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Abstract—Network embedding which is to learn a low dimensional representation of nodes in a network has been used in many
network analysis tasks. Some network embedding methods, including those based on Generative Adversarial Networks (GAN) (a
promising deep learning model), have been proposed recently. Existing GAN-based methods typically use GAN to learn a Gaussian
distribution as a prior for network embedding, which makes it difficult to distinguish the node representation from Gaussian distribution.
It did not apply the adversarial learning strategy on the representation mechanism but just on representation results. Thus, it does not
make full use of the essential advantage of GAN, and leads to compromised performance of the method. To address this problem, we
propose a novel adversarial learning framework consisting of three players for network embedding, which applies the adversarial
learning strategy on the representation mechanism, called Adversarial representation mechanism GAN (ArmGAN). Specifically, the first
two players, named encoder and competitor, aim to learn two different representation mechanisms (i.e., two ways projecting data onto
latent space). They compete with each other to improve their representation mechanisms. The third player is the discriminator, which
discriminate the representation mechanism of the encoder from that of the competitor. In addition, we design a perturbation strategy to
produce fake networks from the original network, and feed the fake networks to the competitor to obtain a “fake” representation
mechanism. We evaluated ArmGAN on a variety of tasks including node clustering, node classification, link prediction and visualization.
Moreover, we compared ArmGAN with 10 state-of-the-art methods (including DGI, which is well-known for its high accuracy) on 7 real-

world networks. The experimental results show the significant superiority of ArmGAN over the existing methods.

Index Terms—Network embedding, generative adversarial network, graph neural network, social network analysis

1 INTRODUCTION

ETWORKS provide a ubiquitous way to organize data,

where edges represent complex relationships and
nodes encode rich information in the data. An effective
method for analyzing networks is network representation
learning (a.k.a., node embedding), which aims to learn the
low-dimensional latent representation of nodes in the net-
work [1], [2], [3], [4]. As the learned representations encode
the topology and node content information, the representa-
tions can be used for network analysis tasks such as link
prediction, node classification, network visualization, user
recommendation and community detection [5], [6], [7], [8],
[9]. Network representation learning algorithms can be
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divided into two categories, semi-supervised algorithms
and unsupervised algorithms. Methods in the first category,
such as MMDW [10], GCN [11], and SSNE [12], introduce a
small amount of prior information. Methods in the second
category do not use any label information, which includes
DGI [13], DeepWalk [1], node2vec [14], MNMF [15], LINE
[2], GraRep [3], TADW [16], SNE [17], TriDNR [18] and
AANE [19]. In this paper, we focus on unsupervised repre-
sentation learning, since it is the more general and popular
category.

Generative Adversarial Networks (GANSs) [20] have become
a powerful deep generative model. GAN is inspired by the
two-player game in game theory. The two players in GAN are
a generator G (generating data that resemble real data) and a
discriminator D (distinguishing real data from generated
data). In other words, the generator’s goal is to ““fool” the dis-
criminator by generating data that are as similar to the real data
as possible. The discriminator’s goal is to “debunk” the genera-
tor by discriminating between real data and generated data.

While GANs were originally proposed to generate
images, recently they have been extended to network
embedding. For example, ARVGA [21] leverages adversar-
ial learning to regularize the embedding results of graph
autoencoder [22], i.e., forcing the embedding to match
Gaussian distribution. This framework was further
extended by letting autoencoder reconstruct both the topol-
ogy and node attributes instead of just reconstructing net-
work structure in ARVGA [23]. ANE [24] proposes an
inductive variant of DeepWalk [1] for preserving network
structure properties in latent space and leverages
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adversarial learning by matching latent representations to
given priors (such as Uniform or Gaussian distribution).
VANE [25] proposes a multi-view adversarial framework
that is based on two adversarial games, where the first
game enhances the comprehensiveness of the node repre-
sentation by discriminating different views information and
the second game ensures the robustness of node representa-
tions by fitting the distribution of node representations to a
given noise distribution. GANE [26] is capable of perform-
ing feature representation learning and link prediction
simultaneously, using GANs to regularize the vertex pairs
by forcing the generated vertex pairs to resemble the real
data. To sum up, most existing network embedding
approaches with adversarial learning can be categorized
into the framework of adversarially forcing the embedding
results to follow a given or latent distribution. A more com-
prehensive introduction of GAN-based network embedding
methods are given in Related Work.

It is worth noting that these existing methods typically
apply the adversarial learning strategy on the representa-
tion result, e.g., matching the distribution of representation
to an arbitrary prior, such as Gaussian distribution in most
cases. However, this strategy makes it difficult to distin-
guish the representation from Gaussian noise, since it
requires the representation to obey the Gaussian distribu-
tion, which roughly equals adding a Gaussian regular term
to the representation. While this is reasonable to some
extent, it does not make full use of the essential advantage
of adversarial learning. We believe it is better to apply the
adversarial learning strategy on the representation mecha-
nism that projects data onto latent space (to make the sys-
tem robust and effective) rather than on the representation
itself (which simply requires the representation distribution
to follow some priors). However, it is difficult to apply the
adversarial learning strategy on the representation mecha-
nism for the GAN models, as they contain only two players
(i.e., encoder/generator and discriminator) and only the
encoder realizes the representation mechanism from data
space to latent space.

To address this problem, we propose a novel adversarial
learning framework for network embedding, called Adver-
sarial representation mechanism GAN (ArmGAN), which
applies the adversarial learning strategy on the representa-
tion mechanism. To achieve the adversarial training of the
representation mechanism, the new framework contains
three players. The first two players host two different repre-
sentation mechanisms (i.e., two different ways to project
data space onto latent space), named encoder and competi-
tor. They compete with each other to improve their repre-
sentation mechanisms under the guide of adversarial
principle and the whole framework. The third player is the
discriminator, which discriminates the representation
mechanism of the encoder from that of the competitor. The
three players adversarially learn with each other in the new
system. This is fairly different from the framework of the
existing GAN-based network embedding methods since it
is impossible for them to achieve the adversarial training of
the representation mechanism because they have only one
player to host representation mechanism. Furthermore, the
new framework has a new type of relationship between the
three players. The goal of the encoder and that of the
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discriminator are consistent, as they work together to let the
“real” encoding mechanism from encoder be taken as “real”
one. In contrast, the goal of the competitor is to “fool” the
discriminator by acting like encoder, i.e., it pretends to be
the real representation mechanism to deceive the discrimi-
nator. The remaining question is how to design the competi-
tor player. There are three conditions the competitor should
meet. First, it should be a competitive representation mecha-
nism from data to latent space. Second, it should be a “fake”
representation mechanism. Third, it should be a neural net-
work itself so as to adapt to the overall neural network
framework (so that the whole model can be trained jointly
using backpropagation). To meet the first and the third con-
dition, we use another encoder (which is a neural network
with different weights and different optimization objec-
tives) as the competitor. At the same time, to satisfy the sec-
ond condition, we design a procedure that produces fake
networks from the original network, and feed the fake net-
works to the competitor to form a “fake” representation
mechanism.

2 RELATED WORK

Besides GAN-based network embedding methods discussed
in Introduction, here we introduce other major approaches
along this line. GraphGAN [27] unifies generative and dis-
criminative thinking to generate the most likely neighbor
node representation for a given node and tries to make the
generator fit the underlying true connectivity distribution.
DGGAN [28] extends GraphGAN to directed graph, so as to
preserve the directionality of edges. ProGAN [29] proposes a
novel proximity generative adversarial network for network
embedding, which can generate proximities through adver-
sarial learning. The generated proximities can help to dis-
cover the complicated underlying proximity to improve
network embedding. JANE [30] proposes a joint adversarial
network embedding framework which jointly distinguishes
the real and fake combinations of the embeddings, topology
information and node features, so as to learn the latent
semantic space and capture semantic variations. Khajehne-
jad. et al. [31] proposes an adversarial graph embedding
method for fair influence maximization over social networks,
which consists of an auto-encoder for graph embedding and
a discriminator for discerning sensitive attributes, so as to
guarantee fair influence maximization. AdONE [32] pro-
poses an autoencoder framework to learn node embeddings
for networks with outliers. It leverages adversarial learning
to align the embeddings corresponding to the link structure
and node attributes so that they can complement each other
and further weights the objective function with outlier scores
to minimize the effect of outliers. TriATNE [33] designs a tri-
partite adversarial learning model based on sales skills in the
market, which includes a producer, a seller and a customer
to preserve high order graph structure and learn more stable
and robust representation. NINE [34] gives a network
embedding method which aims to preserve node pair infor-
mation between connected and disconnected node pairs by
designing two discriminators which discriminate connected
node pair and disconnected node pair respectively. It is
worth noting that these existing GAN-based network
embedding approaches only apply adversarial learning on
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representation results, which does not make full use of the
essential advantage of GAN (that is to adversarially learn the
representation mechanism rather than the representation
itself).

3 PROBLEM DEFINITION

Consider an undirected, unweighted and attributed net-
work G % dV; E; Xp with n nodes V % fvi;va;...;vng, a set of
edges E % feijjg V V, and a set of node attribute X 2 R"™,
where m represents the number of attributes of each node.
The topological structure of G is represented by an
adjacency matrix A % %a; 2 R"" where ajj % 1 if nodes viand
vj are connected, or aj; % 0 otherwise. Attribute x; 2 R™
specifies the features or properties of node vi. The objec-tive
of network embedding is to learn a low-dimensional
embedding matrix Z 2 R" from the topological structure A
and attributes X, whose formal format is f : dA; XP) Z,
where d is the dimension of embeddings. The learned
embedding Z should well preserve the topological structure
A as well as attribute information X.

4 THE APPROACH

We first give a brief overview of the proposed method, and
then introduce three elements of the model in detail. Last,
we formly propose Adversarial Representation Mechanism
Learning model (ArmGAN).

4.1 Overview

To make full use of the advantage of adversarial learning to
get an effective embedding mechanism, we propose a novel
adversarial learning framework with three players (the
encoder, the competitor and the discriminator) and adversa-
rially train representation mechanisms from data space to
latent space. For the encoder that represents positive repre-
sentation mechanism, we adopt a two-layer graph convolu-
tional network (GCN) [11] which integrates network
attributes and topology information to generate a low-
dimensional embedding Z. Furthermore, we use a decoder
and a mutual information regularity to constrain the
encoder, which can be called as autoencoder with mutual
information regularity (shown in the top part of Fig. 1). The
decoder measures the loss of reconstructing the real net-
work topology by using the low-dimensional embedding Z.
The mutual information regularity lets embedding Z repre-
sent the attribute information X to the greatest extent. Mini-
mizing the reconstruction loss of network topology and
maximizing the mutual information between the node
attributes and the embedding together can guide the
encoder to generate an effective embedding Z that contains
both topology information and attribute information natu-
rally. From another perspective, encoder with two-layer
GCN is limited by only gathering the information of two-
order neighbor nodes while the mutual information regular-
ity can capture the non-linear statistical dependence
between the real node attributes X and embedding Z. Thus,
the mutual information regularity can effectively compen-
sate the drawback of the classic autoencoder. The above two
points show that the autoencoder with mutual information
regularity can play the role of positive representation
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Fig. 1. The structure of ArmGAN. It consists of three parts, an autoen-
coder with mutual information regularity (encoder, decoder and mutual
information regularity, shown on the top of the figure), the representation
mechanism discrimination (discriminator, shown in the middle) and a
negative sample generator (negative encoder, negative decoder and
negative mutual information regularity, shown on the bottom).

mechanism well. For the competitor which should provide a
”fake” (negative) but competitive representation mecha-
nism, we design a strategy to generate “fake” network data.
Meanwhile, we also use the framework of the autoencoder
with mutual information regularity, but use a different objec-
tive function. Then we feed the “fake” network data to the
designed competitor to form a negative representation
mechanism. As the competitor produces negative represen-
tation mechanism, we also call the competitor the negative
sample generator as shown in the bottom part of Fig. 1. It is
worth noting that the neural networks of the negative sample
generator have different weights from the positive sample
generator, as the objective is different. Since the negative
sample generator uses the same framework as the autoen-
coder with mutual information regularity (that generates the
positive representation mechanism) and it is trained under a
different optimization objective, the negative sample genera-
tor can generate a competitive representation mechanism.
Then, the last player, i.e., the representation mechanism dis-
criminator is used to distinguish the representation mecha-
nism of the autoencoder with mutual information regularity
from that of the negative sample generator.

Accordingly, the new model ArmGAN has a new type of
relationship among three players. The representation mech-
anism discriminator distinguishes the positive and negative
representation mechanisms. The autoencoder with mutual
information regularity that generates positive representa-
tion mechanism helps the discriminator to realize its
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discrimination task, i.e., helps the discriminator to correctly
identify the positive representation mechanism as “real”.
However, the purpose of the negative sample generator is
the opposite, which is to deceive the discriminator by gener-
ating negative samples similar to the real representation
mechanism, i.e., it is to obstruct the discrimination task of
the discriminator. In the new system with new relationship,
the three players are trained under new objective functions.
The autoencoder with mutual information regularity is
trained with three objectives: a traditional reconstruction
error criterion from decoder using positive embedding Z, a
mutual information criterion from mutual information reg-
ularity to represent the real node attribute information X to
the greatest extent, and an adversarial criterion from dis-
criminator which is to help the discriminator to identify the
positive representation mechanism as “real”. The training
of negative sample generator also has three objectives: the
reconstruction error criterion from negative decoder using
negative embedding Z° a mutual information criterion
from negative mutual information regularity to represent
the fake node attribute information X°, and an adversarial
criterion from discriminator which is to deceive the discrim-
inator so as to make the discrimination process difficult.
Then, the discriminator is trained by the objective that, on
one hand, discriminates the representation mechanism
from autoencoder with mutual information regularity as
“real” as much as possible and, on the other hand, discrimi-
nates the representation mechanism from negative sample
generator as “fake” as much as possible.

It is worth noting that this new adversarial learning
framework ArmGAN is fairly different from existing GAN-
based models for embedding which contain two players (i.e.,
encoder/generator and discriminator). Concretely, in the
existing GAN-based models, only encoder/generator hosts
a representation mechanism from data space to latent space.
There is no other players that host another representation
mechanism, and thus it is impossible to realize the adversar-
ial training on representation mechanism. On the contrary,
our new adversarial learning framework contains three play-
ers: two of them host the real representation mechanism and
the negative representation mechanism, respectively. These
two types of representation mechanisms can be adversarially
trained. Moreover, the purpose of the encoder/generator in
the existing GAN-based models is to deceive the discrimina-
tor by producing fake samples similar to real ones, while the
purposes of the two players that host representation mecha-
nisms in our new model ArmGAN are different. The autoen-
coder with mutual information regularity is to help the
discriminator, while the negative sample generator is to
deceive the discriminator. In other words, the goal of autoen-
coder with mutual information regularity and that of the dis-
criminator are consistent. However, the goal of the negative
sample generator is the opposite to that of the discriminator.
In this new system, the discriminator can be thought as
police, and the autoencoder with mutual information regu-
larity can be thought as good people, while the negative sam-
ple generator is analogous to bad people. The good people
aim to help the police to correctly identify them as good peo-
ple. In contrast, by learning the behavior of good people and
acting like good people, the bad people try to deceive the
police to wrongly take them as good.
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4.2 Autoencoder With Mutual Information

Regularity
In this section, we first introduce the classical autoencoder
that includes encoder and decoder, then introduce mutual
information regularity, and finally give the whole autoen-
coder with mutual information regularity as shown in the
top part of Fig. 1.

For the autoencoder, we use the graph auto-encoder pro-
posed by [22]. In the encoder, we use the graph convolu-
tional network (GCN), which is a flexible class of node
representation mechanism that generates node representa-
tions by aggregation over local node neighborhoods, so as
to extract the embedding of nodes. Here we use the classic
two-layer GCN. Given the adjacency matrix A and attribute
matrix X of a network, the model is constructed as

Z%% % fretu X; AjWOOP
Z9% Y finear Z0W; AjWOLP 1)

where 2% % X, and each convolutional layer is expressed
by

f Zalp;AjWa“’ Y f Ij‘1=2A|j'.LE'ZZ§|DWaID (2)
Here A % A p | (where | is the identity matrix) and D} %

; Aij. WO denotes the weight matrix of the Ith layer, and

Z%" is the input of the Ith layer. f is an activation function,
and we use Reludtp % maxd0;tp in the first layer and use
lineardtb % t in the second layer. In the decoder, we recon-
struct the network topology using the embedding derived
from the encoder. With the embedding Z8Z % z%%b, the
reconstructed graph A' can be presented as

A % sigmoidzZ': (3)
We then use the cross entropy to define the reconstruction
loss as
h i
LAE Ya E aijlogAijb 1 aijj Iog 1 Aij A (4)
In order to add the constraints of attribute information
and add the non-linear statistical dependence to the
encoder, we introduce mutual information regularity to the
traditional autoencoder. Mutual information quantifies the
dependence of two random variables X and Z, which is
equivalent to the Kullback-Leibler (KL-) divergence
between the joint distribution of these two variables and the
product of the marginals of these two variables [35]. KL-
divergence can be expressed in two ways, including
Donsker-Varadhan representation [36] and f-divergence
representation [37], [38]. Belghazi et al. [39] gave a method
to estimate mutual information based on neural networks
by maximizing the lower-bound of Donsker-Varadhan
representation or f-divergence representation. Belghazi et al.
[39] also showed the expressive power of neural network
insures that they can approximate the mutual information
with arbitrary accuracy. To be specific, Belghazi et al. [39]
trained a statistics network as a classifier to distinguish sam-
ples coming from the joint distribution or the product of
marginals of two random variables. The joint samples can
be sampled from the joint distribution of two variables. For
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the marginals of these two variables, they can be gotten by
empirical samples or by shuffling the samples from the joint
distribution [39]. In this paper, our mutual information reg-
ularity uses a three-layer fully connected neural network to
approximate the mutual information between node attrib-
utes X and embedding Z. The neural network can be
expressed by the function T : X Z ! R with parameter uin
some compact domain u 2 QX, where k is the dimension of
the parameter space.

We use the combination of node attributes X and the cor-
responding embedding Z from the encoder, i.e., 6X;ZP, as
the joint distribution. To get the product of marginals, we
randomly shuffle the rows of node attributes X and get the
corrupted node attributes X, and then we input the cor-
rupted attributes matrix X into the encoder to get the cor-
rupted embedding Z. Then we use the combination of the
node attributes X and the corrupted embedding Z, i.e.,
0X; Zb, as the product of the marginals. In order to obtain
representative embedding, we maximize the mutual infor-
mation between node attributes X and embedding Z. Then,
according to [39], the mutual information Iq8X; Zb, which is
estimated by neural networks based on Donsker-Varadhan
representation, is defined as follows:

1Q0X; ZP % SUpEsxzpp axzp TuOX; ZP
u2Q - (5)

T,0x;zP .
|0g Expdgaaxb;pzdt e ’

where T,0P is the neural network with parameter u men-
tioned above and it is optimized by maximizing Eq. (5),
px0x; zP is the joint distribution of x and z, pgdxP is the sam-
ple distribution of x and pdzb is a sample distribution of z
generated by encoder using the corrupted node attributes X
and real network topology.

Now we will give the autoencoder with mutual informa-
tion regularity and define its objective function. Its overall
objective function contains two parts: one is from decoder
and the other is from mutual information regularity. The
one from decoder is to reconstruct the real network topol-
ogy by using the embedding Z generated by the encoder
(i.e., minimizing the reconstruction loss of network topol-
ogy). The other is to let embedding Z represent real attri-
bute information X to the greatest extent (i.e., maximizing
the mutual information between the node attributes X and
the embedding Z). As we need to minimize the reconstruc-
tion loss as well as maximize the mutual information, we
use the negative mutual information so that we can mini-
mize both. Then, we get the overall objective function of the
autoencoder with mutual information regularity which is
defined as follow:

Lamir % Lae bylq8X;ZP: (6)
where Lae is the loss of the reconstructed topology,
expressed as Eq. (4). Iq0X; Zb is the estimated mutual infor-
mation, expressed as Eq. (5). b; is a hyperparameter, repre-
senting the proportion of the the mutual information
regularity to the total objective function Lamir. We use batch
gradient descent to minimize this objective function.
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4.3 Negative Sample Generator

In this section, we first introduce how to generate fake net-
work data, and then introduce the negative sample genera-
tor which also uses the framework of autoencoder with
mutual information regularity but with a different optimi-
zation objective. In order to distinguish the negative sample
generator from the autoencoder with mutual information
regularity, we called the three components of negative sam-
ple generator as the negative encoder, negative decoder and
negative mutual information regularity as shown in the bot-
tom part of Fig. 1.

We design a perturbation strategy to obtain a fake net-
work data from the original network. In order to make the
generated “fake” representation mechanism competitive,
here we choose to perturb just one type of the network data
(network topology or node attributes). Then the real data
lets the embedding represent the real data through the cor-
responding constraint term (negative decoder/negative
mutual information regularity). Meanwhile, the fake data
lets the embedding add some noise through the other con-
straint term (negative mutual information regularity/nega-
tive decoder). In this paper, we choose to use the real
topology and a fake attribute data, as it produces the best
results in our perturbation experiments (where different
strategies were used). To be specific, we preserve the origi-
nal topological structure but corrupt the node attributes, X°,
via row-wise shuffling of real node attributes X.

After getting the fake network, the reconstruction loss
from negative decoder can be defined by using negative
embedding Z° which is generated by the negative encoder.
It is worth noting that this reconstruction loss is different
from the reconstruction loss of decoder which is defined by
positive embedding Z generated by the encoder. Specifi-
cally, the new reconstruction loss is defined by the follow-
ing cross entropy:

h i
LAEO Ya E aijlogAijb 1 aij Iog 1 Aij ; (7)
where A % sigmoidz°Z°T is the reconstructed matrix
through the negative decoder. This is different from the
reconstructed topology matrix A % sigmoid ZZT  men-
tioned in Section 4.2, where A is generated by the decoder
using positive embedding Z.

Then, we give the negative mutual information regular-
ity, i.e., the other constraint term of negative encoder. This
constraint term lets the negative embedding Z° represent
“fake” attribute information X° to the greatest extent by
maximizing the mutual information between the “fake”
node attributes X° and the negative embedding Z°. We use
the same method as that in Section 4.2 to estimate the
mutual information. Specifically, we use the combination of
the “fake” node attributes X° and the negative embedding
Z° , i.e., X% Z°p, as the joint distribution. To get the product
of marginals, we randomly perturb the rows of the “fake”
node attributes X° to obtain the corrupted “fake” node
attributes X%, and then we input the corrupted “’fake” node
attributes X° and topological matrix A into the negative
encoder to get the corrupted “fake” embedding Z° We use
the combination of the “fake” node attributes X° and the
corrupted “fake” embedding 79, i.e., X°; Z0p, as the product
of the marginals. Then, the mutual information IOQ(,6X° ; Z0b,
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which is estimated by neural networks, is defined as

1° 68X Z%P % sup Esy0,20mp 6050505 T 0% 2P
u2Q

Q ( ( Xz u

logE

()
T 920
xopxo ox p% pgéz pe ¢ ¢

e u

where TSO6D is the neural networks with parameter u° and is
optimized by maximizing Eq. (8), px,08x’2°P is the joint dis-
tribution of x° and 20, p,08x°p is the sample distribution of the
fake node attributes x° and po 82 is a distribution of sam-
ples that are generated by negative encoder which uses the
corrupted “fake” node attributes X° and real network topol-
ogy as input.

Last, we give the negative sample generator and the
overall objective function. Specifically, the negative sample
generator is trained in the guidance of two objectives. One
is to reconstruct the real network topology by using the neg-
ative embedding Z° generated by the negative encoder.
Another objective is to let negative embedding Z° represent
“fake™ attribute information X° to the greatest extent by
maximizing the mutual information between the “fake”
node attributes X° and the negative embedding Z°. Similar
to the discussion in Section 4.2, here we add a negative sign
to the negative mutual information regularity so as to mini-
mize both objectives as a whole. After getting a unified
objective function, we train the negative sample generator
by using gradient descent. The overall objective function of
the negative sample generator is then defined as

Lise % Lago b,1” ofX%; 2°p; 9)
where Lpao is the loss of the reconstructed topology,
expressed as Eq. (7). 1¢,8X% 2% is the mutual information
estimated by neural nétworks, expressed as Eq. (8). b, is a
hyperparameter, representing the proportion of the nega-
tive mutual information regularity to the total objective
function Lnsg .

4.4 The Representation Mechanism Discriminator

The core of our model is to adversarially learn the represen-
tation mechanism rather than the representation result. As
discussed earlier, our new framework ArmGAN comprises
two representation mechanisms, i.e., the positive represen-
tation mechanism which is hosted by autoencoder with
mutual information regularity and the negative representa-
tion mechanism which is hosted by negative sample genera-
tor. The challenge is how to turn these two types of
representation mechanism into recognizable inputs of the
representation mechanism discriminator. In fact, the repre-
sentation mechanism can be regarded as a mapping mecha-
nism. According to [40], the mapping mechanism can be
expressed approximately by the combination of the input
and output of the mapping, which is much easier to track.
Therefore, we use the combination of the node attributes
(input of the mapping) and embedding (output of the map-
ping) as the recognizable input of the discriminator to repre-
sent our representation mechanism. The task of the
representation mechanism discriminator (as shown in the
middle part of Fig. 1) is to distinguish the representation
mechanism of the autoencoder with mutual information
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regularity (which can be called as the positive sample gener-
ator) from that of the negative sample generator.

Specifically, for the positive representation mechanism,
we use the combination of the attribute information (the
input of the positive sample generator) and the node repre-
sentation (the output of the positive sample generator) ,i.e.,
0X; Zb, to represent it. As for the negative representation
mechanism, we adopt two ways to implement it. Each way
has its own characteristics, and is suitable for solving differ-
ent network analysis tasks.

Direct Mapping Representation Mechanism. When using this
way to implement the negative representation mechanism,
we concatenate the input X° of the negative sample generator
(i.e., the “fake” node attributes X° which are obtained by ran-
domly shuffling the node attribute X) and output Z° of the
negative sample generator (i.e., the corresponding embed-
ding which is generated by the negative sample generator
based on the “fake” node attributions X°), i.e., 8X%; Z°p, as the
negative mapping mechanism. The task of the discriminator
is to distinguish the positive representation mechanism (i.e.,
the mapping mechanisms sampled from the autoencoder
with mutual information regularity) from the negative repre-
sentation mechanism (i.e., the mapping mechanisms sam-
pled from the negative sample generator). The discriminator
outputs a single scalar which represents the probability that
the representation mechanism came from the autoencoder
with mutual information regularity rather than negative
sample generator. We train the discriminator so as to maxi-
mize the probability of assigning the correct label to both
positive representation mechanism 8X; Zb and the negative
representation mechanism 6X%;Z°p. In other words, the
discriminator attempts to discriminate the negative repre-
sentation mechanism samples as 0, and the positive repre-
sentation mechanism samples as 1. It is worth noting that the
larger the objective function of the discriminator, the better.
This is different from the objective functions mentioned in
the previous section, such as the objective function of autoen-
coder with mutual information regularity and the objective
function of negative sample generator, which are the smaller
the better. Then, we give the definition of the objective func-
tion of the discriminator under the direct mapping represen-
tation mechanism

Vixo % Eypyp a0 72l0g DOX; ESOXPP

b Eyop,0a0p/2logd1 DIX’; E%0X°PPP; (10)

where EOxP and E°0x°p represent the outputs of the encoder
and the negative encoder, i.e., embedding z and z°. D&b rep-
resents the output of the discriminator.

Mutual Information Representation Mechanism. When using
this way to implement the negative representation mecha-
nism, we concatenate the real node attribute X and the output
Z° of the negative sample generator based on “fake” node
attributes X°, i.e., 6X;Z°p, as the negative mapping mecha-
nism. Then, we give the definition of the objective function of
the discriminator under this representation mechanism

Vox % Exp,, ox072l0g DOX; EOXPP

b Exop ,s00¥logd1 Dx; E°3x°Pbb; (11)
Px
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where ESxp and E°8x°p represent the outputs of the encoder
and the negative encoder respectively, i.e., embedding z
and z0. D8P represents the output of the discriminator. Here
we maximize this objective function so as to maximize the
probability of assigning the correct label to both positive
representation mechanism and the negative representation
mechanism (hence the larger the better).

From another perspective, the combination of real node
attributes X and embedding Z (i.e., E6XP) generated by
encoder can be seen as the joint distribution, and the combi-
nation of real node attributes X and embedding Z° gener-
ated by the negative encoder based on ‘“fake” node
attributes X° can be seen as the product of the marginals.
According to [37], Eq. (11) can be seen as a measure of the
JensenShannon (JS) divergence (one of the f-divergence
introduced in Section 4.2) between the joint and the product
of the marginals, which actually can be seen as an estimate
of the mutual information based on f-divergence represen-
tation between node attributes X and embedding Z. Thus,
we call it mutual information representation mechanism.

Mutual information [41] can capture the inherent depen-
dence and maximal relevance between the real node attrib-
utes X and embedding Z. And encoder actually is a
compression mechanism which compresses high-dimen-
sional data into low-dimension data. The above two points
encourage the encoder to retain the most representative infor-
mation in the low-dimensional embedding Z. ArmGAN with
mutual information representation mechanism is equivalent
to adding another mutual information constraint which is
implemented by GAN framework. This mutual information
constraint is another type of mutual information which is
based on the f-divergence representation and is different from
the mutual information regularity used in Sections 4.2 and
4.3, which is based on DV-representation. The model with
two mutual information constraint terms can strengthen the
power of the model for extracting more representative fea-
tures. Therefore, it is more suitable for the tasks of node classi-
fication and node clustering. In the ArmGAN with direct
mapping representation mechanism, the negative representa-
tion mechanism is represented by “fake” node attribute X°
and its corresponding embedding Z°. The embedding Z° is
generated based on a “fake” network with perturbed node
attribute X° and real network topology A, which is equivalent
to moving the attributes of high-order (or remote) neighbor
nodes to the positions of direct (first-order) neighbors. Thus,
the negative sample generator can collect the information of
high-order or remote neighbor nodes, and further pass this
type of information to the positive sample generator by gener-
ative adversarial learning. Therefore, the embedding Z con-
tains more information (not only information of local
neighbors but also that of remote neighbors) which is more
conducive for measuring the similarity of two nodes and fur-
ther predicting whether there is an edge between these two
nodes. ArmGAN with direct mapping representation mecha-
nism is more suitable for the task of link prediction. This is
also demonstrated by the link prediction experiments.

4.5 Adversarial Representation Mechanism
Learning (ArmGAN)

In this section, we will give the whole ArmGAN model. The

whole training process of ArmGAN contains two parts, i.e.,
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the generation process and discrimination process. In the
generation process, we train the autoencoder with mutual
information regularity and negative sample generator
together. In the discrimination process, we only train the
representation mechanism discriminator.

In the generation process, we first show how to train the
autoencoder with mutual information regularity. Before
doing so, let us first review its role in the whole model. The
task of autoencoder with mutual information regularity is
to help the discriminator to realize its discriminative task,
i.e., to help the discriminator to correctly predict the posi-
tive representation mechanism samples 8X;Zp as 1. The
goal of the encoder and the goal of the discriminator are
consistent. We can define the adversarial training criterion
of encoder from discriminator, which is based on the feed-
back of discriminator and is the same as the first term of the
objective function of the discriminator

Vep % Eyp,, sxp¥2log 8DOX; ESXPPP: (12)
In fact, in the whole model, the encoder is not only affected
by discriminator through generative adversarial learning
but also affected by the decoder and mutual information
regularity through two constraint terms, which are
expressed in Eq. (6). As the goal of the encoder is consistent
with that of the discriminator, Eq. (12) should be maxi-
mized, while as we mentioned in Section 4.2 Eq. (6) should
be minimized. To minimize both, we add a negative sign to
Eq. (12), then we get the overall objective function of the
encoder

LE Ya VEDb alLAE b1|Q6X;ZpZ (13)

In Eq. (13), we add a hyperparameter a; to the reconstruc-
tion loss which represents the proportion of the reconstruc-
tion loss to the total objective function Le. And b,
represents the proportion of mutual information regularity
to the total objective function L .

Next we will show how to train the negative sample gen-
erator. The goal of the negative sample generator is to
deceive the discriminator so that the discriminator wrongly
predicts the negative representation mechanism samples
0X%; Z% or 8X;Z° as 1. Obviously, the goal of the negative
encoder is opposite to that of the discriminator. We can
define the adversarial training criterion of negative encoder
from discriminator, which is opposite to the second term of
the objective function of discriminator. As the discriminator
is to maximize this term, the negative encoder aims to mini-
mize this term, which is just opposite with the discriminator

Leop % Exop oa007slogdl DOX%; E%8x°PbP
d X
or (14)
Leo b % Expyoxpiop,oa0/log 1 DOX; EOBX PPP;

where Lgop is for using direct mapping representation
mechanist, and Lgo, is for using mutual information
representation mechanism.

However, according to [20], Eq. (14) may not provide gra-
dient that is large enough to update the negative encoder.
Concretely, in the early stage of its learning, when negative
encoder is poor, the discriminator can reject samples with
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high confidence because they are clearly different from the
positive samples which are generated by autoencoder with
mutual information regularity. In this case, logdl D
0x%; E°x°pbP or logd1 Ddx; EO9x°PPb saturates and, as a result,
their gradient will be close to zero. In order to solve this prob-
lem, we redefine the adversarial training criterion according
to the improved strategy proposed by [20]

Le 0 % Exop o a0pY2log GDOX; E°OX°PPP

or (15)
Lo b % Expg oxbix0p,0 50074108 3DBX; E%8x°bbb;

where Lgop and Lgo , are the adversarial criterion of the
negative éncoder fof using the direct mapping representation
mechanism and the mutual information representation mecha-
nism. This objective function results in the same fixed point
of the dynamics of negative encoder and discriminator but
provides much larger gradients early in learning. This rede-
fined adversarial criterion of negative encoder also should
be minimized.

In the whole ArmGAN model, like the positive encoder,
the negative encoder is not only affected by discriminator but
also by the negative decoder and negative mutual information
regularity. The constraint terms from the negative decoder
and negative mutual information regularity are defined in
Eq. (9), which also should be minimized like the adversarial
criterion for the negative encoder. Then, we can define the
overall objective function of the negative encoder as

Leo % Leop b @zlago bylgo0X% 2%
d d
or (16)
Leo % Leo p b aslago bslqo0X%20p;

where L;o and Lgo are the objective functions of the nega-
tive encoder using the direct mapping representation mecha-
nism and the mutual information representation mechanism. We
add hyperparameters a; (and asz) to the reconstruction loss
which represents the proportion of the reconstruction loss
to the total objective function LEo (and LEo ). b, (and b;) rep-
resents the proportion of negatlve mutual information regu-
larity to the total objective function LEo (and LEo ).

Now, we can give the overall obJectlve function of the
generation process as follows:

min L_p LE°
E;T;ECGTC d
or (17)
min L_.pL_o :
E;T;ECTC E E

In the discrimination process, we train the discriminator
to maximize the probability of assigning the correct label to
both positive samples from autoencoder with mutual infor-
mation regularity and negative samples from negative sam-
ple generator. As mentioned in Section 4.4, the objective
function of the discriminator using the direct mapping repre-
sentation mechanism and mutual information representation
mechanism are defined by Egs. (10) and (11). Then the objec-
tive function of the discrimination process is given by
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TABLE 1
Datasets Information

Dataset Nodes Edges Classes Attributes
Cornell 195 304 5 1703
Texas 183 328 5 1703
Washington 217 446 5 1703
Wiscosin 262 530 5 1703
Citeseer 3312 4732 6 3703
Cora 2708 5429 7 1433
Pubmed 19717 44338 3 500
maxpVpxo  or maxpVpx: (18)

The definitions of Vpgo and Vpx are in Egs. (10) and (11) in
Section 4.4.

To sum up, in the whole process of adversarial learning,
the autoencoder with mutual information regularity, the
negative sample generator and the discriminator are trained
alternately. That is, when training the autoencoder with
mutual information regularity and the negative sample gen-
erator, the discriminator is fixed. Alternatively, when train-
ing the discriminator, the autoencoder with mutual
information regularity and the negative sample generator
are fixed. This iterative process continues until convergence.
The detailed algorithm description of ArmGAN is provided
in Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2021.3103193.

5 EXPERIMENTS

In this section, we first give the experimental setup, then
compare the new approach ArmGAN with some state-of-
the-art methods on four network analysis tasks, i.e., node
classification, node clustering, link prediction and network
visualization. Next, we give the parameter analysis and per-
turbation strategy analysis. Last we provide the conver-
gence analysis.

5.1 Experimental Setup

Datasets. Seven publicly available datasets' with varying
sizes and characteristics are used, which are representative
of two types of networks: webpage networks (Cornell,
Texas, Washington and Wisconsin from the WebKB dataset)
and citation networks (Citeseer, Cora and Pubmed). The
WebKB dataset is made up of webpages from four universi-
ties (Cornell, Texas, Washington and Wisconsin), in each of
which the nodes are partitioned into five groups. For the
citation network dataset, the nodes are articles, edges are
citations, and the articles are partitioned into different
research areas. Other information of seven datasets is sum-
marized in Table 1.

Baseline Methods. We compare the proposed methods
against the 10 state-of-the-art network representation meth-
ods. As we mentioned in the method part, our ArmGAN
model has two versions, i.e., 1) the discrimination process
using direct mapping representation mechanism and 2) the
discrimination  process using mutual information

1. https://lings.soe.ucsc.edu/data
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representation mechanism, which are called as ArmGANgy
and ArmGANy, respectively.

1) DeepWalk [1] is a unsupervised method that adopts
random walk and Skip-Gram to learn node
representation.

2) node2vec [14] is a variant of DeepWalk and designs
a biased random walk to learn node representation.

3) LINE [2] is also a popular unsupervised method that
preserves the first-order and second-order proximity
among nodes in the graph.

4) GraRep [3] adopts matrix factorization method to
learn node representation.

5) AANE [19] models and incorporates node attribute
proximity into network embedding.

6) TriDNR [18] learns node representations by coupling
multiple neural network models to jointly exploit the
network structure, node-content correlation, and
label-content correspondence.

7) SNE [17] preserves the structure proximity and attri-
bute proximity of social networks and generates
nodes embedding.

8) VGAE [22] is the variational graph autoencoder for
graph embedding with both topological and content
information.

9) ARVGA [21] uses adversarially regularized varia-

tional autoencoder algorithm to learn the embedding.

DGI [13] is a recently proposed unsupervised GNN

method which learns node representation by maxi-

mizing the mutual information between patch repre-
sentation and global representation.

Parameter Settings. For all the algorithms compared, the
final embedding dimension is set to 128 for WebKB dataset,
and 256 for Cora, Citeseer and Pubmed as the citation net-
works are much larger than the webpage networks. For the
hyperparameters of our model, we set the a1, az, as, by, b,,
b;to 1,1, 1,0,01, 0.01, 0.01 respectively, which are often sta-
ble and give good results. To ensure fairness, the parame-
ters of the baseline methods were set as what were used by
their authors. In our approach ArmGAN, we set the number
of samples s as the number of nodes as used in most mutual
information estimation methods [13], [35]. For both encoder
and negative encoder, we use the classic two-layer GCN
and use ReLUdP as the activation function. For the represen-
tation mechanism discriminator and neural networks of
mutual information regularity and the negative mutual
information regularity, we use three-layer fully connected
neural network and use ReLUdP as the activation function.
We apply the pytorch deep learning tools and use Adam
optimizer to learn the model for 400 epochs. Both the learn-
ing rate and discriminator learning rate are set to 0.001.

10)

5.2 Node Classification

In node classification, each node is assigned with one label.
A fraction of nodes and their labels are observed, and the
labels of the remaining nodes need to be predicted. There-
fore the performance of node classification can reveal the
distinguishability of nodes under different network repre-
sentation learning methods. After getting the network
embedding, we adopt the LibSVM and LibLINEAR soft-
ware packages in Weka to classify these nodes with
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TABLE 2
Comparison on Node Classification With Mean Value and Stan-
dard Deviation in Terms of AC (%)

Tackages Methods Cornell Texas  Washington Wisconsin  Cora Citeseer Tubmed
DeepWalle 3HO7—00T 4014 +101% BR3N—0114 48 a4 03 42 57400 522+ T8 7Y+
nodi2vee 35.90+0.19 50.274+0.18  47.47+0.14 46.5640.10 79.980.05 61.63£0.13 80.30+0.22
LINE 43.59:£0.06 56.28:£0.12 59.91+0.11 54.58:£0.15 30.2040.05 41.070.11 75.47:£0.008
GraRep  53.33+0.15 62.68-+0.11 52.07+0.19 59.16%0.24 73.4140.22 54.280.24 80.64=0.19

LibSVM  AANE 51.80+0.17 56.2840.11 64.060.09 43.130.07 30.20-£0.10 24.7040.03 78.63+0.10
TriDNR  37.95+0.16 48.09+0.10 47.010.15 40.46=0.20 43.2740.09 54.470.08 79.07+0.12

1

SNE 48.21£0.29 57.92+0.18
VGAE 45.12+0.09 55.0040.12
ARVGA 42.56+0.12 56.2840.16
DGI 42.56+0.23 56.2840.04
ArmGAN,, 54.35+0.05 64.48+0.09
ArmGAN, 51.28+0.08 60.65+0.07
TreepWalle 38 36—0010 I8A19+1T7
37.95+0.19 50.27+0.16
44.10£0.17 53.39+0.16

78.37+0.09
83.42+0.11

54.38:0.06 53.8240.12 81.0540.19 65.97-(
58.99:£0.10 49.2640.19 80.4240.06 65.10-+(
47.47+0.01 45.4240.11 84.1540.02 71.84-(
65.89-£0.03 60.69+0.05 88.95+0.04 73.07-£0.05
61.75:£0.00 59.16+0.09 88.77+0.02 72.88-0.04 85.99
AINZ—014 JYURZHILIT A2034+002 3847+
4562014 46.95+0.17 80.79+0.11 52.44+0.17 80.08+0.01
56.2240.08 54.96:0.18 50.2540.01 40.56+0.08 74.92+0.02

)
)
)
).0:
).0
54.38+0.11 59.5440.15 49.0040.01 44.74+0.0:
).05
).05
).06
).05
)

nodelvec

LINE

GraRep  47.17+0.08 59.40+0.06 51.15+0.09 60.31-0.23 79.83+0.13 53.6140.28 80.37+0.15
LibLINEAR AANE 41.54+0.17 53.0140.09 61.75+0.10 38.93+0.05 27.0340.04 22.24-£0.02 77.99+0.09
TriDNR  34.8740.13 42.08+0.08 43.3240.17 41.60£0.23 53.3940.08 52.9140.09 78.40+0.008
SNE 45.64+0.10 59.02+0.16 55.7620.20 59.92£0.25 54.4620.03 44.35£0.07 77.20£0.04
VGAE 45.6420.10 51.9140.05 54.84+0.03 54.49+0.11 79.13+0.05 69.25+0.05 83.81=0.02
ARVGA  41.54+0.11 59.0240.06 60.37+0.00 56.1140.18 81.24%0.06 66.7140.03 80.59+0.007

DGI 43.08+0.13 56.280.09
ArmGAN,, 51.79:40.09 62.30-£0.07
ArmGAN; 50.76+0.09 61.20+0.04

52.07+0.03 48.47+0.18 85.22+0.02 73.85+0.05 84.2240.09
62.21+0.09 61.07+0.07 88.5540.09 75.99+0.03 86.10+0.003
60.82+£0.08 59.54+0.12 87.92+0.02 75.02+0.06 85.83+0.

The best result is marked in bold and the second best is underlined.

ground-truth. For each network, we used 10-fold cross-vali-
dation, and report accuracy (AC) [42] with mean value and
standard deviation.

The experimental results are presented in Table 2. The
results show that our proposed ArmGAN with mutual
information mechanism (ArmGANy) outperforms all the
baselines on all datasets. On average, ArmGANy, outper-
formed the state-of-the-art network representation method
DGI in node classification by 8.37 percent using LibSVM
and by 6.34 percent using LibLINEAR. In addition,
ArmGANn outperformed the GAN based method ARVGA
(which matches the distribution of representation to Gauss-
ian distribution) in node classification by 8.64 percent using
LibSVM and by 6.06 percent using LibLINEAR on seven
networks on average. This also validates applying the
adversarial learning strategy on the representation mecha-
nism is better than applying the adversarial strategy on
representation results.

Although the ArmGAN with direct mapping representa-
tion mechanism (ArmGANy) is not as good as ArmGAN,,
ArmGANy outperforms all the baselines on 3 out of 7 data-
sets in LibSVM and 5 out of 7 datasets in LibLINEAR. As
mentioned in the Section 4.4, ArmGAN,, has two mutual
information constrain terms: one is based on DV-represen-
tation and the other is based on f-divergence representation
implemented by adversarial representation mechanism
learning. This can further help the encoder to extract more
representative information which may be more suitable for
the node classification task. Therefore, ArmGAN, can per-
form better than ArmGANy in node classification.

5.3 Node Clustering

In node clustering, we aim to assign distinct cluster to each
node with no supervision. To conduct the experiment, we
first train all the algorithms to obtain the network embed-
ding. After that, we applied k-means algorithm to the
embedding results of nodes to cluster them into different
classes. For node clustering (a.k.a., community detection),
besides accuracy [42], we also use normalized mutual
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TABLE 3
Comparison on Node Clustering in Terms of AC(%) and NMI(%)
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TABLE 4
Comparison on Link Prediction in Terms of AUC and AP

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

DreepWalk 3605 46.72 4176 38.76 435.61 36021 6484 DeepWalk 5234 4915 3444 62.32 8310 8050 84.40
nodelvec 33.85 47.54 37.33 49.62 5630 40.76 65.56 nodeZvec 70.99 55.30 56.63 6943  77.39 67.31 78.03
LINE 3949 53.38 52.68 4543 3072 25.01 43.11 LINE 63.05 50.52 57.51 57.29 6327 57.88 66.02
GraRep 3179 36.72 31.36 3324 4829 3120 54.43 GraRep 43.87 44.42 45.57 4543 5531 69.03 46.33
AC AANE 37.28 30.49 41.57 30.53 1851 21.76 34.55 AUC AANHE 52.38 46.68 45.86 53.88  50.64 5227 50.30
TriDNR 3821 4754 43.59 43.70 3156 34.44 59.29 TriDNR 50.14 4832 49.98 58.53 8125 76.78 86.00
SNE 41.08 41.53 48.80 5530 39.44 3117 65.13 SNE 5299 51.57 49.89 54.07  84.68 83.09 75.52
VGAE 36.72 48.35 43.73 4328  57.06 53.46 58.64 VGAE 82.94 80.88 75.54 83.30  92.38 91.44 94.46
ARVGA 3821 4148 43.66 42.81  64.08 43.50 58.76 ARVGA 83.92 76.45 77.00 68.78 9280 9241 9611
DGI 38.87 53.55 48.75 4427 7193 6876 65.21 DGI 85.92  86.50 79.13 86.44 9296 94.95 45.80
ArmGAN,  54.36  60.66 60.83 5649 7611 70.18 71.55 ArmCGAN,  B8.S6 816 B006 8964 9429 9546 95.64
ArmCGAN, 2820 5628 50.82 58.01 7L 67.77 TG ArmCGAN, 9132 89.70 81.47 91.01 9499 96.81 96.70
DeepWalk  7.06  6.16 5.66 7.65 3151 1058 2555 DeepWalk 6321  51.87 55.28 6921 8500 83.60 84,10
node2vec 6.65  4.49 294 7.86 42,02 1299 25.02 node2vec 7263 57.31 68.39 70.75  74.61 68.09 76.97
LINE 9.27 1816 18.95 9.39 10.13  5.62 7.17 LINE 64.42  53.95 60.07 58.53  70.87 66.13 69.61
GraRep 8.80 1243 5.18 8.02 3546 9.61 17.76 GraRep 47.42 47.35 47.89 47.73 5289 64.11 48.26
NMI AANH 9.55  3.52 13.19 2.86 040 1.19 0.01 AP AANH 56.92 50.84 50.99 54.88  51.80 52.37 54.34
TriDNR 720 432 8.10 6.60 1219 9.59 19.28 TriDNR 55.44 52.65 54.32 66.71  85.65 80.93 85.64
SNE 1111 1263 17.43 1894 1628 7.31 25.61 SNE 5151 50.98 49.51 5223 7685 75.30 78.73
VGAE 7.77 852 9.03 9.31 4292 2793 17.83 VGAE 85.99 85.71 80.55 85.68 9351 92.66 94.86
ARVGE 1026 7.28 12.60 1192 4495 22.72 18.40 ARVGA 85.54 81.06 83.66 76.25 9299 93.48 96,29
DGI 13.99 14.05 13.93 1322 56.52 44.32 25.77 DGI 87.27 88.90 81.42 87.60 9218 95.05 95,38
ArmGAN,  21.07 1842 25.91 1972 5843 44.56 33.70 ArmGAN,  91.90  92.09 86.25 9003 9455 6.3 95.64
ArmGAN, 1624 1355 22.82 19.94 58.37 42.89 3291 ArmCGAN, 92,55 93.23 82.98 92.97  95.26 96.79 96.34

information (NMI) [43] as an additional accuracy metric
since NMI has been more often used in node clustering.

The experimental results are shown in Table 3. As
shown, our proposed ArmGAN, performs the best on 6 out
of 7 datasets in terms of both AC and NMI. ArmGANjy per-
forms the best on 1 out of 7 networks in terms of both AC
and NMI and performs the second best in 5 out of 7 datasets
in terms of AC and 4 out of 7 datasets in terms of NMI. On
average, ArmGAN,, outperforms DGI which is well-known
for its high accuracy in node clustering by 8.40 percent in
terms of AC and 5.71 percent in terms of NMI on all seven
networks. In addition, ArmGAN, performs better than the
classical GAN based method ARVGA by 16.81 percent in
terms of AC and 13.38 percent in terms of NMI on all 7 net-
works on average. The superior performance of our Arm-
GAN over the state-of-the-art methods wvalidates the
effectiveness of the new approach, and further demon-
strates the superiority of adversarial representation mecha-
nism over adversarial representation results.

5.4 Link Prediction

In the task of link prediction, our goal is to predict whether
there exists an edge between two give nodes. This task
shows the performance of edge predictability of different
network representation learning methods. All methods are
trained on an incomplete version of these datasets where
some of the edges have been removed, while all node attrib-
utes are kept. After training, we obtain the representation
vectors for all nodes and use inner product method to pre-
dict the probability of edge existence for a given node pair.
The test set consists of the 10 percent removed edges (node
pairs) in the original network as the positive samples and
randomly selected disconnected node pairs as negative
samples, where the number of positive and negative sam-
ples are the same. The validation set contains 5 percent
edges, which is used for fine tuning the hyperparameters.
The remaining 85 percent edges of the original network are
taken as the training set. For link prediction experiments,
we report the area under the ROC curve (AUC) [22] and
average precision (AP) [22] scores for each method on the

test set. We conduct each experiment 10 times and report
the mean values as the final scores.

The experimental results on link prediction are shown in
Table 4. As shown, ArmGANy performs the best on all 7
datasets in terms of AUC and 6 out of 7 datasets in terms of
AP. ArmGAN,, performs the best on 1 out 7 datasets in
terms of AP and performs the second best on 6 out of 7 data-
sets in terms of AUC and 5 out of 7 datasets in terms of AP.
For all 7 datasets, ArmGANy is on average 2.90 and 7.79
percent more accurate in terms of AUC and 3.61 and 6.26
percent more accurate in terms of AP than DGI and
ARVGA, respectively.

It is worth noting that ArmGANy performs better than
ArmGAN, in link prediction in almost all dataset, which is
different from the experiments on node classification and
node clustering. This is because ArmGANy can capture not
only the information of local neighbors but also that of
remote neighbors, which is more conducive for measuring
the similarity of two nodes and further doing link predic-
tion. Therefore, ArmGANy has a better performance in the
task of link prediction.

5.5 Visualization

To further illustrate that the embedding from our method is
an accurate representation, we also visualize the embedding
results of all methods in the Cora dataset as an example. We
use the t-SNE [7] tool to down scale the result of embedding
representation to two dimensions and draw a color for each
categorical label. Therefore a desirable visualization result
refers to that nodes belonging to the same category (in same
color) should be close to each other. The result of visualiza-
tion is given in Fig. 2.

As shown in Fig. 2, the results of DeepWalk, LINE,
node2vec and AANE are less satisfactory since the points of
different categories are mixed with each other. The results
of VGAE, ARVGA, DGI are relatively better as the clusters
of points with the same color can be observed to form seg-
mented groups, but the borders are not very clear. We
observe that our proposed ArmGAN, and ArmGANy can
make relatively clear separation between different catego-
ries. In other words, nodes in the same color are roughly
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Fig. 2. Visualization of different network embedding methods on the
Cora dataset.

gathered together. This visualization validates that our
model can obtain a better representation, and further dem-
onstrates the superiority of our proposed model.

5.6 Parameter Analysis
In this section, we will analyze the impact of the hyperpara-
meters of our ArmGAN model using node clustering task
as an example. The role of hyperparameters of ArmGAN,
and ArmGANy are similar. For simplicity, here we only
analyze the hyperparameters of ArmGAN,. The hypter-
parameters of ArmGANy, are ai, as, b; and b;, where a;
and a3 weight the reconstruction losses for the autoencoder
with mutual information regularity and negative sample
generator in the objective function. b; and b; weight mutual
information regularity and negative mutual information
regularity in the objective function. To study the impact of
the individual parameter on the clustering result, we just
vary the target parameter, with other three parameters are
fixed. The results are shown in Fig. 3. In each figure, X axis
denotes different values of hyperparameter and Y axis rep-
resents the clustering accuracy, i.e., AC, and the results of
NMI which is similar with AC are provided in Appendix,
available in the online supplemental material.

As is shown in Fig. 3, the AC scores on these datasets are
rather steady with the changing values of the hyperpara-
meters. This indicates that these hyperparameters have little

IEEE TRANSACTIONS ONKNOWLEDGE AND DATAENGINEERING, VOL. 35, NO. 2, FEBRUARY 2023
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Fig. 3. The impacts of hyperparameters ai, a3, b, b, of ArmGANr, in
node clustering performance on Cora, Citeseer and Pubmed datasets.

impact on the performance of the proposed approach. The
results show that our proposed method is not so sensitive to
changes of the hyperparameters, and further demonstrate
the robustness of our proposed ArmGAN.

5.7 Perturbation Strategy

In this section, we investigate how different perturbation
strategies and different degrees of perturbation influence
the performance of the proposed approach. Here we take
node clustering as an example. As the perturbation for
ArmGAN, and ArmGANy are similar, here we only use
ArmGAN, for illustration.

First, we test the impact of perturbation on network
topology, attribute information and their combination,
respectively. We first consider perturbation on attribute
information, which is implemented by randomly corrupting
the attributes X via row-vise shuffling. In this case, while
the fake network has the same topology with the original
one, they have different features. We called this perturba-
tion strategy as ArmGANyx. Then we consider perturbation
on network topology which preserves the original features
X but adds or removes edges from the adjacency matrix
(A% % A) with a certain probability. In specific, we first gen-
erate a random graph M which has the same nodes as the
original graph and the edge existence probability between
any node pair is defined as r (here we let r be the inverse of
the number of nodes). We then obtain the corrupted adja-
cency matrix A°% A M where is the XOR (exclusive
OR) operation. This strategy produces a fake network with
the same features, but different connectivity. We called this
perturbation strategy as ArmGANa. At last, we consider
simultaneous feature shuffling (X° % X) and adjacency
matrix perturbation (A° % A), which are implemented using
the ways described above. We called it ArmGANxa. The
results for using these three perturbation strategies are
shown in Table 5. The results show that ArmGAN using the
first strategy performs better than using the other two strat-
egies on these datasets. This may be because network topol-
ogy is more reliable than attribute information for network
related tasks. Thus, using real network topology in the
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TABLE 5
Node Clustering Performance With Different Perturbation Strat-
egies

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubimed

AtmGAN: 5436 60.66 60.83 5649 7611 TG18 71.55
AC ArmGANy - 5076 59.56 57.14 52.29 7485 6741 68.77
ArmGANy, 4512 60.65 58.98 52.29 74.66 65.94 70.43
ArmCANy; 2107 1842 2591 19.72 5843 34.56 33.70
NMI ArmGAN, 1514 1556 18.34 1586  57.08 41.26 30.54
ArmGAN;, 1460 1786 19.77 17.73 5817 41.44 32.91

”fake” network can provide more useful information for
network embedding.

Then, we investigate the influence of different degrees of
perturbation under each strategy. Specifically, for perturba-
tion on attribute information, we vary the proportion of per-
turbed nodes from 10 to 100 percent with increment of 10
percent. For perturbation on network topology, we vary the
probability r from 0.1 to 1 with increment of 0.1 (the proba-
bility r means that each element in adjacency matrix A is
reversed with probability r, i.e., if there is an edge between
two nodes, they will be disconnected with probability r,
and vice versa). For perturbation on both attribute informa-
tion and network topology, the perturbation ratio of attrib-
utes and the reversed probability change simultaneously
from 10 percent (0.1) to 100 percent (1). In order to reduce
the influence of randomness, we generate 20 network
instances randomly for each degree of perturbation and cal-
culate the mean of the performance on these networks. The
results are shown in Fig. 4. As shown, in the beginning,
when the degree of perturbation is small, the results are rel-
atively poor and they gradually become better as perturba-
tion degree increases. And then, the results slightly drop, as
the degree continues increasing. One possible explanation
for the above observation is that, when the degree of pertur-
bation is small (such as close to 0), the fake network is very
much similar to the original network. It is difficult for the
discriminator to learn. Conversely, when the degree of per-
turbation is very large (such as close to 1), the fake network
is very much different from the original network. Thus the
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Fig. 4. The impacts of different degrees of perturbation in node cluster-
ing. g represents the ratio of the perturbed attributes and r represents
the reverse probability of each element in adjacency matrix A.
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Fig. 5. The impacts of shuffling neighboring nodes or non-neighboring
nodes in node clustering on Cora, Citeseer and Pubmed.

model may not necessarily learn the meaningful representa-
tion to distinguish the two. The results show that for pertur-
bation on attribute information, the algorithm performs the
best when the perturbation ratio is between 60 and 70 per-
cent and for perturbation on network topology, the algo-
rithm performs the best when the probability r is between
0.5 and 0.6. For perturbation on both of them, the algorithm
performs the best when they are between 60 percent (0.6)
and 70 percent (0.7).

Furthermore, for attribute shuffling strategy, as shuffling
attributes of neighboring nodes or non-neighboring nodes
may be different, we conduct additional experiments to val-
idate this. We randomly select part of nodes (the percentage
of selected nodes varies from 0.1 to 1 which is similar to the
approach discussed above). For each selected node, we
swap its attribute with one of its neighbors or non-neigh-
bors. We also generate 20 network instances for each spe-
cific percentage value and report the mean performance
result. The results are shown in Fig. 5. As shown, in most
cases shuffling non-neighboring nodes can achieve better
performance than shuffling neighboring nodes.

5.8 Convergence Analysis

Finally, we investigate the convergence of ArmGAN. The
experimental result is shown in Fig. 6, where the X axis rep-
resents the iteration numbers and Y axis represents the NMI
and AC scores evaluated in node clustering task. Here we
choose Citeseer, which is relatively large among all the 7
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Fig. 6. Results of convergency analysis in node clustering on Citeseer
dataset.
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networks, as the dataset for convergence analysis experi-
ments. As shown in Fig. 6, the AC and NMI have similar
changing trends. They fluctuate in the very beginning, and
gradually increase as training proceeds. In the end, when
the iteration number is close to 100, the AC and NMI con-
verge to a steady state.

6 CONCLUSION AND DISCUSSION

In this article, we propose a new generative adversarial
framework for network embedding called ArmGAN, which
uses adversarial learning strategy on the representation
mechanism rather than on embedding results so as to better
utilize the essential advantage of GAN on network embed-
ding. The new generative adversarial framework contains
three players: the autoencoder with mutual information reg-
ularity which hosts the positive representation mechanism,
the negative sample generator which hosts the negative
representation mechanism, and the discriminator. This is
different from the existing GAN framework for network
embedding that includes only two players, and only one
player realizes the representation mechanism. Furthermore,
the goal of the autoencoder with mutual information regu-
larity is consistent with the goal of discriminator, i.e., help-
ing the discriminator to identify its samples as real
representation mechanism, while the goal of the negative
sample generator is opposite to that of the discriminator,
i.e., deceiving the discriminator. The method proposed is
evaluated on 7 real datasets with different scales for differ-
ent network analysis tasks. Experimental results show that
the new method significantly outperforms the state-of-the-
art methods including a typical GAN based method and a
mutual information based method.

In real world, for some networks, their topological infor-
mation and attributes information are inconsistent. We plan
to use multi-channel graph convolutional networks and
attention mechanism to extend our method so as to auto-
matically learn and combine the reliable information of
topology and attributes information and form effective and
robust representation mechanism in the future.
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