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We show that the two-dimensional minimum-volume central section of
the n-dimensional cross-polytope is attained by the regular 2n-gon. We estab-
lish stability-type results for hyperplane sections of !p-balls in all the cases
where the extremisers are known. Our methods are mainly probabilistic, ex-
ploring connections between negative moments of projections of random vec-
tors uniformly distributed on convex bodies and volume of their sections.

1. Introduction. For p > 0, let Bn
p = {(x1, . . . , xn) ∈ Rn : ∑n

i=1 |xi |p ≤ 1} be the unit
ball in the standard !n

p norm. The problem of determining k-dimensional sections of Bn
p of

maximal and minimal volume proved to be notoriously difficult and has attracted significant
attention over the past few decades, notably prompting development of several important
analytic, geometric and probabilistic techniques. It originated in the context of the sections
of the cube from questions in geometry of numbers (see, e.g., [22, 52]).

Conspicuously, Fourier analytic methods have played a prominent role in these develop-
ments, starting perhaps with Ball’s solution [4] to maximal volume hyperplane sections of
the cube and significantly advanced in the many works that followed. We refer to Koldob-
sky’s monograph [28]. In its comprehensive introduction we find the following elementary
formula:

(1) voln−1
(
K ∩ a⊥) = 1

2
lim

ε→0+
ε

∫

K

∣∣〈x, a〉∣∣−1+ε dx

for the volume of the section of an origin-symmetric star body K in Rn by the hyperplane
a⊥ perpendicular to a unit vector a in Rn. This formula can perhaps be traced back to Kalton
and Koldobsky’s paper [25], where it appears in the context of embeddings into Lp-spaces
with negative p and the connection to intersection bodies (significant in the full resolution of
the famous Busemann–Petty problem; see [20, 37, 53]).

This formula can be seen as a starting point and inspiration of the present paper. Proba-
bilistically, the right-hand side of (1), after normalising, is the limit of the negative moments
E|〈X,a〉|−1+ε of the marginal 〈X,a〉 of a random vector X uniformly distributed on K . Since
plainly ε

2
∫
R |t |−1+εf (t)dt → f (0) as ε → 0+ for a (say bounded and continuous) density f

on R, we get the left-hand side. This point of view naturally connects the problem of extremal
volume sections of convex bodies with Khinchin-type inequalities for negative moments (for
the latter, in the context of the cube, we refer to the recent work [16]). Here, we employ
the same idea to sharpen all the known results for extremal volume hyperplane sections of
!p-balls.

Notation. We try to follow standard notation used in probability and convex geometry.
For convenience we try to recall or introduce it as we move along, but we also summarise
most of it here. By a convex body K in Rn, we mean a compact convex set with nonempty
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interior. We denote by voln(A) the n-dimensional Lebesgue measure of a measurable set A
in Rn; whereas, volH will stand for the Lebesgue k-dimensional measure on a k-dimensional
subspace H of Rn (instead of writing volH , we shall often write volk , where k is the di-
mension of H , if it is clear what H is in a given context). For a vector x = (x1, . . . , xn)
in Rn, |x| = (

∑n
j=1 x2

j )1/2 denotes its Euclidean norm, 〈x, y〉 = ∑n
j=1 xjyj is the standard

inner product of two vectors x and y in Rn and, as usual, (ej )1≤j≤n is the standard basis
of Rn, thus 〈ej , ek〉 = δjk . The orthogonal complement of a subspace H in Rn is denoted
by H⊥ and for a vector a in Rn, a⊥ = {x ∈ Rn, 〈x, a〉 = 0} is the hyperplane with nor-
mal a. For p > 0, Bn

p = {x ∈ Rn : ∑n
i=1 |xi |p ≤ 1} is the unit !p-ball. In particular, Bn

2 is
the unit Euclidean ball, and its boundary, the (n − 1)-dimensional unit sphere, is denoted
by Sn−1 = ∂Bn

2 = {x ∈ Rn, |x| = 1}. When p = ∞, Bn
∞ = [−1,1]n is the n-dimensional

unit cube, and its dilate of volume 1 is denoted by Qn = 1
2Bn

∞ = [−1
2 , 1

2 ]n. The Minkowski
functional (gauge function) associated with a convex body K will be denoted by ‖ · ‖K .

Our results. It remains an open problem to determine k-dimensional sections of Bn
p of

extremal volume: the minimal ones when 2 ≤ k ≤ n − 2, 0 < p < 2, and maximal ones when
2 ≤ k ≤ n − 1, 2 < p < ∞. This paper is twofold. First, we take on this question in the
case of the cross-polytope and two-dimensional sections, so for p = 1 and k = 2. Second,
we establish stability-type results for the hyperplane sections in all of the cases where the
extremisers are known. Our bounds on deficits are sharp modulo multiplicative constants.

Cross-polytope. Our first main result is the following theorem about minimal volume
two-dimensional central sections of the cross-polytope Bn

1 .

THEOREM 1.1. Let n ≥ 3. For every two-dimensional subspace H of Rn, one has

vol2
(
Bn

1 ∩ H
) ≥ n2 sin3( π

2n)

cos( π
2n)

.

Moreover, if the equality holds, then Bn
1 ∩ H is isometric to a regular 2n-gon in R2.

The minimum is achieved for H = T (R2), with T x = (〈v1, x〉, . . . , 〈vn, x〉) and vk =
(cos(kπ

n ), sin(kπ
n )), k = 1, . . . , n. The minimising subspace H is unique, up to coordinate

reflections and permutations.

In essence, the argument relies on convexity of certain functions, which arise from the
radial function of a planar embedding of the cross-section Bn

1 ∩ H , after leveraging the fact
that it is a polygon and breaking it up into triangles.

Stability. Our second main result concerns dimension-free refinements of the known re-
sults for hyperplane sections, providing sharp stability of the unique extremising hyperplanes.

THEOREM 1.2. There is a positive constant cp , which depends only on p, such that for
every n ≥ 1 and every unit vector a = (a1, . . . , an) in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we
have

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥

1 )
≤ (

a
p
1 + (

1 − a2
1
)p/2)−1/p

, 0 < p < 2,(2)

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ ( e1+···+en√

n
)⊥)

≥ 1 + cp

n∑

j=1

(
a2
j − 1/n

)2
, 0 < p < 2,(3)
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voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥

1 )
≥ 1 + cp|a − e1|2, 2 < p ≤ ∞,(4)

voln−1(B
n
∞ ∩ a⊥)

voln−1(Bn∞ ∩ ( e1+e2√
2

)⊥)
≤ 1 − c∞

∣∣∣∣a − e1 + e2√
2

∣∣∣∣.(5)

Moreover, the dependence on the right-hand side of each of these inequalities on the deficit
quantity δ = δ(a) is best possible, modulo the value of constants cp .

The common starting and main point of the proof of each of these results is an exact for-
mula for voln−1(B

n
p ∩ a⊥) in terms of negative moments, as hinted in (1). Another crucial

feature common to all the proofs is that, even though a random vector uniform on Bn
p has

dependent coordinates (except, of course, the cube case p = ∞), the dependence is mild and
the multiplicativity properties of the power function allow to replace 〈X,a〉 = ∑

ajXj in (1)
with a weighted sum of i.i.d. random variables, thanks to the well-known probabilistic repre-
sentation of the uniform measure on Bn

p balls in terms of the product measure with density
proportional to e−∑ |xj |p ; see, for example, [9]. The specific details of further arguments dif-
fer, however, for instance as a result of the different nature of the extremising hyperplanes
and resulting sections, among other things; see Section 5 for an overview.

Sharpness of these results is explained in detail in the sections devoted to their proofs.
In a recent independent work [39], Melbourne and Roberto have addressed the stability

of maximal hyperplane sections of the cube, obtaining a similar result to (5), with explicit
values of the numerical constants involved. Their approach is somewhat different and relies
on developing a stability version of Ball’s integral inequality.

For the sake of simplicity of our arguments, we have not made any attempts to optimise the
values of the involved multiplicative constants cp (or, for that matter, even explicitly compute
some values, except for the case of (4) when p = ∞).

Organisation. We begin in Section 2 with a short overview of the relevant known results
spanning the last several decades. Our new result for the cross-polytope, Theorem 1.1, is
proved in Section 3. Section 4 is devoted to developing the probabilistic viewpoint on sections
via negative moments which forms the backbone of the proofs of our stability results from
Theorem 1.2. These results are then proved in Sections 6 and 7, preceded with some heuristics
gathered in Section 5. First, we deal with the cube and prove (4) for p = ∞ in Section 6.1 as
well as (5) in Section 6.2. Then, we consider the case 0 < p < 2 and show (2) in Section 7.1.1,
followed by the proof of (3) in Section 7.1.2. Finally, we present the proof of (4) when 2 <
p < ∞ in Section 7.2. We gather some concluding comments and possible future directions
in Section 8.

2. Background: Known results. We begin by briefly recalling the known results. Let
Hk be the hyperplane perpendicular to e1 +· · ·+ ek , where (ej )1≤j≤n is the standard basis of
Rn. The smallest hyperplane section of the cube Bn

∞ is obtained by taking the hyperplane H1
which was proved by Hadwiger in [21] and independently by Hensley in [22]. This has been
generalised to sections of arbitrary dimension by Vaaler in [52]. In [4] Ball showed that H2
gives the hyperplane section of the cube with the largest volume; see also [44] for a simpler
proof. This important result led to the negative answer to the Busemann–Petty question in
large dimensions; see [5]. The article [6] contains a study of maximal lower dimensional
sections of the cube (the results are optimal if the dimension k of the subspace divides n
or k ≥ n/2). It is shown in [45] that H2 is not a maximising subspace for the volume of
hyperplane sections of Bn

p for p ≤ 24. For a comprehensive survey of the results for the cube,
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we refer to Chapter 1 of [54]. For some recent related results, we also refer to [1–3, 24, 31,
33, 35, 36, 47].

Meyer and Pajor studied in [40] the same problem for Bn
p with finite p. They showed

that, for any dimension k, the set Bk
p obtained by taking the standard coordinate subspace

span{e1, . . . , ek} is the maximal section for 1 ≤ p ≤ 2 and the minimal section for p ≥ 2.
For extensions to p ∈ (0,1), see [8, 14]. In [40], Meyer and Pajor also found the minimal
hyperplane section of Bn

1 which is given by taking the hyperplane Hn. Koldobsky in [27]
extended this result to p ∈ (0,2). Later on, several works treated the complex case (see [30,
46]) as well as a further generalisation to block subspaces (see [18]). We emphasise the
fact that, in all of the cases, the known extremising subspaces are also known to be unique
(modulo symmetries).

We mention in passing that the analogous, dual question for extremal projections of Bn
p

has also been considered. The problem is related to certain Khinchin-type inequalities, as
explained in [7, 10]. In particular, finding extremal projections of Bn

1 is equivalent to deriving
optimal constants in the classical Khinchin inequality, which was done by Szarek in [50],
followed up by De, Diakonikolas and Servedio who developed a stability version in [17].
The case p ≥ 2 has been studied by Barthe and Naor in [10], where the authors showed
that the smallest and the largest (n − 1)-dimensional projections of Bn

p are those onto the
hyperplanes H1 and Hn, respectively. Koldobsky, Ryabogin and Zvavitch in [29] developed
a Fourier analytic approach. Chakerian and Filliman in [15] found that the two-dimensional
orthogonal projections of the cube Bn

∞ of maximal volume are attained by regular 2n-gons
(the same extremiser as in our Theorem 1.1), and, by McMullen’s formula from [38], this also
gives (n−2)-dimensional projections of maximal volume; see [23] for recent results on lower
dimensional projections of the cross-polytope Bn

1 . Paper [19] provides a different unified
probabilistic approach to the volume and mean-width of central sections and projections and,
in addition to identifying the extremisers, also delivers Schur-convexity-type results.

3. Two-dimensional central sections of the cross-polytope. For the proof of Theo-
rem 1.1, we first need to recall the direct elementary approach to sections viewed as linear
embeddings.

3.1. Sections via linear embeddings. Recall that ‖ ·‖K refers to the Minkowski functional
of a convex body K (if K is symmetric, it is the norm whose unit ball is K). We shall use the
following standard lemma.

LEMMA 3.1. Let K be a convex body in Rn, and let T : Rk → Rn be a linear map.
Define KT = {x ∈ Rk : ‖T x‖K ≤ 1}. Then, K ∩ T (Rk) = T (KT ). Moreover, if T is of full
rank, then

volT (Rk)

(
K ∩ T

(
Rk)) =

√
det

(
T ∗T

)
volk(KT ).

PROOF. For the first part, let us show two inclusions. If y ∈ K ∩ T (Rk), then y ∈ K and
y = T x for some x ∈ Rk . It follows that ‖T x‖K ≤ 1, so x ∈ KT . Thus, y = T x ∈ T (KT ).
Now, if y ∈ T (KT ), then y = T x for some x satisfying ‖T x‖K ≤ 1. Thus, ‖y‖K ≤ 1, so
y ∈ K . Since clearly y ∈ T (Rk), it follows that y ∈ K ∩ T (Rk).

For the second part, observe that one can treat H = T (Rk) as a manifold parameterised
by T . Since volH is volume on this manifold, we have the well-known formula for the volume
element, d volH = √

det((DT )∗(DT ))d volk , where DT stands for the derivative of T . In our
case, DT = T , and so the assertion follows. !

A straightforward application of the above lemma to the case of K being the Bn
p ball yields

the following corollary.
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COROLLARY 3.2. Suppose that H is an image of Rk under a linear map T : Rk → Rn

of full rank, given by T x = (〈v1, x〉, . . . , 〈vn, x〉) for some vectors v1, . . . , vn ∈ Rk . Then,

volH
(
Bn

p ∩ H
) = det

(
n∑

i=1

vi ⊗ vi

)1/2

volk

({

x ∈ Rk :
n∑

i=1

∣∣〈vi, x〉∣∣p ≤ 1

})

.

Here, as usual, v ⊗ v is the matrix vv/. Let us now assume that the map T is an isomet-
ric embedding. This means that 〈x, y〉 = 〈T x,T y〉 = 〈x,T ∗Ty〉, which gives the condition
T ∗T = Ik×k , where Ik×k stands for the k × k identity matrix. If the mapping is written in the
form T x = (〈v1, x〉, . . . , 〈vn, x〉), the condition T ∗T = Ik×k rewrites as

∑n
i=1 vi ⊗ vi = Ik×k .

Thus, finding extremal k dimensional sections of K is equivalent to solving the following
problem.

PROBLEM 3.3. Maximise/minimise the volume of the set KT = {x ∈ Rk : ‖T x‖K ≤ 1}
under the constrain T ∗T = Ik×k . In the case of K = Bn

p , maximise/minimise the volume of
the set

Kv =
{

x ∈ Rk :
n∑

i=1

∣∣〈vi, x〉∣∣p ≤ 1

}

over v1, . . . , vn ∈ Rk,
n∑

i=1

vi ⊗ vi = Ik×k.

REMARK 3.4. Since the condition T ∗T = Ik×k ensures that the map is an isometric
embedding, the set KT in Rk in the above extremization problem is isometric to the section
K ∩ T (Rk).

3.2. Proof of Theorem 1.1. This proof was kindly communicated to us by Fedor Nazarov.
Recall that our goal is to minimise the volume of the set Kv = {x ∈ R2 : ∑n

i=1 |〈vi, x〉| ≤
1} under the constraint

∑n
i=1 vi ⊗ vi = I2×2. In general, the set Kv is a convex symmetric

2k-gon, k ≤ n. We point out that some of the vectors vi might be zero, and some of them
may be parallel. While studying the geometry of Kv , one can assume that the vectors vi are
nonparallel, since if for some a1, . . . , al , i1, . . . , il and v one has vi1 = a1v, . . . , vil = alv,
then considering only one vector ṽ = ∑l

j=1 |aij |v instead of the vectors vij will result in the
same set. However, this operation in general affects the constraint

∑n
i=1 vi ⊗ vi = I2×2.

Let ρ : S1 → (0,∞), given by ρ(θ) = (
∑n

i=1 |〈vi, θ〉|)−1, be the radial function of Kv .
One can assume that in our configuration there are at least two nonparallel vectors (otherwise,
the resulting set is an infinite strip, and so its volume is infinite; in this case

∑n
i=1 vi ⊗ vi

is of rank one, and the constraint is not satisfied). It is not hard to check that under this
assumption the vertices of Kv correspond exactly to directions θ perpendicular to vi for some
nonzero vi (i.e., up to the changes of sign of 〈vi, θ〉). Indeed, for points x on the boundary
of Kv one has

∑n
i=1 |〈vi, x〉| = 1. If in a small neighborhood of x all the signs of 〈vi, x〉

are fixed, this is a linear equation, and the set of solutions is a line which corresponds to
one-dimensional faces of Kv . If on the other hand, x satisfies 〈vi, x〉 = 0 for some nonzero
vi = (a, b) (if there are vectors parallel to vi we join them together as above), then within
a small ball around x = (s0, t0) there is a part of the boundary being a subset of the line of
the form {(s, t) : as + bt + As + Bt = 1} and a part being a subset of the line of the form
{(s, t) : −as − bt + As + Bt = 1}. These two lines intersect each other at x. We shall show
that they are nonparallel. If they were parallel, they would have to coincide, and thus, we
would have a + A = −a + A and b + B = −b + B which gives a = b = 0, contradiction.
Thus, x is an intersection of two nonparallel parts of the boundary and thus is a vertex of Kv .
A simple consequence of these observations is that Kv has at most 2n vertices.

Suppose that the boundary of Kv consists of segments Fj , j = 1, . . . , k. Let Cj be the
corresponding segments of S1, that is, θ ∈ Cj if ρ(θ)θ ∈ Fj , and let Tj = conv(0,Fj ) be the
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FIG. 1. One piece of Kv : Triangle OLR.

corresponding triangle in Kv . We define Aj = 1
2

∫
Cj

ρ2 and Ij = ∫
Cj

ρ−1. Suppose that the

angle of Tj at vertex O = 0 has measure 2βj , where βj ∈ (0,π/2). Note that
∑k

j=1 βj = π .
We shall need the following elementary lemma.

LEMMA 3.5. We have AjI
2
j ≥ 4 sin3 βj

cosβj
.

PROOF. Let OLR be one of our triangles Tj , and let 2β be the measure of the angle at
vertex O (see Figure 1). Let h be the height of OLR perpendicular to LR, and let l be the
bisector of ∠LOR. The directed angle from h to l will be denoted by α. Let θ be the directed
angle on S1, where θ = 0 corresponds to points on h. Clearly, ρ(θ) = h/ cos θ . We have

Ij =
∫ α+β

α−β

cos θ

h
dθ = 1

h

[
sin(α + β) − sin(α − β)

]
,

Aj = 1
2
h2

∫ α+β

α−β

1
cos2 θ

dθ = 1
2
h2[

tan(α + β) − tan(α − β)
]
.

Thus,

AjI
2
j = 1

2

[ sin(α + β)

cos(α + β)
− sin(α − β)

cos(α − β)

]
· [

sin(α + β) − sin(α − β)
]2

= 2 sin(2β) · sin2 β cos2 α

cos(α + β) cos(α − β)

= 4 sin3 β cosβ cos2 α

cos2 α cos2 β − sin2 α sin2 β
= 4 sin3 β

cosβ
· 1

1 − tan2 α tan2 β
≥ 4 sin3 β

cosβ
. !

LEMMA 3.6. The function ψ(x) = sinx
(cosx)1/3 is strictly convex on [0,π/2). In particular,

the function [0,π/2) 1 x 2→ ψ(x)/x is nondecreasing, and thus, the sequence an = n sin( π
2n )

cos1/3( π
2n )

is nonincreasing.

PROOF. Observe that ψ ′(x) = cos2/3 x + 1
3 sin2 x cos−4/3 x = 2

3 cos2/3 x + 1
3 cos−4/3 x.

It suffices to show that this function is strictly increasing. Taking y = cos2/3 x, we see that
this is equivalent to showing that f (y) = 2y + y−2 is strictly decreasing (0,1). This is true
since f ′(y) = 2(1 − y−3) < 0 for y ∈ (0,1).
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The second part follows from the monotonicity of the slopes of convex functions and the
fact that ψ(0) = 0. !

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. We shall solve Problem 3.3. Assume that
∑n

i=1 vi ⊗vi = I2×2
and that Kv is a convex symmetric 2k-gon, where k ≤ n. Note that

∫

S1
ρ(θ)−1 dθ =

n∑

i=1

∫

S1

∣∣〈vi, θ〉∣∣ dθ = 4
n∑

i=1

|vi | ≤ 4
√

n

√√√√
n∑

i=1

|vi |2 = 4
√

2n,

where in the last equality we use
∑n

i=1 |vi |2 = tr(
∑n

i=1 vi ⊗ vi). Moreover, using Hölder’s
inequality, Lemma 3.5 and Lemma 3.6, we get

|Kv|
1
3 (4

√
2n)

2
3 ≥ |Kv|

1
3

(∫

S1
ρ(θ)−1 dθ

) 2
3 =

( 2k∑

j=1

Aj

) 1
3
( 2k∑

j=1

Ij

) 2
3

≥
2k∑

j=1

A
1
3
j I

2
3
j ≥ 4

1
3

2k∑

j=1

sinβj

cos1/3 βj

≥ 4
1
3 · 2k

sin( 1
2k

∑2k
j=1 βj )

cos1/3( 1
2k

∑2k
j=1 βj )

= 2 · 4
1
3 · k sin( π

2k )

cos1/3( π
2k )

≥ 2 · 4
1
3 · n sin( π

2n)

cos1/3( π
2n)

.

We arrive at |Kv| ≥ n2 sin3( π
2n )

cos( π
2n )

.
We now show that this bound is achieved for Kv being a regular 2n-gon. Let us consider

vk =
√

2
n(cos(kπ

n ), sin(kπ
n )) for k = 1, . . . , n. It is easy to verify that

∑n
i=1 vi ⊗ vi = I2×2.

As we already mentioned, the vertices of Kv correspond to the directions perpendicular to
vi . Since vi are equally spaced on the upper half-circle, we get that Kv is a regular 2n-
gon. Clearly, |v1| = · · · = |vn|, β1 = · · · = β2n, I1 = · · · = I2n and A1 = · · · = A2n. Thus,
one has equalities in all the inequalities in the above proof, so |Kv| = n2 sin3( π

2n)/ cos( π
2n).

Conversely, it is easy to see that the only possibility of having equalities in all the estimates of
the proof is to have the set {v1,−v1, . . . , vn,−vn} equally spaced on the circle. Thus, in the
extremal case the only freedom of choosing vi is to apply rotations to all the vectors vi (which
does not change the section Bn

1 ∩T (R2), as it corresponds to replacing T with T ◦U for some
orthogonal transformation U of R2), permuting some of the vectors (which corresponds to
applying permutations of coordinates in Rn, under which H changes) and reflecting some
of the vectors vi (which corresponds to applying coordinate reflections in Rn which again
changes H ). Thus, up to coordinate reflections and permutations, there is only one minimal
two-dimensional section of Bn

1 . The fact that the section of minimal volume is isometric to a
regular 2n-gon in R2 follows from Remark 3.4. !

4. Negative moments approach.

4.1. Formulae for sections via negative moments. The goal of this section is to connect
extremal-volume sections of convex bodies to sharp Khinchin-type inequalities for negative
moments.

LEMMA 4.1. Let X be random vector with density g in Rn. Let H be a codimension k
subspace of Rn, and let U be a k × n matrix whose rows u1, . . . , uk form an orthonormal
basis of H⊥, the orthogonal complement of H . Then, f (x) = ∫

H+U/x g is the density of the
random vector UX in Rk .
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PROOF. For x = (x1, . . . , xk), we have U/x = ∑k
i=1 uixi . Since ui span H⊥, we get

that y ∈ H⊥ iff y = U/x for some x ∈ Rk . Moreover, since ui are orthonormal, we get
that x 2→ U/x is an isometric embedding of Rk into Rn, whose image is H⊥. By Fubini’s
theorem, f is measurable on Rk .

Let us now take a measurable set B ⊆ Rk . Note that H = {x ∈ Rn : 〈x,ui〉 = 0,1 ≤ i ≤ k},
and thus, H = kerU . Every point y ∈ U−1(B) can be written as y = y1 + y2, where y1 ∈ H

and y2 ∈ H⊥ ∩ U−1(B). Since every point in H⊥ is of the form y2 = U/z for z ∈ Rk and
U/z ∈ U−1(B) iff UU/z ∈ B , which is just z ∈ B as UU/ = Ik×k , we get that U−1(B) =
H + U/B . Thus, by Fubini’s theorem we get

P(UX ∈ B) = P
(
X ∈ U−1(B)

) = P
(
X ∈ H + U/B

)

=
∫

B

(∫

H+U/x
g

)
dx =

∫

B
f (x)dx. !

COROLLARY 4.2. Let A be a measurable set in Rn of volume 1, and let X be a uniform
random vector on A. Let H be a codimension k subspace of Rn, and let U be a k × n matrix
whose rows form an orthonormal basis of H⊥, the orthogonal complement of H . Then,

f (x) = voln−k
(
A ∩ (

H + U/x
))

is the density of the random vector UX in Rk . Moreover, if A is a convex body, then on
its support the above function is the unique continuous version of the density of UX. This
continuous version satisfies

f (0) = voln−k(A ∩ H)

if 0 ∈ int supp(f ).

PROOF. This is a special case of Lemma 4.1. If A is a convex body, then by Brunn-
Minkowski inequality f

1
n−k is concave on the interior of its support and, therefore, continu-

ous. !

LEMMA 4.3. Let X be a random vector in Rk with density f such that ‖f ‖∞ = f (0)

and f is lower semicontinuous at 0. Let ‖ · ‖ be a norm on Rk with closed unit ball K . We
have

f (0) = lim
q→k−

k − q

k · volk(K)
E‖X‖−q .

PROOF. We first claim that

(6)
∫

tK
‖x‖−q dx = k

k − q
tk−q volk(K) for t > 0,0 < q < k.

Indeed, thanks to the homogeneity of volume, we have
∫

tK
‖x‖−q dx =

∫

tK

∫ ∞

‖x‖
qs−(q+1) ds dx =

∫

tK

(∫ ∞

0
qs−(q+1)1‖x‖≤s ds

)
dx

=
∫ ∞

0
qs−(q+1)

(∫

tK
1‖x‖≤s dx

)
ds =

∫ ∞

0
qs−(q+1)

(∫

Rk
1‖x‖≤min(s,t) dx

)
ds

= volk(K)

∫ ∞

0
qs−(q+1) min(s, t)k ds = k

k − q
tk−q volk(K).



2352 G. CHASAPIS, P. NAYAR AND T. TKOCZ

Take M > 0. Using (6) with t = M , we get

k − q

k · volk(K)
E‖X‖−q = k − q

k · volk(K)

∫

MK
‖x‖−qf (x)dx + k − q

k · volk(K)

∫

(MK)c
‖x‖−qf (x)dx

≤ k − q

k · volk(K)
‖f ‖∞

∫

MK
‖x‖−q dx + k − q

k · volk(K)
M−q

= ‖f ‖∞Mk−q + k − q

k · volk(K)
M−q.

Fix ε > 0. Since ‖f ‖∞ = f (0) and f is lower semicontinuous at 0, the set {x ∈ Rk, f (x) >

‖f ‖∞ − ε} contains a neighbourhood of 0, say δK for some δ > 0. Then,

k − q

k · volk(K)
E‖X‖−q ≥ k − q

k · volk(K)

∫

δK
‖x‖−qf (x)dx

≥ k − q

k · volk(K)

(‖f ‖∞ − ε
) ∫

δK
‖x‖−q dx

= (‖f ‖∞ − ε
)
δk−q.

These two bounds show that, as q → k−, the lim inf and lim sup of k−q
k·volk(K)E‖X‖−q are

within ε of ‖f ‖∞. !

Combining Corollary 4.2 and Lemma 4.3 yields a probabilistic formula for sections in
terms of negative moments.

COROLLARY 4.4. Let A be a symmetric convex body in Rn of volume 1, and let X be
uniform on A. Let ‖ · ‖ be a norm in Rk with closed unit ball K . Let H be a codimension k

subspace of Rn, and let U be a k × n matrix whose rows form an orthonormal basis of H⊥.
Then,

voln−k(A ∩ H) = lim
q→k−

k − q

k · volk(K)
E‖UX‖−q .

PROOF. Since UX is log-concave and symmetric on Rk , one gets ‖f ‖∞ = f (0). !

4.2. Sections of the cube. As a first application, we sketch how to obtain a convenient
probabilistic formula for central section of the cube in terms of negative moments. It was
derived first perhaps in [32] and later appeared in [12] as well as [35]. Our argument is
different, more direct, bypassing the Fourier-analytic identities involving Bessel functions. It
was recently presented in full detail in [16]. It is more convenient to treat the cube of unit
volume, so we set

Qn = 1
2
Bn

∞ =
[
−1

2
,

1
2

]n

.

LEMMA 4.5 (König–Koldobsky [32]). For a unit vector a = (a1, . . . , an) in Rn, we have

voln−1
(
Qn ∩ a⊥) = E

∣∣∣∣∣

n∑

k=1

akξk

∣∣∣∣∣

−1

,

where the ξk are uniform on S2 in R3.
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PROOF. Let U1, . . . ,Un be i.i.d. uniform on [−1,1]. From Corollary 4.4, applied with
k = 1, one gets

voln−1
(
Qn ∩ a⊥) = lim

q→1−
(1 − q)E

∣∣∣∣∣

n∑

k=1

akUk

∣∣∣∣∣

−q

.

It is, therefore, enough to show that for q < 1 one has

E
∣∣∣∣∣

n∑

k=1

akξk

∣∣∣∣∣

−q

= (1 − q)E
∣∣∣∣∣

n∑

k=1

akUk

∣∣∣∣∣

−q

.

This can be shown by repeating Latała’s argument leveraging rotational symmetry from
Proposition 4 in [34]. It has also been written in full detail in Lemma 3 in [16]. !

REMARK 4.6. The following alternative Fourier-analytic formula for the volume of cen-
tral codimension 1 sections perhaps goes back to Pólya and is well known (see, e.g., [4]),

voln−1
(
Qn ∩ a⊥) = 2

π

∫ ∞

0

n∏

j=1

sin(aj t)

aj t
dt.

4.3. Sections of Bn
p via negative moments. Let p > 0. Throughout the paper we let

Y
(p)
1 , Y

(p)
2 , . . . be i.i.d. random variables with density e−β

p
p |x|p ,

where

βp = 2,(1 + 1/p)

is chosen such that
∫
R e−β

p
p |x|p dx = 1. We shall derive the following lemma.

LEMMA 4.7. Let H be a subspace in Rn of codimension k such that the rows of a k × n
matrix U form an orthonormal basis of H⊥. Let v1, . . . , vn be the columns of U . Then,

voln−k(B
n
p ∩ H)

voln−k(B
n−k
p )

= lim
q→k−

k − q

k volk(Bk
2 )

E
∣∣∣∣∣

n∑

j=1

Y
(p)
j vj

∣∣∣∣∣

−q

.

PROOF. Let v1, . . . , vn be the columns of U . Note that
n∑

j=1

vjv
/
j = Ik×k.

We take X = (X1, . . . ,Xn) to be uniform on Bn
p . Then, X/voln(Bn

p)1/n is uniform on B̃n
p =

Bn
p/voln(Bn

p)1/n which has volume 1. Using Corollary 4.4 with the Euclidean norm | · | gives

voln−k(B
n
p ∩ H)

(voln(Bn
p))n−k

= voln−k
(
B̃n

p ∩ H
) = lim

q→k−
voln(Bn

p)
q
n (k − q)

k volk(Bk
2 )

E
∣∣∣∣∣

n∑

j=1

Xjvj

∣∣∣∣∣

−q

.

We shall now use two important facts:

(a) (Barthe, Guédon, Mendelson, Naor [9]) Let Y1, . . . , Yn be i.i.d. random variables with
densities β−1

p e−|x|p , and write Y = (Y1, . . . , Yn). Define S = (
∑n

j=1 |Yj |p)1/p . Let E be an
exponential random variable with density e−t1{t>0}, independent of the Yj . Then, the random
vector Y

(Sp+E)1/p is uniformly distributed on Bn
p .
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(b) (Schechtman, Zinn, see [49] and Rachev, Rüschendorf, [48]) With the above notation
S and Y/S are independent.

In [9] Barthe, Guédon, Mendelson and Naor observed that, using (a) and (b), one gets

E
∣∣∣∣∣

n∑

j=1

Xjvj

∣∣∣∣∣

−q

= E
∣∣∣∣∣

1
(Sp + E)1/p

n∑

j=1

Yjvj

∣∣∣∣∣

−q

= E
∣∣∣∣

S

(Sp + E)1/p

∣∣∣∣
−q

E
∣∣∣∣∣

n∑

j=1

Yj

S
vj

∣∣∣∣∣

−q

.

It follows that E| S
(Sp+E)1/p |−q is finite. Thus,

e−1E|S|−q = E|S|−q1E>1 ≤ E
∣∣∣∣

S

(Sp + E)1/p

∣∣∣∣
−q

< ∞.

Then, again by independence of S and Y/S, we have

E
∣∣∣∣∣

n∑

j=1

Yj

S
vj

∣∣∣∣∣

−q

E|S|−q = E
∣∣∣∣∣

n∑

j=1

Yjvj

∣∣∣∣∣

−q

and, therefore,

E
∣∣∣∣∣

n∑

j=1

Xjvj

∣∣∣∣∣

−q

= 1
E|S|−q

E
∣∣∣∣

S

(Sp + E)1/p

∣∣∣∣
−q

E
∣∣∣∣∣

n∑

j=1

Yjvj

∣∣∣∣∣

−q

= c1(p, q,n)E
∣∣∣∣∣

n∑

j=1

Yjvj

∣∣∣∣∣

−q

= c2(p, q,n)E
∣∣∣∣∣

n∑

j=1

Y
(p)
j vj

∣∣∣∣∣

−q

,

where ci(p, q,n) > 0 is independent of v1, . . . , vn. As a result, one gets

voln−k
(
Bn

p ∩ H
) = c3(k,p,n) lim

q→k−
k − q

k volk(Bk
2 )

E
∣∣∣∣∣

n∑

j=1

Y
(p)
j vj

∣∣∣∣∣

−q

.

Taking vj = ej for 1 ≤ i ≤ k and vj = 0 for k + 1 ≤ j ≤ n and using Lemma 4.3, we obtain

voln−k
(
Bn−k

p

) = c3(k,p,n) lim
q→k−

k − q

k volk(Bk
2 )

E
∣∣(Y (p)

1 , . . . , Y
(p)
k

)∣∣−q = c3(k,p,n). !

COROLLARY 4.8. Let p > 0. For a unit vector a ∈ Rn, we have

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= fa(0),

where fa is the density of
∑n

j=1 ajY
(p)
j .

PROOF. This formula follows by combining Lemma 4.7 with Lemma 4.3. The correct-
ness of the normalization constant can be checked by plugging in a = e1. !

As an application, we show how to obtain the following theorem of Meyer and Pajor from
[40]. The main idea of exploiting Kanter’s peakedness from [26] comes from the original
proof of Meyer and Pajor. In addition to illustrating our approach via negative moments,
which we will build upon later, we hope this proof might be of independent interest.

THEOREM 4.9 (Meyer-Pajor [40]). Let 1 ≤ k ≤ n, and let H be a subspace in Rn of
codimension k. Then, the following function:

p 2→ voln−k
(
Bn

p ∩ H
)
/voln−k

(
Bn−k

p

)

is nondecreasing on (0,∞).
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PROOF. For β > α the random variable Y
(β)
j is more peaked than Y

(α)
j (see [26]

and [40]). Thus, for every vectors v1, . . . , vn in Rk ,
∑n

j=1 Y
(β)
j vj is more peaked than

∑n
j=1 Y

(α)
j vj . Consequently, for a norm ‖ · ‖ on Rk and 0 < q < k,

(7) E
∥∥∥∥∥

n∑

j=1

Y
(β)
j vj

∥∥∥∥∥

−q

≥ E
∥∥∥∥∥

n∑

j=1

Y
(α)
j vj

∥∥∥∥∥

−q

.

Thus, the function α 2→ E‖∑n
j=1 Y

(α)
j vj‖−q is nondecreasing on (0,∞). Using this together

with Lemma 4.7, we get that

p 2→
voln(Bn

p ∩ H)

voln−k(B
n−k
q )

= lim
q→k−

k − q

k volk(Bk
2 )

E
∣∣∣∣∣

n∑

j=1

Y
(p)
j vj

∣∣∣∣∣

−q

is nondecreasing. !

4.4. Sections of Bn
p via Gaussian mixtures. In the sequel we shall need one more formula

in the special case of Bn
p with 0 < p < 2. This formula was mentioned in [19] (a hyperplane

case) and [43] (a general case). We sketch a slightly different argument below, based again
on negative moments, for simplicity for hyperplane sections.

We first need some notation. For α ∈ (0,1), let gα be the density of a standard positive
α-stable random variable, that is, a positive random variable Wα with the Laplace transform
Ee−uWα = e−uα

, u > 0. Let V1, . . . , Vn be i.i.d. positive random variables with density pro-
portional to t−3/2gp/2(t

−1), and set Ri = √
Vi/2. Take Gi to be standard Gaussian random

variables, independent of the Vj . According to Lemma 23(a) from [19], the random vari-
ables RiGi have densities β−1

p e−|x|p . We also let V̄j = (EV
−1/2
j )2Vj be normalised so that

EV̄
−1/2
j = 1.

LEMMA 4.10 (Eskenazis–Nayar–Tkocz [19]). Let 0 < p < 2. For a unit vector a =
(a1, . . . , an) in Rn, we have

(8)
voln−1(B

n
p ∩ a⊥)

voln−1(B
n−1
p )

= E
(

n∑

j=1

a2
j V̄j

)−1/2

.

PROOF. Using Lemma 4.7 and the above Gaussian mixture representation for the Y
(p)
j ,

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= lim
q→1−

1 − q

2
E

∣∣∣∣∣

n∑

j=1

ajY
(p)
j

∣∣∣∣∣

−q

= κp lim
q→1−

(1 − q)E
∣∣∣∣∣

n∑

j=1

aj

√
VjGj

∣∣∣∣∣

−q

for a positive constant κp which depends only on p (resulting from rescalings of the random

variables involved). Since
∑n

j=1 aj
√

VjGj has the same distribution as
√∑

a2
j VjG1 and

(1−q)E|G1|−q converges to
√

2
π (twice the density at 0) as q → 1−, after further rescalings,

we obtain

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= κ ′
pE

(
n∑

j=1

a2
j V̄j

)−1/2

.

Plugging in a = e1 shows that κ ′
p = 1. !
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REMARK 4.11. The above expectation is finite due to the fact that EWr
α < ∞ iff r < α.

Indeed,
∫ ∞

0
tq−3/2gp/2

(
t−1)

dt =
∫ ∞

0
t−q−1/2gp/2(t)dt = EW

−q−1/2
p/2

thus EV
q
1 < ∞ as long as −q −1/2 < p/2, that is, q > −p+1

2 . The above fact can be deduced
from the asymptotic formulas (see, e.g., [41])

gα(t) ∼t→∞ Mαt−(1+α), gα(t) ∼t→0+ Kαt
− 2−α

2(1−α) exp
(
Aαt−

α
1−α

)
.

5. Stability: Heuristic explanation of the proof. We are ready to proceed with the
proofs of Theorem 1.2. First, we briefly outline them. We emphasise that, as already high-
lighted in the Introduction, as different and disconnected from each other our arguments
may seem, their common probabilistic underpinning is the negative moment approach which
yields very convenient formulae for sections, amenable to a detailed analysis allowing not
only to find the extremisers but also to develop precise first order error terms.

To give a short overview: (2) simply follows from Schur convexity; its reversal, (3) is
obtained from a formula involving negative moments combined with complete monotonicity
allowing to invoke the Laplace transform to leverage independence; (4) for 2 < p < ∞ relies
on viewing the volume of sections as the ∞-norm of an appropriate probability density which
is estimated using peakedness and additional probabilistic tools, for example, the Berry–
Esseen theorem, whereas (4) for p = ∞ follows from a more general stability result for
an underlying Khinchin-type inequality, obtained thanks to negative moments, and, finally,
(5) is established by a careful analysis of Ball’s proof, souped-up with new insights gained
from representations via negative moments allowing for certain selfimprovements of Ball’s
inequality (in the spirit of [17], which establishes an analogous stability result for Szarek’s
L1 − L2 classical Khinchin inequality, with arguments based on discrete Fourier analysis).
We begin with the results for the cube.

6. Cube slicing.

6.1. Minimal hyperplane cube sections. Prior to Vaaler’s work [52], Hadwiger in [21]
and, independently, Hensley in [22] established that the minimal hyperplane sections of the
cube are attained for coordinate subspaces. A different simple proof was later given in [4]
(which was based on a direct minimisation of ‖f ‖∞ over even unimodal probability densities
with fixed variance). Our method involving negative moments offers another simple approach
with the advantage that it is well suited to give a stability result. First, we establish a robust
version of a relevant Khinchin inequality.

THEOREM 6.1. Let 0 < p < 2, and let ξ1, . . . , ξn be i.i.d. random vectors in Rd uniform
on Sd−1, d ≥ 3. For every n ≥ 1 and real numbers a1, . . . , an such that a2

1 + · · ·+ a2
n = 1, we

have

E
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

−p

≥ 1 + p(p + 2)(2d − p − 4)

9d2

(

1 −
n∑

j=1

a4
j

)

.

PROOF. First, we remark that a sharp inequality without the remainder term is a simple
consequence of convexity. Indeed, for any p > 0, we have

(9) E
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

−p

= E
(∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

2)−p/2

≥
(

E
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

2)−p/2

= 1.
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To control the error in this estimate, a natural idea presents itself: we write
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

2

= 1 + Y

with

Y = 2
∑

i<j

aiaj 〈ξi , ξj 〉

and seek a refinement of the pointwise bound (1 + x)−p/2 ≥ 1 − p
2 x, x > −1 (resulting just

from convexity), which gives (9), in view of the fact that Y > −1 a.s. and EY = 0. We shall
use the following lemma, the proof of which we defer for now (for simplicity, we did not try
to optimise the numerical constants).

LEMMA 6.2. For every p > 0 and x > −1, we have

(1 + x)−p/2 ≥ 1 − p

2
x + p(p + 2)

9
x2 − p(p + 2)(p + 4)

72
x3.

This lemma yields

E
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

−p

= E(1 + Y)−p/2 ≥ 1 + p(p + 2)

9
EY 2 − p(p + 2)(p + 4)

72
EY 3.

To compute EY 2 and EY 3, first note that, thanks to rotational invariance and independence,
for i < j ,

E〈ξi , ξj 〉2 = E〈ξi , e1〉2 = 1
d

and, for i < j < k,

E〈ξi , ξj 〉〈ξj , ξk〉〈ξi , ξk〉 = E〈ξi , ξj 〉〈ξj , e1〉〈ξi , e1〉

= E〈ξj , e1〉2〈ξi , e1〉2 +
d∑

l=2

E〈ξi , el〉〈ξi , e1〉E〈ξj , el〉〈ξj , e1〉

= E〈ξj , e1〉2E〈ξi , e1〉2 = 1
d2 ,

where in the second line we write 〈ξi , ξj 〉 = ∑d
l=1〈ξi , el〉〈ξj , el〉, use independence and the

fact that vectors ξi have uncorrelated components to see that the sum over l ≥ 2 vanishes.
Thus, using symmetry again,

EY 2 = 4
∑

i<j

a2
i a

2
j E〈ξi , ξj 〉2 = 4

d

∑

i<j

a2
i a

2
j

and

EY 3 = 8 · 6
∑

i<j<k

a2
i a

2
j a

2
kE〈ξi , ξj 〉〈ξj , ξk〉〈ξi , ξk〉 = 48

d2

∑

i<j<k

a2
i a

2
j a

2
k .

Introducing, sl = ∑n
i=1 a2l

i , l = 1,2, . . . , we have s1 = 1 and using Newton identities for
symmetric functions, we express 2

∑
i<j a2

i a
2
j = 1 − s2, 6

∑
i<j<k a2

i a
2
j a

2
k = 1 − 3s2 + 2s3.
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Moreover, s3 ≤ s2. As a result,

EY 2 = 2
d

(1 − s2),

EY 3 = 8
d2 (1 − 3s2 + 2s3) ≤ 8

d2 (1 − s2).

Therefore,

E
∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

−p

≥ 1 + 2p(p + 2)

9d
(1 − s2) − p(p + 2)(p + 4)

9d2 (1 − s2)

= 1 + p(p + 2)(2d − p − 4)

9d2 (1 − s2). !

Now, we are able to deduce a stability result for minimal hyperplane sections of the cube,
(4) for p = ∞. For convenience, we restate this here.

THEOREM 6.3. Let a = (a1, . . . , an) be a unit vector in Rn with a1 ≥ a2 ≥ · · · ≥ 0. Then,

voln−1
(
Qn ∩ a⊥) ≥ 1 + 1

54
|a − e1|2.

PROOF. Note that, under the assumption on a,

1
2
|a − e1|2 = 1

2

(

(1 − a1)
2 +

n∑

i=2

a2
i

)

= 1 − a1 ≤ 1 − a2
1 = 1 −

∑

i

a2
1a2

i ≤ 1 −
∑

i

a4
i .

Thus, the assertion follows immediately from Theorem 6.1 applied to p = 1 and d = 3, in
view of Lemma 4.5. !

REMARK 6.4. The dependence on δ(a) = 1 − ∑n
j=1 a4

j in Theorem 6.1 modulo a con-
stant factor is best possible: there are examples of unit vectors a with δ(a) → 0 for which
E|∑aj ξj |−p − 1 = Op,d(δ(a)). For instance, take a = (

√
1 − ε,

√
ε,0, . . . ,0) with ε < 1

16 .

Since for 0 < p < 2 and x ∈ [−1
2 ,1] one has (1+x)−

p
2 ≤ 1− p

2 x +8x2 (use Taylor’s formula
with Lagrange remainder), it follows that

E
∣∣∣
∑

aj ξj

∣∣∣
−p = E

(
1 + 2

√
ε(1 − ε)〈ξ1, ξ2〉

)−p/2 ≤ 1 + 32ε(1 − ε)E〈ξ1, ξ2〉2

= 1 + 32ε(1 − ε)

d
.

Since 1 − ∑n
j=1 a4

j = 2ε(1 − ε), we get E|∑aj ξj |−p ≤ 1 + 16
d (1 − ∑n

j=1 a4
j ).

In particular, the same remark applies to Theorem 6.3 as well.

It remains to prove the pointwise inequality we used.

PROOF OF LEMMA 6.2. From the Taylor formula with Lagrange reminder for the func-
tion (1 + x)−

p
2 , one gets that for x ≤ 2

p+4

(1 + x)−p/2 − 1 + p

2
x ≥ p(p + 2)

8
x2 − p(p + 2)(p + 4)

48
x3

≥ p(p + 2)

9
x2 − p(p + 2)(p + 4)

72
x3.
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We now show how to treat the case x ≥ 0. Define

ψ(x) = (1 + x)−p/2 − 1 + p

2
x − p(p + 2)

9
x2 + p(p + 2)(p + 4)

72
x3.

Our goal is to prove that ψ(x) ≥ 0 for x ≥ 0. Note that ψ(0) = ψ ′(0) = 0. Thus, it suffices to
show that for x ≥ 0 we have ψ ′′(x) ≥ 0. This is equivalent to (1 + x)−

p+4
2 ≥ 8

9 − 1
3(p + 4)x.

Define α = 1
2(p + 4). Our inequality reads (1 + x)−α ≥ 8

9 − 2
3αx. We shall verify this for

arbitrary α, x > 0. Let t = αx. Rewriting gives (1+ t
α )−α ≥ 8

9 − 2
3 t . We have (1+ t

α )−α ≥ e−t

(take the logarithm and use the inequality ln(1 + y) ≤ y), and thus, it is enough to show that
e−t ≥ 8

9 − 2
3 t for t > 0. The function h(t) = e−t − 8

9 + 2
3 t has a minimum for t = ln(3

2). It is
enough to verify that 2

3 ≥ 8
9 − 2

3 ln(3
2). This is ln(3

2) ≥ 1
3 which is true. !

6.2. Maximal hyperplane cube sections. Our goal here is to prove (5). We recall two
formulae (see Lemma 4.5 and Remark 4.6),

voln−1
(
Qn ∩ a⊥) = E

∣∣∣∣∣

n∑

j=1

aj ξj

∣∣∣∣∣

−1

(10)

= 2
π

∫ ∞

0

n∏

j=1

sin(aj t)

aj t
dt(11)

as well as the fact that

(12) ‖a‖Bus = |a|
voln−1(Qn ∩ a⊥)

defines a norm on Rn, thanks to Busemann’s theorem (see [13] or, e.g., Theorem 3.9 in [42]).
It follows that the function a 2→ voln−1(Qn ∩ a⊥) is 2-Lipschitz on the unit sphere.

LEMMA 6.5. For every unit vectors a, b in Rn, we have
∣∣voln−1

(
Qn ∩ a⊥) − voln−1

(
Qn ∩ b⊥)∣∣ ≤ 2|a − b|.

PROOF. Letting F(a) = voln−1(Qn ∩ a⊥), by the triangle inequality we have

|F(a) − F(b)|
F(a)F (b)

= ∣∣‖a‖Bus − ‖b‖Bus
∣∣ ≤ ‖a − b‖Bus = |a − b|

F(a − b)
.

Using that 1 ≤ F(x) ≤
√

2 for every vector x concludes the proof. !

We will also need the following observation.

LEMMA 6.6. Let X and Y be two independent rotationally invariant random vectors in
R3. Then,

E|X + Y |−1 = E min
{|X|−1, |Y |−1} ≤ min

{
E|X|−1,E|Y |−1}

.

In particular,

voln−1
(
Qn ∩ a⊥) ≤ min

{|aj |−1}
.
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PROOF. Since X and Y are rotationally invariant, their distributions can be written as
|X|ξ1 and |Y |ξ2, where ξ1, ξ2 are uniform on S2, chosen independently of X and Y . By
conditioning on X and Y , it suffices to verify the identity Eξ1,ξ2 |rξ1 + sξ2|−1 = min(r, s)−1.
Note that by rotation invariance 〈ξ1, ξ2〉 has the same distribution as 〈ξ1, e1〉, that is, a uniform
distribution on [−1,1]. Therefore,

Eξ1,ξ2 |rξ1 + sξ2|−1 = Eξ1,ξ2

(|rξ1 + sξ2|2
)−1/2 = 1

2

∫ 1

−1

(
r2 + s2 + 2rsu

)−1/2 du

= (r2 + s2 + 2rsu)1/2

2rs

∣∣∣∣
1

−1
= |r + s| − |r − s|

2rs

= min{r, s}
rs

= min
{
r−1, s−1}−1

.

To prove the second part, it suffices to take X = ∑n−1
j=1 aj ξj , Y = anξn and use the inequal-

ity E|X + Y |−1 ≤ E|Y |−1. !

Since the maximal section has volume
√

2, that is voln−1(Qn ∩ ( e1+e2√
2

)⊥) =
√

2, our sta-
bility result (5) for maximal sections of the cube can be equivalently stated as follows:

(13) voln−1
(
Qn ∩ a⊥) ≤

√
2 − c0

∣∣∣∣a − e1 + e2√
2

∣∣∣∣,

for every n and every unit vector a in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0 for some universal
constant c0.

The proof involves different arguments, depending on whether a is close to the extremiser
or not and whether its largest coordinate is large or not. We assume throughout that a is a
unit vector in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and set

δ(a) =
∣∣∣∣a − e1 + e2√

2

∣∣∣∣
2
= 2 −

√
2(a1 + a2).

For vectors a close to the extremiser, we have the following local stability result (it is to
some extent in the spirit of Lemma 3.7 from [17]).

LEMMA 6.7. There are universal constants δ0 ∈ (0, 1√
2
) and c0 > 0 such that (13) holds

for every a with δ(a) ≤ δ0.

For vectors a away from the extremiser with largest coordinate sufficiently close to 1√
2
,

we prove the following lemma.

LEMMA 6.8. Let δ0 be the constant from Lemma 6.7. There are positive universal con-
stants γ0, c1 such that

(14) voln−1
(
Qn ∩ a⊥) ≤

√
2 − c1

holds for every a with δ(a) > δ0 and a1 ≤ 1√
2

+ γ0.

The remaining case is straightforward: taking these two lemmas for granted, it is very easy
to prove (13).
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PROOF OF (13). In view of Lemmas 6.7 and 6.8, it remains to consider the case when
a1 > 1√

2
+ γ0. From Lemma 6.6 we have

voln−1
(
Qn ∩ a⊥) ≤ 1

a1
<

1

1/
√

2 + γ0
<

√
2 − γ0 <

√
2 − γ0√

2

√
δ(a),

because δ(a) < 2, so in this case (13) also holds. !

It remains to prove the lemmas.

PROOF OF LEMMA 6.7. The idea is to argue that Ball’s inequality voln−1(Qn ∩ a⊥) ≤√
2 allows for a selfimprovement near the extremiser. We shall assume that n ≥ 3 and a2

1 +
a2

2 < 1 (the case n = 2 can be analysed directly). A starting point is formula (10), combined
with Lemma 6.6,

voln−1
(
Qn ∩ a⊥) = EX,Y min

{|X|−1, |Y |−1}
,

where we apply it to X = a1ξ1 + a2ξ2 and Y = ∑n
j=3 aj ξj . By Ball’s inequality,

EY |Y |−1 ≤
√

2
(
1 − a2

1 − a2
2
)−1/2

.

Thus, thanks to the independence of X and Y and the simple inequality

EY min
{|X|−1, |Y |−1} ≤ min

{|X|−1,EY |Y |−1}
,

we obtain

voln−1
(
Qn ∩ a⊥) ≤ EX min

{|X|−1,
√

2
(
1 − a2

1 − a2
2
)−1/2}

.

Note that |X| has the same distribution as (a2
1 + a2

2 + 2a1a2U)1/2, where U is a random
variable uniform on [−1,1]. To evaluate EX , observe that |X|−1 <

√
2(1 − a2

1 − a2
2)−1/2

corresponds to U > u0, where

u0 = 1 − 3(a2
1 + a2

2)

4a1a2
.

We need to consider two cases. Let δ = δ(a)/2, that is,

a1 + a2 =
√

2(1 − δ).

Case 1: u0 ≤ −1. Then,

EX min
{|X|−1,

√
2
(
1 − a2

1 − a2
2
)−1/2} = E|X|−1 = min(a1, a2)

−1 = a−1
1 .

Given a1 + a2 =
√

2(1 − δ), the condition u0 ≤ −1 implies that a1 ≥ ā1, where ā1 is the
larger of the two solutions to the quadratic equation

1 − 3
(
a2

1 + (√
2(1 − δ) − a1

)2) = −4a1
(√

2(1 − δ) − a1
)
.

This yields

voln−1
(
Qn ∩ a⊥) ≤ 1

ā1
=

√
2
(

1 − δ +
√

δ

5

√
2 − δ

)−1
≤

√
2 − c0

√
δ

for a universal constant c0 > 0, provided that δ is sufficiently small.
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Case 2: u0 > −1. It is clear that for all δ sufficiently small, u0 < 1 (in fact, since a1 +a2 ≤√
2(a2

1 + a2
2) ≤

√
2, the equality a1 + a2 =

√
2(1 − δ) for small δ implies that both numbers

a1, a2 are close to 1√
2
, and thus, u0 is close to −1). Then,

EX min
{|X|−1,

√
2
(
1 − a2

1 − a2
2
)−1/2}

= 1
2
(u0 + 1)

√
2
(
1 − a2

1 − a2
2
)−1/2 + 1

2

∫ 1

u0

(
a2

1 + a2
2 + 2a1a2u

)−1/2 du

= u0 + 1
√

2(1 − a2
1 − a2

2)
+

a1 + a2 −
√

a2
1 + a2

2 + 2a1a2u0

2a1a2
.

Plugging in u0 and rewriting in terms of s = a1 +a2, ρ = a2
1 +a2

2 results with an upper bound
on voln−1(Qn ∩ a⊥) by

h(s,ρ) = s

s2 − ρ
+ 2s2 − 1 − 3ρ

2
√

2(s2 − ρ)
√

1 − ρ
.

Note that s2

2 ≤ ρ < 1. We claim that, for every 1 ≤ s ≤
√

2, function ρ 2→ h(s,ρ) is decreas-

ing on ( s2

2 ,1). Thus,

voln−1
(
Qn ∩ a⊥) ≤ h

(
s, s2/2

) = 2
s

−
√

1 − s2/2
√

2s2

=
√

2(1 − δ)−2
(

1 − δ −
√

δ

2
√

2

√
2 − δ

)

<
√

2 − c0
√

δ

for a universal constant c0 > 0 and all sufficiently small δ.
To prove that ρ 2→ h(s,ρ) is decreasing on ( s2

2 ,1), we fix 1 ≤ s ≤
√

2 and compute the
derivative

∂h

∂ρ
= −2

√
2 − 3

√
2ρ(1 + ρ) − 8(1 − ρ)3/2s + 3

√
2s2(1 + ρ) − 2

√
2s4

8(1 − ρ)3/2(s2 − ρ)2 .

Note that the numerator

h̃(s,ρ) = 2
√

2 − 3
√

2ρ(1 + ρ) − 8(1 − ρ)3/2s + 3
√

2s2(1 + ρ) − 2
√

2s4

is a concave function of ρ ∈ (s2/2,1), as a sum of concave functions. It suffices to show that
the values at the endpoints are nonnegative. At ρ = 1, we have

h̃(s,1) = −2
√

2
(
s4 − 3s2 + 2

) = 2
√

2
(
s2 − 1

)(
2 − s2) ≥ 0.

At ρ = s2/2, we get

h̃
(
s, s2/2

) = 2 − s2

2
√

2

(
5s2 + 4 − 8s

√
2 − s2

) ≥ 2 − s2

2
√

2

(
5s2 − 4

) ≥ 0,

by 2s
√

2 − s2 ≤ s2 + (2 − s2) = 2. !

PROOF OF LEMMA 6.8. Assume that δ(a) > δ0. In particular,

(15) a2 ≤ 1
2
(a1 + a2) = 2 − δ(a)

2
√

2
<

1√
2

− δ0

2
√

2
.
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The argument is now split into two cases: when a1 ≤ 1√
2
, we employ (11) and use Ball’s ap-

proach to show that savings simply come from a2 being small, while when a1 > 1√
2
, provided

a1 is close to 1√
2
, we employ Busemann’s theorem to reduce this case to the previous one.

Case 1: a1 ≤ 1√
2
. For s ≥ 2, we define

/(s) = 2
π

√
s

∫ ∞

0

∣∣∣∣
sin t

t

∣∣∣∣
s

dt.

To establish his cube-slicing result, Ball showed in [4] that

/(s) < /(2) =
√

2, s > 2.

Moreover, since sin(t
√

s)

t/
√

s
= 1 − t2

6s + O(s−2) as s → ∞,

lim
s→∞/(s) =

√
6
π

<
√

2.

In particular, by continuity for every s0 > 2, there is 0 < θ0 < 1 such that

(16) /(s) ≤ θ0
√

2, s ≥ s0.

As in [4], applying Hölder’s inequality in (11) yields

voln−1
(
Qn ∩ a⊥) ≤

n∏

j=1

/
(
a−2
j

)a2
j .

Letting s0 = 2(1 − δ0/2)−2, from (15), we know that a−2
j ≥ s0 for each j ≥ 2; thus, (16)

applied to each j ≥ 2 and /(a−2
1 ) ≤

√
2 give

voln−1
(
Qn ∩ a⊥) ≤ θ

1−a2
1

0

√
2 ≤ θ

1/2
0

√
2 =

√
2 − c1.

Case 2: 1√
2

< a1. We argue that there are positive universal constants γ0, c2 such that if

additionally a1 < 1√
2

+ γ0, then voln−1(Qn ∩ a⊥) ≤
√

2 − c2. To this end, we modify a and
consider the unit vector

b =
( 1√

2
,

√

a2
1 + a2

2 − 1
2
, a3, . . . , an

)
.

Note that b1 ≥ b2 and since b2 ≥ a2, also b2 ≥ b3 ≥ · · · ≥ bn. Moreover, crudely,
√

a2
1 + a2

2 − 1
2

− a2 = a2
1 − 1

2√
a2

1 + a2
2 − 1

2 + a2

≤
√

a2
1 − 1

2
≤

√
2γ0,

thus

|a − b|2 =
(
a1 − 1√

2

)2
+

(√

a2
1 + a2

2 − 1
2

− a2

)2
< γ 2

0 + 2γ0.

Lemma 6.5 yields

voln−1
(
Qn ∩ a⊥) ≤ voln−1

(
Qn ∩ b⊥) + 2

√
γ 2

0 + 2γ0.

If δ(b) > δ0, then Case 1 applied to b gives

voln−1
(
Qn ∩ b⊥)

<
√

2 − c1.
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Otherwise, observing that

δ(b) = δ(a) −
√

2
( 1√

2
+

√

a2
1 + a2

2 − 1
2

− a1 − a2

)

> δ0 −
√

2
(√

a2
1 + a2

2 − 1
2

− a2

)

> δ0 − 2
√

γ0.

Lemma 6.7 applied to b gives

voln−1
(
Qn ∩ b⊥)

<
√

2 − c0

√
δ0 − 2

√
γ0.

In any case, choosing γ0 sufficiently small (depending on the values of c0, c1, δ0), we can
ensure that

voln−1
(
Qn ∩ a⊥) ≤

√
2 − c2

with a positive universal constant c2. !

REMARK 6.9. The dependence on δ(a) in (13) (modulo the universal constant c0) is best

possible: if we consider aε = (
√

1
2 + ε,

√
1
2 − ε,0, . . . ,0) with ε → 0, then δ(a) = ε2 +O(ε4)

and voln−1(Qn ∩ a⊥) = a−1
1 =

√
2 − √

2δ(a) + o(
√

δ(a)).

7. Hyperplane sections of Bn
p , 0 < p < ∞.

7.1. Case 0 < p < 2. As remarked in [19], formula (8) immediately yields the Schur-
convexity of the function

(b1, . . . , bn) 2→ voln−1
(
Bn

p ∩ (
√

b1, . . . ,
√

bn)
⊥)

on Rn
+, in particular, asserting that the subspaces of minimal and maximal volume cross-

section are ( 1√
n
, . . . , 1√

n
)⊥ and (1,0, . . . ,0). Moreover, the formula allows to obtain stability

results for these extremisers which has not been observed before.

7.1.1. Case 0 < p < 2: Maximal sections. Thanks to Schur-convexity, the case of maxi-
mal sections is straightforward.

PROOF OF (2). By (8) and Schur-convexity,

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= E
(

n∑

j=1

a2
j V̄j

)−1/2

≤ E
(
a2

1V̄1 + (
1 − a2

1
)
V̄2

)−1/2

=
vol1(B2

p ∩ (a1,
√

1 − a2
1)⊥)

vol1(B1
p)

which is exactly the right-hand side of (2). !

REMARK 7.1. The bound is clearly optimal, as it is attained in the case of vectors with
at most two nonzero coordinates. Moreover, the right-hand side of (2), in terms of δ = δ(a) =
|a − e1|, is asymptotic to 1 − 1

p δp as δ → 0+.
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7.1.2. Case 0 < p < 2: Minimal sections. Here, our goal is to establish (3). We begin
with a relevant stability result for negative moments. We rely on the fact that x 2→ x−q , q >

0 is completely monotone which allows to use simple convexity properties of log-moment
generating functions.

LEMMA 7.2. Let Y be a nonnegative random variable and 0(u) = log Ee−uY , u ≥ 0.
For every nonnegative real numbers b1, . . . , bn with B = ∑n

j=1 bj , we have

(17)
n∑

j=1

0(bj ) ≥ n0(B/n) + c
n∑

j=1

(bj − B/n)2,

where

c = 1
4

sup
0<α<β<γ

e−L(α+γ )(β − α)2P(Y < α)P(β < Y < γ )

with L = maxj≤n bj .

PROOF. By Taylor’s theorem with Lagrange’s reminder,

0(bj ) = 0(B/n) + (bj − B/n)0′(B/n) + 1
2
(bj − B/n)20′′(θj )

for some θj between bj and B/n. Adding these inequalities over j ≤ n gives (17) with
c = 1

2 inf(0,maxj bj ) 0
′′. Let Y1, Y2 be independent copies of Y . Crudely, Ee−uY1 ≤ 1, so for

0 < α < β < γ ,

0′′(u) = 1
2

1
(Ee−uY1)2 E(Y2 − Y1)

2e−uY1e−uY2

≥ 1
2

E(Y2 − Y1)
2e−uY1e−uY21{Y1<α}1{β<Y2<γ }

≥ 1
2
(β − α)2e−u(α+γ )P(Y1 < α)P(β < Y2 < γ )

which proves (17). !

THEOREM 7.3. Let q > 0. Let Y be a nonnegative random variable which is not constant
a.s. with EY < ∞. Let Y1, Y2, . . . be its i.i.d. copies. For every b1, . . . , bn ≥ 0 with

∑n
j=1 bj =

1, we have

(18) E
(

n∑

j=1

bjYj

)−q

≥ E
(

n∑

j=1

1
n
Yj

)−q

+ cq,Y

n∑

j=1

(bj − 1/n)2

for some positive constant cq,Y which depends only on q and the distribution of Y .

PROOF. Using x−q = ,(q)−1 ∫ ∞
0 e−tx tq−1 dt , x > 0, we have

(19) E
(

n∑

j=1

bjYj

)−q

= ,(q)−1
∫ ∞

0
exp

(
n∑

j=1

0(tbj )

)

tq−1 dt,

where 0(u) = log Ee−uY . We apply Lemma 7.2 to the numbers tbj which add up to t . It is
clear that, under our assumptions on Y , the constant c from Lemma 7.2 satisfies c ≥ c1e

−c2t
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for some positive constants c1, c2 > 0 which depend only on the distribution of Y . Thus, from
(17) we get

E
(

n∑

j=1

bjYj

)−q

≥ ,(q)−1
∫ ∞

0
exp

(
n0(t/n) + c1e

−c2t t2δ
)
tq−1 dt

with δ = ∑n
j=1(bj − 1/n)2. Using exp(c1e

−c2t t2δ) ≥ c1e
−c2t t2δ + 1, we obtain

E
(

n∑

j=1

bjYj

)−q

≥ E
(

n∑

j=1

1
n
Yj

)−q

+ δ · c1,(q)−1
∫ ∞

0
exp

(
n0(t/n)

)
e−c2t tq+1 dt.

By the convexity of 0, the sequence (n0(t/n))n is nonincreasing with the limit −tEY , hence
∫ ∞

0
exp

(
n0(t/n)

)
e−c2t tq+1 dt ≥

∫ ∞

0
e−(c2+EY )t tq+1 dt

which gives (18). !

We are ready to establish the desired stability results for minimal sections.

PROOF OF (3). Let

An,p = E
(

n∑

j=1

1
n
V̄j

)−1/2

.

From (8) and (18) applied to the V̄j and q = 1
2 , we have

(20)

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

= 1
An,p

E
(

n∑

j=1

aj V̄j

)−1/2

≥ 1 + cp

An,p

n∑

j=1

(
a2
j − 1/n

)2

with a positive constant cp which depends only on p (through the distribution of V̄1). It
remains to note that, thanks to Schur-convexity, the sequence An,p is nonincreasing, thus
An,p ≤ A1,p = EV̄

−1/2
1 = 1. !

REMARK 7.4. The sequence An,p is in fact bounded below as well, namely, by

lim
n→∞An,p ≥ E

[

lim
n→∞

(
n∑

j=1

1
n
V̄j

)−1/2]

= (EV̄1)
−1/2.

Moreover, as n → ∞, we have

(21) An,p = c0(p) + c1(p)

n
+ O

(
n−3/2)

for some constants c0(p), c1(p) which depend only on p. This is justified by first noting that
An,p = gn(0), where gn(x) is the density of 1√

n

∑n
j=1 Yj (plug in a = e1 in (20) and recall

Corollary 4.8) and then evoking the Edgeworth expansion for gn (see, e.g., Theorem 3.2 in
[11] and classical references therein).
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REMARK 7.5. The dependence on δn(a) = ∑n
j=1(a

2
j − 1/n)2 in (3) modulo a constant

factor is best possible in the following two scenarios:
(1) As n → ∞, there are unit vectors a in Rn with δn = δn(a) → 0 such that the left-hand

side of (3) is, in fact, of the order 1 + c(p) · δn + o(δn). Consider a = ( 1√
n−1

, . . . , 1√
n−1

,0)

in Rn. Then, δn = δn(a) = (n − 1)( 1
n−1 − 1

n)2 + 1
n2 = 1

n2 + O( 1
n3 ) and, using (21),

voln−1(B
n
p ∩ ( 1√

n−1
, . . . , 1√

n−1
,0)⊥)

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

= An−1,p

An,p
= 1 + c(p)

n2 + O

( 1
n5/2

)
.

(2) For a fixed n, there are unit vectors a in Rn with δ = δn(a) → 0 such that the left-hand
side of (3) is of the order 1 + c(p,n)δ + o(δ). For simplicity, let n be a fixed even integer. Let
ε → 0+, and consider

aε =
(√

1
n

+ ε, . . . ,

√
1
n

+ ε

︸ ︷︷ ︸
n/2

,

√
1
n

− ε, . . . ,

√
1
n

− ε

︸ ︷︷ ︸
n/2

)
.

Then, δε = δn(aε) = nε2 and with

X = V̄1 + · · · + V̄n/2, Y = V̄n/2+1 + · · · + V̄n,

which are i.i.d., we have

voln−1(B
n
p ∩ a⊥

ε )

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

= 1
An,p

E
(

X + Y

n
+ ε(X − Y)

)−1/2

= 1
An,p

E
[(

X + Y

n

)−1/2(
1 + εn

X − Y

X + Y

)−1/2]
.

Since |εnX−Y
X+Y | ≤ εn < 1

2 , for sufficiently small ε, using (1 + x)−1/2 ≤ 1 − 1
2x + x2, x > −1

2 ,
we can thus upper bound the right-hand side by

1
An,p

E
[(

X + Y

n

)−1/2(
1 − 1

2
εn

X − Y

X + Y
+ ε2n2

(
X − Y

X + Y

)2)]
= 1 + c(p,n)ε2,

where we use that |X−Y
X+Y | ≤ 1 to guarantee the existence of the expectations involved and

symmetry to conclude that term linear in ε vanishes.

7.2. Case 2 < p < ∞. Here, we prove (4). We use the formula from Corollary 4.8, that
for a unit vector a ∈ Rn, we have

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= fa(0),

where fa is the density of
∑n

j=1 ajYj , Y1, Y2, . . . are i.i.d. random variables, each with den-
sity exp(−β

p
p |x|p), where βp = 2,(1 + 1/p).

LEMMA 7.6. Let 2 < p < ∞. For every u0 > 0, there is c > 0, depending only on u0
and p such that, for every 0 < u < u0, we have

(22) (1 + u)1/2
∫

R
exp

{−βp
pup/2|x|p − πx2}

dx ≥ 1 + cu.
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PROOF. Fix 2 < p < ∞ and u0 > 0. Using exp(−t) ≥ 1 − t , we obtain
∫

R
exp

{−βp
pup/2|x|p − πx2}

dx ≥ 1 − Apup/2

with Ap = β
p
p

∫
R |x|pe−πx2

dx. Thus, it is clearly possible to choose sufficiently small u1 > 0
and c > 0 which depend only on p such that (22) holds for all 0 < u < u1. Moreover, a change
of variables x = u−1/2y yields

∫

R
exp

{−βp
pup/2|x|p − πx2}

dx = u−1/2E exp
{−πu−1Y 2}

,

where Y is a random variable with density exp(−β
p
p |x|p) which is more peaked than a Gaus-

sian random variable G with density exp(−πx2). Thus, for every u > 0,
∫

R
exp

{−βp
pup/2|x|p − πx2}

dx > u−1/2E exp
{−πu−1G2} = (1 + u)−1/2.

Thus, by continuity, the infimum of left-hand side of (22) over u1 < u < u0 is strictly larger
than 1. Decreasing c, if necessary, allows to finish the argument. !

PROOF OF (4). We use different arguments, depending on whether the vector a is close
or not to the minimising one e1. With hindsight, fix θp to be a positive sufficiently small
constant, which depends only on p, such that

(
2πEY 2

1
)−1/2 exp

(−0.28θp
(
E|Y1|3

)(
EY 2

1
)−5/2)

− (
0.56θp

(
E|Y1|3

)(
EY 2

1
)−3/2)1/2

> 1.
(23)

Such a choice is possible since 2πEY 2
1 < 1 for p > 2, as explained later in the proof.

Case 1: a1 > θp . Here, the starting point is a formula obtained from writing fa(0) as the
convolution of the densities 1

aj
exp(−β

p
p |xj/aj |p) and changing the variables yj = xj/aj ,

leading to

fa(0) = 1
a1

E exp

{

−βp
p

∣∣∣∣∣

n∑

j=2

bjYj

∣∣∣∣∣

p}

with bj = aj

a1
. Let

u =
n∑

j=2

b2
j = 1 − a2

1

a2
1

.

Note that our assumption a1 ≥ θp is equivalent to u ≤ θ−2
p − 1. Since Yj is more peaked than

a Gaussian with density exp(−πx2), we get

E exp

{

−βp
p

∣∣∣∣∣

n∑

j=2

bjYj

∣∣∣∣∣

p}

≥
∫

R
exp

{

−βp
p

(
n∑

j=2

b2
j

)p/2

|x|p − πx2

}

dx.

Note that 1
a1

=
√

1 + u. Lemma 7.6 applied with u0 = θ−2
p − 1 thus yields

fa(0) ≥ 1 + cpu = 1 + cp
1 − a2

1

a2
1

≥ 1 + cp(1 − a1)

with a positive constant cp which depends only on p.
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Case 2: a1 ≤ θp . Since in this case

ρ =
n∑

j=1

E|ajYj |3 ≤ a1E|Y1|3
n∑

j=1

a2
j ≤ θpE|Y1|3,

we can use the Berry–Esseen theorem to argue that fa(0) is large. Let

σp = (
EY 2

1
)1/2

.

We have (see, e.g., [51] which provides the current best value of the numerical constant in
the Berry–Esseen theorem)

sup
x∈R

∣∣∣∣∣P
(

n∑

j=1

ajYj ≤ x

)

− P(Zp ≤ x)

∣∣∣∣∣ ≤ 0.56σ−3
p ρ,

where Zp is a Gaussian random variable with variance σp . Let φp denote the density of Zp .
Crucially, peakedness yields

φp(0) = 1√
2πσp

>
1√

2πσ2
= 1,

since p > 2. Thanks to the symmetry and monotonicity of the densities involved, in particular,
we obtain that, for every δ > 0,

δfa(0) ≥
∫ δ

0
fa(x)dx ≥

∫ δ

0
φp(x)dx − εp

with εp = 0.56θpσ−3
p E|Y1|3. Letting, say δ = ε

1/2
p , and using δ−1 ∫ δ

0 φp(x)dx > φp(δ) =
φp(0)e−δ2/(2σ 2

p), we see that θp chosen sufficiently small according to (23) guarantees that

fa(0) ≥ ε−1/2
p

∫ ε
1/2
p

0
φp(x)dx − ε1/2

p ≥ φp(0)e−εp/(2σ 2
p) − ε1/2

p = 1 + cp

with a positive constant cp which depends only on p. This gives fp(0) ≥ 1 + cp which
finishes the proof. !

REMARK 7.7. It can be seen again by taking vectors with exactly two nonzero co-
ordinates that the dependence on δ(a) = |a − e1|2 in (4) modulo a constant factor is
best possible. For instance, take ε → 0, and consider aε = (

√
1 − ε,

√
ε,0, . . . ,0). Then,

δε = δ(aε) = 2(1 − √
1 − ε) = ε + O(ε2) and

voln−1(B
n
p ∩ a⊥

ε )

voln−1(B
n−1
p )

= (
(1 − ε)p/2 + εp/2)−1/p = 1 + 1

2
ε + O

(
εp/2) = 1 + 1

2
δε + o(δε),

since p > 2.

8. Conclusion. Our result of Theorem 1.1 confirms the intuition that the (unknown) ex-
tremal subspaces for minimal-volume central sections of Bn

p , 0 < p < 2, are conceivably as
symmetric as possible. Note that, in the case of the corresponding question for maximal-
volume sections and p > 2, the situation is more delicate, at least for large p, as suggested
by Ball’s results (even in the hyperplane case).

It has been elusive how to extend the arguments from Section 3 to other values of p than
p = 1 or higher dimensions k than k = 2. We conjecture that, when k = 2, the minimising
subspace H is the same as in Theorem 1.1 for all 0 < p < 2.

Theorem 1.2 deals only with the case of hyperplane sections. It would be of interest to ask
for corresponding stability results for lower dimensional sections. We believe that (at least
some of) our methods are robust enough to yield satisfactory answers. Another challenging
and intriguing question is that of a sharp dependence on p of the constants cp in Theorem 1.2.
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