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Abstract

In this work we derive the minimum allowed orbital periods of H-rich bodies ranging in mass from Saturn’s mass
to 1 Me, emphasizing gas giants and brown dwarfs (BDs) over the range 0.0003–0.074 Me. Analytic fitting
formulae for Pmin as a function of the mass of the body and as a function of the mean density are presented. We
assume that the density of the host star is sufficiently high so as not to limit the minimum period. In many instances
this implies that the host star is a white dwarf. This work is aimed, in part, toward distinguishing BDs from planets
that are found transiting the host white dwarf without recourse to near-infrared or radial velocity measurements. In
particular, orbital periods of 100 minutes are very likely to be BDs. The overall minimum period over this entire
mass range is ;37 minutes.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Brown dwarfs (185); Extrasolar gaseous giant
planets (509)

1. Introduction

Orbital periods in systems containing white dwarfs (WDs)
can be extremely short, especially if both of the stars are
H-exhausted objects. The best examples of this are WD+WD
binaries with periods of 7 and 9 minutes (Burdge et al.
2019, 2020a). Such systems almost certainly involve one or
more phases of mass transfer. In this work, we raise the
question of the minimum allowed orbital periods when at least
one of the stars is still H-rich. In this latter category are the
brown dwarf (BD) plus WD binaries. The minimum orbital
periods of those systems were discussed extensively in Nelson
et al. (2018). Table 1 in that paper provides a list of 25 systems
with WD primaries and either a BD or lower-main-sequence
(MS) companion. These systems are thought to have had no
mass transfer episodes from the BD or MS star to the WD. The
orbital periods listed there range from 250 minutes down to 68
minutes. The minimum allowed orbital period for these WD
+BD systems derived in Nelson et al. (2018) was ;40 minutes.

Photometric surveys like Kepler, K2, TESS, and the Zwicky
Transient Facility (ZTF; Bellm & Kulkarni 2017) are
discovering and will continue to discover interesting short-
period binaries containing a WD (see, e.g., G. Murawski’s
website5). There are a number of new WD+WD binaries (see,
e.g., Burdge et al. 2020b) as well as some likely WD+BD
binary candidates, but none in the latter category we are aware
of with periods shorter than 68 minutes.

For a number of years now, researchers have been interested
in whether planets might be found orbiting WD dwarfs (e.g.,
Agol 2011; Lund et al. 2018; Bell 2019; Cortes &
Kipping 2019). Such planets would have to have survived
the giant phase of the WD progenitor. There have been a
number of tantalizing suggestions in this regard. Gänsicke et al.
(2019) proposed that there is a disintegrating planet orbiting
WDJ0914+1914 with an ∼9 day period. More recently
Vanderburg et al. (2020) reported the first intact transiting

planet orbiting WD 1856+534 in a 1.4 day orbit. This is a gas
giant planet with M 14MJ.
There is also evidence for dust-emitting bodies orbiting

WDs. WD 1145+017 exhibits deep dips with a characteristic
period of 4.5 hr (Vanderburg et al. 2015; Gänsicke et al. 2016;
Rappaport et al. 2017a). There is also ZTF J013906.17
+524536.89 with dips recurring at an ∼107 day period
(Vanderbosch et al. 2020). Manser et al. (2019) reported the
discovery of a 123 minute periodicity in the motion of gas in
the disk orbiting WD SDSS J122859.93+104032.9, which
they attributed to an orbiting massive rocky body. In all these
cases, the dust and gas probably originate from orbiting
asteroids or planetesimals, which are not the subject of this
paper, and we do not consider them further.
We show in Figure 1 an illustrative plot of equatorial eclipse

durations for objects of various masses transiting a white dwarf.
Gas giant planets to BDs, spanning 2.5 orders of magnitude in
mass, and orbital periods less than a day, have a typical transit
duration of ∼8 minutes (within a factor of a few) since all these
objects can have the same radii to within ±15%. In this work
we are interested in how knowledge of the orbital period can
inform us about the nature of the transiting body.
Specifically, the goal of this paper is to identify the minimum

allowed orbital period, Pmin, of H-rich bodies orbiting a host
star as a function of their mass. The host star is assumed
sufficiently dense so as not to limit Pmin, i.e., to prevent the
body from reaching its Roche limit (see, e.g., Roche 1849;
Davidsson 1999; Holsapple & Michel 2006; Rappaport et al.
2013). Orbiting bodies with masses ranging from Saturn’s mass
to solar-mass stars on the main sequence are considered. In
Section 2 we derive analytic relations for Pmin as a function of
the mass and radius of the orbiting H-rich body, as well as a
function of the body’s mean density. In Section 3 we give a
general radius-mass relation for cold H-rich material based on
Eggleton’s (Eggleton 2006) analytic fitting formula. In
Section 4 we present results for Pmin as functions of the mass
and of the density of the H-rich body, both in the form of
graphs and analytic expressions. We return in Section 5 to
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discuss the effect on our results of H-rich objects that are not
highly centrally concentrated. Section 6 contains a summary
and our conclusions.

2. Dependence of Pmin on Mass and Radius

We start by asking two questions: (1) how close can a H-rich
body be to its host star before it starts to overflow its Roche
lobe, and (2) how applicable is the Roche potential to bodies
like Jupiter, super-Jupiters, and BDs?

Regarding the first question, we start by writing an
expression for the size of the Roche lobe, RL, as a function
of the mass ratio, q, of the two stars and the orbital separation,
a, assuming a circular orbit. This takes the form

R f q a, 1L ( ) ( )=

where we consider two well-used functions to represent f (q).
Note that R4 3L

3p is defined to be the volume of the Roche
lobe, and therefore we can call RL the “volumetric radius” of
the Roche lobe. Inserting this expression into Kepler’s third
law, we have:
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whereMhost andMcom are the masses of the host star and H-rich
companion, respectively, P is the orbital period, and
q≡Mcom/Mhost.

An analytically convenient and reasonably accurate approx-
imation to RL, normalized to the orbital separation, was given
by Kopal (1959) for q< 1:
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where the numerical value of the leading factor is 0.4622. A
more accurate expression, covering a much larger range in q,
was derived by Eggleton (1983) and is based on an elegant
fitting formula applied to the results of numerical integrations

of the Roche-lobe volume:
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For an extensive discussion of other formulations for the size of
the Roche lobe see Leahy & Leahy (2015).
We start with the simpler, but more insightful, of the two

expressions to derive the minimum period before Roche-lobe
overflow commences. Inserting the expression a= RL/fK(q)
from Equations (1) and (3) into Equation (2), we find
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which is independent ofMhost, and this is the motivation behind
using the Kopal (1959) formulation of fK(q).
The minimum orbital period will be attained when the orbit

shrinks to the point where the companion radius equals RL, in
which case we have
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When we do the calculations in this work, we will actually
utilize the more accurate fE(q) expression for the Roche lobe
dependence. However, we can still cast the expression for Pmin

explicitly as a function only of Rcom and Mcom, multiplied by a
correction factor that is a very weakly dependent function of q:
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A plot of the slowly varying function ξ(q) is shown explicitly in
Figure 3 of Nelson et al. (2018).
Finally, the expression for Pmin in Equation (6) can also be

cast as a function of the density of the companion only. The
right-hand side of that equation is manifestly in the form of the
inverse square root of the density of the companion star. It can
therefore be rewritten as
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where r̄ is the mean density.

3. Mass–Radius Relation for Degenerate H-Rich Bodies

In order to estimate the radius of cold H-rich bodies we made
use of the zero-temperature models of Zapolsky & Salpeter
(1969). These models represent the lower limit to the radius of
BDs and planets for a specific mass and (homogeneous)
composition. We utilize an analytic expression devised by
Eggleton (2006) for the dependence of the radius on the mass

Figure 1. Equatorial transit duration vs. orbital period for objects of various
sizes that are occulting a 1.4 R⊕white dwarf. The radii of the occulting bodies,
Rp, are written next to each curve in units of the Earth’s radius (RE). Objects
covering a wide range in mass from Saturn through BDs, to stars at the bottom
of the main sequence, may all have comparable radii. In this work we explore
the constraints that are set on the masses of the transiting bodies by their orbital
periods.

2

The Astrophysical Journal, 913:118 (7pp), 2021 June 1 Rappaport et al.



and chemical composition of these objects:

R X M g M X0.0128 1 ; 9com
5 3

com
1 3

com( ) ( ) ( )+ -
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where X is the H-mass fraction. In the expressions for Mch and
Mp we have simplified the original expressions of Eggleton
(2006) for the case of objects composed of H and He only.6 We
plot in Figure 2 the expression given by Equation (9) with
X= 0.7 for masses between that of Saturn and the bottom of
the zero age main sequence (ZAMS) (M; 0.074Me).

For masses above the bottom of the ZAMS, we use a simple
R(M) relation

R M M M R0.85 , 15com com com
0.85( ) ( ) ( )=  

which is derived from a regression analysis applied to the lower
main-sequence models of Dorman et al. (1989) for the FGVH
equation of state (EOS; Fontaine et al. 1977) down to 0.085
Me.

Also plotted in Figure 2 is a sampling of planets, BDs, and
lower main-sequence stars taken from a compilation of Chen &
Kipping (2017); and we augment this with our own compila-
tion of BDs listed in Table 1. Because the distinction between
gas-giant planets and BDs has been subject to considerable

debate, we have included an extended discussion of this issue
in the Appendix.
In Figure 3 we employ the same R(M) relations used to

construct the theoretical curve in Figure 2 to compute the mean

Figure 2. Mass–radius relation for H-rich bodies spanning masses from Saturn
to stars on the ZAMS up to 1 Me (red curve). For the region between Saturn’s
mass and the end of the brown-dwarf range (at ∼0.074 Me) we used
Equation (9) with X = 0.7. For stars on the ZAMS we use the simple
expression given by Equation (15). The blue and cyan dots are an empirical
sample of planets and main-sequence stars from Chen & Kipping (2017). The
green points are our compilation of BDs taken from the literature (see Table 1
and Section 3). The black curve is an approximation to the red curve, which has
been smoothly blended near the transition between the ZAMS stars and BDs.
Note how both the red and black curves hug the lower locus of measured
objects—as desired.

Table 1
Mass–Radius Pairs for Brown Dwarfsa

Name Mass Radius Reference
MJ RJ

SDSS J0857+0342 91.1 ± 12.6 1.07 ± 0.04 1
Kepler-503 78.6 ± 3.1 0.96 0.04

0.06
-
+ 2

WD 1032+011 b 69.6 ± 6.4 1.0 ± 0.1 3
EPIC 201702477 66.9 ± 1.7 0.757 ± 0.065 4
TOI-569 64.1 ± 1.9 0.75 ± 0.02 5
WD 1202-024 b 63.9 ± 10.5 0.88 ± 0.05 6
CoRoT-15 b 63.3 4.1

4.3
-
+ 1.12 0.15

0.30
-
+ 2

WASP-030 62.5 ± 1.2 0.951 0.024
0.028

-
+ 7

KOI-415 b 62.1 ± 2.69 0.79 0.07
0.12

-
+ 2

V* V2384 Ori a 56.7 ± 4.8 6.52 ± 0.33 8
TOI-811 b 55.3 ± 3.2 1.35 ± 0.09 2
TOI-852 b 53.7 ± 1.3 0.75 ± 0.03 2
TOI-503 b 53.6 ± 1.1 1.29 ± 0.30 9
SDSS J1411+2009 52.4 ± 2.1 0.70 ± 0.04 10
EPIC 212036875 b 52.3 ± 1.9 0.874 ± 0.017 11
TOI-1406 b 46.0 ± 2.7 0.86 ± 0.03 2
Kepler-492 b 40.8 1.5

1.1
-
+ 0.82 ± 0.02 12

WASP-128 b 37.19 0.85
0.83

-
+ 0.94 0.18

0.22
-
+ 2

EPIC 219388192 b 36.0 ± 1.6 0.846 ± 0.021 2
V* V2384 Ori b 35.6 ± 2.8 4.81 ± 0.24 8
NLTT 41135 b 33.7 ± 2.8 1.13 0.17

0.27
-
+ 1

KELT-1 b 27.4 ± 0.93 1.116 0.029
0.038

-
+ 13

CoRoT-3 b 21.96 ± 0.70 1.037 ± 0.069 14
GPX-1 b 19.7 ± 1.6 1.47 ± 0.16 2
Kepler-39 b 19.1 ± 1.0 1.11 ± 0.03 12
HATS-70 b 12.9 1.6

1.8
-
+ 1.384 0.074

0.079
-
+ 2

Note.
a BDs taken from the literature with masses measured to 15% and radii with
lower limits of 20%. (1) Parsons et al. (2012); (2) Schneider et al. (2011); (3)
Casewell et al. (2020) ; (4) Bayliss et al. (2017); (5) Carmichael et al. (2020);
(6) Rappaport et al. (2017a); (7) Triaud et al. (2013); (8) Stassun et al. (2006);
(9) Šubjak et al. (2020); (10) Littlefair et al. (2014); (11) Carmichael et al.
(2019); (12) Bonomo et al. (2015); (13) Siverd et al. (2012); (14)
Southworth (2011).

Figure 3. Mean density–mass relation for H-rich bodies spanning masses from
Saturn to stars on the ZAMS up to 1 Me. The rest of the descriptors are the
same as in Figure 2.

6 The original expressions of Eggleton (2006) were in terms of ZN and A, the
atomic number and atomic weight, respectively, of each of the chemical
constituents of the star. For objects composed solely of H and He we derived an
approximate weighting based on the value of X only (see Nelson &
Rappaport 2003).
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density of the orbiting body as a function of its mass. Here we
also superpose the same collection of planets, BDs, and lower
main-sequence stars compiled by Chen & Kipping (2017) and
augmented with our list of BDs given in Table 1. Note that, as
desired, the curve forms a near upper boundary to the
empirically observed systems.

4. Minimum Orbital Periods

We have used the R(M) relations displayed in Figure 2 and
described by Equations (9) and (15), in conjunction with
Equation (7) to derive the minimum allowed orbital period
versus the body’s mass. The results are shown in Figure 4.

As we can see, there is a general trend of decreasing Pmin
from 620 minutes (10.3 hr) for Saturn-mass objects (red circle
in Figure 4), to 430 minutes (7.2 hr) for Jupiters (orange circle),
to 104 minutes (1.7 hr) for objects on the boundary between
super-Jupiters and BDs (blue circle), all the way down to
37 minutes (0.62 hr) for the coldest and most massive BDs
(purple circle; see also Nelson et al. 2018). These values are
summarized in Table 2. A simple fitting formula that is
applicable for masses over the range 3× 10−4− 0.074Me is:

P m mln 1.01 1.085 ln 0.052 ln , 16min com
2

com ( )- -

where Pmin is in minutes, and mcom≡Mcom/Me.
Finally, we calculate Pmin as a function of the mean density

of the H-rich body. For this, we use Equation (8) multiplied by
the function ξ(q) given in Equation (7). The latter factor makes
use of the more accurate Eggleton (1983) expression for the
Roche-lobe radius.

The results for Pmin com( ¯ )r are plotted in Figure 5. Here we see
a nearly linear relation in the Plog logmin com( ) r̄- plane. The
light dashed red line is a reference slope− 1/2, as would be
expected from Equation (8). The expression for that dashed line
is given by:

P 9.9
g cm

hr. 17min
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com

1 2
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⎛
⎝

⎞
⎠¯

( )
r

-


We note that for main-sequence stars with mean densities
between 2 and 10 g cm−3 (corresponding to masses of 1.0 to
0.39 Me) there is a small dispersion in Pmin of ±10%. This is
due to the fact that the Kopal (1959) Roche lobe formula,
which leads to the simple com

1 2r̄ - dependence, is not really
applicable when the H-rich companion star is more massive
than the host star (which we took to range from 0.3 to 1.4 Me).
However, when we utilized the more exact Roche-lobe
expression of Eggleton (1983) we see the deviation from the
simple com

1 2r̄ - dependence for the extremely low mass host

stars. Nonetheless, the overall com
1 2r̄ - dependence does an

excellent job of representing Pmin over 2 orders of magnitude in
H-rich companion star mass and density.

5. Central Concentration of the H-rich Body

Thus far, we have been working under the assumption that
the orbiting H-rich bodies are substantially centrally concen-
trated. Bodies that might be roughly represented as n= 3 or
even n= 3/2 polytropes would qualify. They have ratios of
central to mean densities of 54 and 6, respectively. For such
centrally concentrated objects, we assume that the Roche-lobe
formula, given by Equation (4), is quite appropriate and

Figure 4. Minimum allowed orbital period of H-rich bodies as a function of
their mass. We have used the R(M) relations displayed in Figure 2 and
described by Equations (9) and (15), in conjunction with Equation (6). The
various closely spaced colored curves (red, orange, ... blue, purple) are for
different masses of the host star ranging from 0.3 Me to 1.4 Me, respectively.
With the use of the approximate Equation (6) all the curves would merge, but
this is not quite so with the more exact expression given by Equation (7). The
dotted red curve is the limit obtained for incompressible fluid bodies (see the
text). Heavy, filled, colored circles refer to fiducial-mass objects detailed in
Table 2.

Table 2
Minimum Orbital Periods of H-rich Bodies

Object Pmin 〈ρ〉
(hr) g cm−3

Saturn 10.3 0.69
Jupiter 7.2 1.33
5 MJ 3.3 8.69
15 MJ 1.7 33.9
Max BD 0.62 280

Notes. Illustrative points taken from Figure 4.

Figure 5. Minimum allowed orbital period of H-rich bodies as a function of
their mean density. Here we have used Equation (8), which is derived from the
approximate expression Equation (6), but supplemented with the slowly
varying function ξ(q) defined in Equation (7). The various closely spaced
colored curves (red through purple) are for different masses of the host star
ranging from 0.3 Me to 1.4 Me, respectively. With the use of the approximate
Equation (8) all the curves would merge; but, not quite so with the more exact
expression given by Equation (7). The appearance of the plot results from the
fact that the curves start at the upper left (planets), decrease to the minimum
period (BDs), and finally nearly retrace the same path back up toward the upper
left (lower MS stars).
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accurate in terms of describing the size of the critical potential
surface.

However, we know that massive gas giant planets and BDs
are less centrally concentrated than an n= 3/2 polytrope. To
make this more quantitative, we show in Figure 6 pressure–
density curves, P(ρ), for the interiors of cold H-rich bodies of
masses of 0.1 MJ to 10 MJ, in five logarithmic steps. These
models were generated with MESA (Paxton et al.
2011, 2013, 2015, 2018, 2019) version r13573 using the
included “make_planets” test case. The models assume a
metallicity Z= 0.02, no solid core, and are shown at an age of
10 Gyr. It is impressive that the curves nearly overlap, at least
on this broad logarithmic scale. The heavy black solid and
dashed lines mark logarithmic slopes of 2 and 1, respectively.
And since most of the mass is represented fairly well by a
P∝ ρ2 relation, we conclude that these objects are more nearly
represented by n= 1 polytropes and less centrally concentrated
than an n= 3/2 polytrope.

In Figure 7 we show in more detail the ratio of central
density to mean density for six different models over a wide
mass range. The geometric mean ratio of c ¯r r is ;3.6. That
ratio for an n= 1 polytrope is 3.13. Hence, we conclude the
bulk of the non-main-sequence objects we are considering are
well represented by n= 1 polytropes.

Unfortunately, to our knowledge, there are no equivalent
expressions to Equation (4) for n= 1 polytropes with c ¯r r
being ;3.1 that are filling their critical potential lobes. This
would be a good exercise for a self-consistent field calculation
(see, e.g., Hachisu 1986). But that is beyond the scope of this
paper. Thus, for now, we jump to a model that is of uniform
density—and with a known solution. This is the Roche limit for
a uniform density, incompressible fluid body. The Roche limit
is usually expressed as a R2.44 pcrit host host

1 3( ¯ ¯ )r r= , where acrit
is the critical (i.e., minimum) orbital separation to avoid mass
transfer, Rhost is the radius of the host star, and the ρʼs are the
mean densities of the host star and orbiting “planet”—in this
case the H-rich body.

For our purposes in this paper, we can rewrite the Roche
limit in the following form:

P
G
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This is directly analogous to Equation (8), except that the
leading coefficient here is somewhat larger. This reflects the
fact that the material in an incompressible configuration is less
tightly bound than a compressible fluid of the same mean
density.
This relation for Pmin, using the results for an incompressible

fluid (n= 0), is shown as a dashed red curve in Figure 4. As we
can see, it only raises the minimum allowed period by some
30%. We take this to be a firm upper limit on what the
P Mmin com( ) might be. For most of the H-rich objects we are
considering we surmise that the true answer lies somewhere
between the two limiting curves (red and black in Figure 4).

6. Summary and Conclusions

In this work we have examined how the minimum orbital
period of cold H-rich bodies depends on the mass of the object,
or alternatively, its density. The basic conclusions are as
follows. (1) For any gas-giant planet or BD the minimum
period is ∼37 minutes. (2) For objects with orbital periods
100 minutes we can conclude that we are observing a BD (or
second WD) rather than a gas-giant planet. More generally, (3)
we give an approximate analytic expression (see Equation (16))
for the minimum period as a function of the mass of the gas-
giant planet or BD. We can use this information to eliminate
gas giant planet candidates with transit durations of 2–15
minutes and periods of 100 minutes. The same is true for BD
candidates with periods 40 minutes.
Our work makes use of the radius-mass relation, R(M), for

cold H-rich bodies based on the zero-temperature models of
Zapolsky & Salpeter (1969). These models represent the lower
limit to the radius of BDs and planets for a specific mass and
(homogeneous) composition. For purposes of comparing this
theoretical R(M) relation with the empirical data, we have
utilized the Chen & Kipping (2017) compilation of planets,

Figure 6. Internal models for massive gas giant planets generated with MESA.
The models span the range from 0.1 MJ to 10 MJ. Most of the curves overlap to
within the widths of the curves. The solid and dashed line segments denote
logarithmic slopes of +2 and +1, respectively.

Figure 7. Ratio of central (ρc) to mean (r̄) density of the gas-giant models
shown in Figure 6 plus one additional model at 0.2 MJ. Ratios of 3–4 are
typical for these gas giants.
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BDs, and stars that has been augmented by our own
compilation of a more complete list of 26 BDs.

J.S. is supported by the A.F. Morrison Fellowship in Lick
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Appendix
Commentary on the Mass–Radius Relationship for Brown

Dwarfs and Gas Giant Planets

The issue of distinguishing BDs from gas giant planets
(GGPs) is very complex. Because of the importance of
delineating these two populations, several attempts have been
made to construct suitable definitions. In 2003, the Working
Group on ExtraSolar Planets of the IAU proposed a working
definition whereby the distinction was based solely on the mass
of the object.7 Specifically, the mass defining the boundary
between GGPs and BDs was proposed as 13MJ regardless of
how the object was formed or its location (Boss et al. 2007).
This definition has ostensibly arisen because a cloud of
hydrogen-rich, solar-metallicity gas with a mass of 13MJ (or
higher) that undergoes gravitational collapse will fuse most of
its primordial deuterium over an interval of 30 Myr (Nelson
et al. 1985, 1986; Ibgui et al. 2011, and references therein).
This phase is referred to as the deuterium-burning main
sequence (DBMS). The upper end of the BD mass range is
defined as the mass for which hydrogen burning cannot achieve
thermal quasi-equilibrium within a Hubble time. Higher mass
objects that collapse as a result of the fragmentation of a
hydrogen-rich gas cloud will be able to sustain nuclear fusion
and thus become hydrogen-burning main-sequence stars.

The formulation of precise definitions in astronomy (or any
other natural science) can be a challenging task. For example,
there is no absolutely precise definition of when a star is first on
the ZAMS. The reason for this is that stars never achieve
complete thermal equilibrium (i.e., their gravo-thermal lumin-
osity is never zero). This type of difficulty also arises in trying
to establish the BD-MS star “boundary” because, although
there is complete agreement that stars achieve approximate
thermal equilibrium via sustained hydrogen burning, high-mass
BDs can attain a substantial degree of thermal equilibrium
within a Hubble time. Moreover, the treatment of the input
physics (e.g., opacities and EOS) and the assumed metallicity
can have a profound effect in establishing the boundary
between BDs and MS stars when mass is taken to be the only
determining criterion. For a solar metallicity, the uncertainty in
the input physics places the upper limit on the BD mass to be
between ;0.072 and 0.080Me.

The difficulty in establishing whether an object is a GGP or a
BD is much more problematic. According to conventional
wisdom, it is believed that GGPs form as a result of (cold) core
accretion in a circumstellar dusty disk (Burgasser 2008).
Assuming that there is sufficient mass in the disk for accretion,
it is thus possible for the mass of the object to grow much
larger than 13 MJ without undergoing deuterium burning (i.e.,
no DBMS phase). However, it is also possible that relatively

massive objects can form in circumstellar disks by direct
fragmentation of the disk. This process is very similar to the
way in which stars and, by extension, BDs form.8 Knowing the
formation process would help in reaching a definitive
conclusion, but given the absence of such knowledge, we
must rely on observables such as the mass (M), radius (R), and
Teff. Higher order observables that derive from multiband
spectra and direct imaging of the atmosphere could provide the
detailed atmospheric information (e.g., cloud structures,
temperature profile, species differentiation, presence of grains,
etc.) that is needed to make a more robust determination.
All of these issues have led to considerable debate on how

GGPs should be distinguished from BDs or even if such a
delineation should be made. Hatzes & Rauer (2015)
(hereafter HR) make the claim that: “objects with masses in
the range 0.3MJ− 60MJ follow a tight linear relationship [in
the Mlog log r- plane] with no distinguishing feature to
separate the low-mass end (giant planets) from the high-mass
end (BDs).” They propose that all objects with masses in the
range of 0.3<M/MJ< 60 should be viewed as GGPs. This
definition is based on the linearity (and continuity) of the slope
in the mass–density relationship (see their Figure 1). This is a
purely phenomenological definition and thus does not address
the underlying physics of these objects. Moreover, the paucity
of data in the range of 20MJ− 40MJ makes this type of
analysis particularly challenging. Our Figure 2 (see also
Table 1) contains significantly more data than was available
to HR and reveals that the assumption of a linear mass–radius
(MR) relationship (in the logs) should be re-examined. Our red
curve (zero temperature hydrogen-rich models) shows that the
slope of the MR relationship changes considerably between
masses of 0.3 MJ to ;0.072Me (i.e., just below the hydrogen-
burning minimum mass [HBMM]. Near the HBMM, we would
naively expect the M− R exponent (R∼M ξ) to be approxi-
mately −1/3 because the EOS is dominated by nonrelativistic
electron degeneracy. However, even at this upper end of the
mass range for BDs, the effects of Coulombic interactions start
to become significant and this has the effect of making ξ more
positive (i.e., flattening the M− R relationship). For even lower
masses, other effects such as Thomas–Fermi corrections that
more accurately account for electron–nucleus interactions, in
addition to exchange effects and correlation energies (see, e.g.,
Seager et al. 2007) further increase the value of ξ.
For chemically homogeneous, zero-temperature objects, the

Zapolsky & Salpeter (1969) models show that ξ changes from
approximately −1/3 to +1/3 as the mass decreases to
terrestrial values. In examining the observational data in
Figure 2, we see that the smallest GGPs and BDs (in radius)
tend to follow the theoretical predictions reasonably closely
(red curve). There is considerable scatter in the BD mass range
but this is to be expected because these BDs are discovered at
various stages in their contraction (BDs have very long Kelvin–
Helmholtz times and thus their radii tend to be reasonably
sensitive to their ages). Nonetheless, there is a reasonably
pronounced dip in the radii (compared to the radii of MS stars)
at M; 0.07Me. This feature is completely consistent with the
HBMM inferred from theoretical models of Population I
objects. Moreover, the lower envelope of R−M observations
is not inconsistent with the zero-temperature theoretical models
that predict the lower limit for the radii of objects of a specific

7 IAU’s working definition (immediately after 2003): http://www.astro.iag.
usp.br/~dinamica/WGEP.html.

8 Such a pathway has been suggested for the giant planet GJ 3512B (Morales
et al. 2019).
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mass (and chemical composition). We emphasize that in the
absence of any other information concerning the correlation
between radius and mass, it is reasonable to carry out a linear
regression (i.e., to assume a constant ξ); however, the changing
“physics” of these objects (with mass) really requires that ξ be
treated as variable. Thus we believe that the claim of Hatzes &
Rauer that: (1) BDs should be subsumed into “the upper end of
the giant planet sequence”; and (2) the boundary between
GGPs and MS stars should be set equal to 0.06Me appears to
be an oversimplification.

Chen & Kipping (2017) have re-examined/refined the work
of HR with respect to the mass limits of “Jovian worlds.” Based
on their analysis, this limit extends from 0.41MJ to 80MJ

(higher-mass objects are defined to be stars). They claim that
“There is no discernible change in the M− R relation from
Jupiter to BDs. BDs are merely high-mass planets, when
classified using their size and mass.” This conclusion is largely
based on a linear regression analysis carried out on GGP and
BD data (see their Figure 3). They find a relatively flat
dependence of radius on mass (R∼M0.04). Again, the
challenge with this type of purely empirical analysis is that
BDs are rare; the Chen & Kipping (2017) analysis includes 150
objects in the mass range corresponding to giant planets, and
only five BDs (two of which have such high masses that their
status as BDs becomes questionable). Therefore any regression
over the entire range of mass will be dominated by the
properties of the giant planets. Moreover, because the mass
limits of 0.41MJ to 13MJ straddle the mass corresponding to
the extremum in the radius of the zero-temperature models (that
mass is approximately the geometric mean of the limits), we
would naturally expect any regression to show a relatively flat
M− R relationship. The fact that a power law can provide an
acceptable fit to the M− R relationship over this mass range
does not imply that objects in this mass range are
indistinguishable.

The bottom line is that the theoretical models (for a given
age and ignoring the DBMS) imply that there should be no
abrupt change in the M− R relation exponent (ξ) across any
reasonable boundary that is chosen to delineate GPPs from
BDs (with the proviso that the chemical structure of the objects
is similar). This continuity in ξ does not, however, imply that
BDs should be subsumed into the class of GGPs nor does it
imply that an extension of a linear fit to the MR relationship
determined for GGPs can be reasonably applied to BDs. For
example, the M− R data shown in Figure 2 are not inconsistent
with the simple Zapolsky & Salpeter (1969) models (red
curve), and those models show that ξ can change significantly
over the nominal BD mass range. Moreover, if objects in this
mass range are not formed by core accretion and undergo a
DBMS phase (even if it only lasts for <100 Myr), they are
clearly a separate class from GGPs because they formed
similarly to stars and achieved approximate thermal equili-
brium via nuclear fusion.
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