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We show that the two-dimensional minimum-volume central section of
the n-dimensional cross-polytope is attained by the regular 2n-gon. We estab-
lish stability-type results for hyperplane sections of £-balls in all the cases
where the extremisers are known. Our methods are mainly probabilistic, ex-
ploring connections between negative moments of projections of random vec-
tors uniformly distributed on convex bodies and volume of their sections.

1. Introduction. For p > 0, let BZ ={(x1,...,x,) € R": 3% | |x;|? < 1} be the unit
ball in the standard ¢}, norm. The problem of determining k-dimensional sections of B}, of
maximal and minimal volume proved to be notoriously difficult and has attracted significant
attention over the past few decades, notably prompting development of several important
analytic, geometric and probabilistic techniques. It originated in the context of the sections
of the cube from questions in geometry of numbers (see, e.g., [22, 52]).

Conspicuously, Fourier analytic methods have played a prominent role in these develop-
ments, starting perhaps with Ball’s solution [4] to maximal volume hyperplane sections of
the cube and significantly advanced in the many works that followed. We refer to Koldob-
sky’s monograph [28]. In its comprehensive introduction we find the following elementary
formula:

(1) VOln_1(KﬂaL) — lim Ef |(x,a) 1Jredx

2 e—0+
for the volume of the section of an origin-symmetric star body K in R” by the hyperplane
a™ perpendicular to a unit vector @ in R”. This formula can perhaps be traced back to Kalton
and Koldobsky’s paper [25], where it appears in the context of embeddings into L ,-spaces
with negative p and the connection to intersection bodies (significant in the full resolution of
the famous Busemann—Petty problem; see [20, 37, 53]).

This formula can be seen as a starting point and inspiration of the present paper. Proba-
bilistically, the right-hand side of (1), after normalising, is the limit of the negative moments
E[(X,a)|~'*¢ of the marginal (X, a) of arandom vector X uniformly distributed on K. Since
plainly % Ir |r|~1+e f(@)dt — f(0) as ¢ — 0+ for a (say bounded and continuous) density f
on R, we get the left-hand side. This point of view naturally connects the problem of extremal
volume sections of convex bodies with Khinchin-type inequalities for negative moments (for
the latter, in the context of the cube, we refer to the recent work [16]). Here, we employ
the same idea to sharpen all the known results for extremal volume hyperplane sections of
£ -balls.

Notation. We try to follow standard notation used in probability and convex geometry.
For convenience we try to recall or introduce it as we move along, but we also summarise
most of it here. By a convex body K in R”, we mean a compact convex set with nonempty
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interior. We denote by vol, (A) the n-dimensional Lebesgue measure of a measurable set A
in R"; whereas, voly will stand for the Lebesgue k-dimensional measure on a k-dimensional
subspace H of R” (instead of writing voly, we shall often write voly, where k is the di-
mension of H, if it is clear what H is in a given context). For a vector x = (x1, ..., X,)
in R", [x|=CQ""_; sz-)l/z denotes its Euclidean norm, (x, y) = Z?Zl xjy; is the standard
inner product of two vectors x and y in R" and, as usual, (e;)1<j<, is the standard basis
of R", thus (e;, ex) = § k. The orthogonal complement of a subspace H in R" is denoted
by H' and for a vector a in R", a* = {x € R", (x,a) = 0} is the hyperplane with nor-
mal a. For p > 0, BZ ={x e R": Y% | |x;|? < 1} is the unit £,-ball. In particular, B} is
the unit Euclidean ball, and its boundary, the (n — 1)-dimensional unit sphere, is denoted
by s*7! = 0By = {x e R", |x| = 1}. When p = oo, B, =[-1,1]" is the n-dimensional
unit cube, and its dilate of volume 1 is denoted by Q,, = %Bgo = [—%, %]". The Minkowski
functional (gauge function) associated with a convex body K will be denoted by | - || k.

Our results. It remains an open problem to determine k-dimensional sections of BZ of
extremal volume: the minimal ones when 2 <k <n —2,0 < p < 2, and maximal ones when
2<k<n-—1,2< p < oo. This paper is twofold. First, we take on this question in the
case of the cross-polytope and two-dimensional sections, so for p =1 and k = 2. Second,
we establish stability-type results for the hyperplane sections in all of the cases where the
extremisers are known. Our bounds on deficits are sharp modulo multiplicative constants.

Cross-polytope. Our first main result is the following theorem about minimal volume
two-dimensional central sections of the cross-polytope BY.

THEOREM 1.1. Let n > 3. For every two-dimensional subspace H of R", one has

2 un3(m
volo(BI A H) = " (0
cos(7,;)
Moreover, if the equality holds, then B N H is isometric to a regular 2n-gon in R2.
The minimum is achieved for H = T(R?), with Tx = ((v1,x), ..., (Un, x)) and vg =
(cos(%”), sin(%ﬂ)), k=1,...,n. The minimising subspace H is unique, up to coordinate
reflections and permutations.

In essence, the argument relies on convexity of certain functions, which arise from the
radial function of a planar embedding of the cross-section Bj N H, after leveraging the fact

that it is a polygon and breaking it up into triangles.

Stability. Our second main result concerns dimension-free refinements of the known re-
sults for hyperplane sections, providing sharp stability of the unique extremising hyperplanes.

THEOREM 1.2.  There is a positive constant ¢y, which depends only on p, such that for

every n > 1 and every unit vector a = (ay,...,ay) in R* withay >a, > --- > a, >0, we
have

vol,_1 (B Nat) _
) TP <@+ (1-d)"?)P 0<p<2,

Voln_l(B;’,ﬂel)

vol,_1(B" Nat) n 5
(3) P >1+cpy (a;—1/n)°, 0<p<2,
j=1

vol,_1 (B N (A2F) L)
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vol,—1 (B}, Nat)

4 >14cpla—el]?, 2<p<oo,
@ vol,_1 (Bl Met) ~ pla el P
vol,_1 (B~ ﬂaJ‘) el +ep
(5) <l —cxla— :
VO]n—l(Boom(T) ) V2

Moreover, the dependence on the right-hand side of each of these inequalities on the deficit
quantity § = §(a) is best possible, modulo the value of constants c.

The common starting and main point of the proof of each of these results is an exact for-
mula for Voln_l(BZ Nat) in terms of negative moments, as hinted in (1). Another crucial
feature common to all the proofs is that, even though a random vector uniform on BZ has
dependent coordinates (except, of course, the cube case p = 00), the dependence is mild and
the multiplicativity properties of the power function allow to replace (X,a) =) a;X; in (1)
with a weighted sum of i.i.d. random variables, thanks to the well-known probabilistic repre-
sentation of the uniform measure on B[’; balls in terms of the product measure with density

proportional to e~ 2 1%1”; see, for example, [9]. The specific details of further arguments dif-
fer, however, for instance as a result of the different nature of the extremising hyperplanes
and resulting sections, among other things; see Section 5 for an overview.

Sharpness of these results is explained in detail in the sections devoted to their proofs.

In a recent independent work [39], Melbourne and Roberto have addressed the stability
of maximal hyperplane sections of the cube, obtaining a similar result to (5), with explicit
values of the numerical constants involved. Their approach is somewhat different and relies
on developing a stability version of Ball’s integral inequality.

For the sake of simplicity of our arguments, we have not made any attempts to optimise the
values of the involved multiplicative constants ¢, (or, for that matter, even explicitly compute
some values, except for the case of (4) when p = 00).

Organisation. We begin in Section 2 with a short overview of the relevant known results
spanning the last several decades. Our new result for the cross-polytope, Theorem 1.1, is
proved in Section 3. Section 4 is devoted to developing the probabilistic viewpoint on sections
via negative moments which forms the backbone of the proofs of our stability results from
Theorem 1.2. These results are then proved in Sections 6 and 7, preceded with some heuristics
gathered in Section 5. First, we deal with the cube and prove (4) for p = 0o in Section 6.1 as
well as (5) in Section 6.2. Then, we consider the case 0 < p < 2 and show (2) in Section 7.1.1,
followed by the proof of (3) in Section 7.1.2. Finally, we present the proof of (4) when 2 <
p < oo in Section 7.2. We gather some concluding comments and possible future directions
in Section 8.

2. Background: Known results. We begin by briefly recalling the known results. Let
Hj be the hyperplane perpendicular to ej + - - - + e, where (e;)1<;<n is the standard basis of
R". The smallest hyperplane section of the cube B is obtained by taking the hyperplane H;
which was proved by Hadwiger in [21] and independently by Hensley in [22]. This has been
generalised to sections of arbitrary dimension by Vaaler in [52]. In [4] Ball showed that H»
gives the hyperplane section of the cube with the largest volume; see also [44] for a simpler
proof. This important result led to the negative answer to the Busemann—Petty question in
large dimensions; see [5]. The article [6] contains a study of maximal lower dimensional
sections of the cube (the results are optimal if the dimension k of the subspace divides n
or k > n/2). It is shown in [45] that H, is not a maximising subspace for the volume of
hyperplane sections of B}, for p < 24. For a comprehensive survey of the results for the cube,
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we refer to Chapter 1 of [54]. For some recent related results, we also refer to [1-3, 24, 31,
33, 35, 36, 47].
Meyer and Pajor studied in [40] the same problem for BZ with finite p. They showed

that, for any dimension k, the set Bl’§ obtained by taking the standard coordinate subspace
span{ey, ..., er} is the maximal section for 1 < p <2 and the minimal section for p > 2.
For extensions to p € (0, 1), see [8, 14]. In [40], Meyer and Pajor also found the minimal
hyperplane section of B} which is given by taking the hyperplane H,. Koldobsky in [27]
extended this result to p € (0, 2). Later on, several works treated the complex case (see [30,
46]) as well as a further generalisation to block subspaces (see [18]). We emphasise the
fact that, in all of the cases, the known extremising subspaces are also known to be unique
(modulo symmetries).

We mention in passing that the analogous, dual question for extremal projections of BZ
has also been considered. The problem is related to certain Khinchin-type inequalities, as
explained in [7, 10]. In particular, finding extremal projections of B} is equivalent to deriving
optimal constants in the classical Khinchin inequality, which was done by Szarek in [50],
followed up by De, Diakonikolas and Servedio who developed a stability version in [17].
The case p > 2 has been studied by Barthe and Naor in [10], where the authors showed
that the smallest and the largest (n — 1)-dimensional projections of B” are those onto the
hyperplanes H; and H,, respectively. Koldobsky, Ryabogin and Zvavitch in [29] developed
a Fourier analytic approach. Chakerian and Filliman in [15] found that the two-dimensional
orthogonal projections of the cube Bj, of maximal volume are attained by regular 2n-gons
(the same extremiser as in our Theorem 1.1), and, by McMullen’s formula from [38], this also
gives (n — 2)-dimensional projections of maximal volume; see [23] for recent results on lower
dimensional projections of the cross-polytope BY. Paper [19] provides a different unified
probabilistic approach to the volume and mean-width of central sections and projections and,
in addition to identifying the extremisers, also delivers Schur-convexity-type results.

3. Two-dimensional central sections of the cross-polytope. For the proof of Theo-
rem 1.1, we first need to recall the direct elementary approach to sections viewed as linear
embeddings.

3.1. Sections via linear embeddings. Recall that || - || ¢ refers to the Minkowski functional
of a convex body K (if K is symmetric, it is the norm whose unit ball is K). We shall use the
following standard lemma.

LEMMA 3.1. Let K be a convex body in R", and let T : RE — R" be a linear map.
Define Kt = {x e R : |Tx|x < 1}. Then, K N T(R*) = T(Kt). Moreover, if T is of full
rank, then

voly k) (K N T (R¥)) = /det(T*T) voly(K7).

PROOF. For the first part, let us show two inclusions. If y € K N T (RK), then y € K and
y = Tx for some x € R*. 1t follows that | Tx||x < 1, so x € K7. Thus, y=Tx e T(Kr).
Now, if y € T(K7), then y = Tx for some x satisfying ||Tx| ¢ < 1. Thus, ||y|lx <1, so
y € K. Since clearly y € T (RK), it follows that yeKnN T (RK).

For the second part, observe that one can treat H = T (R¥) as a manifold parameterised
by T'. Since vol g is volume on this manifold, we have the well-known formula for the volume
element, dvoly = /det((DT)*(DT)) dvoli, where DT stands for the derivative of 7. In our
case, DT =T, and so the assertion follows. [

A straightforward application of the above lemma to the case of K being the B}, ball yields
the following corollary.
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COROLLARY 3.2. Suppose that H is an image of R under a linear map T : R¥ — R
of full rank, given by Tx = ({(v1, x), ..., (vy, X)) for some vectors vy, ..., v, € RX. Then,

n 172 n
voly (B, N H) =det(z Vi ® v,-) Volk<{x eRk: Z|(v,-,x)|p < 1})
i=1

i=1

Here, as usual, v ® v is the matrix vv . Let us now assume that the map T is an isomet-
ric embedding. This means that (x, y) = (Tx, Ty) = (x, T*Ty), which gives the condition
T*T = Ixxk, where I stands for the k x k identity matrix. If the mapping is written in the
form Tx = ({vy, x), ..., (Uy, X)), the condition T*T = I} i rewrites as Y 7_; v; ® v; = lxxk.
Thus, finding extremal k dimensional sections of K is equivalent to solving the following
problem.

PROBLEM 3.3. Maximise/minimise the volume of the set K7 = {x € R* : | Tx| g < 1}
under the constrain T*T = I;xx. In the case of K = BZ, maximise/minimise the volume of
the set

n n
K, = {xeRk:Z|(vi,x)|p <1 over vi,...,U, eRk,Zvi@)vi = lixk.

i=1 i=1

REMARK 3.4. Since the condition T*T = I; 4, ensures that the map is an isometric
embedding, the set K7 in R in the above extremization problem is isometric to the section
K N T (RX).

3.2. Proof of Theorem 1.1. This proof was kindly communicated to us by Fedor Nazarov.
Recall that our goal is to minimise the volume of the set K, = {x € RZ: 1 N, x)| <
1} under the constraint Z?:] v; ® v; = Irx2. In general, the set K, is a convex symmetric
2k-gon, k < n. We point out that some of the vectors v; might be zero, and some of them
may be parallel. While studying the geometry of K, one can assume that the vectors v; are
nonparallel, since if for some ay, ..., a;, i1,...,i; and v one has v;;, =ayv,...,v; = a,
then considering only one vector v = lezl lai; [v instead of the vectors v;; will result in the
same set. However, this operation in general affects the constraint Z?:l Vi Qv = lhyo.

Let p : ST — (0,00), given by p(0) = (X7, [{vi,0))~!, be the radial function of K.
One can assume that in our configuration there are at least two nonparallel vectors (otherwise,
the resulting set is an infinite strip, and so its volume is infinite; in this case }_7_; v; ® v;
is of rank one, and the constraint is not satisfied). It is not hard to check that under this
assumption the vertices of K, correspond exactly to directions 6 perpendicular to v; for some
nonzero v; (i.e., up to the changes of sign of (v;, 8)). Indeed, for points x on the boundary
of K, one has }7_, [(v;,x)| = 1. If in a small neighborhood of x all the signs of (v;,x)
are fixed, this is a linear equation, and the set of solutions is a line which corresponds to
one-dimensional faces of K. If on the other hand, x satisfies (v;, x) = 0 for some nonzero
v; = (a, b) (if there are vectors parallel to v; we join them together as above), then within
a small ball around x = (sp, f9) there is a part of the boundary being a subset of the line of
the form {(s, t) : as 4+ bt + As 4+ Bt = 1} and a part being a subset of the line of the form
{(s,t) : —as — bt + As + Bt = 1}. These two lines intersect each other at x. We shall show
that they are nonparallel. If they were parallel, they would have to coincide, and thus, we
would have a + A = —a + A and b + B = —b + B which gives a = b = 0, contradiction.
Thus, x is an intersection of two nonparallel parts of the boundary and thus is a vertex of K.
A simple consequence of these observations is that K, has at most 2n vertices.

Suppose that the boundary of K, consists of segments F;, j =1,...,k. Let C; be the
corresponding segments of S1, thatis, 6 € C;if p(0)8 € Fj, and let T; = conv(0, F;) be the
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FIG. 1. One piece of Ky: Triangle OLR.

corresponding triangle in K,. We define A; = % fcj p? and I = fcj p~!. Suppose that the

angle of T at vertex O = 0 has measure 28;, where 8; € (0, 7/2). Note that 21;:1 Bj=m.
We shall need the following elementary lemma.

4sin’ B;
cosfB; °

LEMMA 3.5.  We have A;I7 >

PROOF. Let OLR be one of our triangles T}, and let 28 be the measure of the angle at
vertex O (see Figure 1). Let /& be the height of O LR perpendicular to LR, and let / be the
bisector of /L O R. The directed angle from £ to [ will be denoted by «. Let 0 be the directed
angle on S', where # = 0 corresponds to points on /. Clearly, p(8) = h/cos6. We have

I = /:lﬂg €080 4p — %[Sin(a +B) —sin(a — B)],

s h
1 atf ] 1
Aj=3h /a_ﬁ — -0 = h*ftan(a + B) — tan(e - )]
Thus,
.z_l[sin(a—i-,@)_sin(a—ﬂ)] ) o a2
Al = Sloosta £ 8)  coste —B) [sin(a + B) — sin(e — B)]

_ 2sin(2B) - sin® Bcos? a
~ cos(a + B) cos(a — B)
4sin® B cos B cos?a 4 sin’ B 1 - 4sin’ B

~ cos2acos? B —sinfasin?f cosB 1 —tanZatan?f T cosB 0

LEMMA 3.6. The function yr(x) = (Cossil;);m is strictly convex on [0, w/2). In particular,

nsin(3;)
cos!/3 (%)

the function [0, w/2) 5 x — ¥ (x)/x is nondecreasing, and thus, the sequence a, =

is nonincreasing.

PROOF. Observe that ¥/ (x) = cos?3x + % sin?x cos™#3x = %0052/3 x4+ %005_4/3 X.
It suffices to show that this function is strictly increasing. Taking y = cos?/3 x, we see that
this is equivalent to showing that f(y) = 2y 4 y~2 is strictly decreasing (0, 1). This is true
since f'(y) =2(1 —y~3) <0forye(0,1).
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The second part follows from the monotonicity of the slopes of convex functions and the
fact that ¢ (0) =0. O

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1.  We shall solve Problem 3.3. Assume that >, v; ® v; = Irx2
and that K, is a convex symmetric 2k-gon, where k < n. Note that

n n n
[p@ a0 =" [ |tv.6)]d6 =43 v <4 | Y- ul? =42,
i=1 i=1 i=1

where in the last equality we use >}, lv; |2 = =tr(}_7_; vi ® v;). Moreover, using Holder’s
inequality, Lemma 3.5 and Lemma 3.6, we get

1 ) 1 2 2% ok Z
|Ky|3(4v/2n)3 > |Kv|§</sl p(e)‘lde)‘ = (ZAj) (Z Ij)
j=1 j=1
Xk: %g Z sm,b’j
J

>
> cosl/3 B
b ST ) _2'4%'%».45%
. TG coslA(Z) = cos A( 1)
2 aind(m
WearriveatIKv|Z%é2)n)’
2n

We now show that this bound is achieved for K, being a regular 2n-gon. Let us consider

Vg = \/g(cos(%”), sin(%”)) for k =1,...,n. It is easy to verify that > | v; @ v; = Ix2.
As we already mentioned, the vertices of K, correspond to the directions perpendicular to
v;. Since v; are equally spaced on the upper half-circle, we get that K, is a regular 2n-
gon. Clearly, |vi|="---=|vul, B1=--=Pon, [1 =--- =Dy and A; = --- = Ay,. Thus,
one has equalities in all the inequalities in the above proof, so |K,| = n? sin3(§—n) / cos(f—n).
Conversely, it is easy to see that the only possibility of having equalities in all the estimates of
the proof is to have the set {v{, —v1, ..., v,, —v,} equally spaced on the circle. Thus, in the
extremal case the only freedom of choosing v; is to apply rotations to all the vectors v; (which
does not change the section B} N T (R?), as it corresponds to replacing T with T o U for some
orthogonal transformation U of R?), permuting some of the vectors (which corresponds to
applying permutations of coordinates in R”, under which H changes) and reflecting some
of the vectors v; (which corresponds to applying coordinate reflections in R” which again
changes H). Thus, up to coordinate reflections and permutations, there is only one minimal
two-dimensional section of Bf'. The fact that the section of minimal volume is isometric to a
regular 2n-gon in R? follows from Remark 3.4. [

4. Negative moments approach.

4.1. Formulae for sections via negative moments. The goal of this section is to connect
extremal-volume sections of convex bodies to sharp Khinchin-type inequalities for negative
moments.

LEMMA 4.1. Let X be random vector with density g in R". Let H be a codimension k
subspace of R", and let U be a k x n matrix whose rows ui, ..., uy form an orthonormal
basis of H, the orthogonal complement of H. Then, f(x) = JH4uTx & i the density of the
random vector UX in Rk,
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PROOF. For x = (x1,...,xx), we have U x = Zle u;x;. Since u; span HL, we get
that y € H+ iff y = U Tx for some x € R¥. Moreover, since u; are orthonormal, we get
that x > U " x is an isometric embedding of R* into R”, whose image is H-. By Fubini’s
theorem, f is measurable on Rk,

Let us now take a measurable set B C R¥. Note that H = {x e R” : (x, u;) =0,1 <i <k},
and thus, H = ker U. Every point y € U~ (B) can be written as y = y; + y, where y; € H
and y, € H+ N U~(B). Since every point in H~ is of the form y, = Uz for z € R¥ and
UTze U™ (B)iff UU Tz € B, whichis justz € B as UU " = I xx, we get that U1 (B) =
H + U B. Thus, by Fubini’s theorem we get

P(UXeB)=P(XeU ' (B))=P(X e H+U"B)

:/B<fH+UTx g) dx Zfo(x)dx. .

COROLLARY 4.2. Let A be a measurable set in R" of volume 1, and let X be a uniform
random vector on A. Let H be a codimension k subspace of R", and let U be a k x n matrix
whose rows form an orthonormal basis of H, the orthogonal complement of H . Then,

f(x) =vol,_x (AN (H + U"x))

is the density of the random vector UX in RX. Moreover, if A is a convex body, then on
its support the above function is the unique continuous version of the density of U X. This
continuous version satisfies

f(0) =vol, (AN H)

if 0 € intsupp(f).

PROOF. This is a special case of Lemma 4.1. If A is a convex body, then by Brunn-

1
Minkowski inequality f#—* is concave on the interior of its support and, therefore, continu-
ous. [

LEMMA 4.3. Let X be a random vector in R* with density [ such that || f|lcoc = f(0)

and f is lower semicontinuous at 0. Let || - || be a norm on R¥ with closed unit ball K. We
have
FO) = lim ——_gjx|-.
g—k—k - vol (K)

PROOF. We first claim that

k
(6) / Ixll~¢dx = —— "9 volg(K) fort>0,0<gq <k.
tK k—gq

Indeed, thanks to the homogeneity of volume, we have

o o
/ ||x||_‘1dx=/ f gs~@+h dsdx:/ (/ gs V1< ds) dx
tK tK J|x|| tk \JO -
o 1 o 1
=/0 st )</[K Ljxj<s dX) ds =/O gs~ )</Rk v <mings.r) dX) ds

o0 k
= volx (K) / gs~ 9D min(s, 1)k ds = k—tk_q voli (K).
0 q
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Take M > 0. Using (6) with t = M, we get

k—q - k—q - k—gq _
k- voli(K) 11 k -voly(K) Jux el f (r) dx + k-vole(K) Janke lx]| 77 f(x)dx

k—q - k—q

< - 94 - 1T pm4

< v Ml [ e o

k—q
= Mk_q 7M—q.
If oo +7 WOl (K)

Fix & > 0. Since || f|loc = f(0) and f is lower semicontinuous at 0, the set {x € R¥, f(x) >
Il flloo — &} contains a neighbourhood of 0, say 6 K for some § > 0. Then,

-9

- - X S —/ —q d
kvolo(K) E|IX|| Z Vol (K) [l f (x) dx
_ x||”9dx
o W =e) [
=(||f||oo—s)5k—‘1.
These two bounds show that, as ¢ — k—, the liminf and limsup of olk i K)EHX |=4 are

within € of || f|loo. U

Combining Corollary 4.2 and Lemma 4.3 yields a probabilistic formula for sections in
terms of negative moments.

COROLLARY 4.4. Let A be a symmetric convex body in R" of volume 1, and let X be
uniform on A. Let || - || be a norm in RX with closed unit ball K. Let H be a codimension k
subspace of R", and let U be a k x n matrix whose rows form an orthonormal basis of H.
Then,

vol, ;(ANH)= lim —4

——E|UX]| 9.
g—k—k - volx (K) | |

PROOF. Since UX is log-concave and symmetric on R¥, one gets || f|loo = f(0). O

4.2. Sections of the cube. As a first application, we sketch how to obtain a convenient
probabilistic formula for central section of the cube in terms of negative moments. It was
derived first perhaps in [32] and later appeared in [12] as well as [35]. Our argument is
different, more direct, bypassing the Fourier-analytic identities involving Bessel functions. It
was recently presented in full detail in [16]. It is more convenient to treat the cube of unit

volume, so we set
1, 1 17
On= 5By = 55

LEMMA 4.5 (Konig—Koldobsky [32]). For a unit vector a = (ay, ..., ay) in R", we have

vol,—1(Qn N aJ‘) =

’

where the & are uniform on S% in R3.
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PROOF. Let Uy,..., U, be ii.d. uniform on [—1, 1]. From Corollary 4.4, applied with
k =1, one gets
—q
vol,—1(Qn Nat) = hm (1 —¢)E

ZakUk

k=1

It is, therefore, enough to show that for ¢ < 1 one has

n
> arUx

k=1

-q
=l -¢E

—-q

This can be shown by repeating Latata’s argument leveraging rotational symmetry from
Proposition 4 in [34]. It has also been written in full detail in Lemma 3 in [16]. [

REMARK 4.6. The following alternative Fourier-analytic formula for the volume of cen-
tral codimension 1 sections perhaps goes back to Pélya and is well known (see, e.g., [4]),

volo_1(0n Na* / 1—[ sm(a]t)

4.3. Sections of B}, via negative moments. Let p > 0. Throughout the paper we let
Yl(p), Yz(p), ... be i.i.d. random variables with density e‘ﬁl[’)mp,
where
Bp=2I'(1+1/p)

is chosen such that [ ¢=Prx1” dx = 1. We shall derive the following lemma.

LEMMA 4.7. Let H be a subspace in R" of codimension k such that the rows of ak x n

matrix U form an orthonormal basis of H L. Letvy,..., v, be the columns of U. Then,
VOln—k(BZmH) T k—q " .. a
—r— = lm 7]{EZYJ- v;
vol, x(Bp™") q—k—kvoly(B;) =
PROOF. Letuvy,..., v, be the columns of U. Note that

n
T

Z vjv; = T k.

Jj=1

We take X = (X1, ..., X,) to be uniform on B;’,. Then, X/ voln(B[’;)l/” is uniform on E’Z =
B}/ vol,(By) 1/n which has volume 1. Using Corollary 4.4 with the Euclidean norm | - | gives

ZX vj

Voln_k(B;‘,ﬂH) - vol, (B ) (k — q) 4
=vol,_x(B"?NH)= lim
(vol, (Bp))"=* n—k(B, N H) g—k—  kvolg(B%)

We shall now use two important facts:

(a) (Barthe, Guédon, Mendelson, Naor [9]) Let Y1, ..., Y, be i.i.d. random variables with
densities ﬁ;le—|x|”7 and write Y = (Y1, ...,Y,). Define S = (Z’}Zl |Yj|p)1/p. Let £ be an
exponential random variable with density e’ 1;~0), independent of the Y;. Then, the random

vector is uniformly distributed on Bj,.

Y
(SP+EYp
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(b) (Schechtman, Zinn, see [49] and Rachev, Riischendorf, [48]) With the above notation
S and Y/S are independent.

In [9] Barthe, Guédon, Mendelson and Naor observed that, using (a) and (b), one gets

E Xivi| =E——-—— Yivi|i] =E———| E —V;
jg A ‘(Sp+g)l/p = A ‘(Sp-i-g)l/p JX:; S J
It follows that [E| W | =4 is finite. Thus,
VIS = BIS| 1y <E|— > | <00
Tl '
Then, again by independence of S and Y /S, we have
ny. —-q n —-q
EY ?’vj E[S|™? =E|Y_Y;v;
j=1 j=1
and, therefore,
n —-q — n —-q
1 S q
EJZ::IX]'UJ' :E|S|*q ’(SI’—|—€)1/17 EJZ::]YJ'UJ'
n —-q n —-q
=ci(p.q.mE|Y Yjv;| =cp.q.mE|Y Y Pv|
j=1 j=1
where c;(p, g, n) > 0 is independent of vy, ..., v,. As a result, one gets
" _
. -9 (p)
vol,_«(B"NH)=c3k, p,n) im —FE Y,
n k( p ) 3( P )q—>k—kV01k(B§) /2::1 j J

Taking v;j =ej for 1 <i <kandv; =0fork + 1< j <n and using Lemma 4.3, we obtain

_ ) k— _
vol, (B, k)=C3(k,p,n)qhm 7qE|(Y1(p),...,Yk(p))] 1 = c3(k, p, n).

—k— kvolg (B%) O

COROLLARY 4.8. Let p > 0. For a unit vector a € R", we have
vol,_1 (BZ Nat)

vol,_1(Bp~")

= fa(0),
where fqy is the density of 37 _y a; Y;p).

PROOF. This formula follows by combining Lemma 4.7 with Lemma 4.3. The correct-
ness of the normalization constant can be checked by plugging ina =e;. U

As an application, we show how to obtain the following theorem of Meyer and Pajor from
[40]. The main idea of exploiting Kanter’s peakedness from [26] comes from the original
proof of Meyer and Pajor. In addition to illustrating our approach via negative moments,
which we will build upon later, we hope this proof might be of independent interest.

THEOREM 4.9 (Meyer-Pajor [40]). Let 1 <k <n, and let H be a subspace in R" of
codimension k. Then, the following function:
p > vol,_x (Bf7 NH)/ Voln_k(BZ*k)

is nondecreasing on (0, 00).
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PROOF. For B > « the random variable Y;ﬁ ) is more peaked than Y}“) (see [26]

and [40]). Thus, for every vectors vy,...,v, in Rk, ”_1 Y;ﬂ )v j is more peaked than
;’:1 Y;a)vj. Consequently, for anorm || - || on R and 0 < ¢ <k,
N ;a)vj

Thus, the function o — E|| Z;?:l Y;a)vj || =4 is nondecreasing on (0, 0o). Using this together
with Lemma 4.7, we get that

vol, (B N H)

(p)
= —— = |1Im
Voln_k(B,';_k) q—k— kVO]k(Bé() ;

is nondecreasing. [

4.4. Sections of By, via Gaussian mixtures. In the sequel we shall need one more formula
in the special case of B:’, with 0 < p < 2. This formula was mentioned in [19] (a hyperplane
case) and [43] (a general case). We sketch a slightly different argument below, based again
on negative moments, for simplicity for hyperplane sections.

We first need some notation. For « € (0, 1), let g, be the density of a standard positive
a-stable random variable, that is, a positive random variable W,, with the Laplace transform
Ee #We — e‘“a, u > 0. Let Vi,...,V, be ii.d. positive random variables with density pro-
portional to =3/ 2gp /2(1‘_1), and set R; = 4/V;/2. Take G; to be standard Gaussian random
variables, independent of the V;. According to Lemma 23(a) from [19], the random vari-

ables R; Gl have densities ﬂ;le_|x I”. We also let VJ (IEV_I/ Z)ZVJ be normalised so that
—1/2 _
EV

LEMMA 4.10 (Eskenazis—Nayar-Tkocz [19]). Let 0 < p < 2. For a unit vector a =
(ai, ...,ay) in R", we have

vol,_1(B" Nat) noo o _\7l2
(8) " pn_l =FE Za?VJ- .
vol,—1(Bp ) j=1

PROOF. Using Lemma 4.7 and the above Gaussian mixture representation for the ¥ ;p ),

n
Zan;p)

j=1

vol,_1(B" Nat 1—
w1 By l)zlim—qE
vol,—1(B; ) g—1-

aj

n
=k, lim (1—¢q)E
q—1— -

for a positive constant «, which depends only on p (resulting from rescalings of the random
variables involved). Since Z?Zl aj/ViGj has the same distribution as 1/Zajz.Vle and

(1—-¢)E|G1]|74 converges to \/g (twice the density at 0) as ¢ — 1—, after further rescalings,

we obtain
—1/2
vol,_1(B" Nat) no o \7Y
- pn—l :K;E Zajz'vj .
vol,—1(Bp ) j=1

Plugging in a = e; shows thatk, =1. [



2356 G. CHASAPIS, P. NAYAR AND T. TKOCZ

REMARK 4.11. The above expectation is finite due to the fact that EW/ < oo iff r < «.
Indeed,

* 4-3/2 1 o 12 —g—1)2
/o 117 g (e ") de =/0 T P ep () dt =EW,
thus Equ <ooaslongas —g—1/2 < p/2,thatis, g > —pTH. The above fact can be deduced
from the asymptotic formulas (see, e.g., [41])

o

2—a
Q1) ~100 Mot ™I g (1)~ o Kot~ 2@ exp(Aqt~T-4).

5. Stability: Heuristic explanation of the proof. We are ready to proceed with the
proofs of Theorem 1.2. First, we briefly outline them. We emphasise that, as already high-
lighted in the Introduction, as different and disconnected from each other our arguments
may seem, their common probabilistic underpinning is the negative moment approach which
yields very convenient formulae for sections, amenable to a detailed analysis allowing not
only to find the extremisers but also to develop precise first order error terms.

To give a short overview: (2) simply follows from Schur convexity; its reversal, (3) is
obtained from a formula involving negative moments combined with complete monotonicity
allowing to invoke the Laplace transform to leverage independence; (4) for 2 < p < oo relies
on viewing the volume of sections as the co-norm of an appropriate probability density which
is estimated using peakedness and additional probabilistic tools, for example, the Berry—
Esseen theorem, whereas (4) for p = oo follows from a more general stability result for
an underlying Khinchin-type inequality, obtained thanks to negative moments, and, finally,
(5) is established by a careful analysis of Ball’s proof, souped-up with new insights gained
from representations via negative moments allowing for certain selfimprovements of Ball’s
inequality (in the spirit of [17], which establishes an analogous stability result for Szarek’s
L1 — Lj classical Khinchin inequality, with arguments based on discrete Fourier analysis).
We begin with the results for the cube.

6. Cube slicing.

6.1. Minimal hyperplane cube sections. Prior to Vaaler’s work [52], Hadwiger in [21]
and, independently, Hensley in [22] established that the minimal hyperplane sections of the
cube are attained for coordinate subspaces. A different simple proof was later given in [4]
(which was based on a direct minimisation of || f ||oc over even unimodal probability densities
with fixed variance). Our method involving negative moments offers another simple approach
with the advantage that it is well suited to give a stability result. First, we establish a robust
version of a relevant Khinchin inequality.

THEOREM 6.1. Let0 < p <2,andlet &y, ..., &, be i.i.d. random vectors in R4 uniform
on $41. d> 3. For every n > 1 and real numbers ay, ..., a, such that a% +--- —I—a,zl =1, we
have

n -p n
p(p+2)2d—p—4) 4
E|Y aj&| =1+ Ve 1= a}.
j=1 j=1

PROOF. First, we remark that a sharp inequality without the remainder term is a simple

consequence of convexity. Indeed, for any p > 0, we have
n 4 n 2\ —p/2 n 2\ —p/2

> ajé ZE(Z%‘%‘ ) Z(Ezajé’j ) =1

j=1 j=1 j=1

(©)) E
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To control the error in this estimate, a natural idea presents itself: we write

> ajkj

j=1

2
=1+

with
Y =22aiaj(§i,§j)
i<j

and seek a refinement of the pointwise bound (1 +x)~7/2 > 1 — %x, x > —1 (resulting just
from convexity), which gives (9), in view of the fact that ¥ > —1 a.s. and EY = 0. We shall
use the following lemma, the proof of which we defer for now (for simplicity, we did not try
to optimise the numerical constants).

LEMMA 6.2. Forevery p > 0and x > —1, we have

¢! +x)_p/2 >1- gx + p(p9+ 2)x2 — p(p+3)2(p+4)x3.

This lemma yields

p(p9+ Dpy2_ PP+ 3)2(19 + ) eys

&l =EA+Y)PE> 14

To compute EY 2 and EY?3, first note that, thanks to rotational invariance and independence,
fori < j,

E(Ei’ Ej)z - E(Sh €1>2 - —

and, fori < j <k,

E(&i, &) (&), 6k) &y &x) =E(&,§5) (&), e1) (&, er)

d
=E(&j. e1) (i, e1)” + ) El&. ) (i, e)E(E). 1) (5. 1)
=2

1
=E(&. e1)’E&i. e1) = .

where in the second line we write (§;,&;) Zl 1(&i, e1) (&, er), use independence and the
fact that vectors & have uncorrelated components to see that the sum over / > 2 vanishes.
Thus, using symmetry again,

2=4% alaiE(E. &))" = Za

i<j l<_/
and
Y’ =8-6 Y alaiaiB(&. &) (. &) (& &) = Z a}
i<j<k l<j <k
Introducing, s; = Y7 21 ,1=1,2,..., we have s1 = 1 and using Newton identities for

symmetric functions, we express 2Zl<] 2a =1—92,63 i a2 za,% =1—3s2 + 2s3.
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Moreover, s3 < s7. As a result,

E 2_% 1—

By 8 8
Y =E(1—3s2+2s3)5ﬁ(1—s2).
Therefore,
n -p
2p(p+2) p(p+2)(p+4
E £l >1+ 2 (1l —s5)— 1—
];a,s] z 14+ —g— (=5 o (1—s7)
+2)Q2d—p—4
L plpt2C@d—p )(I—SQ). -

942

Now, we are able to deduce a stability result for minimal hyperplane sections of the cube,
(4) for p = oo. For convenience, we restate this here.

THEOREM 6.3. Leta = (ay,...,a,) be aunitvectorin R" witha; > ap > --- > 0. Then,

1
volu—1(Qn Nat) = 14 la—erl?.

PROOF. Note that, under the assumption on a,

1
§|a—el|2 ((l—al) +Za ):1—a1fl—alzzl—Zalzaizfl—Za?.
i i

i=2

Thus, the assertion follows immediately from Theorem 6.1 applied to p =1 and d = 3, in
view of Lemma 4.5. [J

REMARK 6.4. The dependence on §(a) =1 — Z;?: 1 a;! in Theorem 6.1 modulo a con-
stant factor is best possible: there are examples of unit vectors a with §(a) — 0 for Wthh

ElY a;j&j|7? — 1= 0, q4(5(a)). For instance, take a = (+/1 — ¢, /€,0,...,0) with ¢ < 16
SinceforO < p <2andx € [—%, 1] one has (1 +x)_g <1- %x+8x2 (use Taylor’s formula
with Lagrange remainder), it follows that

E|Y ajé;| " =E(1+2/e(—e)ter, £2) 77 < 143261 — o)ELey, £2)
32e(1l —¢)
=

Since 1 — 1_ at=2e(1 —¢), we get E| Y a&;| 7P < 1+ 221 - 37 a¥).
In particular, the same remark applies to Theorem 6.3 as well.

=1+

It remains to prove the pointwise inequality we used.

PROOF OF LEMMA 6.2. From the Taylor formula with Lagrange reminder for the func-

2
tion (1 +x)~ 5 , one gets that for x < 1A

2 2 4
(Hx)_p/z_ng > p(p8+ )2 _ p(p+4;(p+ )3

>P(P+2) » pPp+2)(p+4) 5
= X — X,
9 72
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‘We now show how to treat the case x > 0. Define

p. pp+2) , pp+2(p+4 ;

—X — X+ X

2 9 72

Our goal is to prove that ¥ (x) > 0 for x > 0. Note that ¥ (0) = ¢/(0) = O Thus, it suffices to
4

show that for x > 0 we have ¥”(x) > 0. This is equlvalent to (1 + x) > % — —(p +d)x.

Define o = 2( p + 4). Our inequality reads (1 + x) “>5— —ax We shall Verlfy this for

arbitrary a, x > 0. Let # = ax. Rewriting gives (1 + £ Y=g t We have (14 L J) Y =e —t
(take the logarithm and use the inequality In(1 + y) <y, and thus it is enough to show that
e ! > % — %t for t > 0. The function h(t) = e~ ! — % + %t has a minimum for t = ln(%). It is
enough to verify that % > % — %ln(%). This is ln(%) > % which is true. [l

vx)=104+x)"P? -1+

6.2. Maximal hyperplane cube sections. Our goal here is to prove (5). We recall two
formulae (see Lemma 4.5 and Remark 4.6),

(10) vol,—1(Qx Na+

Zajéj

(11 B f sm(ajt)

as well as the fact that

la|
vol,—1(Qy Nat)

defines a norm on R”, thanks to Busemann’s theorem (see [13] or, e.g., Theorem 3.9 in [42]).
It follows that the function a — vol,_1(Q, Na') is 2-Lipschitz on the unit sphere.

(12) llallgus =

LEMMA 6.5. For every unit vectors a, b in R", we have
[vol,—1(Qn Nat) —vol,—1(Q, NbY)| < 2]a —b].

PROOF. Letting F(a) = vol,_1(Q, Nal), by the triangle inequality we have

|F(a) — F(b)] la — b

F(a)F(b) “Ia”Bus [ ||Bus| <lla IBus Fa—Db)

Using that 1 < F(x) < /2 for every vector x concludes the proof. [
We will also need the following observation.

LEMMA 6.6. Let X and Y be two independent rotationally invariant random vectors in
R3. Then,

E|X 4+ Y|~ = Emin{|X|7", |Y|7"} < min{E|X|~", E|Y|7"}.
In particular,

vol,_1(Qn Nat) < min{|aj|_1}.
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PROOF. Since X and Y are rotationally invariant, their distributions can be written as
|X|& and |Y|&, where &, & are uniform on S2, chosen independently of X and Y. By
conditioning on X and Y, it suffices to verify the identity E¢, ¢, (&1 + s§2|_1 = min(r, s)"!.
Note that by rotation invariance (£, &>) has the same distribution as (1, e1), that is, a uniform
distribution on [—1, 1]. Therefore,

i 1! ~

Eg, & |ré1 + 562 7! =Eg, 5, (Ir61 + s&2/%) 1/225/1(r2+s2+2rm) Y2 qu
_ (r? + 52 4 2rsu)'/?|!

B 2rs

_rts|—|r—s|

_1 2rs
min{r, s L e

= min{r, s} = min{r L 1} I

rs

To prove the second part, it suffices to take X = Z?;i aj&j, Y = a,&, and use the inequal-

iy EIX+Y|"' <E|ly|"!. O

Since the maximal section has volume ~/2, that is vol,,_;(Q, N (%)l) = /2, our sta-
bility result (5) for maximal sections of the cube can be equivalently stated as follows:

e1+e
V2

for every n and every unit vector @ in R" with a; > a» > --- > a, > 0 for some universal
constant cg.

The proof involves different arguments, depending on whether a is close to the extremiser
or not and whether its largest coordinate is large or not. We assume throughout that a is a
unit vector in R"” with a; >ay > --- > a, > 0 and set

a —

(13) vol,_1(Qn Nat) <v2—cp

’

2

_a te =2—\/§(a1 + ay).

V2

For vectors a close to the extremiser, we have the following local stability result (it is to
some extent in the spirit of Lemma 3.7 from [17]).

S(a) = ‘a

LEMMA 6.7. There are universal constants 8y € (0, %) and co > 0 such that (13) holds
for every a with §(a) < .

1
ﬁ’

For vectors a away from the extremiser with largest coordinate sufficiently close to
we prove the following lemma.

LEMMA 6.8. Let &g be the constant from Lemma 6.7. There are positive universal con-
stants yy, c1 such that

(14) vol,_1(Qn Nat) <2 —c¢

holds for every a with §(a) > §p and a; < \/Li + 0.

The remaining case is straightforward: taking these two lemmas for granted, it is very easy
to prove (13).
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PROOF OF (13). In view of Lemmas 6.7 and 6.8, it remains to consider the case when
ap > % + 0. From Lemma 6.6 we have

1 1
vol,_1(QpNat) < — < ————
n=1{Qn ) ar  1/24 v

because §(a) < 2, so in this case (13) also holds. [

“V2—p<V2- %\/5(61),

It remains to prove the lemmas.

PROOF OF LEMMA 6.7. The idea is to argue that Ball’s inequality vol,_1(Q, Nat) <
\/5 allows for a selfimprovement near the extremiser. We shall assume that n» > 3 and a% +
a% < 1 (the case n = 2 can be analysed directly). A starting point is formula (10), combined
with Lemma 6.6,

vol,_1(Qn Nat) =Ex ymin{|X|~!, |77},
where we apply itto X =a1&) +axé and ¥ = 2?23 aj&;. By Ball’s inequality,
Ey|Y|™' <v2(1—a} —dd)™/%
Thus, thanks to the independence of X and Y and the simple inequality
Ey min{|X|~!, [Y|7'} < min{|X|7", Ey|¥|71),
we obtain
vol,_1(Qn Nat) <Exmin{|X|~", V2(1 —a} —a3) "'/},

Note that |X| has the same distribution as (a% + a% + 2a1a2U )1/ 2 where U is a random
variable uniform on [—1, 1]. To evaluate Ey, observe that |X|~! < +/2(1 — a% — a%)_l/2
corresponds to U > ug, where

. 1 —3(a%+a%)

uo
daiar

We need to consider two cases. Let § = §(a)/2, that is,
ar +ar =~2(1=9).
Case 1: ug < —1. Then,
Exmin{|X|™", v2(1 —a} —a3)"'?} =E|X|™! = min(a1,a) ' =a;".

Given a; + ap = «/5(1 — §8), the condition up < —1 implies that a; > aj, where a; is the
larger of the two solutions to the quadratic equation

1—3(a} + (V2(1 = 8) —a1)?) = —4a, (V2(1 — 8) — ay).
This yields

-1
vol,_1(Q, Nat) 5%:&(1 —5+1/§«/2—5) <V2—coV/8
1

for a universal constant cg > 0, provided that § is sufficiently small.
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Case 2: ug > —1. Itis clear that for all § sufficiently small, ug < 1 (in fact, since a; +as <
«/E(a% + a%) < /2, the equality a; +ap = V2(1 = 8) for small 8 implies that both numbers
1 and thus, ug is close to —1). Then,

ﬁ’
Ex min{|X|~!, v2(1 —a} — a%)_l/z}

ai, ap are close to

1 I )
- E(Mo +DV2(1 - af —a3) " E 4 2 (a? + a2 + 2araou) ' du
uo

up+ 1 +a1+a2—\/af+a%+2a1a2uo

2(1 —a? —a3) 2a1az

Plugging in u¢ and rewriting in terms of s = a1 +az, p = a% + a% results with an upper bound
onvol,_1(Q, N al) by

s 4 252 —1-3p
—p  2V2(s2—p)J/T—p

Note that % < p < 1. We claim that, for every 1 <s < +/2, function p — h(s, p) is decreas-

h(s, p) = )

ing on (ﬁ, 1). Thus,

1—s2/2
vol,—1(Qy ﬂal) < h(s,s2/2) = % — Tsz/
A)
_ NG
_ 21 _s5_ -
=2(1-9) (1 8 2[22 5)
<2 —coVs

for a universal constant cg > 0 and all sufficiently small §.

To prove that p — h(s, p) is decreasing on (ﬁ, 1), wefixl<s< V2 and compute the
derivative

0h  242-3v2p(1+p) —8(1 — p)*%s +3v/25*(1 + p) — 2v/2s5*

p 8(1 — p)3/2(s2 — p)?
Note that the numerator
h(s, p) =22 —3vV2p(1 4 p) — 8(1 — p)*/%s 4+ 33/25%(1 + p) — 24/25*

is a concave function of p € (s2/2, 1), as a sum of concave functions. It suffices to show that
the values at the endpoints are nonnegative. At p = 1, we have

h(s, 1) = —2v/2(s* = 352 +2) =2v/2(s* = 1)(2 — s?) > 0.
At p =52/2, we get

2 — 2
24/2

2 — 52
272
by 2s¢v/2—s2<s?+2—s>)=2. O

h(s,s%/2) = (552 44 — 852 — 52) > (552 —4) >0,

PROOF OF LEMMA 6.8. Assume that §(a) > 8g. In particular,
2—68(a) 1 8o

W2 2 2

1
(15) a < E(al +ay) =
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The argument is now split into two cases: when a; < %, we employ (11) and use Ball’s ap-
proach to show that savings simply come from a; being small, while when a; > %, provided

ay is close to we employ Busemann’s theorem to reduce this case to the previous one.

\/_9

Case I: a; < ﬁ' For s > 2, we define

oolsint |*

2
W(s) = —A/s f
T 0
To establish his cube-slicing result, Ball showed in [4] that

U(is) <WQ)=+2, s>2.

sin(r/s) __ 1
s

2
—é—s—i-O(s_z) as s — 09,

lim W(s)= \/E <2.
5§—> 00 T

In particular, by continuity for every sg > 2, there is 0 < 6y < 1 such that
(16) W(s) <00v2, 5= s0.
As in [4], applying Holder’s inequality in (11) yields

Moreover, since

n

vol,_1 Qnﬂa 1_[

Letting so = 2(1 — 60/2)_2, from (15), we know that a; > 5o for each j > 2; thus, (16)
applied to each j > 2 and lIJ(al_z) < /2 give

Voln_l(QnﬂaL) a1f<9/2«[ V2 —cy.

Case 2: % < ay1. We argue that there are positive universal constants )y, c; such that if

additionally a; < % + 0, then vol,,_1 (Q, N al) < /2 — ¢5. To this end, we modify a and

consider the unit vector
1 1
b= (E,‘/a%—i—a% — 5,613, ...,a,,).

Note that b1 > b, and since by > aj, also by > b3 > - -- > b,,. Moreover, crudely,

,/a1+a2 ——az— ,/ <2y,
al+a2 +a2

2 1 2
Ia—b|2=(01——> +< af+a§—§—a2) <% + 2.

thus

Lemma 6.5 yields
vol,—1(Qn Nat) < vol,_1(Qn NbT) +2\/¥¢ + 210.
If 6(b) > &, then Case 1 applied to b gives
vol,—1(Q, N bL) <V2—c¢.
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Otherwise, observing that

1 1
S(b):B(a)—\/E(E—i— a%+a§—§_a1 —a2>
>80—«/§<‘/a%+a%—%—a2)

> 80 — 2./%0.
Lemma 6.7 applied to b gives

vol,—1(Qn ﬂbl) <2 —coy/80 — 2./70.

In any case, choosing yy sufficiently small (depending on the values of cg, c1, dp), we can
ensure that

vol,—1(Q, Nat) < V2—c

with a positive universal constant ¢cp. [J

REMARK 6.9. The dependence on 6 (a) in (13) (modulo the universal constant cg) is best
possible: if we consider a; = (,/ % + &, ,/% —¢£,0,...,0)withe — 0, then é(a) = 2+ 0(84)
and vol,_1(Q, Nat) =a; ' =2 — /28(a) + 0(/3(a)).

7. Hyperplane sections of B}, 0 < p < co.

7.1. Case 0 < p < 2. As remarked in [19], formula (8) immediately yields the Schur-
convexity of the function

(b1, ... bw) > voly 1 (B N (/bi,....v/bu)b)

on R, in particular, asserting that the subspaces of minimal and maximal volume cross-
section are (ﬁ, - \%)L and (1,0, ...,0). Moreover, the formula allows to obtain stability
results for these extremisers which has not been observed before.

7.1.1. Case 0 < p < 2: Maximal sections. Thanks to Schur-convexity, the case of maxi-
mal sections is straightforward.

PROOF OF (2). By (8) and Schur-convexity,

1
voln_l(Bl’; ﬂclz ) _E
vol,_1 (B} ")

" —12
Za?%-) BV + (1 —ad) Vo)
=1

B voli (B3 N (a1,/1—ap)b)

VOll(Bllj)

which is exactly the right-hand side of (2). [

REMARK 7.1. The bound is clearly optimal, as it is attained in the case of vectors with
at most two nonzero coordinates. Moreover, the right-hand side of (2), in terms of § = §(a) =
la — ey], is asymptotic to 1 — %81’ as§ — 0F.
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7.1.2. Case 0 < p < 2: Minimal sections. Here, our goal is to establish (3). We begin
with a relevant stability result for negative moments. We rely on the fact that x — x79, g >
0 is completely monotone which allows to use simple convexity properties of log-moment
generating functions.

LEMMA 7.2. Let Y be a nonnegative random variable and A(u) = logEe‘”Y, u>0.

For every nonnegative real numbers by, ..., b, with B = Z';Zl bj, we have
n n
(17) Y A®) =nAB/n)+c Y (bj — B/n)*,
j=1 j=1

where

1

c== sup e LB _a)’PY <a)PB<Y <y)
4 O<a<pf<y

with L =max;<, b;.
PROOF. By Taylor’s theorem with Lagrange’s reminder,
1
Abj) = A(B/n)+ (b = B/mA'(B/n) + 5 (bj — B/n)*A"(6))

for some 0; between b; and B/n. Adding these inequalities over j < n gives (17) with
c= %inf(o,maxj b)) A”. Let Y1, Y» be independent copies of Y. Crudely, Ee Y1 < 1, so for
O<a<pB<y,

A (u) = E(Y, — Yy)?e Ve 2

(Ee—qu)z

A%

E(Y, — Y1)?e e 211y, coyl(p<yy<y)

N = N = N -

(B —)?e TPy <a)P(B < Y2 <y)

A%

which proves (17). U

THEOREM 7.3. Letq > 0. Let Y be a nonnegative random variable which is not constant
a.s.withl|EY < oo.Let Y1, Ys,... beitsi.i.d. copies. For every by, ..., b, > 0 with Z?:l bj=
1, we have

n —-q n -
(18) E(me) zE(Z %1@)
j=1 j=1

for some positive constant ¢4y which depends only on q and the distribution of Y .

q

+cgy Y (bj—1/n)?

Jj=l1

PROOF. Using x4 =T(g)~! f0°° e 1971 dr, x > 0, we have
n —-q 00 n
(19) ]E(ijy,) =r(q)—1/ exp(z A(tbj))tq_ldt,
. 0 ;
j=1 j=1

where A (u) = logEe Y. We apply Lemma 7.2 to the numbers tb; which add up to 7. It is
clear that, under our assumptions on Y, the constant ¢ from Lemma 7.2 satisfies ¢ > cje™ !
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for some positive constants c1, ca > 0 which depend only on the distribution of Y. Thus, from
(17) we get
n —-q )
E(Z b; Yj> >T(g)~! / exp(nA(r/n) + cre™'128)rd= dr
, 0
j=1

with§=3""_,(b; — 1/n)?. Using exp(c1e2'128) > c1e~2"t?8 + 1, we obtain

n —-q n -9
1 o
E(> b¥;) =E[Y -¥;)] +6-aT —1/ exp(nA(t/n))e 19t dr.
(1-:1 Jj ]) < n ]) 1 (Q) 0 p( (/ ))

j=l1

By the convexity of A, the sequence (nA(t/n)), is nonincreasing with the limit —¢EY, hence

[o.¢] o0
f exp(nA(t/n))e "4 dr 2/ e~ (@FED A+ g
0 0

which gives (18). O
We are ready to establish the desired stability results for minimal sections.

PROOF OF (3). Let

n

e

From (8) and (18) applied to the \_/j and g = %, we have

Voln_l(BZﬂaL) 1 E(ﬂ )1/2
voly—1 (BN (Zeeos 70 H) Anp

(20)

with a positive constant ¢, which depends only on p (through the distribution of V). It
remains to note that, thanks to Schur-convexity, the sequence A, , is nonincreasing, thus

Anp<AL,=EV,'?=1. O

REMARK 7.4. The sequence A, , is in fact bounded below as well, namely, by

n 1 —1/2
7 \—1/2
o= (1) w2

j=1

Moreover, as n — 00, we have
1(19) _
1) Anp=co(p)+ ==+ 07

for some constants co(p), c1(p) which depend only on p. This is justified by first noting that
Apn,p = gn(0), where g, (x) is the density of ﬁ Z’}: 1Y; (plug in @ = e in (20) and recall
Corollary 4.8) and then evoking the Edgeworth expansion for g, (see, e.g., Theorem 3.2 in
[11] and classical references therein).
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REMARK 7.5. The dependence on §,(a) = ;?=1(af — l/n)2 in (3) modulo a constant
factor is best possible in the following two scenarios:

(1) As n — 00, there are unit vectors a in R” with §, = §,,(a) — 0 such that the left-hand
side of (3) is, in fact, of the order 1 + c(p) - 8, + 0(5,). Consider a = (J%’ e \/,%, 0)

in R". Then, 8, = 8,(a) = (n — 1)GE7 — $)? + = = = + O(55) and, using (21),

1 1 1
voly—1 (B, N (7= 70 O ):An_l’p:1+c(p)+0( 1 )
voly—1 (B N (s ooy 7)) An,p n’ i

(2) For a fixed n, there are unit vectors a in R" with § = §,,(a) — 0 such that the left-hand
side of (3) is of the order 1+ c(p, n)d + o(8). For simplicity, let n be a fixed even integer. Let

& — 0T, and consider
\/ +e,. \/ +8\/ \/——e).

Then, 8, = 8, (a;) = ne? and with

X=Vit+-+Vup, Y=Vipp+-+V,
which are i.i.d., we have

vol,—1(B" Na; 1 X+Y —1/2
n 1( {) 8)1 - — ]E( + +8(X—Y)>
VOln_l(Bzﬂ(ﬁ,...,ﬁ) ) An,p n

1 X+vy\"/? X —y\"1/2
() ) )
Anp n X+Y
Since |en x+y| <en< 2, for sufficiently small ¢, using (1 +x)~ 12 <1 —x +x2 x> -1,
we can thus upper bound the right-hand side by

1 X+Y\ /2 1 X-Y X —Y\2
IE[( + ) (1 — —¢&n +82n2(—) )] =1 +c(p,n)82,
An.p n 27X +Y X+Y

where we use that |§—:L§| < 1 to guarantee the existence of the expectations involved and
symmetry to conclude that term linear in ¢ vanishes.

7.2. Case 2 < p < o0o. Here, we prove (4). We use the formula from Corollary 4.8, that
for a unit vector a € R", we have

vol,—1(Bp Na')

vol,_1(Ba™1)

= fa(o),

where f, is the density of Z?:l ajY;, Y1,Y,, ... areiid. random variables, each with den-
sity exp(—ﬁglxlp), where B, =2I'(1 +1/p).

LEMMA 7.6. Let2 < p < oo. For every ug > 0, there is ¢ > 0, depending only on ug
and p such that, for every 0 < u < ug, we have

(22) ¢! +u)‘/2/ exp{—BLuP?|x|? — mx*}dx = 1+ cu.
R
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PROOF. Fix 2 < p < oo and up > 0. Using exp(—t) > 1 — ¢, we obtain

/ eXP{—ﬁgu”/zlxlp —erz}dx >1— Apu”/2
R

with A, = ,81’,’ Ir |x|pe_’”2 dx. Thus, it is clearly possible to choose sufficiently small #; > 0
and ¢ > 0 which depend only on p such that (22) holds for all 0 < u < u1. Moreover, a change
of variables x = u~!/?y yields

/ eXp{_'BII;”p/2|x|p —wx?}dx = u" V2’ Eexp{—mu~'Y?},
R

where Y is a random variable with density exp(— ,3,’,) |x|?) which is more peaked than a Gaus-
sian random variable G with density exp(—mx?). Thus, for every u > 0,

/ exp{—ﬂgu”/2|x|p — nxz}dx > u_l/zEexp{—ﬂu_le} =1 +u)~2
R

Thus, by continuity, the infimum of left-hand side of (22) over u; < u < ug is strictly larger
than 1. Decreasing c, if necessary, allows to finish the argument. [J

PROOF OF (4). We use different arguments, depending on whether the vector a is close
or not to the minimising one e;. With hindsight, fix 6, to be a positive sufficiently small
constant, which depends only on p, such that

o) (2rEY?) ™ exp(—0.286, (E|Y; [*) (EY?) /%)
— (0.566, (E|Y, ) (EY2) /32 > 1.

Such a choice is possible since 27 EY 12 < 1 for p > 2, as explained later in the proof.
Case 1: a) > 0. Here, the starting point is a formula obtained from writing f,(0) as the

. .- 1 p . . .
convolution of the densities a; exp(—Bplx;/a;|P) and changing the variables y; = x;/a;,

|

leading to

1
fa(0) = —Eexp{—ﬂ,’:
ai

n
> bjY;
j=2

with b; = 2. Let
ai

2
1 —aj

2
ay

n
usz?z
j=2

Note that our assumption a; > 6), is equivalent to u <6, 2 _ 1. Since Y is more peaked than
a Gaussian with density exp(—mx?), we get

n p n 5 p/
jXZ:ijYj }zéexp{—ﬁ},’(gbj)

Note that i =+/1+u. Lemma 7.6 applied with ug =6, 2 — 1 thus yields

2

Eexp{—ﬂl’,’ |x|”—7tx2}dx.

2
_al

1
JaO)=1+cpu=1+c¢p >1+4+cp(1—ay)

aj

with a positive constant ¢, which depends only on p.
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Case 2: ay < 6,. Since in this case
n n
p=> Ela;Y;’ <aiE[Y,]’ Y aj <0,E|Y,[’,
we can use the Berry—Esseen theorem to argue that f,(0) is large. Let
21\1/2
op = (EYT) 2

We have (see, e.g., [51] which provides the current best value of the numerical constant in
the Berry—Esseen theorem)

p(zajyj Sx) —P(Z, <)

Jj=1

sup
xeR

<0565, p,

where Z, is a Gaussian random variable with variance o,. Let ¢, denote the density of Z,.
Crucially, peakedness yields

1 1
> e
N 2mo N 2mop
P

since p > 2. Thanks to the symmetry and monotonicity of the densities involved, in particular,
we obtain that, for every 6 > 0,

) )
5£,(0) zfo fulr)dx zfo $p()dx — ¢,

¢p(0) - 1,

with &, = 0.566,0, 3 E|Y1|’. Letting, say 8 = ¢,/*, and using 8! [ ¢, (x) dx > ¢, (8) =

dp (O)e_az/ (2‘75), we see that 6, chosen sufficiently small according to (23) guarantees that

1/2
_ €p B )
fa© z e, /0 Gp(0)dx — el > g, (0)e /@D — g2 =1 4,

with a positive constant ¢, which depends only on p. This gives f,(0) > 1 + ¢, which
finishes the proof. [

REMARK 7.7. It can be seen again by taking vectors with exactly two nonzero co-
ordinates that the dependence on é(a) = |a — e1]? in (4) modulo a constant factor is
best possible. For instance, take ¢ — 0, and consider a, = (+/1 — ¢, /¢,0,...,0). Then,
8e =8(ax) =2(1 —/1T—¢) =6+ O(&?) and

vol,_1(B" Nal) _ 1 1
”1 (pB”_I; = (1 —e)?? 4 eP/2)7 VP =1 4 e+ 0(EP) =1+ 25 +00).
vol,—1(B)p

since p > 2.

8. Conclusion. Our result of Theorem 1.1 confirms the intuition that the (unknown) ex-
tremal subspaces for minimal-volume central sections of B”, 0 < p < 2, are conceivably as
symmetric as possible. Note that, in the case of the corresponding question for maximal-
volume sections and p > 2, the situation is more delicate, at least for large p, as suggested
by Ball’s results (even in the hyperplane case).

It has been elusive how to extend the arguments from Section 3 to other values of p than
p =1 or higher dimensions k than k = 2. We conjecture that, when k& = 2, the minimising
subspace H is the same as in Theorem 1.1 forall 0 < p < 2.

Theorem 1.2 deals only with the case of hyperplane sections. It would be of interest to ask
for corresponding stability results for lower dimensional sections. We believe that (at least
some of) our methods are robust enough to yield satisfactory answers. Another challenging
and intriguing question is that of a sharp dependence on p of the constants ¢, in Theorem 1.2.
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