to the trainee via a
vibrotactile cue, on performance of a perceptual-motor task.
We compared smoothness-based feedback to position-based
feedback and to a no-vibrotactile-feedback control group.

Vibrotactile feedback has been effectively demonstrated
to improve performance for simple tasks like movement
guidance or pose matching [24], [23], [29]. Our mirror trac-
ing task is more complex than simple trajectory following or

pose matching. Prior work shows that “skill-oriented” hap-
tic guidance, where feedback is based on component skills,
might be more effective than ”objective-oriented” haptic
guidance, where feedback is based on task outcomes [30]. In
our study, the task objective relayed to the participants was
to follow the trace quickly and accurately. Position-based
feedback was objective-oriented, with a focus on accurate
path following, while smoothness-based feedback was skill-
oriented, focusing on a movement technique known to cor-
relate with skill [14], but distinct from the primary outcome
measure.

Haptic guidance has been demonstrated to improve per-
formance in a wide range of perceptual motor tasks when
the guidance is active, but retention of skill or transfer to a
similar task has not been consistently demonstrated when
kinesthetic haptic guidance has been used to convey task
completion strategies [21], [22]. This is likely due to the fact
that guidance forces conveyed kinesthetically can be con-
fused with the forces arising from the task dynamics. When
the guidance is removed, the participant is unfamiliar with
the underlying behavior of the system they are controlling
[31]. Haptic guidance conveyed through tactile feedback,
on the other hand, has the potential to be widely applied
for the training of complex movements in later stages of
learning, when task execution strategies need to be refined
[31], [26], [25]. Our study findings support further explo-
ration of cutaneous rather than kinesthetic haptic guidance
for conveying task completion strategies during training
of perceptual motor tasks. Further exploration of mirror
tracing performance after the real-time feedback is removed
is needed to understand skill transfer and retention with
cutaneous haptic guidance. In addition, it may be possible
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to maintain the use of real-time cutaneous haptic guidance
during real task performance, since it is applied directly to
the user’s arm and not through the control interface [31].

Compared to our prior work, where we explored
smoothness-based versus position-based feedback for a sim-
pler mirror tracing task and failed to demonstrate statisti-
cally significant differences in group task performance [15],
the mirror tracing task used in this study was more difficult.
The path to be traced contained both curved areas, sharp
turns, and multiple direction changes, and was also slightly
longer compared to the previous star shape. The fact that we
see statistically significant performance differences between
groups performing the more difficult task supports earlier
findings related to the efficacy of haptic guidance. It has
been suggested that guidance paradigms should be applied
to tasks where the difficulty is great enough to demonstrate
significant improvement, and that if tasks are too easy, any
effects of the haptic guidance may be overshadowed by
normal practice effects [30]. Note that it is not simply hap-
tic feedback that is responsible for the increased learning;
subjects in the position-based feedback group also received
haptic feedback but did not show the same learning rate as
those receiving smoothness-based feedback.

Subjects in all conditions improved their performance on
all of the time-based measures as well as SPARC; this is a
standard effect of practice. By examining the amount of time
subjects spent inside the trace area (Fig. 3) versus outside
the trace area (Fig. 4), we get a sense of the strategy used
by participants. The participants in the smoothness-based
feedback condition showed both faster overall performance
on time inside the figure as well as a faster learning rate. All
groups, including the smoothness-based group, improved
accuracy (according to the time outside measure) over the
course of the experiment, but overall this improvement
was small; a fraction of a second at best. According to the
path length outside measure, there was no evidence for a
change in accuracy over the course of the experiment for
any group. Thus, all groups seemed to adopt a strategy
wherein the focus of learning was improving speed more
than accuracy. However, the smoothness-based group was
much more able to accomplish this. We believe it is because
the feedback provided information about how to execute this
strategy: move more smoothly. While again, all groups im-
proved in terms of smoothness, not surprisingly, the group
that received smoothness-based feedback showed overall
smoother movement.

Furthermore, while all groups at least maintained ac-
curacy, the smoothness-based group was overall slightly
less accurate. Accuracy did not get worse, so it does not
appear that they were trading accuracy for speed. Instead,
it appears that they were willing to tolerate overall slightly
lower accuracy in order to achieve better gains on speed.
However, this being a strategic decision on the part of the
subjects is somewhat speculative. It is possible that this
was not so much a strategic difference but an attentional
one; participants may have been paying less attention to
the visual accuracy feedback in order to concentrate more
on the haptic smoothness feedback, which is what allowed
them to improve their speed. This merits further research in
the future.

Examining the differences in task completion strategies

between feedback groups is relevant to many motor do-
mains where an increase in task completion speed without
loss of accuracy is ideal, particularly for specialized domains
like endovascular surgery. Increased time on the surgical
table exposes patients to increased radiation levels and
doses of contrast agent, so a reduction in procedure time
is beneficial. If we can demonstrate these same types of
performance improvements in a surgical training scenario,
we have the potential to positively impact training efficacy.
Broad applications of this approach will depend on the
sensitivity of the task to absolute accuracy.

Further research is necessary to determine if it is
possible to realize the improvements in task completion
time achieved with smoothness-based feedback while also
achieving the accuracy performance observed in the no-
feedback and position-based feedback groups. If we can
solve the problem of the accuracy penalty that seems to exist
with smoothness-based feedback, then this method of real-
time performance feedback during training could be widely
applicable.

5 CONCLUSION

While the link between expertise and movement smooth-
ness is well-established in multiple motor domains, previ-
ous research using real-time vibrotactile feedback based on
movement smoothness [15] suggested that such feedback
might be useful for encouraging learners, but results were
not conclusive. Using a larger sample and a more complex
version of the mirror tracing task, we have now demon-
strated that such feedback can lead to improved perfor-
mance, in particular more rapid task completion (about 5
to 10 seconds faster). This is compared not only to a no
vibrotactile feedback control but also to a condition where
subjects received real-time vibrotactile feedback regarding
position. There was a small difference in accuracy for those
receiving smoothness-based feedback compared to the other
two groups. Overall, the no feedback and position-feedback
groups had consistently better accuracy in terms of both
time outside and path length outside the figure, on the order
of about 1 second less time spent outside the figure and just
under 1 cm in path length outside the figure compared to the
smoothness-based feedback group. While these differences
were significant, they were a small percentage of the overall
task completion time and overall path lengths recorded in
all groups. We observed that the type of feedback provided
resulted in different task completion strategies. To improve
task completion times, the smoothness-based feedback was
more successful, but the group receiving this type of feed-
back was less accurate than the other two groups. In ap-
plications such as surgery where reducing task completion
times is advantageous in order to reduce exposure to con-
trast agent and radiation, movement smoothness appears
to be appropriate for the purposes of improving training
performance using vibrotactile haptic feedback. The next
steps are to test this in an actual surgical context, and to ex-
plore methods of real-time performance feedback that might
elicit improved accuracy while maintaining the reductions
in completion times that were achieved with smoothness-
based feedback.
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