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two-parameter model*

Noah Forman® Douglas Rizzolo*  Quan Shi®  Matthias Winkel"

Abstract

We introduce and study interval partition diffusions with Poisson-Dirichlet(«, ) sta-
tionary distribution for parameters a € (0, 1) and 6 > 0. This extends previous work on
the cases («, 0) and (o, «) and builds on our recent work on measure-valued diffusions.
Our methods for dealing with general § > 0 allow us to strengthen previous work on
the special cases to include initial interval partitions with dust. In contrast to the
measure-valued setting, we can show that this extended process is a Feller process
improving on the Hunt property established in that setting. These processes can be
viewed as diffusions on the boundary of a branching graph of integer compositions.
Indeed, by studying their infinitesimal generator on suitable quasi-symmetric func-
tions, we relate them to diffusions obtained as scaling limits of composition-valued
up-down chains.
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1 Introduction and main results

In this paper, we introduce and study a two-parameter family of interval partition
diffusions such that, for each choice of parameters, « € (0,1) and 6 > 0, the stationary
distribution is the corresponding two-parameter Poisson-Dirichlet interval partition,
PDIP(«,d). The members of this two-parameter family arise as the unique regenerative
ordering of the coordinates of the Poisson-Dirichlet distribution, PD(«, 6), on the Kingman
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simplex. Gnedin and Pitman introduced PDIP(c,#) through an underlying family of
regenerative composition structures [21].

The cases 8 = 0 and € = « of our construction were introduced in [16]. A full two-
parameter family of measure-valued Poisson-Dirichlet diffusions arising from a variant
of our construction was introduced in [18]. Motivated in part by an earlier version of the
present paper and by scaling limit results conjectured in [47], a two-parameter family
was obtained as a scaling limit in [46]. Encouraged by a referee, we establish in this
version of the present paper that the two families coincide.

There is a long history of interest in dynamics preserving Poisson-Dirichlet and
related distributions. Of particular relevance for us, Ethier and Kurtz’s [10] infinitely-
many-neutral-alleles diffusion model has stationary distribution PD(0, #). Recently, using
techniques developed by Borodin and Olshanski [3] to study diffusive limits of random
walks on partitions, Petrov [39] constructed a two-parameter family of diffusions on the
Kingman simplex with PD(«, ) stationary distributions. This extends Ethier and Kurtz’s
model. These Ethier-Kurtz-Petrov (EKP(«, 6)) diffusions have also been studied e.g. in
[8,9, 11, 12, 48, 49].

1.1 Kernels with a branching property and immigration

In [14], we constructed branching interval partition diffusions from the level sets of
marked Lévy processes. In [16], we computed their semigroups and adapted Shiga’s [52]
construction of Fleming—Viot superprocesses by normalization/time-change to obtain
(o, 0)- (and («, a)-)interval partition diffusions. While our toolkit derives almost exclu-
sively from marked Lévy processes, the semigroup of transition kernels is more easily
generalized to the two-parameter setting.

Definition 1.1. An interval partition is a set § of disjoint, open subintervals of some
interval [0, M], that cover [0, M] up to a Lebesgue-null set. We write ||3|| to denote M.
We refer to the elements of § as its blocks. The Lebesgue measure of a block is called
its mass. The set of all interval partitions is denoted by Zy;.

Fix a € (0,1) and # > 0. We define kernels (x3?, y > 0) on Zy. These kernels
possess a branching property under which the state at time y can be seen as the
concatenation of a family of independent interval partitions indexed by the blocks of
the initial interval partition, along with one additional independent interval partition
representing immigration; see Figure 1. This generalizes the cases § = 0 without
immigration, and # = o with a specific immigration parameter, of [16]. In the general
case, this is based on the Poisson-Dirichlet(a, §) interval partitions, PDIP(«, §), of [21],
which we recall in Section 2.1.

To be more precise, let us begin by formalizing this concatenation. We call the
family (yv)vep in Zy indexed by 3 € Ty summable if ;||| < oo. We then define
S(U) = Xt~ w)yep: weu 70|l for U = (u,v) € B, and the concatenation

3&7’] ={(S(U) 4z, SU)+y): Uep, (z,y) ew} (1.1)

We also write v+’ to concatenate two interval partitions. For ¢ > 0 let ¢y denote the
interval partition obtained by multiplying each block in v by c.
Now, fix b > 0, r > 0. We consider an independent triple (G, B,LZ()“T)) where G ~

Gamma(c,7), 3 ~ PDIP(q, ), and Lg‘;) is (0, c0)-valued with Laplace transform

« by a _br?/(r4A) _ 1
B[] = (TJF ) S . (1.2)
r e’ —1
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Figure 1: Illustration of the transition kernel /@;79. The initial state 3° has five blocks:
Ui,...,Us. Some contribute & for time y, here Uy, Us and Uy. The others each contribute
a leftmos:c block L? and a partition 531-’ =G} Bj of further blocks. If we add “immigration”
BY = GYfy, then Y = B * (0, LY) = BY * (0, LY) = Y. The semigroup property requires
consistency of a transition from 0 to z and composition of the transitions from 0 to y and
from y to z.

Then we define the distribution Hz(fr) of a random interval partition as
i) = e85 + (1-e"")P (0,5« GB e - ). (1.3)

The idea is that for » > 0, under ul(fr), we associate with a block of size b either no
descendants (the empty interval partition @) with probability e ~*"; or the descendants
comprise one block of size L,(f‘r) followed by the blocks of GS.
Definition 1.2 (ng")(ﬂ, ),y >0,8€Ty). Fixae (0,1),0 >0andlet € Iy andy > 0.
Then 3%(B, -) is defined to be the distribution of GY 3, **UGB B, for independent
GY ~ Gamma(0,1/2y), By ~ PDIP(c, ), and B, ~ Mg(:)b(U),lﬂy’ U € 3, where “Leb” denotes
Lebesgue measure.

It is straightforward to see that only finitely many blocks U € 8 have descendants
under 'u’iaei)(U).l/2y and hence that ﬁff’e(ﬁ» -) is well-defined. It is not obvious from this
definition that these kernels form a transition semigroup.

Proposition 1.3. Fixa € (0,1) and 6 > 0.

(i) Diffusion properties: The family (52’97 y > 0) forms the transition semigroup of a
path-continuous Zg-valued Hunt process.

(ii) Self-similarity: If (8Y,y > 0) is an instance of this Hunt process then so is
(cBY/¢, y > 0) for any ¢ > 0.

(iii) Total mass: The associated total mass process, (||8Y||, y > 0), is a BESQ(20), i.e. a
20-dimensional squared Bessel process.

(iv) Pseudo-stationarity: Consider an independent pair of 3 ~ PDIP(c,f) and Z =

(Z(y),y > 0) ~ BESQ,,(260), with an arbitrary initial distribution . If the aforemen-
tioned Hunt process (Y, y > 0) has initial distribution (3° £ Z(0)3 then for each

fixed y > 0 we have Y L Z(y)p.

In the language of [31], these processes are 1-self-similar.
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1.2 Starting from dust

One drawback of the state space Zy, equipped with the Hausdorff metric dg between
complements of the form C(3) := [0, [|B[|] \ Upep U, is that it is not complete. E.g.,
Brn = {(0,1/n),(1/n,2/n),...,((n —1)/n,1)}, n > 1, is a Cauchy sequence that does
not converge in Zy. Indeed, C(f8,) approaches [0,1] under the Hausdorff metric dy.
To address this, we now extend the evolutions of Proposition 1.3 to a completion of
(Zy,dg o C). The elements of this completion may be thought of as “generalized interval
partitions” in which blocks U € § must still be disjoint open subsets of [0, M], but
C(B, M) := [0, M]\ Ugey U need not be Lebesgue-null. We think of this residual, left-out
mass C(8, M) as “dust” [24].

More precisely, let K be the space of compact subsets of [0,00) that contain 0,
equipped with the Hausdorff metric dy. We associate with any K € K the family §(K)
of open intervals formed by the connected components of [0, max K] \ K. Define Zj; to
be the image of K under the map f*(K) := (8(K), max K). The map §* is a bijection
from K to Zj;. Then I}, is a set of ordered pairs (5, M) in which M € [0,00) and S is a
family of disjoint open subintervals of [0, M]. This space can be viewed as an extension
of Zy via the inclusion map S — (5, ||8||) from Zy to Zj,. We refer to elements of Z}; as
generalized interval partitions.

Now C: I} — K given by C(8, M) = [0, M] \ Uy U, is the inverse of the map
B*: K — Ij;. Equip both Zy; and Z}; with the metric dy o C. It is well-known that (K, dgr)
is locally compact and separable. Then it is easy to see that (KC,dy), or equivalently
(I3, dpm o C), is a metric completion of (Zy,dy o C) in that every K € K is a dy-limit of
some C(8,), Bn € Zy.

Consider the distribution ﬁé?‘r) of Gofy for independent Gy ~ Exponential(r) and

Bo ~ PDIP(a,0). Since L[(f’r) tends to Gamma(a, 7) in distribution as b | 0, it will follow from

Proposition 2.2 that ﬁéf"r) is the weak limit of ul()i)( | Zu \ {2}).

Definition 1.4 (x°/(5*, -), y > 0, 8* € Ij). Fixa € (0,1), 0 > 0, 3* = (8, M) € I}, and
y > 0. Set

BY:=Gihox Kk B (1.4)

UEBU{{R;},i<Jy}

for independent G ~ Gamma(¢,1/2y), 8o ~ PDIP(«,0), and By ~ “£(233(U),1/2y’ Uc€pB,
as well as, in the case when m = Leb(C(3*)) > 0, further independent variables J, ~
Poisson(am/y), and R; ~ Unif(C(5*)) and B?Ri} ~ ﬁ(()iyi)/zy/ i > 1. Here the concatenation
is according to the order of these disjoint sets from left to right. Then n§>9(6*, -) is
defined to be the distribution of (8Y,||5Y|)).

Definition 1.4 specifies kernels /ﬁg"), y > 0, on Zj;. However, ngj’g(ﬂ*, -) is, by construc-
tion, supported on Zy for all 5* € Zj;, in the sense that Y as specified in (1.4) is a.s. in
Ty . If furthermore, 5* = (8, ||8]]) € Z}; is associated with 3 € Ty, then the push-forward
of k°?(5*, -) under the natural projection from {(y, M) € Ij;: v € Iy, M = |||} to
Ty is H;ﬁ(@ -) as defined in Definition 1.2. This justifies using the same notation for
both kernels. As a consequence of the following theorem, we can further use the push-
forward of n‘y"’e(ﬁ*, -) for general 5* € Zj; as an entrance law for the Hunt process of

Proposition 1.3.

Theorem 1.5. Fixa € (0,1) and § > 0. Then the family (53’9, y > 0) forms the transition
semigroup of a path-continuous self-similar Feller process on (Z};,dg o C).

Definition 1.6. We refer to the Zy-valued Hunt processes of Proposition 1.3 as self-
similar («, #)-interval partition evolutions, or SSIPE(«, #). We write SSIPEg(«, 8) for the
distribution of an SSIPE(«, 6) starting from 3 € Zy. The corresponding T};-valued Feller
processes of Theorem 1.5 are denoted by SSIPEg-(«, ), 8* € I};.
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Theorem 1.5 establishes, in particular, the extension of the Hunt processes of [16]
to Feller processes on a completion of the original state space. Also generally in the
two-parameter setting, this Feller property opens up analytical techniques not previously
available. This has already been exploited in [17] to connect to EKP(«, #)-diffusions,
and this is also the key for us, in this paper, to connect our construction with its
understanding of path properties and genealogical structure to the interval partition
evolutions constructed in [46].

1.3 Unit-mass processes

The set of all interval partitions of [0, 1] is denoted by Zy 1 := {8 € Zn: 8] = 1}.
While Z7; includes a completion of Zp 1, it is more natural to consider the set fH.,l of
collections of disjoint open subintervals of [0, 1] equipped with the metric dy o C, where
C1(8) = [0,1] \ Upep U, again including the case of dust by allowing C1(3) to have
positive Lebesgue measure. We refer to elements of 7y as generalized partitions of
[0,1]. Then v ~ (v,1) isometrically embeds Zy 1 in Z};. The space (Zy 1,dy o Cy) is a
metric completion of Zp 1.

To obtain stationary diffusions on generalized partitions of [0, 1], we employ a proce-
dure introduced in [16], called de-Poissonization. We comment on the terminology in the
context of discrete up-down chains at the end of Section 1.5.

Definition 1.7 (De-Poissonization, PDIPE(«, 6)). Let u be a probability measure on THJ
and 3 := (BY,y > 0) an SSIPE(«,#) with initial distribution ;1. We define the time-change

Yy
T8(u) = inf{yZO: / Bz||_1dz>u}, u > 0. (1.5)
0
The map from 3 to the process
Bu = HBTﬂ(u)H_lﬁTﬂ(U)7 u > 0,

is called de-Poissonization. The resulting process takes values in fHJ and is called a
Poisson-Dirichlet(«, #) interval partition evolution, or a PDIPE(«, 6).

It follows from Proposition 1.3(iii), from the fact that ﬁgfe(ﬂ*, -) is concentrated on Zy
for all y > 0 and B* € Zj;, and from well-known properties of squared Bessel processes,
e.g. in [23, p. 314-5], that 73 is a.s. well-defined on all v > 0 and continuous and strictly
increasing for all § > 0, with

lim 7g(u) =inf{y > 0: Y =@} < oo iff <1 (1.6)

utoo

Theorem 1.8. PDIPE(q, ) is a path-continuous Feller process on (Zy1,dy o C1) with
stationary law PDIP(«,0).

Indeed, in Theorem 1.10, we identify the generator of PDIPE(q, 6).

We point out that the corresponding extension of Fleming—Viot processes of [18] to
include dust can be considered, but it is not continuous in the initial state, hence not
Feller. Recall that the Ethier-Kurtz-Petrov (EKP(«, #)) diffusion is stationary with the
law PD(q, #). This law is supported on the Kingman simplex: the set of non-increasing
sequences in [0, 1] that sum to exactly 1. However, this process can enter continuously
from any state in the closure of the simplex: the set of sequences with sum at most
1. Petrov left open the question of whether the EKP(«,f) diffusion ever leaves the
Kingman simplex (at exceptional times) to visit points in the closure. This question was
answered in the negative by Ethier [9] using analytic methods based on the existence of
densities. Our construction allows us to answer the analogous question for PDIPE(«, f)
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probabilistically. Together with the results of a companion paper [17], Theorem 1.8 gives
a probabilistic approach to the main theorem of [9].

Specifically, denote by RANKED: Zj 1 — V., the map that associates with 3 € Zy 1 the
decreasing sequence of interval lengths in 3, where

Voo 1= {(1:7)721 €[0,00)N: Zi21x¢ < 1}

is equipped with the metric doo((xi)izla (yi)iZI) = supizl ‘Jii — yi‘.

Corollary 1.9. Mapping PDIPEg(c, ), 3 € Zy,1, under RANKED yields a V . -valued Feller
process.

We use this in [17, Theorem 4.2] to identify this ranked process as EKP(«, ), up
to linear time-change, by calculating relevant parts of the infinitesimal generator of
PDIPE(cv, f).

1.4 Infinitesimal generators

Rivera-Lopez and Rizzolo [46] recently established a two-parameter Poisson-Dirichlet
interval partition diffusion as a scaling limit of up-down Markov chains on integer
compositions. Specifically, denote by C = J,,~,C» the space of all integer compositions
of any n > 0, including the unique composition ) € C, of 0. For a composition o =
(61,...,0k) € Cy, of |o| = n denote by ¢(0) = k its length. The diffusion of [46] on (a
state space isometric to) THJ is characterized by its generator A, ¢. Specifically, we let
mg = 1, and for compositions o € C\ {#} of n = |o| > 1 of length £ = /(0) € [n], we define

V4
mg(B) = > J[@ebU;))”,  BETun, (1.7)

Ui,..., Usep j=1
strictly increasing

and we extend continuously to Z ;. For these functions, the generator acts as

Aagmg = ~lol(lo| =1+ 0)mg + > ojloj—1—a)mi_g + D nimoen,.

j:o;>2 jro;=1
where we write ¢ —; = (01,...,05-1,0; —1,0j41,...,0r) when o; > 2and c © 0; =
(61,...,0j-1,0j41,...,0;) when o; = 1, and where 7, = 6 and n; = o for j > 2. It was

shown in [46] that the linear span of {mg,c € C} is a core of A, 4.
Theorem 1.10. The process PDIPE(«, §) of Theorem 1.8 has generator 2A, g.

In particular, this establishes the generator of the cases PDIPE(«,0) and PDIPE(«, )
constructed previously in [16]. Since [46, Theorem 1.4] establishes that the operator
A.p as an operator on the linear span of {mg, o € C} is closable and generates a
conservative Feller diffusion, this indeed identifies the process of [46] with PDIPE(«, 6).

Corollary 1.11. The two-parameter family of processes Rivera-Lopez and Rizzolo con-
structed in [46] is the same up to linear time-change as PDIPE(«, ), a € (0,1), 0 > 0, as
defined in Definition 1.7.

Remark 1.12. Results on infinitesimal generators in the present paper are confined to
the statements in this subsection, their application in Section 1.5 and their proofs in
Section 5. While [17, Section 4] builds on Sections 1-4 of the present paper, particularly
on Corollary 1.9 and its proof in Section 4.5, the generator results here should be seen
as a refinement of the partial generator calculations of [17, Sections 1-3] to a core of its
domain.
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1.5 Limits of up-down chains on the graph of compositions

The processes PDIPE(«, #) can be viewed as diffusions on the boundary of a weighted
branching graph and are the scaling limits of natural up-down Markov chains on these
branching graphs. Branching graphs and their boundaries have received substantial
focus in the literature. Particular attention has been given to the Young graph and the
Kingman graph, which are the respective settings of [3, 19] and [19, 39]. Both graphs
have the set of Young diagrams as the vertex set, with an edge between two diagrams if
one can be obtained by removing a box from the other. The two graphs only differ in the
weights attached to each edge. A general framework for studying the types of dynamics
on branching graphs considered in [3, 39] is developed in [40], while [19] gives a general
approach to up-down chains that includes up-down chains on branching graphs.

Compositions give an ordered analogue of Young diagrams. There is a natural
branching graph structure on the set of compositions, where there is an edge between
two compositions if one can be obtained by adding a box to the other (either creating a
new component or increasing the size of an existing component). Connections between
the graph of compositions, the Kingman graph, and the Young graph have been explored
in [20], resulting in the study of the graph of zigzag diagrams. Although dynamics on
the Young graph and Kingman graph have been well explored, the analogous dynamics
on the graphs of compositions and zigzag diagrams have not.

The diffusions we construct can be thought of as taking place on the boundary of the
branching graph of integer compositions, which was identified by Gnedin [22]. In an
earlier version of this paper we conjectured that these diffusions are the scaling limits of
up-down chains on the graph of compositions whose up-transitions correspond to seating
probabilities in the ordered Chinese Restaurant Process [42] and whose down-transitions
come from the graph’s edge weights; see the discussion in [47]. This is a natural
ordered analogue of the up-down chains used by Petrov in [39], where the up-transitions
correspond to a ranked Chinese Restaurant Process. This conjecture was supported by
the fact that the diffusions we construct have the correct stationary distributions (see
Theorem 1.8) and, as we show in a companion paper [17], the processes of ranked block
sizes of Corollary 1.9 evolve according to EKP(«, 6) diffusions.

This conjecture is made more precise by [46]. Inspired by the present paper, [46]
proves the existence of the scaling limits of these chains on compositions and finds the
generator for said processes. Corollary 1.11 here is now the final piece of the jigsaw
that proves this conjecture.

In fact, this circle of ideas is the justification of the terminology “de-Poissonization.”
Starting from the up-down chains on the branching graph of integer compositions, it
is fruitful to “Poissonize” by making each part in the composition (the size of each
table) and arrivals of new parts independent. This is achieved by decoupling down-
moves and up-moves by choosing suitable transition rates. The original up-down chains
have scaling limits established by [46]. The Poissonized up-down chains have scaling
limits established by [47, 51]. The de-Poissonization map of Definition 1.7 connects
the two limiting processes, as we show in the present paper, hence showing that the
de-Poissonization in the continuum is undoing the Poissonization in the discrete setting.

1.6 Construction from marked Lévy processes

As mentioned above, our toolkit and indeed part of our motivation derives from
connections to marked Lévy processes that go back to [14] in the case § = 0. While we
postpone details to later sections, we would like to point out some parallels to Ray-Knight
theorems that are particularly pertinent when starting from dust on the one hand and in
connection with general # > 0 on the other hand.
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s LA L e (]

Figure 2: A simulation of the stable Lévy process with jumps marked by squared Bessel
bridges, here depicted by symmetric spindle shapes inscribed into the jumps so that
interval partitions are obtained by piercing the spindles in the jumps that cross level
y > 0, as if on a skewer. Specifically, this Lévy process has an initial jump given by the
lifetime of a BESQ,(—2«) process, and it is stopped when it returns to level 0 so that the
interval partition evolution is starting from a single block {(0,a)} at level 0.

Roughly speaking, we need a cadlag process (X;, ¢t € [0,T]) with only positive jumps,
which we call scaffolding. Each jump AX; is marked by a continuous excursion f;
with excursion length {(f;) = AX;. We write N = Zte[O,T]: Ax,>00(t fi) for the point
measure of marked jumps. We can interpret each excursion as representing the width of
a spindle from bottom to top and the spindle is aligned with the scaffolding process, so
that it attaches to the jump, as in Figure 2. At each level y, the horizontal line intersects
certain spindles f; and the concatenation of their widths f;(y — X;_) at level y gives rise
to an interval partition, called the skewer at level y, denoted by skewer(y, N, X). With
suitably chosen scaffolding and spindles, the skewer process with level y increasing is
the desired SSIPE(«, ).

Also recall the Ray-Knight theorems for Brownian motion that identify, for suitable
stopping times, the total local time up to this stopping time, as a process indexed by
level, as certain squared Bessel processes. More precisely, the first Ray-Knight theorem
considers the first hitting time of —x, levels —z + y, y € [0, z], and finds a BESQy(2) on
that time interval. The second Ray-Knight theorem considers the first time the local time
at level 0 exceeds z, levels y € [0,00) and finds a BESQ,(0). See e.g. [45, Section XI.2].
Generalisations for Brownian motion perturbed at its past or future infimum [32, 7]
yield general BESQq(d). In our construction we will extract an interval partition for each
level from a marked stable Lévy process X, in which jumps have been marked by the
marking kernel s +— BESQ{ ((4 + 2a), i.e. every jump of height AX; = s is marked by an
independent squared Bessel bridge, of dimension parameter 4 + 2«, of length s from 0 to
0. This allows us to obtain Ray-Knight theorems analogous to [16, Theorem 1.8], which
covers cases § = 0 and § = a without dust.

Theorem 1.13. Let X be a spectrally positive stable Lévy process of index 1 + «, with
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Laplace exponent ¢(\) = % Mark each jump (t,AX;) of X, via the kernel

s+ BESQ( (4 + 2c), with a excursion f; and write N = >, ax,-00(t, ft). Set X =
(X, = inf,<, X,, t > 0).

(i) Let z > 0. Define

B := skewer(y, Nljo.1 X =X), y>0.

72/2a]

Set 80 = (@,2) and B¢ = (8Y,]|8Y||). y > 0. Then the process (8¢, y > 0) is an
SSIPE (g . (v, 0), i.e. an SSIPE(«,0) starting from dust of mass z, with total mass
process BESQ. (0).

(i) Let z > 0. Set X := X — (1 — 2)X and T") = inf{t > 0: X\”) < —z}. Then the
process
BY := skewer (y, N|[07T£9w)]7$ + X(G)) , y € [0, z]

is an SSIPEy(«, ) restricted to the time interval [0,z]. Its total mass process
(118Y]l, y € [0,2]) is a BESQy(26) on that time interval.

1.7 Diversity property
The partitions that arise as states in our diffusions possess an interesting property.

Definition 1.14. For 0 < o < 1, we say that an interval partition 8 € Ty has the
(a-)diversity property, or that (3 is an interval partition with («-)diversity, if the following
limit exists for every t € [0, ||8]|]:

2 (t) ==T(1 - a) lim h*#{(a,b) € B+ |b—al > b b< 1}, (1.8)

We denote by I, C Iy the set of interval partitions with «-diversity.

Proposition 1.15. Let 5* € Z}; and (Y, MY) an SSIPEg«(«,#). Then almost surely we
have 8Y € T, for ally > 0. If 8° € Z,,, then (3Y,y > 0) is a path-continuous Hunt process
on the space Z,, endowed with a metric d, that we specify in Section 2.1.

Diversity is a continuum analogue to the number of components of a composition [41].
The PDIP(a, 0) stationary laws of our diffusions are supported on Z,; e.g. this follows
from the regenerative property noted in [21] and the total diversity property noted in
[41]. Diversities arise, for example, in spinal projections of continuum random trees
(CRTs): we can decompose any continuum tree around a path from the root to a leaf,
called a “spine,” and represent the mass of each subtree branching off the spine as a
block in an interval partition. Examples include the Brownian CRT and other stable CRTs
[25], as well as the two-parameter family of binary trees studied in [42]. Diversities
in spinal projections then describe distances along the spine in the tree. By virtue of
this connection the (4, 1)- and (3, 0)-interval partition evolutions, previously studied in
[16], were used in [13] to construct a continuum-tree-valued process stationary with the
law of the Brownian CRT. By generalizing [16] in the present work, we open the door
to subsequent generalizations of the construction of the continuum-tree-valued process
in [13]. In the setting of algebraic trees, in which distances along a spine are omitted
and only the branching structure is retained, the Brownian tree diffusion of [34] was
extended in [35] to the (o, 1 — «) case.

1.8 Organization of the paper

We recall notions and results on related processes in Section 2. In Section 3, we
construct and study SSIPE(«,f) as a two-parameter family of Zy-valued Hunt process
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and prove Proposition 1.3 and Theorem 1.13(ii). In Section 4, we construct and study
SSIPE(«w, ) as Ij;-valued Feller processes and establish Theorems 1.5, 1.8 and 1.13(i),
as well as Corollary 1.9 and Proposition 1.15. In Section 5, we turn to the infinitesimal
generator and establish Theorem 1.10.

2 Preliminaries

The yégsia) interval partition evolutions of [14], called type-1 evolutions in [16] are,
in the language of the present work, self-similar (¢, 0) interval partition evolutions, or
SSIPE(w,0). In Section 2.1 we recall the state space of interval partitions for these
evolutions introduced in [15]. In Section 2.2 we recall from [14, 16] the construction
of SSIPE(«, 0). Finally, in Section 2.3, we recall from [18] relevant methods needed to
extend to all 6 > 0.

2.1 The state space: interval partitions with diversity

The state spaces (Z,,d.) and (Zy,d’;) for our evolutions were introduced in [15]. We
review key definitions and results from that study here.

We adopt the notation [n] := {1,2,...,n}. For 8,y € Zy, a correspondence from  to
~ is a finite sequence of ordered pairs of intervals (U1, V1),..., (Un, Vi) € B Xy, n >0,
where the sequences (Uj) e[, and (V;) e[, are each strictly increasing in the left-to-right
ordering of the interval partitions. The «-distortion of a correspondence (U, Vj)je[n]
from 3 to v in Z,, denoted by dis. (3,7, (Uj, Vj);em). is defined to be the maximum of
the following four quantities:

) e [LeDU;) — Leb(Vy)| + 8] = ;e Leb(U)),
(i) 3°c (o [Leb(U;) — Leb(V))] + 7] = 3=,c Leb(V)),

’

(i) sup,ep, |25 (U;) — 25 (V;)

(@) |25 (00) — 24V (0)].

Similarly, the Hausdorff distortion of a correspondence (Uj, V;) e[ between 3,y € Ty,
denoted by disy (8,7, (Uj, Vj) jem), is defined to be the maximum of (i)—(ii).
For 8,v € Ty we define

4, (B,7) = inf  disg (8,7, (U5, V)i, 2.1)
w(B,7) 0, O )t (8,7, U, Vi) jem)

where the infimum is over all correspondences from g to ~. For 3,v € 7, we similarly
define

duo(B,7) := inf dise (8,7, (U5, Vi)icin). 2.2
(B,7) pso @, dis (8,7 U}, Vi) iem) (2.2)

The name “Hausdorff distortion” refers to a relationship between d’; and the Hausdorff
metric on compact sets [15, Theorem 2.3]. Indeed, we showed that d}l generates the
same topology on Zy as the metric dy o C given by C(3) = [0, [|8][] \ Uyes U and

dH(Kl,KQ) = inf{s >0: Ky C KS and K, C Kf},

for compact K1, Ko C [0,00), where K¢ = {z € [0,00): |z — y| < € for some y € K} is the
e-thickening of K.

Lemma 2.1 ([15, Theorems 2.3 and 2.4]). (Zy, d’;) is a Polish metric space, while (Z,,d,)
is a Lusin space.
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An interval partition 5 € 7y can be reversed and scaled by ¢ > 0 as

Rip(8) == {18 = b, 18]l — a): (a,b) €}, B := {(ca,cb): (a,b)€5}. (2.3)

For o € (0,1) and # > 0, let W, ~ Beta( + ja,1 — a), j > 1, independent, and set
P,=Wy---W,_1(1 —W,), n> 1. Then the decreasing rearrangement of (P,,n > 1) is
known to be PD(«, #)-distributed. To construct an interval partition with block lengths
P,, n > 1, start from {(0, P1)} and proceed inductively by inserting an interval of length
P,+1 to the right of any of the first n blocks with probability «/(na + ) and into left-most
position with remaining probability 6/(na + 6). The distribution of the limiting interval
partition is called PDIP(«, 6).

The Rpp-reversal of PDIP(«, ) was studied in [21] and [42] under the name “re-
generative (a, f)-interval partition” in view of a multiplicative regenerative property
and connections to ranges of subordinators and exponential subordinators. The above
construction captures the limiting proportions of customers at tables in the ordered
(a, 0)-Chinese restaurant process [42]. As a classical example, the excursion intervals of
a standard Brownian bridge form a PDIP(%, %) If we instead consider excursion intervals
in (0,1) of unconditioned Brownian motion, including the incomplete final excursion,
then the Rp-reversal of this set (to move the incomplete excursion interval to the start)
is a PDIP(3,0).

Other examples are related to squared Bessel processes. Specifically, for re R, 2>0
and B a standard one-dimensional Brownian motion, it is well-known that there exists a
unique strong solution to the equation

Z(t) :z+rt+2/0 V|Z(s)|dB(s),

which is called an r-dimensional squared Bessel process starting from z and denoted
by BESQ.(r). When r < 0, the boundary point 0 is not an entrance boundary for (0, o),
while exit at 0 (we will then force absorption) happens almost surely. For r = d € IN, the
squared norm of a d-dimensional Brownian motion is a BESQ(d). The BESQ(0) process,
also known as the Feller diffusion, is a continuous-state branching process that arises
as a scaling limit of critical Galton-Watson processes. From this point of view, we can
interpret BESQ(r) with r > 0 as a Feller diffusion with immigration, and the case r < 0 as
a Feller diffusion with emigration at rate |r|. See [44, 23, 37]. If we replace Brownian
motion by BESQ(2 — 2«) in the forgoing example, « € (0,1), then we get PDIP(a, ) and
PDIP(«,0). See e.g. [21, Examples 3-4 and Sections 8.3-8.4].

Proposition 2.2. Fixa € (0,1). Let S ~ Exponential()) and, independently, letY be a
Stable(a) subordinator with Laplace exponent ¢*. Set T :=inf{s > 0:Y(s) > S} and

Bi={(Y(t-),Y(t): t€[0,T), Y(t—)#Y(t)}.

Then Y(T—-), S —Y(T-), and (1/Y(T—-))p are jointly independent, with respective
distributions Gamma(a, A), Gamma(l—a, A), and PDIP(«a, «). Also,
L
S

This result is well-known in the folklore around the Poisson-Dirichlet distribution,
but for completeness we prove it here.

({(0,8 =¥ (T=))}  5) ~ PDIP(0,0). 2.4)

Proof. Let (Z(t), t > 0) ~ BESQ(2 — 2«), as mentioned in the example above the proposi-
tion. Then, e.g. from [38, Lemma 3.7], the last zero of Z in [0,1] is G ~ Beta(a,1 — «),
independent of (Z(uG)/G,u € [0,1]), which is a BESQ(2 — 2«) bridge. By the scaling
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invariance of BESQ, if S ~ Exponential(}) is independent of Z then Z’ = SZ(-/S) has
the same distribution as Z and is also independent of S. Let Y denote the level 0 inverse
local time process of Z’, so Y is a Stable(«) subordinator independent of S [41], and let
T be as in the statement of the proposition. Then

Y(T-) = SG ~ Gamma(a, A) and S — Y (T—) = S(1 — G) ~ Gamma(l—a, \),

and they are independent, by Beta-Gamma algebra. Moreover, both variables are
independent of the bridge mentioned above. The excursion intervals of that bridge
comprise the interval partition 8 of the proposition; thus, the claimed PDIP(a, a) law
of (1/Y(T-))B, as well as the PDIP(«,0) in (2.4), follow from those laws arising in
connection with excursion intervals, as noted above the proposition. O

We will also require the following inequalities.
Lemma 2.3. For any (1, 32,71, 72 € Za,

|da (B2,72) — da(B1,71)] < da(Bi * B2, 71 * Y2) < da(B1,71) + da(B2,72)- (2.5)

Proof. The second inequality is straightforward. We prove the first. Throughout this
proof, for g € Z,, and = € R we write § + « to denote {(a + z,b+ x): (a,b) € }.

Consider an arbitrary correspondence C' = (U, V;) c[n) from £ x B2 to 71 * 72. Let
k,m € [n] denote, respectively, the greatest index for which both Uy, € 1 and V;, € v,
and the least index for which both U,,+1 € B2 + ||41]| and Vg1 € v2 + [|71]|. Then C; =
(Uj, Vj)jew and Co = (Ujrm—I| 1], Vi+m—II71ll) je[n—m) are, respectively, correspondences
from f; to v, and from S5 to 7.

If m > k, then either every pair (U;,V;), j € [k + 1,m], satisfies U; € (; while
Vj € 72 + [|[m]| or every pair has U; € (32 + ||31|| while V; € 71; indeed, there cannot
be “mismatched” pairs of both kinds, as this would violate the ordering property of
correspondences.

We leave it to the reader to confirm that

dis, (81,71, C1) < disa(B1 * B2, 71 * 72, C) + disa (B2, 72, C2)
and diSa(ﬁ27’Y2a CQ) S disa(ﬁl *52771 * Y2, C) + disa(ﬁlaryla Cl)

As we could obtain this bound beginning from an arbitrary correspondence between
the concatenated partitions, this proves the lemma. O

2.2 Scaffolding, spindles, and SSIPE(«,0)

Let £ denote the set of non-negative, real-valued excursions that are continuous
except, possibly, at their birth and death times, when they may have cadlag jumps:

&= {f:R—>[O7oo)

32 € (0,00) .t i 01000 = 0, F(0) = £(04),
2 € (0,00) 8.t fl(—o0,0)U[z,00) f(0) = f(0+) } 2.6)

f positive and continuous on (0, z), f(z—) exists

We define the lifetime and amplitude, {,A: £ — (0, 00) via

C(f)=sup{s >0: f(s) >0} and A(f) =sup{f(s), s<€[0,¢(f)]} (2.7)

For the purpose of the following, for m > 0 let H™: £ — [0,00] denote the first
hitting time of level m. As in [14, Section 2.3], we write uéEfoo‘) to denote a o-finite
Pitman-Yor excursion measure [44] on £ associated with BESQ(—2«). In particular,

under the probability measure ué;oo‘)(- | A(f) > m), the restricted canonical process
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O Tt 1I
skewer(y, N, X) . ) sSkewer(y, V, X)

Figure 3: A discrete scaffolding and spindles. Left: The slanted black lines comprise the
graph of the scaffolding X, shaded blobs decorating jumps describe spindles: points
(t, f+) of N. The skewer extracts intervals from level y, with color only used to illustrate
the relation between blocks and spindles. Upper right: Graph of one spindle. Lower
right: The (measure-valued) “superskewer” studied in [18]; heights of vertical lines
represent masses of atoms along a colour spectrum on [0,1]; the superskewer arises
from a richer point measure V of spindles with “type labels,” (¢, fi, z;), z¢ € [0,1]; here,
the colors represent these type labels. Skewer and superskewer have been scaled by a
constant factor for better visibility.

(f(y), y € [0, H™(f)]) is a BESQy(4 + 2c) stopped upon first hitting m, independent of
(f(H™(f)+y), y >0) ~BESQ,,(—2«). As in [14], we choose to scale this measure so that

2 1
Vigse {F €€ A(f) > m} = Mm*l*“ for all m > 0,
Il -a) (2.8)
(6%
&: = 1= forall z > 0.
VBESQ {fe C(f) > =} QQF(lfa)F(lJra)Z or all z >
Now, consider a Poisson random measure N on [0, 00) x £ with intensity Leb ® yéE_S%O‘),

denoted by PRM(Leb ® VéE_SQQQ)). We wish to pair this with a scaffolding function X. The

idea is that each point (¢, f;) of N coincides with a jump AX(¢) = X(t) — X(t—) = ¢(f2).
We then view the spindle f; as describing an evolving mass that is born at level X(t—),
evolves continuously, and then dies at level X(¢). The mass of this spindle at level y is
then f;(y — X(t—)). See Figure 3.

For (S, ds) a Borel subset of a complete and separable metric space, we denote by
N (S) the space of boundedly finite measures on that space. For N € N([O, 00) X 5), we
define the length of N to be

len(N) = inf {t > 0: N([t,00) x £) =0} € [0, 0], (2.9)

When the following limit exists for ¢ € [0,len(N)] N [0, 00), we further define

. 1+ a)t
:= lim N(du,df) — . 2.10
() =1 ([o,t}x{geg: ooy DN~ T T a)) 210

We also write £(N) := ({n(¢), ¢ € [0,len(N)] N[0, 00)) and we denote the length of the
domain interval for this process by len({(N)) := len(N). We call {(IV) the scaffolding
associated with N.

Proposition 2.4 (Proposition 2.12 of [14]). For N a PRM(Leb ® U O‘)) on [0,00) x &, the
convergence in (2.10) holds a.s. uniformly in t on any bounded interval. Moreover, the
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scaffolding £(N) 1's a spectra]]y positive stable Lévy process of index 1 + «, with Lévy
measure I1(dz) = I/BESQ ){C € dz} on (0,00) and Laplace exponent v given by
)\1+a

—a—2 _
z dz and ¥(\) = T+ a) (2.11)

ala+1)
2°T(1 — a)T(1 + @)

I(dz) =

Definition 2.5 (Point measure of spindles). We write N'P C N([O, 00) X 5) to denote the
set of all counting measures N on [0,00) x £ with the following properties:

(i) N({t} x &) <1 foreveryt € [0,00),
(i) N([0,t] x {f € £: ((f) > 2z}) < oo forevery t,z > 0,
(iii) the convergence in (2.10) holds uniformly in t on bounded intervals.

We define :={N € N'*P: len(N) < co}. We call the members of NP point measures
of spindles. We denote the o-algebras on these spaces generated by evaluation maps by
S(NP) and S(NGY).

Let (N, )qe.4 denote a family of elements of AVt indexed by a totally ordered set (A, <).
For the purpose of this definition, set S(a) := ), _,len(N;) and S(a—) := ), _, len(NVy)
for each a € A. If S(a—) < oo for every a € A and if for every consecutive ¢ < b in A we
have N,({len(N,)} x &) + Np({0} x £) <1, then we define the concatenation to be the
counting measure

Z/(s )+ t, f) Nu(dt, df). (2.12)

aEA acA

Definition 2.6 (Skewer). Let N = ), .\ 0 (t;, fi) € N([O, 00) X 8) and X a cadlag process
such that 3y~ ax (00 (6, AX (1)) = > ;en 6 (i, C(fi)). The skewer of the pair (N, X) at
level y is the interval partition

skewer(y, N, X) := {(MY(t—), MY(t)): MY(t—) < MY(t), t > 0}, (2.13)
where MY ( f[Ot <& /(y— X(s—))N(ds,df). Denote the process by
skewer(N, X) := (skewer(y, N, X), y > 0).

For simplicity, when X = £(N) we write skewer(y, N) := skewer(y, N,{(N)), y > 0, and
skewer(N) := skewer(N, {(N)).

See Figure 3 for an illustration of how skewer(y, N, X) extracts an interval partition
from a point measure N of spindles via the level set at level y of X. As the level y € [0, 00)
is varied, this yields the skewer process skewer(N, X ). For more detail we refer to [14,
Section 2.3-2.4 and 3.1].

We now recall the construction of random point measures used in [14].

Definition 2.7 (N3 and Pg’o). Let 8 € 1y. If B = &, set Ng := 0. Otherwise, we carry
out the following construction independently for each U € 3. Consider an independent
pair N ~ PRM(Leb ® VéEso )) and f ~ BESQpen(17)(—20), and the hitting time T' := inf{t > 0:
én(t) = —¢(f)}, and let Ny := 6 (0,f) + N, 7). We write PO"O to denote the law ong =
*UEBNU on Ny . For probability distributions i on Ty, we write P0 := [P5"u(dp) to
denote the p-mixture of the laws Pg’o.

Proposition 2.8 (Propositions 5.3 and 6.11 of [14]). (i) For p €Iy, for (Ny, U € B)

as in Definition 2.7, 3 ;. 5 len(Ny) is a.s. finite.

(ii) The map f3 — Pg’o is a stochastic kernel from Zy to Ng»
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A Py
hy ™

Figure 4: Simulated Stable(1.3) scaffolding and spindles, superposed with a plot of its
infimum process. Its excursions above the infimum are the points of F; in (2.17).

(iii) For B € Z,, there is a version of Ng for which skewer(Ng) is well-defined and
dn-path-continuous. For § € Ty, the same holds except at time 0, where the
process is merely d;-continuous.

Proposition 2.9 (Theorems 1.2-1.8 of [16]). Let 8 € Zy. The d,-path-continuous version
of skewer(Npg) is the SSIPEg(«,0), i.e. the Hunt process in the § = 0 case of Proposi-
tion 1.3, with all of the properties claimed in that theorem.

2.3 Scaffolding excursions above the minimum and associated clades

We now recall the developments in [18] that are used to construct Fleming-Viot
diffusions, supported on the purely atomic measures, that are stationary with PD(«, 6)
ranked atom masses, in particular with 6 > 0.

Definition 2.10. (1) A clade is a point measure of spindles N € N, with the property
that £(N) is a non-negative cadlag excursion. Recall that heights of the scaffolding {(N)
correspond to times in the skewer process skewer(N, {(N)). In light of this, for a point
measure N € N?, we define its lifetime by

CT(N) := §1>113§N(t)~ (2.14)

(2) For a point measure N € N'** and an interval [a,b], the shifted restriction N|{ . .
is defined as the restriction of N to [a,b] x &, translated so that it is supported on
[0,b — a] x €. The shifted restriction of a function X : [0,00) — R, denoted be|f;7b], is
defined correspondingly:

N|[:b]xg([c, d)x A) = N(([c+a,d+a]N[a, b)) x A), c<d, AES(NP)

- (2.15)
X|py® =1{t €[0,b—al}X(t+a), teR.

Let N denote a PRM(Leb ® uégj)“)) on [0,00) x £ and X := ¢(N). Let
TV :=inf{t >0: X(t) < —y} for y>0. (2.16)

This is a Stable(1/(1 + «)) subordinator [2, Theorem VII.1], the jumps of which corre-
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spond to the intervals of excursions of X above its infimum process. We define

F, = Z 0 (y»N’E;(—y)—,T—y)) : (2.17)

y>0: T(—v)—<T-v

Then this is a point measure of clades, with each point ¢ (y, V) corresponding to an
excursion {(N) of X above its infimum, when X reaches level —y; see Figure 4. In
[18], we considered the corresponding point measure of excursions for a point measure
of spindles with type labels, V ~ PRM(Leb ® uégsi“) ® Unif[0,1]). We denoted by ¢ the
map that projects away these type labels, so that we could have a coupled pair (V,N)
with N = ¢(V). In [18, Proposition 4.3] the analog to F in that setting was shown
to be a PRM(Leb ® ﬁ(f‘c)ld) with an It6 intensity measure ﬁ(f‘c)ld on a space of clades with
type labels, paired with scaffoldings. The pairs (V, X) arising as points in that measure
had the a.s. property X = (£ o ¢)(V). It follows that in the present setting, F, is a
PRM(Leb © 1!%).), the Itd intensity measure of which, »\*),, is the pushforward of (%),
via the map (V, X) — o(V).

In fact, the point measure F | can replace the role of N in the construction of Ny in
Definition 2.7:

,0
Ny = 8(0,£) +NJ; 5 = 6(0.£) + * Ny~ Pty (218)

points (y,N,) in F : y<((f)

where the concatenation is in order of increasing .

Along with the point measure Ng of Definition 2.7, the point measure F |, up to a
constant change of intensity dependent on 6, is the final ingredient needed to construct
SSIPE(w,#) with § > 0. Before we proceed to this construction, we recall a few key

properties of V(fc)ld from [18].
For ¢ > 0 and N € N> we define the scaling operator

cOY N = /6 (¢t c @ f) N(dt,df), where cOg, f = (cf(y/c), y €R).  (2.19)

Note the following relations:
(M(c®%q N) =cCT(N), len(c®%y N) = c'tlen(N). (2.20)

We may also define ¢ %, N in the same manner for N € N *P with len(N) = oco.

Lemma 2.11 (Self-similarity of V(ﬁ;{d' Lemma 4.4 in [18]). For ¢ > 0, we have

) (c@lq A) = v, (A)  for A e D(NP). (2.21)

Let N € NP and X := ¢(N). For y > 0, if an atom (¢, f;) of N satisfies y €
(X(t—),X(t)), i.e. the spindle f; crosses level y, then we define f¥ and fY to be its
broken components split about that crossing. Let m¥ = fi(y — X(t—)). See Figure 5.
Recall the notation ¢* and len from (2.14) and (2.9).

Proposition 2.12 (Proposition 4.5 and 4.10(i) in [18]).
i) uﬁ_ogd{(“'>z} =az7l, z>0.

(i) % {len > o} = ERLEaD I, m1/0ke) -y 5,

(i) v (%) (m¥ € - | ¢+ > y) ~ Gamma(l — o, 1/2y), y > 0.
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Figure 5: Simulation of a clade N ~ l/icrjd(' | ¢* > y) (with a = 0.7) and the broken

spindle components, ( fj'?i, fj“i) of the leftmost spindle to cross level y, denoted fr and
shaded blue. The leftmost block mass m¥(N) is the width of this blue spindle as it crosses
the horizontal dashed line.

Lemma 2.13 (Mid-spindle Markov property (MSMP) for V(fgd' Proposition 4.7 in [18]). Fix
y > 0. Consider n with law V(fgd( - | ¢T > y). Let (T, fr) denote the first spindle in
n that crosses level y, and let fﬁT and ng denote its broken components split about
that crossing. Finally, let m¥(n) := f¥(y — &a(T—)) = f%(0). Given m¥(n), the process
n|jo,r) + (T, f ;) is conditionally independent ofnlf; )+ 5(0, f¥ ;). Moreover, under
the conditional law, (n|f7 ), ng) has the law of (N'|(o -, f*), where f" ~ BESQyu(n)(—2a),
N’ ~ PRM(Leb ® z/éE_S%a)) independent of f’, and T is the hitting time of level —(y + (f"))
by the scaffolding £(IN').

3 Self-similar (o, /) interval partition evolutions for 6 > 0

For any point measure F on [0,00) x NP, we define an interval-partition-valued

process by concatenation, whenever it is well-defined:

fSkewer(y, F) = * - skewer(y — s, N,), y > 0. (3.1)
points (s,N;) of F': s€[y,0]

In this formula we adopt the convention that concatenation over s € [y, 0], with y > 0,
denotes concatenation over s € [0,y] in reverse order. IL.e. if for two points (s1,N1),
(s2, N2), we have s < s9, then we concatenate skewer(y—sq, No) to the left of skewer(y—
s1, N1). In the population and branching interpretation of the skewer process, these two
points represent two sub-populations that enter via immigration at respective times s;
and s,. We follow our convention that any new immigrant clade is placed to the left of
the current population.
Definition 3.1 (8). Fixa € (0,1), § > 0. Let Fy be a PRM(£Leb © 1/\%),) on [0, 00) x NP
We define an interval-partition-valued process

B = (Ey,y >0) where BY = fSkewer(y,f‘g), y > 0. (3.2)

The transition kernel of Definition 1.2 possesses a branching property. In that branch-
ing perspective, 8 will serve as an immigration process, describing all descendants of
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individuals that enter via immigration, which occurs, in some sense, with rate propor-
tional to 6.

Proposition 3.2. (Ey, y > 0) a.s. has continuous paths in (Z,,d).

We will prove this in Section 3.2.

To describe a general SSIPE(«, §), we must combine the immigration process with
the process describing all descendants of the time-zero population; the latter is the
SSIPE(c,0) of [16].

Definition 3.3 (]Pz‘»a). Fix € (0,1), 0 >0 and a probability distribution y on Zy. Let
N, NPfL"O as in Definition 2.7 and, independently, let f‘g and B be as in Definition 3.1.
Let

+¥ = skewer (y,N,) and pY:= By *~Y fory > 0. (3.3)

From Propositions 2.8(iii) and 3.2, we see that (§Y,y > 0) is a.s. d,-path-continuous,
except at time O if the initial state is in Ty \ Z,, in which case the process is a.s.
d'y-continuous at time 0. We denote by IPZ"Q the law of (8Y,y > 0) on C([0,00),Zx).

In Section 1.2 we introduced the term self-similar («, #) interval partition evolution
(SSIPE(a, 8)) to describe a Hunt process with (ng’e, Yy > O) as its transition semigroup.

Proposition 3.4. IPg’G is the law of an SSIPEg(a, 8), for § € Z,,.

We prove this, along with Proposition 1.3(i), in Section 3.4. To do so, we must prove
the Hunt property and the claimed transition semigroup for (3Y, y > 0) as in (3.3).

3.1 Entrance law for the immigration process

Lemma 3.5. Fixy > 0 and considern ~ v\%( - | (T > y).

(i) The process skewer(n) constructed in Definition 2.6 is a well-defined random
variable in C([0,0), (Z,,d,)) under the Borel o-algebra generated by uniform
convergence. It is a path-continuous excursion in Z,, starting from @.

(ii) The interval partition skewer(y,n) is equal in distribution to BY3, where BY ~
Exponential(1/2y), independent of 5 ~ PDIP(«,0).

These results have superprocess analogs in [18, Propositions 4.6, 4.10(ii)].

Proof. We may assume that n is the clade corresponding to the first excursion above the
minimum of X with lifetime (™ > y. Then we can write n = N E;’~T”) for a pair of a.s.
finite random times 7", 7" . l

(i) It is well known that X does not jump when it attains a local minimum at time 7”;

see e.g. [18, Proposition 4.5(iii)]. Thus, X(7") = X(7'-), and

SkeWer(N| [0,T”)7 X_| [07T”) - X_(T’))
= skewer (Nl 7y, X|jo,7) — X(T"))  skewer(n).

From [14, Proposition 3.8], the first two skewer processes in this formula are a.s. d,.-
continuous. The d,-continuity of skewer(n) follows, by Lemma 2.5. Finally, by definition
of n we get skewer(0,n) = &.

(ii) By the MSMP, Lemma 2.13, given n|j 7>y}, the point measure n|2}2y7oo) is con-

ditionally a PRM(Leb ® v{zey"') killed when its scaffolding hits level —&n(T>Y). Let

denote skewer(n,y) minus its leftmost block. Then by [16, proof of Proposition 3.41],
G := ||v|| ~ Gamma(a, 1/2y) and, independently, 7 := (1/G)~ ~ PDIP(«, ). By the Markov
property of n when £(n) first hits level y, v is independent of m¥(n). Finally, our claim
follows from Lemma 2.12(iii), which notes that m¥(n) ~ Gamma(l — «, 1/2y), and the
characterization of PDIP(«,0) in Proposition 2.2. O
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The following proposition confirms that, for each y > 0, Ey is well-defined and lies in
7T, a.s.. This is not obvious, as the diversity property of Definition 1.14 is not generally
preserved over infinite concatenations.

Proposition 3.6 (Cf. Proposition 5.1 in [18]). For any y > 0, consider G ~ Gamma(6,1/2y)

and an independent interval partition v ~ PDIP(«,#). Then Gy £ Ey, where E” is as in
Definition 3.1.

Proof. Let ((Si,NZ-)7 i > 1) denote the sequence of points in f‘g in which the clade
crosses level y, i.e. for which (*(IV;) + S; > y > S;. These comprise the points of an
inhomogeneous Poisson random measure. Let

= 1
M; = ||skewer (y—S;, N;)||, Bi:= ﬁskewer (y—Si, N;) .

K2

o 1 _ _
Then gY = *i:OOMiBi, where the concatenation is ordered so that the ;1 term is
attached to the left of the j3; term, for each i.

From the arguments in [18, proof of Proposition 5.1], we get:

1. the sequence B; := (y — S;)/(y — Si—1), ¢ > 1, isi.i.d. Beta(d,1), and

2. the (N;, i > 1) are conditionally independent given (S}, j > 1), with respective

conditional distributions z/ﬁ)ld ¢+ S >yt

By Lemma 3.5(ii), conditionally given (S}, j > 1), we get
(M;, 3;) ~ Exponential(1/2(y — S;)) ® PDIP(a,0)  fori > 1.

We get a nicer characterization via the telescoping product of the Beta variables (B;)
and their interaction with the exponential variables (M;):

i -1
E;, =M, < H Bj> ~ Exponential(1/2y). (3.4)
j=1

Then, as in [18], the sequences (B;), (E;), and (3;) are each i.i.d. and are jointly indepen-
dent of each other. Now, by a multivariate distributional identity noted in [18, Lemma
5.3], which extends the usual Beta-Gamma calculus,

5= % <<E H B]-)Bi) La%k ((1 ~ B)) <H Bj>6¢>, (3.5)

where G ~ Gamma(#, 1/2y). To conclude, we appeal to a classical decomposition (see e.g.
[42, Corollary 8]):

v £ (BY)*((1 - B)B), (3.6)

where 7 ~ PDIP(a,f), 3 ~ PDIP(a,0), and B ~ Beta(f,1) independent of each other.
Iterating (3.6) yields that the right hand side in (3.5) has the claimed distribution. O

3.2 Proof of Proposition 3.2: path-continuity of the immigration process

Let Fy ~ PRM(gLeb\(om) ® I/(ﬁ:)ld). Fix yy > 0. We first lift from [18, Section 7.2] a
result that controls uniformly in level [0, yo] the contributions of newly entered clades.
To this end, let us introduce some notation. For every z > 0, we define

BY = fSkewer(y, f‘g‘[zm)xNﬁsp).
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That is, only those clades entering above level z count for the process (;37 y > 0). In
particular, Y = @ for all y < z. For every z > 0, let

DY :=T(1 — a)limsup h*#{U € BY: Leb(U) > h},  y>0.

hl0
Lemma 3.7. Almost surely, for all € > 0, there exists §' > 0 (that depends on ¢ and the
realization) such that

sup  ||BY| <¢/3, sup D' <e/3, foreveryz e [0,y. (3.7)
y€(z,2+6'] y€(z,2+6']

The second part of (3.7) has been obtained as Claim 1 in the proof of [18, Proposition
7.3]. That argument was made in the setting of the measure-valued “superskewer” map,
but it translates without modification to the setting of the skewer map; see Figure 3 for
an illustration relating these maps. The same arguments can be adapted to prove the
total mass part. We omit the details. B

Our next step is to prove that almost surely, 5Y has the a-diversity property for every
y > 0.

Lemma 3.8. Almost surely, 3V € T, for every y € [0, yo].

Proof of Lemma 3.8. By Lemma 3.5(i), Proposition 2.12(i), and standard properties of
Poisson random measures, the following holds almost surely: for all § > 0, there are
finitely many points (s, Ng) of Fy with s € [0,90) and ¢*(N,) > d; moreover, for each
(s, Ns), the process y — skewer(y, N;) is path-continuous in (Z,, d,). For the remainder
of this proof, we will argue on the intersection of this almost sure event and the one in
Lemma 3.7.

Fix any € > 0 and take ¢’ > 0 so that (3.7) holds. Fix any y € [0,yo] and let ' :=
max(y — d’,0). Define the concatenation of long-living clades that enter below level 3/ by

¥ = fSkewer(z, Foly, ) 23>0, (3.8)

X{NENP: (+(N)>5’/4})’
which takes Valiues iE Z., due to the choice of the almost sure event. Then we have the
decomposition Y = ﬁz, *73,. Indeed, among the clades that are born below level 3/, only

those long-living ones contribute to By at level y.
For every t > 0, set

ﬁgy (t) :=T(1 — o) limsup h*#{U € By: Leb(U) > h,supU < t},
hi0

Dy, (1) = T(1 = o) lim inf h*#{U € BY: Leb(U) > h,supU < t}.

Then By has the a-diversity property if and only if D+, (t) = Dg, (t) for every ¢ > 0.

Moreover, we then have 73, (t) = Dg, (t) = D3, (?).
Write A := ng’ ||. By the identity Y = Ez, * vy, we have, for every t > 0,

Dy, () <Dy +1{t > A}, (t = A), Dy, (1) > 1{t = A} 2, (¢ - A).

Since D,, < ¢/3 by (3.7), we have Dy, (t) — Dg,(t)| < e. Since ¢ was arbitrary, we

deduce the existence of 73, (t) = ﬁgy (t) = D3, (t) for all t > 0. We conclude that BY €1,
for every y €10, yo]. O

To complete the proof of Proposition 3.2, it suffices to fix any realization in the almost
sure event considered in the proof of Lemma 3.8 and to check the continuity of y — Y
at any x € [0, yo], under the metric d,.

EJP 28 (2023), paper 61. https://www.imstat.org/ejp
Page 20/46


https://doi.org/10.1214/23-EJP946
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Two-parameter interval partition diffusions

- aare®
=2

Figure 6: Decomposition of a point measure of spindles into upper and lower cutoff
processes, as in (3.9).

Fix any € >0 and take ¢’ >0 so that (3.7) holds. Let 2’ := max(z — ¢/2,0) and define
the process (vY,,y > 0) as in (3.8), which evolves continuously in (Z,, d,). In particular,
there is § € (0, ¢’/4) such that for every z €0, yo] with |z—z| <d, we have d, (7,72 ) <e/3.
Recall (2.2), then there exists a correspondence (Uf, Uj)je[n] from vZ, to vZ,, such that
the a-distortion satisfies

disa (Ve Yars (U7, US ) jein)) < dalversvar) +€/3 < 2¢/3.

Since By = B” x~Y, for all y > 2’ +¢'/4, which in particular holds for y = z, we have

max <Dy, | P50 (00) = P, (00) | <DL, 1B -1 N < 1Bz,

1€[n]

D (UF) =D, (UF)

and similar bounds with = replaced by z. Note that (Ujm , sz) je[n) Induces a correspon-
dence from % to $%. Consequently, we have

’dlsa(’Y;:EU’Y;H(U;; sz)je[n])_dlsa(ﬂzv/@f (U]I’ Uf)ge[n]) <H1aX(D Da: 7||B ||7||BQZC’H)

Since z,z € (2',2" +¢'), we have by (3.7) that max(D.,, D.,, HE;H, ||B§/||) < g/3. It
follows that d (3%, 8%) <disa (8%, 8%, (U}, U5)jein)) <e. This implies the continuity at z,
as required. O

3.3 Simple Markov property

Recall the broken spindle notation illustrated in Figure 5. We define the lower and
upper cutoff processes, depicted in Figure 6, by

(N - Ly e (X(t-), X(0)}3(6(). 1Y)
cutoff¥(N) := > ( : )
(
(

points (¢,f+) of N + l{X < y}5( t

cutoff=? (N) := Z (1{;1/ € (X( (t)}o(t—©

points (¢,f¢) of N + 1{X > y}é( -0
where O(t) := Leb{u < ¢: X(u) <y} fort > 0.

Corollary 3.9 (Markov-like property of u(fgd) Lety>0andn ~v\%)( - |¢*>y). Then
given cutoff=Y(n), the point measure cutoff=¥ (n) has conditional distribution Po‘yO with
BY = skewer(y,n).

This is akin to a Markov property, with cutoff¥ (n), 4, and cutoff=¥ (n) playing the
respective parts of past, present, and future. A closely related statement is proved in
[18, Corollary 4.8] for the construction of measure-valued processes. While the proof
is identical, we repeat it here because it is short and the upper cutoff process of (3.9)
captures important additional order structure compared to the upper point measures of
[18].
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Proof. Using the MSMP Lemma 2.13 and the notation in its statement, the conditional
distribution that we wish to characterize is the same as the distribution of cutoff=° (N ! )
given 3’ = skewer(0, N'), where N’ = 6 (0, f') + N’|o ;. By the Markov-like property of
N’, noted in [14, Proposition 5.9], the latter conditional law is the same as P;;O. This
proves the corollary. O

To describe the Markov property we require additional notation. Recall (3.9). For
any point measure ' on [0,00) x N> we define

NZY(F) = *x cutoffz¥=*(Ny), (3.10)
points (s,N;) of F': s€[y,0]
provided that this concatenation is well-defined, with the same convention as in (3.1)
that we write [y, 0] as the time interval over which we concatenate, despite y being
positive, to indicate that we concatenate in reverse order, setting cutoff point measures
with s high to the left of those with s low. Extending the notion of cutoff processes to
point measures of clades, we set

cutofffy(?‘) = Z 5(s,cutoff5y_S(Ns)). (3.11)
points (s,Ns) of F: s€y,0]

The following result is analogous to [18, Lemma 5.7].

Lemma 3.10. Fixy > 0 and let Fy be a PRM(£Leb  1!%),) on (0,00) x NiF. Then given
cutoffsY (Fy), we have the following conditional distribution:

. S = 0 e} ,0
(FG\(W)XNEI;, NZY (Fg)) ~ PRm(aLeb|(W) ® ui(jd) 0P, (3.12)
where Y = fSkewer(y, f‘g).

Proof. The proof of [18, Lemma 5.7] is easily adapted, with no adjustments needed for
the conditional independence and first marginal of (3.12). For the second marginal,
we recall from the proof of Proposition 3.6 the notation (.5;, N;), denoting the ith point
in f‘g‘[07y)><./\[sp whose scaffolding X; = £(N;) exceeds level y — S;. In this notation,
NOZZ’ (f‘g) = *;:Oocutoffzwsi (N;). As noted in that proof, the (N;, i > 1) are conditionally
independent given the (S;, ¢ > 1), with respective conditional distributions INV; ~ y(fé)ld( -
¢t >y—S;), i > 1. Corollary 3.9 then implies that, given cutoff<¥ (ﬁg), the i*" term in

this concatenation has conditional law ng/o, where ! = skewer(y — S;, N;). Finally,

Nozy(f‘) concatenates upper cutoff processes in the same order in which fSkewer(y, f‘)
concatenates the contributions 3 to the level-y interval partition, 5Y. It follows straight
from Definition 2.7, applied to 8 = 8Y, that the conditional distribution of Nozy(fg) given
cutoff<Y (Fg) is indeed Pg;o. O

The following version of the Markov property was already obtained in [14, Proposition
6.13] in the case 6§ = 0 and in [16, Proposition 3.11] in the case § = a. We can now
establish the general case.

Proposition 3.11 (Simple Markov property). For i a probability distribution on Zy, let
(BY,y > 0) ~ ]Pl‘j’g. Then for any y > 0, given (8",r < y), the process ($*T¥,z > 0) has
conditional distribution ]Pg;,e.

Proof. We follow the notation of equation (3.3). We extend the notation from Defini-
tion 2.10 for the shifted restriction of a point measure of spindles, N \Eg bxEr to apply to
point measures of clades. Using [14, Lemma 5.4(i)], which asserts that

skewer(z, N) = skewer(z—y, cutoff=¥ (N)),
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we get, for z > 0,

BT = fSkewer(z, Fol™

’(y,m)xNS})) * skewer(z NO (Fe) * cutoff=¥ (N,) )

The process (5", < y) is a function of cutoff<¥ (f‘(,») and cutoff<¥ (N ,). Thus, it suffices
to prove that, given these two cutoff point measures, (3°7¥, z > 0) has conditional law
Pa,a

By -

Lemma 3.10 asserts that under this conditioning,

. e
|, so)xa» @nd Ng*(Fg) are
(@)

conditionally independent, with conditional laws PRM(£Leb®1/|7),) and Pg’o respectively.

Analogously, [14, Proposition 6.6] implies that cutoff=¥ (N,) has cond1t10na1 law P‘jyo,
and by construction, this is conditionally independent of the other two point measures.

Finally, it follows from Definition 2.7 of these laws that

NZY(Fyg)  cutoff>? (N,) has conditional law P%;O*w = Pg’yo.
We conclude by Definition 3.3 of IPg’f. O

3.4 Semigroup, Hunt property, and 1-self-similarity

Having prepared the required ingredients in the preceding sections, we can now
prove parts of Proposition 1.3. The proofs in this section largely mirror the correspond-
ing proofs in [18, Section 5], with the differences being predominantly carried in the
aforementioned preparation.

Proposition 3.12 (Transition semigroup under P%?). The kernels " of Definition 1.2
comprise the transition semigroup of a process w1th law Py 9 for any law 11 on Ty.

Proof. Fix v € Ty. As we have already shown in Proposition 3.11 that (5Y, y > 0) ~
]ng‘g possesses the Markov property, it suffices to show that g% ~ li‘;’e(’y, -) for any y.
Recall from Definition 1.2 that a (v, - )-distributed interval partition comprises a
PDIP(e, ), 3, scaled by a Gamma-distributed factor GY, concatenated with partitions £f;
corresponding to the blocks U € ~. We therefore complete the proof with reference to
[14, Corollary 3.7] and Proposition 3.6. The former states the 8 = 0 case of the present
result, accounting for all of the (5(;, U € v); the latter describes the blocks arising from
immigration with rate § > 0, accounting for G¥j3, as required. O

Proposition 3.13 (Continuity in the initial condition). For a convergent sequence (3,, — (8
in (Zy,d};), we get weak convergence Ing — ]Pg’e in the sense of finite-dimensional
distributions on (Z,, d,) at positive times.

Proof. In the case # = 0, this has been proved by [14, Corollary 6.16] in the space
(Za, dy). The same conclusion holds for (Zy, d};) as well; see [14, Proposition 6.20] and
the remarks below it. By these results, there exists a probability space supporting a
sequence of processes (8¢, y > 0), n > 0, that converges in probability, with respective
distributions ]ng. Now, on (a suitable enlargement of) the same probability space,

consider and independent process (3”7 Yy > 0) ~ IP%’Q. Then for each n, by Definition 3.3,

(By * [y y > O) ~ ]ng, and these processes converge in probability in the sense of
finite-dimensional distributions. O

Proposition 3.14 (Strong Markov property). Let (8Y,y > 0) ~ ]Pl‘j"’ for some initial law
p on Zy. Denote by (Fi,y > 0) the right-continuous natural filtration of this process
and consider an a.s. finite (F¥,y > 0)-stopping time, Y. Then given ]:%/, the process
(BY+Y,y > 0) has conditional distribution IPZ;?.
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Proof. This follows from standard arguments: first assume the stopping time takes a
finite number of possible values, then pass to the general case via approximation, using
continuity in the initial condition, Proposition 3.13. See the proof of [29, Theorem 19.17]
for such an argument written in detail. O

We now prove the existence of a Hunt process with the transition kernel introduced
in Definition 1.2 by showing that ]Pfj’(’ is the law of such a process, thereby proving
Proposition 1.3(i) and Proposition 3.4.

Proof of Proposition 1.3(i) and Proposition 3.4. The process (Y, y > 0) ~ ]Pg"9 was con-
structed by concatenating path-continuous parts (Propositions 2.8(iii) and 3.2), so we
know that it is continuous, and we have shown that it has the strong Markov property
(Proposition 3.14) with the claimed semigroup (Proposition 3.12). These properties,
along with continuity in the initial condition and the Lusin property of the state space
(Za,do), noted in Propositions 3.13 and 2.1 respectively, satisfy Sharpe’s definition of a
Hunt process; see e.g. [33, Definition A.18]. O

Now, we establish the scaling invariance and total mass process of SSIPE(q, 6).

Proof of Proposition 1.3(ii), scaling invariance for SSIPE(«, ). We follow the notation of
(3.3). Since the statement in the case § = 0, which applies to (¥, y > 0), has been
o?tained as a part of [14, Theorem 1.2], it suffices to prove scaling invariance for
(8Y,y>0).

Recall the definition of scaling of clades in (2.19). Let f‘éc) denote the point mea-
sure obtained by replacing each atom (s, Ng) of f‘g with (es,c ©®yq Ns). Note that
skewer(y, c ©y4q Ns) = cskewer(y/c, N,) for every y > 0. Using this fact and a change of
variable, we have the identity

BY = fSkewer(y, f‘((f)) = * skewer(y — s, N;)
points (s,N) of f‘éc) : s€[y,0]

= * cskewer(y/c —r,N,) = cgy/‘ﬂ y > 0.
points (r,N,.) of Fg: refy/c,0]

On the other hand, it follows from (2.21) that féc) 4 f‘g, so we have

L Pap _
(BY, y > 0) = (BY, y > 0) = (cBY°, y > 0),
as desired. O

Proof of Proposition 1.3(iii), total mass process for SSIPE(«, ). Again following the no-
tation of (3.3), let (A¥, y > 0) ~ BESQ) 40 (0) given 3°, and independently let (Z¥, y >
0) ~ BESQq(26). We know from [23, Equation (50)] and Proposition 3.6 that Z¥ ~
Gamma(¢,1/2y) ~ [|3Y||. From [16, Theorem 1.4], which is the § = 0 special case of

Proposition 1.3(iii), we know ||+¥|| £ AY. Thus,
2 d
1871 = 11B¥]) + Il £ 2 + 4.

By the additivity of squared Bessel processes [23, Theorem 7], this has the law of the
level y evaluation of a BESQ g0 (26).

To pass from one-dimensional to finite-dimensional distributions, we appeal to the
simple Markov property. In particular, ﬁy“ can be decomposed into an SSIPE4(a, )
(analogous to E) comprising blocks entering via immigration between levels y and y + z,
and, given 3%, a conditionally independent SSIPEgy (e, 0) (analogous to ). The same
BESQ additivity argument as above completes the argument. O
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3.5 Pseudo-stationarity

In this section, we will prove Proposition 1.3(iv), which asserts that, if the initial state
of a SSIPE(«, ), B°, is a PDIP(q, #) scaled by an independent random mass, then so is its
state at every subsequent time. As in the proof of the superprocess analog to this result,
[18, Theorem 6.1], we begin with a special case.

Proposition 3.15. Suppose that in the setting of Proposition 1.3(iv) with § >0, we have
Z(0) ~Gamma(0, p) for some p€ (0,00). Then Y < (2yp+1)Z(0)8.

This proposition is proved in the same manner as its analog in the superprocess
setting, [18, Proposition 6.2]. For completeness, we include the short proof here.

Proof. Let~ = (7Y, y > 0) be a SSIPE4(a, ). By Proposition 3.6, v!/?” is distributed like
B, the initial state of the process 3. Then it follows from the simple Markov property
that 3¢ := 4¥*+(1/20) has the same law as (Y for y > 0. Applying Proposition 3.6 to ~,
gy L yu+(1/20) L QU where GY ~ Gamma(6,1/2(y + (1/2p))), independent of 3. Since GY
has the same the distribution as (2yp + 1)Z(0), the desired statement follows. O

Proof of Proposition 1.3(iv). The cases § = 0 and ¢ = « have been proved in [16, The-
orem 1.5]. When 6 > 0, it is known [23, Equation 49] that the transition density of a
BESQ(26) is

1 /ey (0-1)/2 b+c Vbe
Qy(ba )= — (5) exp ( > Tg_1 (y) , Y,b,e>0,

2y 2y

where I,_; is the modified Bessel function of the first kind of index 6 — 1. Since
(qy(b,c), ¢ > 0) is a probability density, substituting v = bc/y? and x = y/2b, we get
the identity

/ wO= D 2e=up, o (Vu)du = /42 =020 vy >, (3.13)
0

For every b > 0, let (f,y > 0) be a SSIPE,;(«a,f). For all bounded continuous
f: Iy — R4 with f(@) =0, Proposition 3.15 leads to the identity

/0 wr(mpebe-le—wmmz)]db _ / °°w)pebe-le—PbE[f«zw1>b6>}db

_ mipieceqex o, Flde
_/0 r0) (2yp + 1)¢ p( 2yp+1>E[f( f)lde.

From (3.13), substituting u = bc/y? and x = y(2yp + 1)/2¢, we get

> 1 o 2up+1 NG
/ qy(b,c)efﬂbbf’*ldb:fefcﬂy/ exp(Wb>(bc)<91>/219_1 Y2 b
0 2 0 2y y

Y

( cp > A1
=exp | — )
2up+1) (2yp+1)?
Then, by Fubini’s Theorem,
~ 1 pe 0—1 < cp ) _
————5C exp| — E|[f(cB)]dc
/o I'(0) (2yp +1)° P\ 2p 11 [£(cB)]

_ /OOO ﬁpabf’*lﬂb </000 4, (b, c)E[f(cﬁ)]dc) db.
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Uniqueness of the Laplace transform implies that for Lebesgue-a.e. b > 0,

EV(E)) = [ a/0.0Bl ()
0
This extends to all b > 0 by continuity. O

3.6 Ray-Knight theorem for perturbed marked stable Lévy processes

In this section we prove the first Ray-Knight theorem stated in Theorem 1.13(ii).
Recall that we defined Fy as a PRM(£Leb @ %)) on [0,00) x NP to serve as the key
ingredient to our construction of SSIPE(«, ) in Definition 3.1. We then showed in
Proposition 3.4 that

(BY,y > 0) ~ SSIPEy(a,0) where (Y :=fSkewer(y,Fy), y > 0. (3.14)

On the other hand, we claim in Theorem 1.13(ii) that an alternative construction of
SSIPEy(a, 0) is, as follows. Here, the key ingredient is N = >~ .. Ax,~0 (%, fi), intro-
duced by marking the jumps (¢, AX;) of a spectrally positive stable Lévy process X of
index 1+ «, with Laplace exponent t)(\) = using the kernel s — BESQp (4 +2a).
Then the claim is that

At
2T (1ta)’
(8Y,y € ]0,x]) ~ SSIPEg(«,f) where (Y := skewer (y,N|[O @) T+ X(9)> ,

and X = X — (1 — %)X is the Lévy process X perturbed at its infimum process
X = (X, = inf,<; X, t > 0), and 7% = inf{t > 0: X{" < —z}.

Proof of Theorem 1.13(ii). We first recall from [44, Remark 5.8(i)] that the excursion
measure uggjf) conditionally on its length ¢ = s is the bridge BESQg (4 + 2«) of length s
from 0 to 0. Furthermore, we noted in Proposition 2.4 that the lifetime intensity under
Végfoa) coincides with the jump size intensity of X. By standard marking properties of
Poisson random measures, this entails that N here is indeed a PRM(Leb ® VéE_SZQQ)) as
in (2.17).

But F| ~ PRM(Leb ® l/(fc)ld) is the Poisson random measure of marked excursions of
X above X, in which each such excursion is associated with its starting level. While f‘g

actively varies this intensity by a factor of 6/« and concatenates

BY = * skewer(y — s, N,), (3.15)
points (s,Ng) of Fg: s€[y,0]

the construction of Theorem 1.13(ii) modifies the scaffolding by perturbing the stable
Lévy process when it is at its infimum. Specifically, note that = + X(¥) has the same
excursions above z + X(Q) =z + $X as X above X. However, their intensity when
associating each excursion with its starting level is again varied by a factor of 8/«.
Finally, we have for all y € [0, z]

skewer(y, N|[0 7O x+X(9)> - * skewer (y—s, N‘E;b)).

excursion intervals [a,b)
of X(0) —X(9) : s::x+§5f)€[y,0]

as in (3.15). In particular, the construction in Theorem 1.13(ii) does indeed yield an
SSIPE4 (v, 6), too. By Proposition 1.3(iii) this also entails the claimed BESQ,(26) total
mass evolution. O
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4 Hausdorff-continuous entry from generalized interval partitions

In this section we explain how SSIPE and PDIPE can enter from the Hausdorff-
completion of our space of interval partitions and satisfies continuity in the initial state
thereby proving Theorems 1.5 and 1.8.

4.1 Generalized interval partitions

Recall from Section 1.2 the (isometric) spaces (K, dy) of compact subsets of [0, c0)
that contain 0 and (Z};,dy o C) of generalized interval partitions, which we use as
completions of (Zy,dy o C'). While we emphasized the interval partition setup in the
introduction, we will sometimes work on (K, dy) in this section, using notation §(K)
for the collection of open subsets of [0,max K]\ K. Also recall from Section 1.3 the
completion (Zy 1,dy o C1) of the subspace (Zy 1,dy o C) of (Zy,dy o C). This space is
isometric to the subspace Ky := {K € K: max K = 1} of (K,dp).

We have equipped both 7y and Zj; with the metric dy o C. In [15, Theorem 2.3(b)]
we showed that this is topologically equivalent to d}; on Zy. Note that v — (v,1)
isometrically embeds (Zy 1,dy o C1) in (Z};,dg o C). It is well-known that (K, dy) is
locally compact and separable, while (K;,dy) is compact. We finally note, that (K,dy),
or equivalently (Zj;,dy o C), is also a metric completion of (Z,,dy o C) in that every
K € K is a dy-limit of some C(8,,), Bn € Za, and likewise for (Zy 1,dy o Cy) in relation to
(Za1,dpm o C), as can be seen from Proposition 4.5.

4.2 SSIPE(w,0) starting from a generalized interval partition
Fix « € (0,1) and > 0, and let (5, M) € Z};. Let K := C(8,M). For each U €

independently, consider a point measure Ny of law Pf{’(’g Leb(U))} @S in Definition 2.7.

Also consider an independent
1 (a
Fi ~ PRM(Leb|K ® Q—Vic)ld> (4.1)
«

so that we associate clades with the part Leb(K) of the initial mass that is associated
with the partition points K rather than the intervals in between. This point measure is
non-trivial if and only if Leb(/) > 0. It is of the form } ,_; 6(R;, N;) for some R; € K and
N; € gﬁ 1 € I. To combine all clades into a single point measure of spindles, and to
specify the appropriate scaffolding, we unify notation and set U, := {R;} and Ny, := N,.
Using the natural total order on the collection S(K) U {U;,: € I} of disjoint subsets of
[0,00), we define

Ng = * Ny,, and Xg := * ¢(Nw,), (4.2)

UeB(K)U{U;,icl} UeB(K)U{U,,iel}

where the concatenation of scaffolding is defined in the natural sense of concatenating
excursions above level 0. We will consider the skewer process of this pair of point
measure of spindles and scaffolding. As a first crude check, we note that this achieves
the correct total mass process to extend Proposition 1.3(iii). By the additivity of BESQ(0),
we only need to consider the contribution from Fg.

Proposition 4.1. Let K € K and Fi as in (4.1). Then setting

M° :=Leb(K) and MY := > |skewer(y, N, &(N))|, y > 0,
points (R,N) of F
yields (]\41/7 y > O) ~ BESQLeb(K) (0)
Proof. Recall from the discussion after (2.17) that z/(fg q is the pushforward of P(fc)l q under
the projection map (V, X) — (V') that removes allelic types. Hence, [18, Corollary 4.11]
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yields that the pushforward of %I/(fc')ld onto the total mass evolution is the excursion

measure uéggq of BESQ(0) with the normalization uégéq(c > y) = 1/2y. For this normaliza-

tion, Pitman and Yor [44, Theorem (4.1)] showed that sums over a PRM of intensity xuégéq
are BESQ,(0). O

Proposition 4.2. Let K € K and consider (N, X ) as in (4.2). Then the distributions
of skewer(y, Ni,Xg), y > 0, form an entrance law for SSIPE(«,0). In particular, we
have skewer(y, Nx, X ) € Z,, for all y > 0 almost surely.

Proof. This follows straight from the clade construction of SSIPE(«, 0) for the clades start-
ing from U € (K) and from the Markov-like property of Corollary 3.9 for Vﬁ)l q-Clades.
Specifically, it follows from easy computations ([14, Lemma 6.18] and Proposition 2.12(i))
that at most finitely many of both types of initial clades survive to any given positive
level gy, and the concatenation of their upper cutoff processes above level y yields an
SSIPE(«, 0) starting in Z,, by definition. O

Let 8° := 3 and Y := skewer(y, Nx, Xk ), y > 0. Similarly let M° := M and MY :=
I18Y|l, v > 0. In light of the preceding results, ((5¥, M¥), y > 0) extends the SSIPE(«,0)
of Definition 2.7 as a Markov process. We refer to this process as %SIPEZ-(OL,O). For
(BY, y > 0) an independent SSIPE5(«, §), we call the process ((3Y* Y, ||3Y||+MY), y > 0)
an SSIPE} («a,#). With this definition, for v € 7y, SSIPE,(«, 6) equals the projection of
SSIPEZ( i (c, 0) onto its first coordinate. In this sense, this definition is consistent with
Definition 3.3 of SSIPE,(«,6).

Corollary 4.3. The transition semigroup of the Z1j,-valued SSIPE} («, ) is given by
(kg?, y > 0) as defined in Definition 1.4.

Proof. By Proposition 4.2, the marginal distributions of SSIPE}, («, §) are supported on Z,,.
In view of Proposition 3.12, the semigroup property of the extended kernels (mgf‘g, y > 0)
of Definition 1.4 follows as soon as we have identified the marginal distribution of
SSIPE} (av,0) as k?(5*(K), -). By the definition of (N, Xx) in (4.2), this follows as
in Proposition 3.12, noting that the additional contributions from dust are obtained
from Proposition 2.12(i), Lemma 3.5(ii) and standard properties of Poisson random
measures. O

4.3 Path-continuity

By Propositions 2.8, 3.2 and 4.2, the first coordinate of an SSIPE} («, 6) evolves as an
almost surely path-continuous process in (Iy, d};) on any time interval [y, o), hence on
(0,00). By [15, Theorem 2.3(b)], this is equivalent to path-continuity in (I, dy o C). This
leaves the study of (dy o C')-path-continuity at time 0, which also justifies referring to
these processes as SSIPE} («, 6)

Lemma 4.4. Let K, K, € K, n > 1. Then dy(K,, K) — 0 as n — oo if and only if
v(a}b)eﬁ(K) 371021 Vnzno H(QMbH)GB(K") an — a and bn —b (4.3)

and
V(ng)ist: nk—00 ¥(cn,di)€B(Kny ), k>1: di—de(0,00], cx—ezd (¢ d) € B(K). (4.4)

Proof. “=": We first prove (4.3). Without loss of generality, 3(K) # @. Then ng :=
inf{n > 1: Vp,>n B(Ky) # @} < co. Let (a,b) € B(K) and € € (0,(b — a)/2). Then
there is n. > ng such that for all n > n., we have a unique (a,,b,) € S(K,) with
a—e<a, <a+e<b—e<b, <b+e. But since these intervals are unique and therefore
cannot depend on ¢, the endpoints must converge to a and b.
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To prove (4.4), note that (¢,d) C K is impossible since @ # (c+¢,d — €) C (ck, dg)
for infinitely many &, for all e < (d — ¢)/2, so (¢ + d)/2 stays at a positive distance from
K,, for all k sufficiently large, which contradicts dy(K,,, K) — 0. Also more generally,
dp(Kn,, K) — 0 implies d < co. Now, if there is (a,b) € S(K) with (a,b) N (¢, d) # @ and
(a,b) # (c,d), this contradicts what we proved in (4.3), since (¢, di) € 5(K,, ) cannot
overlap any other (a,, , by, ) € 8(K,, ), nor can they be equal for infinitely many & while
(a,b) # (¢, d).

“<": Let ¢ > 0. Then there are at most finitely many intervals in 5(K) of mass
exceeding 2¢. By (4.3), there are intervals in 5(K,,) whose corresponding endpoints
differ by less than . Therefore, all points of K,, are within ¢ of an element of K.

Now assume for contradiction that there are ¢ > 0 and (ny)r>1 with n; — oo such
that K has points z;, that are not within 2¢ of K,,,, k¥ > 1. As K is compact, (zx)x>1 has a
convergent subsequence, so we may assume that (ny),>1 was chosen with z;, — z € K.
But then « € K is not within ¢ of K, for k sufficiently large. Hence, (z—¢,2x+¢) C (cg, di)
for some (ci,di) € B(K,,). Again, by successively passing to suitable subsequences,
we may assume that ¢, — ¢ € [0,z —¢] and dy, — d € [z + &,00]. By (4.4), we have
(¢,d) € B(K), which contradicts z € K. O

Proposition 4.5. Fix K € K and consider (Ng,Xg) as in (4.2). Fory > 0, let 8Y =
skewer(y, N, X k). Then dy (C(BY), K) — 0 almost surely as y |, 0.

Proof. We check the criterion of Lemma 4.4. To establish that (4.3) holds, fix an arbitrary
interval U = (a,b) € B(K), and we will show that for all sufficiently small y, there exists
(a(y),b(y)) € BY so that a(y) — a and b(y) — basy | 0. Now, consider K, := KN[0,a] € K
with similarly restricted (Ng,, X, ) obtained from (N, X ). By Proposition 4.1 and
additivity of BESQ(0), we have

a(y) := ||skewer(y,Ng,, Xk, )| > a asylo0.

By Definition 2.7, the initial spindle of Ny is fy ~ BESQ,_,(—2a), so for all y < ((fv)
we get (a(y),b(y)) € pY with b(y) = a(y) + fy(y). By the continuity of BESQ, the desired
convergence holds. This satisfies (4.3).

For (4.4), consider the maximal block mass at level y > 0 among blocks that do not
arise from an initial spindle f;; in a clade Ny, U € 8(K). This collection consists of two
types.

The first type is blocks arising from Ny, U € §(K), that are not obtained from the
respective initial spindle fy;. The BESQyax k—Leb(K) (0) sum of total masses of these clades
is continuous. By an elementary analysis argument, the sum of contributions of initial
spindles, > ;¢ 5k fu. is continuous as well, and satisfies

> fy(0) = max K — Leb(K).
Uep(K)

Thus, the other spindles of these clades have a combined total mass that vanishes as
y 0.

The second type is blocks arising from F . Their masses can be bounded by the total
masses in each 1'% -clade, which form a PRM(Leb|x © visy). Fix ¢ > 0. There are at
most finitely many clades in F i whose total mass processes ever exceed ¢, and they all
start continuously from 0 mass. Hence, there is some z > 0 such that no block of this
type in 8Y, y < z, has mass greater than €. Hence, this maximum must also tend to zero.

This implies (4.4), and we conclude Hausdorff convergence by Lemma 4.4. O

Corollary 4.6. The SSIPE} («,0) is (dg o C')-path-continuous.
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] BESQ(0)

¢'(v)
BESQy (6)

Figure 7: This figure is from [43], showing the Brownian motion split along the increasing
path v/, with the positive excursions of X, in blue, above the increasing path, and the
negative excursions of X, in red, below the increasing path. The construction is stopped
at 7(v), when the inverse local time of Brownian motion at level 0 exceeds v > 0. The
left-hand side of the figure shows the total Brownian local times (up to time 7(v)), split
according to the red and blue contributions, and identified as squared Bessel processes
of dimensions §, —¢ and 0, where § = 2a.

Proof. The concatenation operation defining the SSIPE} («,6) from SSIPEy(a, 6) and
SSIPE} (a,0) is (dgoC')-continuous. As the two component processes are each continuous,
by Proposition 3.2 in the first component and by Propositions 2.8(iii), 4.2, and 4.5 in the
second, so is their concatenation. O

4.4 Continuity in the initial condition for SSIPE*(«, 0)

Consider Brownian motion B and v € [—1,1]. Recall from [26] that an associated
skew Brownian motion can be obtained as the unique strong solution to the equation

1 t
X, (t) = B(t) — v¢,(t), where(,(t) = lhl%%/ {—-h < X,(s) <h}ds, t>0,
0

where we refer to (. as the local time of X.,. Figure 7 illustrates this as a decomposition
of B into v/, and X,. This figure also illustrates the implications for the Brownian local
times, which we also state as a proposition.
Proposition 4.7 (Theorem 1.3 of [43]). Let «€(0,1) and y=1/(1+2«). For B Brownian
motion and X, the associated skew Brownian motion with local time {., let S(z) =
inf{t >0: ¢, (t) >z}, £ >0, and consider the jointly continuous space-time local times
(L(z,t),z € R,t>0) of B with inverse 7(v) =inf{t > 0: L(0,t) > v} at level 0. Then the
following families of random variables are independent

e Zy:= (L(x,S(x)), x > 0) ~ BESQy(2c)
e 7! .= (L(z,7(v)) — L(z,S(z) AT(v)), > 0) ~ BESQ, (—2«) for all v > 0.
For each v > 0, the random level {'(v) := ~v{,(7(v)) is almost surely finite and coincides

with the absorption time of Z,. Conditionally given ¢’'(v) = a,
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e the process Zy,, := (L(z,S(z) A 7(v)), x > 0) is independent of Z/, and evolves as
BESQq(2«) on [0, a] and as BESQ(0) on [a, 00).

Corollary 4.8. In the setting of Proposition 4.7, fix vg > 0 and y > 0. Then there is a
random A > 0 such that (' (v) = ('(vo) and Z,|1y,oc) = Z,, |[y,00) forallv € (vo — A, vo + A).
In particular, Zy,, = Zy., for allv € (v — A, vg + A).

Proof. Consider the Poisson random measure of excursions of B away from 0. Since
£, (7(v)) > 0 almost surely and /., only increases when B(t) = v/,(t), it suffices to show
that there is A > 0 such that the Poisson random measure has no excursions of height
greater than y A v¢,(7(vo/2)) > 0 on an interval (vyg — A, vy + A). This follows from the
properties of Poisson random measures, notably independence properties and finite
intensity of large excursions. O

Corollary 4.9. In the setting of Proposition 4.7, let

Gi= Y 6(z,0.) where g.(y) = L(+y, S(z)) - L(z+y, S(@—)), y > 0.
xz>0: g, Z0

Then G has law PRM(Leb ® 2ayéggq) and is independent of Z|, for any v>0. Moreover, the
restriction G, := Gljg ¢/(,)] is conditionally independent of Z,, given ('(v).

Proof. Proposition 4.7 records implications about local time processes of the underlying
decomposition of B established in [43, Lemma 2.3]. While the positive excursions of
skew Brownian motion are well-known to be Brownian excursions [28, 53] and the point
measure construction of BESQ(2«) from a PRM(QaVlgg%Q) is also well-known [44], the setting
of Proposition 4.7 is that of a given Brownian motion B, and we refer to [43, Lemma
2.3] as it yields the independence claims in this setting, and also provides a direct
identification of the rate y = 2v/(1 — v) = 2a of Brownian excursions in the given
parametrisation. O

By [18, Corollary 4.11], there is a kernel s (g, dN) that associates with an excursion
g a clade N with total mass evolution g, such that
the push-forward of Végéq under  is u(fé)ld. (4.5)
By (2.18), a clade with an initial spindle f of height a can be built from f, along with
F ~ PRM(Leb|jg,q ® V(fé)ld). Thus, if we instead begin with f and a point measure of
R-valued excursions G, as in Corollary 4.9, then we can obtain a clade by first marking
the points of G via x, to obtain a point measure F' of clades, and then assembling these
into a single clade via (2.18), but with the convention that, instead of concatenating in
order of increasing y, we do so in order of decreasing y, in order to respect the levels at
which excursions arise in Figure 7. Let 5((f, G), dN) denote the kernel that carries out
this construction.

Lemma 4.10. Fix v > 0. Let Z, and G, be constructed from a Brownian motion B, as

in Proposition 4.7 and Corollary 4.9. Applying & to the pair (Z),G,) we obtain a clade
a,0

No~ Py

Proof. Proposition 4.7 notes that Z/ ~ BESQ,(—2«). Corollary 4.9 then observes that

G, has conditional law PRM(Leb|(g ¢/(1)] @ Qaz/éggu) and is conditionally independent of Z/,

given ¢’(v). The lemma follows by (2.18). O
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Corollary 4.11. Consider K € K and Brownian motion W with inverse local time Ty at
level 0. For each interval U = (a,b) € 5(K), consider By := (W (rw(a) +1t),t > 0). Let
Ny denote the clade arising from Lemma 4.10 applied to By with v=Leb(U), so that
Ny NP?{S,ch(U))}' If we restrict the Poisson random measure of excursions of W to K,
map each excursion onto its total local time process and mark it by «, the resulting
Poisson random measure F is distributed as in (4.1). Furthermore, all Ny, U € 8(K),

and F i are independent.

Proof. Clearly, By is a Brownian motion for each U € (K). Also, the construction of
Proposition 4.7 only depends on B restricted to [0, 7(v)). Therefore, the constructions
are all independent as U € §(K) varies, and further independent of the restriction to
K of the Poisson random measure of excursions of W. That the Brownian excursion
measure is pushed forward to z/ég;Q was observed by Pitman and Yor [44]. The claimed

distributions, after applying ~, and &, follow from (4.5) and Lemma 4.10. O

Figure 7 shows the case z = 0 of a more general setting of Burdzy et al. [5, 1, 6]
where multiple skew Brownian motions of the same skewness parameter but starting
from different initial states are driven by the same Brownian motion. Specifically, for
any =z € R, or any countable (but not uncountable) collection of values x € R, there
are unique strong solutions to X7 (¢) = = + B(t) — v/5(t), which we can again write to
decompose B(t) = X¥(t) — x — y£5(t). Instances of this can be found in Figure 7 to the
right of any zero of Brownian motion, when X, is negative. It is natural to consider
zeroes that are stopping times, but more relevant for us to consider the start of a
Brownian excursion or indeed, the corresponding equation driven by Brownian motion
conditioned to stay positive, BES((3).

Proposition 4.12 (Lemma 2.4 and its proof in [6]). Let B~ BESy(3). Then

—

- S S 1/t .
T _ k4 T 1 T >
XZ(t) =« + B(t) —yl5(t), where ((t) = 1}11% o /0 H{—h<X5(s)<h}ds, t>0,

has a unique strong solution for each x € R. Furthermore, for any sequence xz,, | 0, we
have 2%~ (c0) — 0 almost surely, as n — co.

Corollary 4.13. Let B be a Brownian excursion distributed according to It6’s measure
conditioned on height exceeding y. Then

~ ~ ~ ~ 1 [t ~
() = N4 T(4) = lim — - x >
X7(t) = =+ B(t) — v{5(t), where (5(t) lhlﬁ)l 5% /0 H—-h<XZ(s)<h}ds, t>0,

has a unique strong solution for each x € R. Furthermore, for any sequence of nonneg-
ative x,, — 0, there is (random) N > 1 a.s., such that for alln > N, the solution X;‘"”"

has precisely one positive excursion during which the combined height of )?; *» and
T, + L exceeds level y.

Proof. Denote by ¢ > 0 the minimum of B between the first and last visits of level Y.
Consider the Williams decomposition of B into two BES((3). Specifically, B stopped when
it first hits level y, can be seen as the part of B~ BES((3) before reaching level y, and
Proposition 4.12 yields N such that 7[;””" (00) < € for all n > N. But then Z,;””" = Z;””"
up to the first time B hits y, and Z; T» then stays constant until the last time B hits y, for

alln > N. Hence, the entire set of times where B is above level y is part of the same
excursion interval of Xﬁﬂ, foralln > N. O
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Proposition 4.14. Let K, K,, € K, n > 1, with dy(K,,, K) — 0. Let ((8%, MY),y > 0) ~
SSIPE) (a,f), n > 1, and ((8Y, MY), y > 0) ~ SSIPE) («,0). Then, for ally > 0, we have
(BY, My) (BY, M) in distribution in the product topology induced by the metric d, on
7., and the Euclidean distance on [0, c0).

Proof. Wl.o.g., 8 = 0. We will couple point-measure-scaffolding pairs (N, X ) and
(Nk,,Xk,), n > 1. We assume for simplicity that 5(K) consists of infinitely many
intervals. The case of finitely many intervals can be seen similarly. Denote by U(") :=
(™) b(™)) the mth-largest block of 3(K), with ties broken from left to right, m > 1.
By Lemma 4.4, there is n,,, > 1 such that for all n > n,,,, we can find U™ .— (aSZ"), b§}">) €
B(K,) with (a'™,5™) — (™, (™)) as n — co. Furthermore, we can choose n,, so large
that all the m largest limiting intervals can be matched in 3(K,,) so as to repect the left-
to-right order of the limiting intervals for all n > n,,,, and so that |Leb(U7(Lj )) —Leb(UW)| <
2~m=Jforallj=1,...,m

For each m > 1 and n > n,,, this partitions K and K, into m + 1 disjoint parts
(possibly empty), which we denote by K(™7) and K™, 0 < j < m, where the jit
is the part to the right of U, respectively P, < j < m, with K(™0 and Km0
being the remainder beyond the left-most matched interval. We note that the blocks of
UM, ..., U™ are not indexed in left-to-right order, and therefore neither are the K (™),
We further suppose that n,, is chosen large enough so that for n > n,,, the diameters of
Km3) and K™ differ by less than 277,

Now consider a Brownian motion W, the construction of (Ng, X ) in Corollary 4.11
and (4.2), and an independent family W;, j € Z, of Brownian motions. We denote by
(NG) X)), j > 1, the clades in (N, Xx) corresponding to the respective blocks U).
We will enhance the construction by considering, for each UY) = (a9, 5()), j > 1, the
Brownian motion B; obtained by concatenating W| with the independent
o) Let
7} and (; be derived from B; as in Proposition 4.7. Let G; denote the associated

[rw (a(J)) -,—W(b(J))]
Brownian motion W;. For comparison, in Corollary 4.11, By = W\E:W(a(j))

PRM(2auég%Q), as in Corollary 4.9, and let F; denote a PRM(Zau(fgd) obtained by applying
k1 to the points of G;. Then N©) is formed by concatenating the initial spindle f() = Z j’
with the clades of Fj\[07<;], as in (2.18).

Now fix m > 1 and n > n.,. For 1 < j < m, we construct N{) ~ P (., from
{(0,Leb(U,""))}
B; and F; in the same manner as above. Let XY =¢ ( ) To emphasize, N) and

Ngf) are coupled by: (1) constructing them from the same Brownian motion B; and (2)
using the same x -marked excursions in F;.

We now address the omitted blocks and dust that make up the segments K ("7) and
K™ This is illustrated in Figure 8. For each 0 < j < m, we denote by mej the
part of W relevant for K (™), i.e. the interval [ry (min (K™9) — ), 7y (max (K (™9)))],
concatenated with W_;. We denote by (N("-7), X("7)) the part of (N, X ) that corre-

sponds to K("7); this scaffolding and spindles pair arises from W,, ; and the compact
set K(m.d), shlfted to start at the origin, via the construction of Corollary 4.11 and (4.2).
We construct (N7 X{/")) in the same manner, from IV, ; and the set K\, shifted
back to the origin. Flnally, we concatenate the 2m + 1 point measures and scaffoldings
to form (N%’i), X(]?:)).

Fix y > 0. Forn > n,, and 1 < j < m, let U)(y) := skewer(y, NU) X)), We
correspondingly define Bﬁj)(y), Bmd)(y), and B(m’”( ) as respective skewers of N,
N3, and N%m’j ). We will show that under our coupling, plus some further coupling in
the case Leb(K) > 0, we get (8%, MY) = (8Y, M) for all sufficiently large n. It suffices to
prove that for all sufficiently large m and all sufficiently large n depending on m,

EJP 28 (2023), paper 61. https://www.imstat.org/ejp
Page 33/46


https://doi.org/10.1214/23-EJP946
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Two-parameter interval partition diffusions

At

Figure 8: The middle panel illustrates the construction of Corollary 4.11, decomposing
Brownian motion W into path segments used to construct Ny, U € S(K), and Fgk.
Here, 5(K) consists of three intervals and K has dust between the second and the third.
The remainder of this figure shows how this construction is modified for the proof of
Proposition 4.14, in which each path segment is extended by an independent Brownian
motion, shown in green.

(A1) B9V (y) = BY)(y) forall 1 < j < m, and
(A2) B (y) = BU™D (y) for all 0 < j < m.

First we prove (Al). Fix m > 0. Recall that by Corollary 4.8, there exists some A > 0
such that for all j = 1,...,m and all n > n,, satisfying [Leb(U)) — Leb(U"))| < A, we
have ﬂflj)(y) = U (y) (as both partitions arise from B; and F;). By Lemma 4.4, there is
some a.s. finite R,,, > n,, sufficiently large so that

ILeb(UY) — Leb(UY)| < Aforalln > Ry, 1< j < m.

This proves (A1).

We now prove (A2) in the special case Leb(K) = 0. Since }_; 4 271l < oo, there
is a (random) m; such that for all m > m;, none of the Brownian motions W;, j € Z,
has excursions above height y before reaching an inverse local time of 2=~ 17l at
level 0. There is also ms > m; such that for all 7 > ms, the clade N has height
less than y. Recall that we choose n,, to be sufficiently large so that, for n > n,,,
Leb(K{™7)) — Leb(K(m4))| < 2=m=i_ Thus, for m > ms and n > n,,, the segments of
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the processes Wm,j used to construct the ﬁ;m’j), 0 < j < m, never reach height y. Thus,
B (y) = BY) (y) as desired, with both equaling .

Now consider the case Leb(K) > 0. Let Fx be as in Corollary 4.11, describing the
point measure of clades arising from the dust in K. In this case, Fx may also have
clades that exceed level y, and the present coupling does not allow us to conclude
that B(’”J )(y) = Ey(,m’j )(y) for n sufficiently large. Recall that blocks in these interval
partitions correspond to excursions in W(™J) that exceed level y. While our bound
n > Ny, still precludes excursions from the W_; from contributing to &(Lm’j ) (y), the same
cannot be said of I¥. Indeed, any clades exceeding level y in Fx would correspond to
large excursions of W that are then partitioned off into the processes W (™). These
same excursions are used to construct both partitions, but the application of the kernel
k1 to obtain clades from such excursions has so far not been coupled appropriately.

Suppose F has H clades of height exceeding y, associated with excursions E@ =
(W (rw(©D=) +5),0 < s < 7w (v¥) — ryy(vP=)), 1 < i < H. By virtue of having each
v belong to K, in particular, these excursions of W are partitioned off into the Win.j
(rather than appearing in the B;). Fix m > my. For 1 <1 < H let J; denote the index of
the component to which v(¥) belongs, v € K™/, Let 3 := v(9) — b(/1), so that the
relevant excursion now appears in Wy, ;, at local time o0,

For each i = 1,...,H and n > 1, we have two cases: either 3 ¢ K{™7) _ p{J)
or () € (Eg), Jﬁf)) IS B(K}I’”’M) — b%‘]"')). In the first case, this point lies in dust rather
than in a small block, and we can couple the two clades. In this case we adopt the
convention Eﬁf) = dffj := ¢, In both cases, note that v(*) a.s. does not lie on the
boundary of any block of §(K). Lemma 4.4 then implies &55) — ng) —0asn — oco. In
(@)
n

the second case, consider the maximal height h;’ of the excursions of Wm, J; in the

interval (7 (Eﬁf )) , T(@(i))), where 7 denotes inverse local time in me 7. In particular, the

associated /, process as in Figure 7 will finish at some xg) < hg), and since hﬁf) — 0
a.s., we also have ng) — 0 a.s.. By Corollary 4.13, there is N > 1 such that for each
1 <i¢< H andn > N in the second case, there is a single excursion above this v/,
process that contributes to level y within this clade.

As a consequence, for 1 <i¢ < H and n > N in the second case, the initial spindles of
the clades associated with (ng), J(nz)) do not reach level y. We are applying ~, to each
excursion above the embedded local time /., and the single excursion that contributes
to level y splits the total mass at level y into PDIP(«, 0) proportions, by Lemma 3.5(ii).
As y is fixed, this can, on the event {n > N}, be perfectly coupled to the PDIP(«,0)
proportions that «, assigns to the level-y split of the mass contributed by E® . This

completes the proof of assertion (A2) and thus proves the proposition. O

4.5 The Feller property and the proof of Theorems 1.5 and 1.8

Recall that Theorem 1.5 claims that the extension of SSIPE(«,#) to (Z};,dy o C) is a
Feller process.

Proof of Theorem 1.5. First recall from Corollary 4.3 that SSIPE(q,#) has as its semi-
group (ng‘*", y > 0) as defined in Definition 1.4. We now check the conditions of a Feller
process as given in [29, p.369]. Recall that (K, dy) and (Z};, dy o C) are isometric, so we
can work mainly in (K, dg).

To obtain the local compactness of (K, dy), we first note that it is well-known, e.g. [4,
Theorem 7.3.8], that the compactness of [0, m] entails the compactness of the subspace
K<m C K of compact subsets of [0,m]. But £ = J,,~, K<, and every K € K<,, has
K<m+1 as a compact neighborhood. This is what it means for (K,ds) to be locally
compact.
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Fix y > 0. To obtain (F1) of [29, p.369], we have to show that K — Ex[f(8Y, MY)] is
continuous and vanishes at infinity, whenever f: K — R is continuous and vanishes at
infinity. The continuity follows directly from Proposition 4.14. Since for every m € [0, 00),
the set K<, is compact, it suffices to show that for any sequence (K,,, n > 1) in K whose
total masses tend to infinity, we have Ex[f(5Y, MY)] — 0. This follows because we can
couple the BESQ(20) total masses so that total masses at level y also tend to infinity.

To obtain (F2), we have to show that Ex[f(5Y, MY)] — f(K) as y — 0 for all f
that are continuous and vanish at infinity. But since f is bounded, this follows from
the path-continuity of ((8Y, MY),y > 0) established in Proposition 4.5, by dominated
convergence. O

For K € K, we can consider ((8Y, MY), y > 0) ~ SSIPE}, («,6). By Propositions 1.3(iii)
and 4.1 and additivity of BESQ(0) and BESQ(26), the total mass process (MY, y > 0) is a
BESQ; (20), and MY = ||5Y|| for all y > 0 by Proposition 4.2. Therefore, we can carry out
the time-change of (1.5) and normalize to obtain a de-Poissonized process. Rather than
formalize this as a process on Zj; with second coordinate identically 1, we project onto
the first coordinate and consider it as a process on fH’l, denoting its law by PDIPEk («, 0).

We prove Theorem 1.8 by confirming that PDIPEk («, 6) has all of the properties
claimed in the theorem: it is a Feller process that enters Z,, ; (dg o C1)-continuously and
instantly and never leaves, almost surely.

Proof of Theorem 1.8. We just note that BESQ, (26) is almost surely path-continuous with
the property that the time-change 73 of (1.5) maps [0, o0) to [0,inf{y > 0: ¥ = @}). By
Proposition 4.2, we have (8Y1#, z > 0) ~ SSIPEg. (v, 0) with 8Y € Z,, almost surely for any
arbitrarily small y > 0. By Proposition 3.2, SSIPEgy (v, f) never leaves Z, C Zy;. Hence
PDIPEk (a, 0) enters Z, ; instantly and never leaves, as claimed.

By [29, Theorem 19.25](iv), the continuity in the initial state holds in path space
D([0, 00), K), where K is the one-point compactification of K. By [27, Theorem 2.6], the
time-change part of de-Poissonization preserves the continuity in the initial state. Since
sample paths are actually continuous and the time-changed processes never hit & a.s.,
normalization to unit mass also preserves (F1) and (F2). Hence, the Feller property is
preserved under de-Poissonization.

The argument of [18, Proof of Theorem 1.6] is easily transferred from the measure-
valued context to the setting of interval partitions to establish PDIP(«, #) as stationary
law of PDIPE(«, #), using the pseudo-stationarity derived in Section 3.5. O

Denote by RANKED: K; — V. the map that associates with K € KC; the decreasing
sequence of interval lengths in S(K), where

Voo i= {(»’81')@1 e [O,OO)]N: Z z; < 1}

i>1
is equipped with the metric doo ((z:)i>1, (¥i)i>1) = Sup;>y [ — yil.

Corollary 4.15. Mapping PDIPEx («,6), K € K1, under RANKED yields a V . -valued Feller
process.

Lemma 4.16. RANKED: K; — V., is continuous.

Proof. Let dy(K,,K) — 0 and € > 0. Then RANKED(K) has only finitely many blocks
exceeding size ¢/2. By Lemma 4.4, we can find ny > 1 such that for n > ny, they
have distinct corresponding blocks in K,, with sizes within /2 of the limit and that, by
compactness of [0, 1], no other blocks in K, have size exceeding ¢. O
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Proof of Corollaries 4.15 and 1.9. By Lemma 4.16, the projected process inherits the
path-continuity of PDIPEk («, #). Also, for any K, K’ € Ky with RANKED(K') = RANKED(K),
we can couple the clade constructions so that the projections to decreasing sequences
are path-wise identical. Specifically, we refer to [30, Theorem 17.41] to relate the
intensity measures and hence to couple the Poisson random measures Fx on K and F g/
on K’, which can be any compact subsets of [0, 1] with Leb(K) = Leb(K’). Therefore,
Dynkin’s criterion [50, Theorem 13.5] applies and yields that the projected process is a
path-continuous Borel right Markov process. In particular, (F2) holds. To check (F1),
take any convergent sequence in V... Consider canonical representatives in C; that
have all blocks arranged in decreasing order from left to right. Then d..-convergence
implies the Hausdorff convergence of the representatives, hence (F1) for PDIPE(«, 6)
applied to functions of the form f o RANKED establishes (F1) for the projection.

This proves Corollary 4.15. Corollary 1.9 follows since (K1,dy) and (Iy.1,dg o Ch)
are isometric. O

In [17] we use this corollary to show that this projection is Petrov’s two-parameter
Poisson-Dirichlet diffusion.

4.6 Ray-Knight theorem for marked reflected stable Lévy processes

In this section we prove the second Ray-Knight theorem stated in Theorem 1.13(i).
Recall from (4.1) that the main ingredient for our construction of SSIPE’["0 2] (o, 0) is

Flo,-] ~ PRM(Leb|jy ] ® 5 V(ﬁ)ld) Then Proposition 4.2 entails that

2a

skewer ( * Ns, * 5(N5)> ~ SSIPE[, (e, 0).

points (s,Ns) of Fg . points (s,Ns) of Fg .

Theorem 1.13(i) claims an alternative construction of SSIPE! .(«,0). As established in

[0,2]
the proof of Theorem 1.13(ii) in Section 3.6, the main ingredient is N ~ PRM(Leb®1{zer™).

Specifically, Theorem 1.13(i) claims that for

BY .= skewer(y, N

[O,T_z/‘za],X_X)’7 Yy > 07

we have that 82 = (&, z) and 8¢ = (Y, ]|8¢

),y > 0, yields an SSIPE}, ,(a,0).

Proof of Theorem 1.13(i). As we observed in the proof of Theorem 1.13(ii), with refer-
ence to (2.17), the marked excursions of X = £(IN) above its infimum process X form a
PRM(Leb ® u(f(‘jd). Stopped at 7" ,, linear scaling maps this to a PRM(Leb|[ ,) ® iz/(ﬁ)ld),
as required to align with the construction of SSIPEE‘O}Z] (a,0) of Proposition 4.2. By

Proposition 4.1, this also entails the claim that the total mass evolves as BESQ, (0). O

5 Identification with the Rivera-Lopez-Rizzolo diffusive limit

The proof of Theorem 1.10 is based on several auxiliary results. We begin with an
observation that will allow us (inductively) to reduce the identification of the generator
to functions m_ associated with compositions ¢ that have no consecutive 1s. To this end,
we denote by 1, = (1,...,1) € C; the composition of k into k parts.

Lemma 5.1. For all k > 2, we have

1 £(p) 1
o _ - - o
My, = k! Z H il M-
peCi\{1x} \i=1
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Proof. This is just a rearrangement of the observation that for 5 € Zx ;
k

k
dLeb(V)| = > J]Leb(V))

vep Vi,..,VeeB j=1

- Z Z </) " Pe(p) > Zﬁ) Leb(l

PECK Ur,....UgpyEB
strictly increasing

P PRLE

PECK

noting that the multinomial coefficient equals k! when p = 1. O

Denote by
Cn = {o€Ch:0,—1+0,>3forall2<r <o)}
the set of compositions of n > 0 with no two consecutive 1s, and set C = Un>0 5n.
For o € C, the calculation of the generator is similar to generator calculations for the
ranked process in [17, Section 2-3], and we recall some relevant results, beginning
with the identification of Wright-Fisher processes taking values in the simplex A, :=
{w=(wi,...,wg) €[0,1]%: Zie[d] w; = 1} with generator

0
AaF—QZw, Zwa] 22r+wl
w2 awzf}'w] 5wz
i€[d] v i,j€[d] i€[d]
where r = (r1,...,74) is a vector of real parameters and r; = Zie[ 4 Ti- Wright-Fisher

processes have infinite lifetime if r; > 0 for all ¢ € [d]. Otherwise, the lifetime of the
process is the first time the i*" coordinate vanishes for an i € [d] with r; < 0. We denote
by WFy, (r) the distribution of a Wright-Fisher process with parameter vector r and initial
state b.

Lemma 5.2 (Special case of Lemma 2.2 of [17]). The domain of A} includes all functions
gq forq e (NU {0})d, given by

(w) = [T i,

1€[d]

ifr; > 0 for all i € [d] with ¢; = 1,
andr; € R for all i € [d] with ¢; € {0,2,3,...}.

Fix 8 € Zy,; and let (8*, u > 0) ~ PDIPEg(a, §) be obtained by de-Poissonizing the
process (51‘/, y > 0) constructed in Definition 3.3. This gives access to continuous block
evolutions ( V) u > 0) starting from Leb(V), V € 3, and to evolutions (Wqﬁo)7 u > 0)
and ( év), U > O), V € j, starting from 0 that capture the aggregate mass of other
blocks arising, respectively, from ﬁg and Ny, V € 3. We also write quv) = Wév) + ngv).
More precisely, denote by fi, the left-most spindle of N and recall the de-Poissonization
notation of Definition 1.7. We then set

-1

-1
W) = ‘5%(“) Be(w) Hskewer(m(u) Ny

fr(rpw), X =|

WV = x(V) — W wo = x© ‘575 u)

HfSkewer(Tg ), Fg) H

The following lemma is a variant of [17, Proposition 2.6]. The important variation for the
present requirements is that the setting of [17], focussing entirely on ranked block sizes,
allowed to only consider functions g4 with powers ¢; # 1 for all ¢ € [d]. The inclusion of
the case ¢; = 1 means the following generalisation is needed.
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Lemma 5.3. Let V1,..., Vi € (B be a strictly increasing sequence of intervals. For
0<i<k+1, let W i) = W T2 ves: vicvavin x{"), with the conventions V = 0
and Vj,4; = 1. Then

(W00, W0 W) ), WD) o),
where by; = Leb(Vi), i € [k], boit1 = 2vep. vievay,,, Leb(V), 0 < i <k, and i =0,
o = —Q, T'2;41 = Q, 1€ [ki]

Similarly, (quvl/), ey Xq(tv’;), 1*2@6[1)] Xi(f)) ~ WFy ('), for distinct VY, ...,V € BU{0},
where (b, r}) = (0,0) if V! = 0 and (b}, r) = (Leb(V}),0) if V/ € B, i € [p)].

IR R

Proof. Like [17, Proposition 2.6], this can be seen using Pal’s [36, 37] construction of
Wright-Fisher diffusions from independent squared Bessel processes. In the present
setting, we note from Proposition 1.3(iii) that g; := (||fSkewer(y,F9)H, y > 0) ~
BESQy, (20) and (||skewer(y,Nv)||, y > 0) ~ BESQren(v)(0) for all V' € 3. We see from
Definition 2.7 that gy; := fy, ~ BESQ,, (—2a). Furthermore, as has been observed
in [16, Corollary 3.16], the independence of f and N in Definition 2.7 entails that
(|[skewer(y, Nv;|(0,00)xe, E(Nv,)) ||, 0 < y < ((fy,)) is distributed like an independent
BESQq(2c) process, which is then stopped at ((fy,). We extend our probability space to
support the full BESQq(2a) by extending it independently beyond ((fy,), for each i € [k].
By the additivity of BESQ-processes, adding the independent BESQq(2«) and BESQy,ch(v)(0),
Vi <V < Viyy, yields a process g1 ~ BESQy,,,,(2), for each i € [k], so that for
0<y<((f),

(0.00)x&> ENV)) || + Z || skewer(y, Nv)||.
V: ‘/i<v<‘/1‘,+1

g2i+1(y) = ||skewer(y, Ny,

By construction, g;, i € [2k + 1], are independent BESQ,, (27;), ¢ € [2k + 1]. In this setting,
let g =3 ,cpp11) 8i- As noted in [17, Section 2.3] in the relevant generality, by reference
to [36, Proposition 12] and [37, Theorem 4] for non-negative and non-positive parameters,
respectively, this entails

(((e(re(w) " gilrg(w), i € 2k +1]), 0 < u < T) ~ WFp(x),

where 7g(u) = inf {z > 0: [ (g(y)) 'dy > u} and T is the first time in the time-changed
process that an even component vanishes, i.e. such that 74(7") = min {((fy,), i € [k]}.
This completes the proof since, by construction, g(y) = ||8Y|], 0 < y < min{¢(fy;), 7 € [k]}.
The second claim is proved similarly. O

Proposition 5.4. Let 5 € Zy 1, (8%, u > 0) ~ PDIPEg(cx,0) and o € C. Then

L Elmg (8] - m3 (8)
ul.0 (A

=2A,.0mo(B). (5.1)
Moreover, this convergence holds in L?(PDIP(a, 6)).

Proof. This proof is a refinement of the proof of [17, Proposition 3.3]. Fix § € Ty ; and
o € C, with {(c) = ¢ and k := #{j € [{]: o; > 2}. Then we can bound the expectation
in (5.1) below by only considering blocks of 3* that arise from f;;, U € 3, for powers
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o; > 2, but all blocks for power ¢; = 1, in the following sense,

> [T (Leb(@;))

T;ep™, jelg) JE]
strictly increasing

E[mg (") = E (5.2)

=F > II @@~ ] ( > Leb(Uj)>
U eB*, jell): oj>2 € 0522 g€l o=1 Ujep"
strictly increasing [ij 1 <l7j <[7j+1

> ) E

U;€B,jEll]: ;22
strictly increasing

Jjel]

where in the notation of Lemma 5.3 with {V;, i € [k]} = {U;, j € [{]: 0; > 2}, we set
Z0) = wit) i o; =2 and 0 = Wil Ui o; = 1, using conventions Uy = 0 and
Uiy1 = 1. Indeed, 0 € C entails that for j with o; = 1 the intervals U;_; and U;; are
adjacent members of (V;, 7 € [k]). We write a; = Zéj), j € [4], and note (a;, j € [{]) is
made up of some but in general not all entries of (b;, i € [2k + 1]), and g,(a) = gq(b) for
a vector q that has a zero component inserted into o wherever the first or two adjacent
or the last entry of ¢ are at least 2.

We continue with a fixed selection of strictly increasing U; € 8, j € [k]: o; > 2 and
note that the Wright-Fisher parameters in Lemma 5.3 are such that any components
Z&j) when o; = 1 have parameter § > 0if j = 1 and o € (0,1) if j > 2. Hence, we can
apply Lemma 5.2 and find

B |15 (24)7] ~ Ty

lim (5.3)
ul0 u
=2 Z oi(0j—1)g,-0,(a) — 2 Z 0i0;gs(a) — 2 Z oj(0j—1)gs(a)
JEN]: 052>2 1,JE[€]: i#j JENM]
— 20 Z go(a) — 2c Z 0i9o-0,(a) +2 Z 9000, (a)
Jjeld JEW]: 0;>2 jE]: 0;=1
= —2lo|(lo|-1+0)gs(a) +2 > 0j(0;—1=a)go_0,(a) +2 Y nigsen,(a).
j:o;>2 jro;=1

To conclude that the RHS of (5.1) is a lower bound for the LHS, we want to sum over
(U. j) as on the RHS of (5.2). Indeed, subject to checking the conditions of the dominated
convergence theorem, this yields the claimed lower bound because (5.2) is an equality
for u = 0 and for each j € [{], summing g,_g, (a) or g,c0;, (a), respectively, over all a that
arise from summing over (U;) similarly yields mg_o, (8) and UDISCY (B), as required. The
domination condition can be checked as in [17, Lemmas 3.5 and 3.8] using It6’s formula
and dropping negative terms to first show that E[[];c(s. »,>2 79 < ILicig. »,50 a5 for
all s > 0, then similarly for all u > 0

() ol _ gj
Bl yeig (27" ~ Tlyerq 9 <2lo|(2lol+2+a+6) ]

GEW): 05>2

W aj. (54)

As the final product is summable, this completes the proof of the lower bound.

For the upper bound, we denote by ,, the set of n > 0 longest intervals of 3, breaking
any ties by choosing from left to right, to be definite. For each n, we distinguish the
main contribution from fy;, U € 3, for powers o; > 2, still allowing all blocks for power

EJP 28 (2023), paper 61. https://www.imstat.org/ejp
Page 40/46


https://doi.org/10.1214/23-EJP946
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Two-parameter interval partition diffusions

o; = 1, and the remainder that consists of several parts that cover all other choices of
ﬁj € B%, j € [¢]. The argument for the lower bound deals with the main contribution
and will yield the RHS of (5.1), and we show that the remainder vanishes, as n — oc.
Specifically, we bound E[mS(5*)] above by

> B J@E)|+ > B [z

(U;, Gl o;>2)epl  LIEN] (U;, j€ll): o;>2)ep™\pE  LIEM]

strictly increasing strictly increasing
D D ol (VRN | N CUR T
rell]: o.>2 U;eBU{0}, jelf] JEN{r}

Note that the remainder term in the second line of (5.5) covers the choice of blocks
where, in the notation of (5.2), 17,. is a block of " that is not arising from f;;, U € g,
but from a block included in quUT) for some U, € g U {0}. Note also that for j # r, we
allow all choices of blocks without constraining the order. Indeed, the asymptotics as
u |} 0 for the first term, a finite sum, with each member compensated and divided by u as
in (5.3), were established in the calculation of (5.3), and then letting n — oo yields the
RHS of (5.1). In the compensated second term divided by u, we use (5.4) to upper bound
this part of the remainder by

2/0| (20| + 2+ a+6) > II Lebw)). (5.6)
(U5, j€[0: 0;>2)ep™\g TEI: 0322

strictly increasing

and this vanishes as n — oo. Finally, the last term of (5.5) is easily bounded above by

EOY B[O 4k Y B[], (5.7)

Uep,u{0} Uep\Bn

For this term, when divided by u, [17, Lemma 3.6] ensures that the first, finite, sum
still tends to 0 as u | 0, and the second sum is bounded by 4(2 +6) }_;;c 5 5, Leb(U) and
hence vanishes as n — oo. This shows that the LHS of (5.1) is also bounded above by the
RHS.

Finally, we note that the dominations identified in (5.7)-(5.6), in the case n = 0,
further yield

E[ms (8)] — mS(8) E[(W)?)

sup <2|o|2lo|+ 24+ a+0) +4k(2+0) + sup —————,
u€(0,1] u ue(0,1] u
BELH 1

which is finite, again by [17, Lemma 3.6], and the dominated convergence theorem
establishes the L2-claim. O

For general o € C, we now adapt the proof of Proposition 5.4 to establish an auxiliary
result, in which consecutive 1s are included, but not treated in the way needed for m.
Fix § € Iy 1 and ¢ € C with ¢ = {(0). Then the composition ¢ is of the form 1,, followed
by 0;1,, for each j € [{] with #0; > 2, where /; € NU {0} counts the length of the run of
1s in o to the right of o;. Let

me®) = > sl TT ((Leb@)” 1s1)

U;€B, jE]: 0522 JEll): 0522
strictly increasing
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where we abuse notation and write (3;, j € [{]: o; > 2) for the decomposition of 3 at the
blocks (U;) so that

B=Box Kk (Uj*B). (5.8)
JE]: 0;>2
Then m) = mg, if o € C.

Corollary 5.5. Let 8 € I 1, (8%, u > 0) ~ PDIPEg(c,6) and o € C. Then

E[m; (8")] — mg(B)

IJ?(} " =2A,.0m(B), (5.9
where
Aaomy = —lo|(lo] =1+ 0)m) + Lo(lo — 1+ 0)ms o, (5.10)
+ Z <0j(aj —-1- a)m(";f‘jj +4(0; -1+ O‘)m:—eDjH) .
jioy>2

Furthermore, the convergence in (5.9) holds in L?(PDIP(«,#)).

Proof. To simplify notation, we write A = {j € [{]: 0; > 2} and Ay = {0} U A. We first
check the claimed form (5.10) of the generator when applied to m} and note that as in
Lemma 5.1, we can write for j € Ay and ; as in (5.8)

2(p

2 ) @)
£ J \J
= X (0 T ) IT (Leb(vi)
pIIECy; A1 Lo Vises Vo)) €85 i=1
strictly increasing

Writing shorthand (p‘i;)) for the multinomial coefficient, this entails

* ZT o
my = > ( 11 (p(r)>> M ok (orapiey (5.11)

(p(),r€A0)€EIT, e, Cer €A

where the symbols x and * are used here to denote the concatenation of entries and
compositions, i.e. forming longer compositions by listing all parts in a single vector of
length £(p©)+3", . 4 (1+£(p™)). In particular, m}, is in the domain of A, . Furthermore,
applying the generator to this linear combination easily yields the claimed m}- and
m?_p.-terms, j € A, of the RHS of (5.10). To identify the other terms, we note that
m;eD;H for j € Ay can be written as in (5.11), but with ¢; replaced by ¢; — 1. There

are 2((p\)) + 1 ways to obtain a given p\/) € C;,_; from members p(/) € Cy,: the i*" part
could have been one greater in p\) € C;, than in p\9) € Cy,_;, for any one i € [((5\9))], or
there could have been an additional part in p(j ) e ng, inserted into ZJU ) e Cg].,l in one of
¢(p1)) + 1 possible places. In these two cases, we observe

G\ Gy _ =1 - G _ =1
(p(j)>pi =/ ) — O, respectively o) =/; e, )

Collecting the coefficients from the respective terms in A, gm° , we obtain
P(O)**reA onxp(T)
f

: *
a coefficient of mz 4 0

GlYS G =)+ + D)a | =4 =1 +my),
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as claimed in (5.10). For the main claim (5.9), we use the notation of the proof of

Proposition 5.4 in that we similarly set Z; 9 = 75 7 for j € A, but we now use the

same Z,s ") for each run of consecutive o, = 1. To be precise, we write Z(]J””) fo) =

U;,U;
Wi Pt +1), r € [(;], j € Ao, with the convention that Uy = 0 and Ury1 = 1. We also

write a; = Leb(U;) for j € A and a4, = ||3;| for all » € [¢;] and all j € Aj. Then (5.3)
generalises to

B [T, ()] - T a5

lim
ul0 u
0)\ £ o L oj

B2 T 0 (297 (28)7)] = 180 T 52 (a5 18519)
= lim

ul0 u
= —2/o|(lo|~1+8)go(a) +2 ) 0j(0;~1-a)g,—0, (a)

JEA
+2 Z E 1+77] go@DJ+1( )
JjE€EAo
The remainder of the proof of Proposition 5.4 applies with no further changes. O

Proof of Theorem 1.10. Based on Proposition 5.4 and Corollary 5.5, this will follow by
linearity and general theory. Indeed, we will show that the linear span of {m*, o € C} is
the same as the linear span of {m2, o € C}. Specifically, one inclusion follows from (5.11).
For the other inclusion, we take o € C and inductively replace all runs of 1s in ¢ using
Lemma 5.1. More precisely, we will set up an induction to show a stronger statement
that allows us to handle one run of 1s at a time. Consider o of the form ¢ = o* x 1, xo°
where ¢* does not end with a 1 and ¢° does not begin with a 1, but where we do allow
degenerate cases where ¢* = () and/or k = 0 and/or ¢° = (). For all such (¢*, k,c°), we
define

M@= 3 sl T ((eb@) s
Us €B, jele): o722, JEW]s o522
Us€B, jelk+e°], k 2
all strictly increasing ° ol
< | [T Leb@s) | T] (Leb(Uzy;))™
j=1 j=1

where notation around (5.8) has been superscripted by * or ° in the natural way, so
that, in particular (85,7 € [¢(*]: o} > 2) is (the first part of) the decomposition of 3 at the
blocks (U) so that

B=Fx Kk (UrxB)x Kk (U%p9) (5.12)

jefer]: oz22 ' JEk+L0]: 09>2
for some (37) that do not feature in the above formula. We also note that for j = ¢,
we have é;*- = 0, so the formula does not depend on the right-most ,Bj’-* either, and we
will also denote it by 85. With this notation, we claim that for any (¢*, 1) * ¢°) of this
form, m> 1k*ao is in the linear span of {m}, o € C}. We prove this by strong induction
on the number r of 1sin 1, x ¢° that are adjacent to at least one other 1. We call these
1s “adjacent 1s” for simplicity. If » = 0, then m;", , o = m} for 0 = 0* x 1}, % 0°. The
case r = 1 is void. Assuming that the induction hypothesis holds up to and including a
given r > 1, we consider (o*,1; x 0°) such that 1, xc® has r + 1 adjacent 1s.If k=0or
k =1, we can include part of 15 x 0° in o* without changing m, 1,x00- Therefore, we
may assume without loss of generality that £ > 2. Then, using the notation introduced in
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and below (5.12),

e = > Ele T ((eb@)™ 1)
UseB, jele]: o3 >2, JE[]: 05 >2
UPep, jelk+eI\[k], . R o0
all strictly increasing X ||58H mik (”58”— B(‘;) H (Leb(Ulerj)) i,
j=1

We apply Lemma 5.1 to m3, (||53]|7*A5). The resulting linear combination contains only
terms of the same form and we can write

L(p)

*,0 o 1 *,0
ma*,lk*a" - gma**lk,ao -

peCK\{1x} \7=1

1 *,0

pi! AN AN
;!

(5.13)

As 1; has k > 2 adjacent 1s, the compositions ¢° and pxo° for p € C; \ {1%} have at most
r adjacent 1s. By the induction hypothesis, all terms in (5.13) can be written as linear
combinations of members of {m},, o’ € C}, and this completes the induction step.

In particular, mg = my’_ is in the span of {m},,o’ € C} forall ¢ € C. Since Aq,
agrees with the generator of PDIPE(«, 6) on {m$, o € C}, this completes the proof, as in

o

[17, Theorem 1.2]. O
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