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ON THE COVER TIME OF THE EMERGING GIANT⇤
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Abstract. Let p = 1+"

n
. It is known that if N = "3n ! 1, then with high probability (w.h.p.)

Gn,p has a unique giant largest component. We show that if in addition, " = "(n) ! 0, then w.h.p.
the cover time of Gn,p is asymptotic to n log2 N ; previously Barlow, Ding, Nachmias, and Peres had
shown this up to constant multiplicative factors.

Key words. cover time, emerging giant, random graph

MSC codes. 05C80, 60C05, 60J10

DOI. 10.1137/21M1441468

1. Introduction. Let G = (V,E) be a connected graph with vertex set V of
size n and an edge set E. In a simple random walk W on a graph G, at each step,
a particle moves from its current vertex to a randomly chosen neighbor. For v 2 V ,
let Cv be the expected time taken for a simple random walk starting at v to visit
every vertex of G. The vertex cover time CG of G is defined as CG = maxv2V Cv.
The (vertex) cover time of connected graphs has been extensively studied. It was
shown by Feige [16], [17] that for any connected graph G, the cover time satisfies
(1� o(1))n log n  CG  (1 + o(1)) 4

27n
3.

In a series of papers, Cooper and Frieze have asymptotically established the cover
time in a variety of random graph models. The following theorem lists some of the
main results. (Here An ⇡ Bn if An = (1 + o(1))Bn as n ! 1.)

Theorem 1. The following asymptotic estimates for the cover time hold with high

probability (w.h.p.):

[4] If G = Gn,p with p = c logn
n , c > 1, then CG ⇡ �(c)n log n, where �(c) =

c log( c
c�1 ).

[5] If G = Gn,r with r = O(1), a random r-regular graph, then CG ⇡ r�1
r�2n log n.

[6] Let G = Gn,d,r with d � 3 and r = ( c logn
⌥dn

)1/d be the random geometric graph

on n vertices in dimension d.1 Then CG ⇡ �(c)n log n.
[7] If D = Dn,p (the random digraph counterpart of Gn,p), then CD ⇡ �(c)n

log n.
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1Here ⌥d is the volume of the Euclidean ball of radius one in Rd. The random geometric graph
G = Gn,d,r is defined as follows: we choose n points independently uniformly at random from [0, 1]d

to be the vertices of G, and two points are joined by an edge if and only if they are at most distance
r-apart.
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1688 ALAN M. FRIEZE, WESLEY PEGDEN, AND TOMASZ TKOCZ

Cooper and Frieze [8] also established the cover time of the giant component C1

of the random graph Gn,p with p = c/n, where c > 1 is a constant. They showed in
this setting that w.h.p. the cover time CC1

satisfies

CC1
⇡ cx(2� x)

4(cx� ln c)
n(lnn)2,

where x denotes the solution in (0, 1) of x = 1� e�cx.
This raises the question as to what happens in Gn,p if p = (1 + ")/n, " > 0, and

we allow " ! 0. It is known that a unique giant component emerges w.h.p. only
when "3n ! 1. Barlow et al. [1] showed that w.h.p.

(1) CC1
= ⇥(n log2("3n)).

Cooper, Frieze, and Lubetzky [9] showed that if C(2)
1 denotes the 2-core of the giant

component C1 of Gn,p (C1 stripped of its attached trees), then, in this range of p,
w.h.p. C

C(2)

1

⇡ 1
4"n log2("3n), but they were not able to determine the cover time

of the giant C1 asymptotically. We do this in the current paper, confirming their
conjecture.

We prove the following theorem.

Theorem 2. Let p = 1+"
n with " = "(n) > 0, " ! 0 such that "3n ! 1. Let C1

be the giant component of Gn,p. Then w.h.p.

CC1
⇡ n log2("3n).

Our proof is very di↵erent from the proof in [9]. We will use the notion of a
Gaussian free field (GFF). This was used in the breakthrough paper of Ding, Lee, and
Peres [13] that describes a deterministic algorithm for approximating CG to within a
constant factor. This was later refined by Ding [14] and by Zhai [22]. It is the latter
paper that we will use. In the next section, we will describe the tools needed for our
proof. Then in section 3 we will use these tools to prove Theorem 2.

2. Tools.

2.1. GFF. Definition 1. For our purposes, given a graph G = (V,E), a GFF
is a random vector (⌘v, v 2 V ) whose joint distribution is Gaussian with

(i) E(⌘v) = 0 for all v 2 V ,
(ii) ⌘v0

= 0 for some fixed vertex v0 2 V ,
(iii) E((⌘v � ⌘w)2) = Re↵(v, w) for all v, w 2 V .

Note that in particular, Var(⌘v) = E(⌘2v) = Re↵(v, v0). (Here Re↵ is the e↵ective
resistance between v and w, when G is treated as an electrical network where each
edge is a resistor of resistance one. See Doyle and Snell [15] or Lewin, Peres, and
Wilmer [21] for nice discussions of this notion.) As its name suggests, Re↵ is most
naturally defined in terms of electrical networks. For us the following mathematical
definition will su�ce: for a graph G = (V,E) and vertices v, w 2 V , we use the
commute time identity to define

(2) Re↵(v, w) =
⌧(v, w) + ⌧(w, v)

2|E| ,

where ⌧(v, w) is the expected time for a simple random walk starting at v to reach w.
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ON THE COVER TIME OF THE EMERGING GIANT 1689

Note that, as suggested by the electrical analog, we have

(3) Re↵(v, w)  dist(v, w).

This is a simple consequence of Rayleigh’s monotonicity law (delete all edges except
for a shortest path from v to w); see [15].

In the continuous setting, the GFF generalizes Brownian motion (or the Brownian
bridge) and can be seen as a model of a random surface. In the discrete setting, the
GFF can be seen as generalizing Brownian motion on a line to an analog of Brownian
motion on the topology of the graph. In particular, if G is a path with t edges and
the fixed vertex v0 is an endpoint of the path, then the normals ⌘v in the GFF for
the path can be generated in terms of Brownian motion W (t) by setting ⌘v to be
W (dist(v, v0)).

The important thing for the present paper is a remarkable connection between
the GFF on a graph and its cover time. Let us define

M = E(max
v2V

⌘v).

Ding, Lee, and Peres [13] proved that there are universal constants c1, c2 such that

(4) c1|E|M2  CG  c2|E|M2.

Next let R = maxv,w2V Re↵(v, w). Zhai [22] proved the following theorem.

Theorem 3 (Zhai). Let G = (V,E) be a finite undirected graph with a specified

vertex v0 2 V . There are universal positive constants c1, c2 such that if we let ⌧cov be

the first time that all the vertices in V have been visited at least once for the walk on

G started at v0, we have

(5) Pr
⇣���⌧cov � |E|M2

��� � |E|(
p
�R ·M + �R)

⌘
 c1e

�c2�

for any � � c1.

Setting X = ⌧cov
|E|M2 , this gives after crude estimates

|EX � 1|  E|X � 1| =
Z 1

0
Pr(|X � 1| > t)dt  C

 r
R

M2
+

R

M2

!

for a universal constant C. Note that R and M do not depend on v0 (for M , ob-
serve that for any fixed vertex w, E[maxv2V ⌘v] = E[(maxv2V (⌘v � ⌘w)) + ⌘w] =
E[maxv2V (⌘v � ⌘w)], since the Gaussians have mean 0; see also Remark 1.3 in [22]).
After taking the maximum over v0 we thus get that CG = maxv0 E⌧cov satisfies

(6) CG = |E|M2

 
1 +O

 r
R

M2
+

R

M2

!!
.

Now, as we will see in the next section, the number of edges in the emerging giant is
given by the following theorem.

Theorem 4. Let G = Gn,p be as in Theorem 2. Then

(7) |E(C1)| ⇡ 2"n w.h.p.
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1690 ALAN M. FRIEZE, WESLEY PEGDEN, AND TOMASZ TKOCZ

This follows from the work in [11] as we will see in section 2.2.
Our main contribution is the following theorem.

Theorem 5. Let G = Gn,p be as in Theorem 2, and let M the the expected

maximum of a GFF on G as defined above. Then

(8) M ⇡ log("3n)

(2")1/2
w.h.p.

This immediately implies Theorem 2 as follows.

Proof of Theorem 2. In view of (6) obtained from Theorem 3, Theorem 5 implies
Theorem 2 if we can show that w.h.p. R = o(M2). Now, we know from (1), (4), and
(7) (or from Theorem 5) that w.h.p. M = ⌦("�1/2 log("3n)). Therefore to prove that
R = o(M2) it will be su�cient to prove

(9) R = O

✓
log("3n)

"

◆
.

This can be verified as follows: First we observe that the e↵ective resistance between
two vertices of a graph G is always bounded above by the diameter of G; see (3).
Second, it was proved in [12] that w.h.p. the diameter of Gn,p is asymptotically equal

to 3 log("3n)
" , and so (9) follows immediately.

2.2. Structure of the emerging giant. Ding et al. [11] describe the following
construction of a random graph, which we denote by H. Let 0 < µ < 1 satisfy
µe�µ = (1+")e�(1+"). Let N (µ,�2) denote the normal distribution with mean µ and
variance �2.

giantconstruction

Step 1. Let ⇤ ⇠ N
�
1 + "� µ, 1

"n

�
, and assign independent and identically dis-

tributed (i.i.d). variables Du ⇠ Poisson(⇤) (u 2 [n]) to the vertices, condi-
tioned that

P
Du1Du�3 is even. (While ⇤ can be negative, we show in (11)

below that it is positive w.h.p.)
Let Nk = | {u : Du = k} | and N�3 =

P
k�3 Nk. Select a random graph

K1 on N�3 vertices uniformly among all graphs with Nk vertices of degree k
for all k � 3.

Step 2. Replace each edge e 2 E(K1) by a path Pe of length Geom(1 � µ) to
create K2. (Hereafter, K1 denotes the graph from Step 1 whose vertices are
the subset of vertices of H consisting of these original vertices of degree � 3,
and K2 ◆ K1 denotes the graph created by the end of this step.)

Step 3. Attach an independent Poisson(µ)–Galton–Watson tree with root v to
each vertex v of K2.

The main result of [11] is the following theorem.

Theorem 6. Let "! 0 such that "3n ! 1. For any graph property A, Pr(H 2
A) ! 0 implies that Pr(C1 2 A) ! 0.

We will work with this construction for the remainder of the manuscript. For our
application of the GFF, we make the convenient choice that v0 is a vertex in K1.

Proof of Theorem 4. Let H be the graph constructed in Steps 1–3. In view of
Theorem 6, in order to show |E(C1)| ⇡ 2"n, we show |E(H)| ⇡ 2"n. We observe that

(10) 1� µ� " 2 [0, "2].
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ON THE COVER TIME OF THE EMERGING GIANT 1691

Recall from Step 1 that ⇤ ⇠ N (1 + "� µ, 1
"n ). Applying the Chebyshev inequality

we see that for any ✓ > 0, we have

Pr (|⇤�E(⇤)| � ✓)  1

✓2"n
.

Putting ✓ = n�1/3, we see that ✓2"n = "n1/3 ! 1, so

(11) ⇤ = E⇤+O(n�1/3) = 2"+O(n�1/3 + "2) w.h.p.

The restriction
P

Du1Du�3 is even will be satisfied with constant probability, and
then we see that w.h.p.

(12) N�3 ⇡ 4

3
"3n, and almost all vertices of K1 have degree three.

Therefore, w.h.p.,

(13) |E(K1)| ⇡
3

2

4

3
"3n = 2"3n.

The expected length of each path constructed by Step 2 is asymptotically equal to
1/(1�µ) ⇡ 1/". The path lengths are independent with geometric distributions (which
have exponential tails), and so their sum is concentrated around their mean (by virtue
of, e.g., Bernstein’s inequality) which is asymptotically equal to |E(K1)| 1" ⇡ 2"2n.
Thus, w.h.p., |E(K2)| ⇡ 2"2n. Note also that in K2, w.h.p., there is no path longer
than 2

" logN�3.
Furthermore, the expected size of each tree in Step 3 is also asymptotically equal

to 1/". These trees are independently constructed whose sizes also have exponentially
decaying tails, and so the total number of edges is concentrated around its mean which
is asymptotically equal to |E(K2)| 1" ⇡ 2"n. Thus, w.h.p. |E(H)| ⇡ 2"n, which proves
Theorem 4.

Let

N = "3n, and let  denote the smallest power of 2 which is at least 1/".

Lemma 1. W.h.p. |Pe|  2 logN
" for all paths Pe created in Step 2.

Proof.

Pr

✓
|Pe| �

2 logN

"

◆
 (1� "(1� "))2 logN/"  N�(2�o(1)).

The result now follows from (13) and the Markov inequality.

2.2.1. Galton–Watson trees. A key parameter for us will be the probability
that a Galton–Watson tree with Poisson(µ) o↵spring distribution survives for at least
k levels. The following lemma was proved by Ding et al. (see Lemma 4.2 in [12]).

Lemma 2. Let 0 < µ < 1 and " > 0 satisfy µe�µ = (1 + ")e�(1+")
. Let T be a

Poisson(µ)–Galton–Watson tree. Let Lk denote the kth level of T . Then there exist

absolute constants c1 < c2 such that for any k � 1/" we have

c1(" exp
�
�k("+ c1"

2)
 
)  Pr (Lk 6= ;)  c2(" exp

�
�k("� c2"

2)
 
).

Their proof also easily gives the following result.
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1692 ALAN M. FRIEZE, WESLEY PEGDEN, AND TOMASZ TKOCZ

Lemma 3. For k < 1/" we have

Pr (Lk 6= ;) < 10

k
.

We shall need the following result about trees attached in Step 3. Here and
throughout the remainder of the paper,

N = "3n.

Lemma 4. Consider the construction of the graph H from Steps 1–3. Let 0 <
� < 1. Let T be the set of trees attached in Step 3 of giantconstruction. Then,

w.h.p. (referring to the entire construction, not just Step 3), we have the following:

(a)

There are between
1

2
c1N

1��+O(")
and 2c2N

1��+O(")
trees in T of depth at least

(14)

�"�1 logN.

(b)

(15) There are no trees in T of depth exceeding
2 logN

"
.

In fact the probability of the event in (15) is 1�O(N�(1�o(1))).
Here c1, c2 > 0 are the universal constants from Lemma 2.

Proof. (a) Let p� denote Pr(Lk 6= 0) for k� = b�"�1 logNc, � > 0. Conditioning
on the results of Step 1 and Step 2, the number ⌫� of trees created in Step 3 of depth
at least k is a binomial with number of trials |V (K2)| and probability of success p� .
Recall |V (K2)| ⇡ (1 + o(1)) 4N" . It follows from Lemma 2 that

(1 + o(1))
4N

3
· 1
"
· c1" exp {�(� +O(")) logN)} =

4c1
3

N1��+O(")

 E(⌫�) 
4c2
3

N1��+O(").

Since 1� � > 0 and " ! 0, note that eventually 1� � + O(") > �0 for some positive
universal constant �0, so N1��+O(") ! 1.

Thus conditional on the results of Step 1 and Step 2, ⌫� is distributed as a
binomial with mean going to infinity, and so we have that if 0 < � < 1, then the
Cherno↵ bounds imply (14).

(b) It follows from Lemma 2 that the probability that any fixed tree has depth at
least 2"�1 logN is O("N�2�o(1)). There are w.h.p. O("2n) trees, and so the expected
number of trees with this or greater depth is O("2n ⇥ "N�2�o(1)) = O(N�1�o(1)).
The result now follows from the Markov inequality.

2.3. Normal properties. In this section we describe several properties of the
normal distribution that we will use in our proof.

First suppose that g1, g2, . . . , gs are independent copies of N (0, 1). Then if Gs =
maxi=1,...,s gi,

(16) E (Gs) =
p
2 log s� log log s+ log(4⇡)� 2�p

8 log s
+O

✓
1

log s

◆
,
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ON THE COVER TIME OF THE EMERGING GIANT 1693

where � = 0.577 . . . is the Euler–Mascheroni constant. For a proof see Cramér
[10, Formula (28.6.16) on page 376].

Next suppose that (Xi)1is and (Yi)1is are two centered Gaussian vectors in
Rs such that E(Xi �Xj)2  E(Yi � Yj)2 for all 1  i, j  s. Then,

(17) E(max {Xi : i = 1, 2, . . . , s})  E(max {Yi : i = 1, 2, . . . , s})

(sometimes refered to as Slepian’s lemma). See Fernique [18, Theorem 2.1.2 and
Corollary 2.1.3]. Finally we have that if (Xi)1is is a centered Gaussian vector and
�2 = maxi Var(Xi), then

(18) E( max
1is

Xi)  �
p
2 log s.

This can be found, for example, in the appendix of the book by Chatterjee [3]; it
follows from a simple union bound. Nevertheless, repeated carefully chosen applica-
tions of (18) will su�ce to prove our upper bound on M . (Importantly, observe by
comparison with (16) that independent normals are asymptotically the worst case for
the expected maximum.)

We also have

(19) Pr(| max
1is

Xi �E( max
1is

Xi)| > t)  2e�t2/2�2

.

See, for example, Ledoux [19].

2.4. First visit time lemma. In this section we give a lemma that the first
author has used (along with Colin Cooper) many times in the study of the cover time
of various models of random graphs. Let G denote a fixed connected graph, and let u
be some arbitrary vertex from which a walk Wu is started. Let Wu(t) be the vertex

reached at step t, and let P (t)
u (x) = Pr(Wu(t) = x). In the following lemma, ! = !(n)

is an arbitrary function that tends to 1 with n, and T = Tmix is a mixing time in
the sense that for t � Tmix

(20) max
u,x2V

�����
P (t)
u (x)� ⇡x

⇡x

����� 
1

!
.

Next, considering the walk Wv, starting at v, let rt = Pr(Wv(t) = v) be the proba-
bility that this walk returns to v at step t = 0, 1, . . ..

For t � 0, let At(v) be the event that Wu does not visit v in steps T, T +1, . . . , t.
The vertex u will have to be implicit in this definition. Let ⇡v be the steady state
probability of vertex v and

(21) Rv =
TX

t=0

rt.

Lemma 5. Suppose that

(22) T⇡v = o(1).

Then, for all t � T ,

(23) Pr(At(v)) = exp

⇢
�⇡v(1 +O(T⇡v))t

Rv

�
+ o(Te�c�t/T )

for some absolute constant c > 0.
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In the lemma as used by Cooper and Frieze [4, 5, 6, 7, 8, 9], there was a technical
condition that has been removed by Manzo, Quattropani, and Scoppola [20], and we
have taken advantage of this improvement to the lemma.

2.5. E↵ective resistance on K2. Recall that the emerging giant can be mod-
eled as a collection of independent Poisson–Galton–Watson trees attached to K2. Our
proof will depend on a bound on the e↵ective resistance of K2 and then show that
this bound su�ces to analyze the e↵ective resistance within the Galton–Watson trees.
Recall that we think of the graph as an electrical network where each edge is a resistor
of resistance one.

There are several steps to the analysis, and we give an outline here. The main
result of the section is Lemma 6.

(a) At the top level we bound e↵ective resistance between v, v0 2 V (K2) using
the commute time identity, (2).

(b) We observe that a random walk on K2 is rapidly mixing, and so bounding
commute times reduces to bounding the expected time to visit v0 from the
steady state using the first visit lemma. We transform K2 into a related graph
bK2 to ensure that (22) holds and such that a bound on resistance for bK2 yields
a bound on resistance in K2.

(c) To apply Lemma 5 we need to bound Rv, the expected number of returns to a
vertex v within the mixing time T . Almost all vertices of K2, bK2 are far from
short cycles, and so their local neighborhoods are trees. We prune these trees
so that they induce binary trees in K1. This just simplifies some calculations.
Pruning increases Rv and e↵ective resistances, and thus it su�ces to bound
Rv on these pruned trees.

(d) Having control of the Rv allows Lemma 5 to control commute times. When
we apply this lemma in section 3.2, we find some minor correlation problem.
This will be handled with the use of the edge-deletion graphs bK2,e defined
below.

Transforming K2. Let `1 = d logN/ log logNe. We replace each such path of
length ` in K2 by one of length d`/`1e`1. Rayleigh’s law ([15], [21]) states that
increasing the resistance of any edge increases all e↵ective resistances. Placing a
vertex in the middle of an edge has the same e↵ect as that of increasing the resistance
of that edge. This implies that all resistances between vertices are increased by this
change of path length. Now every path has a length which is a multiple of `1, and so
if we replace paths, currently of length k`1 by paths of length k, then we change all
resistances by the same factor `1. We let bK2 = (bV , bE) denote the graph obtained in
the above manner and let bRe↵ denote e↵ective resistance in bK2.

For e 2 E(K1) we let Re↵,e denote e↵ective resistance in K2�E(Pe). In addition,
for each e 2 E(K1) we shorten paths Pf , f 6= e in K2 � E(Pe). The graph obtained

is bK2,e = (bV , bEe). Let bRe↵,e � bRe↵ denote e↵ective resistance in bK2,e.

Remark 1. From our construction, we see that bRe↵,e is independent of the length
of Pe. The usefulness of this construct will become apparant when we estimate the
size of the sets U i,j,k in section 3.2.1.

Suppose next that we arbitrarily orient the induced paths Pe, e 2 E(K1) from he

to te, where e = {he, te}. For v 2 V (K2) \ V (K1), we let e1(v) denote the edge of K1

whose division includes v. We note that
(24)
Re↵(v, v0)  Re↵,e1(v)(te1(v), v0)  `1 bRe↵,e1(v)(te1(v), v0) for all v 2 V (K2) \ V (K1).
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For k � 1 we let

bAk =

⇢
e 2 E(K1) : bRe↵,e(te, v0) �

k

`1

�
.

Most vertices in K1 have tree-like neighborhoods. We will define the notion of a tree-
like vertex formally below. Su�ce it to say at the moment that w.h.p. there are at
most log100 N vertices that are not tree-like.

Lemma 6. If te 2 V (K1) is tree-like, then

(25) Pr(e 2 bAk|K1)  e�(2�o(1))k,
`1


 k  2 logN.

Here we are conditioning on the output of Step 1 in giantconstruction; the prob-

ability space is just over the randomness in Step 2.

Proof. We use the commute time identity (2) ([15], [21]) for a random walk cWe

on the graph bK2,e to write, for v 2 e 2 E(K1),

(26) 2 bRe↵,e(v, v0)| bEe| = ⌧(v, v0) + ⌧(v0, v),

where ⌧(v, w) is the expected time for cWe to reach w when started at v.
The proof of this lemma is unfortunately quite long. We break it up into a

sequence of claims that we will verify subsequently. In what follows v 2 V (K1) will
be fixed, and e will be a fixed, edge of K1 that contains v.

Claim 1. W.h.p., the mixing time bTmix of cWe is O((log logN)2 logN), assuming

we take ! = N in (20).

For vertices v, w 2 V (K1) we bound ⌧(v, w) by bTmix plus the expected time to

reach w from the steady state of cWe.

Claim 2. The expected time for cWe to reach vertex v from the steady state is

O(Rv/⇡v), where Rv is as defined in (21).

Fix e 2 E(K1). For a vertex v 2 V (K1) we let Nv (the neighborhood) be the
subgraph of K1 induced by the set of vertices on paths of length at most L =
1000 log logN in K1 � e. Then let bNv be the subgraph of bK2 � e that is obtained
from Nv through the execution of Step 2 and the subsequent shortening of paths that
creates bK2.

We say that v 2 V (K1) is tree-like if Nv (and hence bNv) induces a tree.

Claim 3. W.h.p. the following hold:

(a) For all v, Nv contains at most one cycle.

(b) The number of non-tree-like vertices is at most log100 N .

In view of this claim, we will mainly focus on tree-like vertices and deal with the
non-tree-like vertices fairly crudely. Let Tv denote the tree induced by Nv, and let bTv

denote the tree induced by bNv. Let bBv = Bv (the boundary) denote the leaves of bTv

(equivalently, the leaves of Tv).

Claim 4. If w 2 bBv, then the expected number of visits to v from w in bK2, in

time bTmix, is o(1).

Thus, if we make bBv into absorbing states for the walk cWe, then Rv is the expected
number of returns before absorption, plus o(1). So let R̃v be the expected number
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of visits to v before the walk is absorbed into bBv. Thus Rv  R̃v + o(1). Next let
pesc(v) be the escape probability; i.e., the probability that a random walk started at v
doesn’t return to v before being absorbed. Then

(27) R̃v =
1

pesc(v)
and pesc(v) =

1

DvR̃e↵(v, bBv)
.

Recall that Dv denotes the degree of vertex v. For a proof of the second equation in
(27), see Doyle and Snell [15, section 1.3.4].

We now prune Tv: moving level by level from the neighbors of the root v, we
prune Tv so that we obtain a tree of depth L in which every vertex other than the
root or the leaves has degree three. It is possible that the root v already has degree
two. Remember that we have deleted one edge e, incident to v. We denote the pruned
tree by T̃v. Rayleigh’s principle and (27) show that the pruning decreases the escape
probability and increases the expected number of returns which is now denoted R̃v.
(Note that the pruning can only reduce the expected number of visits in Claim 4.)
Let T ⇤

v be the subtree of bTv corresponding to T̃v.

An edge f 2 E(K1) gives rise to a path Pf in bK2, and we let  (f) = b̀(P1) � 1,

where b̀(·) denotes d`(·)/`1e. Note that our definition of `1 means that w.h.p. almost
all of the paths Pf in bK2 consist of a single edge and for these  = 0. Also let
 (v) =

P
f2E(T⇤

v )  (f). Let Ws = {v 2 V (K1) :  (v)  s}.

Claim 5. W.h.p., if v 2 V (K1), then

(a) Pr(v /2 Ws)  exp{� s("(1�") logN�1000(log logN)2)
log logN }

(b) if v 2 Ws and e 2 E(K1) and te = v, then

bRe↵,e(te, bBte) 
(

1
2 s = 0,
s
4 + 1

2 s � 1.

In summary, if bRe↵,e(te, v0) > k/`1, then te /2 Ws, where s/4+1/2 = k/`1 � 1.
Therefore, for k as in (25),

Pr(e 2 bAk | K1)  Pr(v /2 Ws)

 exp

⇢
� (4k� 2`1)((1� ") logN � 1000(log logN)2)

`1 log logN

�

= e�(2�o(1))k.

This would complete the proof of Lemma 6. We must now substantiate our claims.

Proof of Claim 1. For a graph G = (V,E), let eG(S) denote the number of edges
contained in the set S ✓ V and eG(S : S̄) be the number of edges with exactly one

end in S. For a graph G and S ✓ V let �G(S) =
eG(S:S̄)
D(S) , where D(S) is the sum of

degrees of vertices in S. The conductance �G of G is equal to minD(S)|E| �G(S). It
is shown in [11, Lemma 3.5] that w.h.p. �K1

� c1, for some absolute constant c1 > 0.
We need the conductance of K1 � f , where f is an arbitrary edge of K1.

Claim 6. In K1, w.h.p., e(S)  |S| for |S|  log1/2 N .

Assume this claim for now, and condition on the event in the claim. Let ẽ(S : S̄)
denote the edges other than f between S and S̄. Then we have ẽ(S : S̄) � e(S :
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S̄) � 1. If 2  |S|  log1/2 N , then because the minimum degree in K1 is at least 3,
ẽ(S : S̄) � e(S : S̄)� 1 � |S|� 1. If |S| � log1/2 N , then e(S : S̄) � 3c1|S|, and then
ẽ(S : S̄) � (3c1 � 1

log1/2 N
)|S|, and so the conductance of K1 � f is at least c1/2.

The conductance of bK2,e is at least c1
2 · 1

2 log logN because each edge of K1 � e
is replaced by a path of length at most 2 log logN . Finally note that for a random

walk on a graph G, we have that after t steps max{|P (t)
u (x)� ⇡x|}  (1� �2

G
2 )t; see,

for example, [21]. Putting t = C(log logN)2 logN yields the claim for C su�ciently
large.

Proof of Claim 2. This will follow from Lemma 5 applied to the random walk on
bK2 once we have verified (22). Here T = O(log1+o(1) N) and max⇡v = O( logN

N ), and

so T⇡v = O( log
2+o(1) N
N ). Then we have, from (23), that the expected time to reach v

is of order

X

t�T

Pr(At(v)) =
X

t�T

✓
exp

⇢
�⇡v(1 +O(T⇡v))t

Rv

�
+ o(Te�ct/T )

◆
 (1 + o(1))Rv

⇡v
.

Proof of Claim 3. For this claim we use the configuration model of Bollobás [2]
as applied to K1. We note that w.h.p. ⇤ ⇡ 2" in Step 1 (see (10)) and also that
Nk�3 ⇡ N .

(a) If Nv contains more than one cycle, then K1 contains a set S of at most
s  4L vertices that contain at least s + 1 edges. The probability ⇧ of this can be

bounded as follows: let � = ⇤3e�⇤

6 ⇡ (2")3

6 be the probability that Poisson(⇤) � 3.
In the following, s is the size of S. Then 3s  D  M1 is the total degree of S, and

d1, . . . , ds are the individual degrees. Here M1 ⇡ 2N will be a high probability bound

on |E(K1)|. We multiply by the probability
Qs

i=1
⇤die�⇤

di!�
that these are the degrees.

Then we choose 2s+2 configuration points and pair them up in
� D
2s+2

� (2s+2)!
(s+1)!2s+1 ways.

The final term
�
s+1
3N

�s+1
bounds the probability of the pairings. Thus

⇧ 
4LX

s=4

✓
N

s

◆ M1X

D=3s

X

d1+···+ds=D
d1,...,ds�3

 
sY

i=1

⇤die�⇤

di!�

!✓
D

2s+ 2

◆
(2s+ 2)!

(s+ 1)!2s+1

✓
s+ 1

3N

◆s+1

.

But (i)
Qs

i=1
⇤die�⇤

� = ⇤De�⇤s

�s , (ii)
� D
2s+2

�
 D2s+2

(2s+2)! , and

(iii)
P

d1+···+ds=D
d1,...,ds�3

Qs
i=1

1
di!

 1
6s(D�3s)!

P
d1+···+ds=D
d1,...,ds�3

� D�3s
d1�3,...,ds�3

�
. So,

⇧ 
4LX

s=4

✓
Ne

s

◆s e�⇤s

�s(s+ 1)!2s+1

✓
s+ 1

3N

◆s+1

M1X

D=3s

⇤DD2s+2

6s(D � 3s)!

X

d1+···+ds=D
d1,...,ds�3

✓
D � 3s

d1 � 3, . . . , ds � 3

◆

But (i) 1/� ⇡ 6/(2")3 and ⇤ ⇡ 2" and
P

d1+···+ds=D
d1,...,ds�3

� D�3s
d1�3,...,ds�3

�
= sD�3s. So,

⇧ 
4LX

s=4

✓
Ne

s

◆s eo(s)6s

(2")3s(s+ 1)!2s+1

✓
s+ 1

3N

◆s+1 M1X

D=3s

((2 + o(1))")DD2s+2sD�3s

6s(D � 3s)!
.
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Next let uD = ((2+o(1))")DD2s+2sD�3s

(D�3s)! . Then,

uD+1

uD
 (2 + o(1))"s

D � 3s

✓
D + 1

D

◆2s+2

 (2 + o(1))e(2s+2)/D"s

D � 3s
 1

2
if D � 3s+ 10"s.

and so if D0 = 3s+ 10"s we see that uD0
�
P

D>D0
ud and then

⇧  2
4LX

s=4

✓
Ne

s

◆s eo(s)

(2")3s(s+ 1)!2s+1

✓
s+ 1

3N

◆s+1 D0X

D=3s

(2")DD2s+2sD�3s

(D � 3s)!

 eO(1)s

N

4LX

s=4

✓
e2(3s+ 10"s)6+20"+2/ss10"

s

◆s

= o(1).

(b) The number of non-tree-like vertices is at most the number of vertices that
are within L of a cycle of length at most L. We can bound the expected number of
such vertices as follows: we choose s vertices for the cycle and then another t for the
path in

�N
s

��N
t

�
s!t! ways. We sum over the degree sequence of the chosen vertices.

The factor di�1di

2N bounds the probability the path plus cycle exists.

LX

s,t=4

✓
N

s

◆✓
N

t

◆
s!t!

X

di�3,i2[s+t]

s+tY

i=1

✓
⇤die�⇤

di!�
⇥ di�1di

2N

◆
, where d0 = ds


LX

s,t=4

X

di�3,i2[s+t]

s+tY

i=1

⇤die�⇤

(di � 2)!�


LX

s,t=4

 1X

d=3

⇤de�⇤

(d� 2)!�

!s+t


LX

s,t=4

 
6

1X

d�3=0

⇤d�3

(d� 3)!

!s+t

 log5000 N.

The claim follows from applying the Markov inequality.

Proof of Claim 4. We bound the number of returns as follows. Consider a random
walk X on {0, 1, 2, . . .}, where we start the walk at 0 and when at 0 < i < L we go to
i + 1 with probability 1/3 and to i � 1 with probability 2/3. Whenever we are at 0
we move to 1 on the next move. Here 0 represents an arbitrary boundary vertex, and
L represents v. At each point of the walk on bTv where we are at a vertex of K1, we
have probability at most 1/3 of moving closer to v.

Now consider a time t when X (t) = L/2. If X (t+ L/4) � L/2, then at least L/8
of these L/4 moves must be in the increasing direction. But the Cherno↵ bounds then
imply that

Pr

✓
X
✓
t+

L

4

◆
� L

2

◆
 Pr

✓
Bin

✓
L

4
,
1

3

◆
� L

8

◆
 exp

⇢
� L

12
⇥ 1

27

�
 1

log3 N
.

It follows from this that the probability a walk from the boundary reaches v in T steps
is at most T/ log3 N , and then the expected number of visits is at most T 2/ log3 N =
o(1).
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Proof of Claim 5. (a) For an edge e of T̃v, we have that Pr( (e) � t)  (1 �
"(1 � "))t`1 , a probabilistic bound on the length of the path Pe in Step 2 of giant-
construction (see (10)). The  values of each such edge are independent, and so
as T̃v contains m  3 · 21000 log logN edges, then

Pr(v /2 Ws) 
X

s1+···+sm=t�s

mY

i=1

(1� "(1� "))si`1

=
X

t�s

✓
m+ t� 1

t� 1

◆
(1� "(1� "))t`1


X

t�s

✓
(m+ t)e

t
· exp

⇢
�"(1� ") logN

log logN

�◆t

.(28)

Let ut denote the summand in (28). We have that if s  m, then

(29)
mX

t=s

ut 
mX

t=s

✓
2me · exp

⇢
�"(1� ") logN

log logN

�◆t



mX

t=s

exp

(
�
t
�
"(1� ") logN � 700(log logN)2

�

log logN

)

 exp

⇢
�s("(1� ") logN � 800(log logN)2)

log logN

�
.

And

(30)
X

t�max{s,m}

ut 
X

t�max{s,m}

✓
2e · exp

⇢
�"(1� ") logN

log logN

�◆t

 exp

⇢
�s("(1� ") logN � 800(log logN)2)

log logN

�
.

Part (a) of the claim follows from (29) and (30).
(b) Given T ⇤

v with  (v) = s we modify it in such a way that the expected number
of returns increase and then bound this as claimed. Roughly speaking, we concentrate
all the resistance at the induced paths incident with v; by proving that this only
increases e↵ective resistance, it allows us to reduce the problem of bounding the
e↵ective resistance to this case.

Suppose then that v 6= w 2 V (K1)\V (T ⇤
v ) and w’s neighbors inK1 are w0, w1, w2,

where w0 is the one closer to v than w on the tree T ⇤
v . Suppose also that  ({w,w1})+

 ({w,w2}) > 0. We transform T ⇤
v by increasing the length of the path from w to w0

by  ({w,w1})+ ({w,w2}) and reducing the lengths of the paths joining w to w1 and
w to w2 to be single edges so that  (w,w1) =  (w,w2) = 0. This preserves the sum
of  values, and we claim that bRe↵,e(v, bBv) does not decrease. In this way, bRv does
not decrease; see (27). To see this, let ⇢(w), w 2 V (T ⇤

v ) be the e↵ective resistance
between w and bBv as measured in the subtree with root w. Let w0, w1, w2 be as
before, and let w3 be the other neighbor of w0 further from v (if it exists). Before the
transformation, we have

(31)
1

⇢(w0)
=

1

`(w0, w) +
1

1

`(w0,w1)+⇢(w1)
+ 1

`(w0,w2)+⇢(w2)

+
1

`(w0, w3) + ⇢(w3)
,
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and after the transformation we have
(32)

1

⇢(w0)
=

1

`(w0, w) + `(w,w1) + `(w,w2)� 2 + 1
1

1+⇢(w1)
+ 1

1+⇢(w2)

+
1

`(w0, w3) + ⇢(w3)
.

The R.H.S. of (32) is at most the R.H.S. of (31). This follows from the inequality

(33) ↵+ � +
1

1
� + 1

�

� 1
1

↵+� + 1
�+�

� 0.

After multiplying through by (↵+�+�+ �)(�+ �) we obtain an expression with only
positive terms. We apply (33) with ↵ = `(w,w1)� 1,� = `(w,w2)� 1, � = ⇢(w1), � =
⇢(w2).

Proceeding in this way, we end up with a tree in which all maximal induced
paths in T ⇤

v are of length one, except for the one incident with v. Furthermore,  is
unchanged, and resistance is not decreased by this transformation. The sum of the
lengths of the maximal induced paths incident with v is then  (v) + 2 (recall that v
has degree 2 in T ⇤

v ).
Finally, we balance the lengths of these two paths incident with v by replacing

the path lengths at v by 1+d (v)2 e and 1+b (v)2 1c. This increases resistance because,
for positive integers x, y, we have 1

x + 1
y � 1

d(x+y)/2e +
1

b(x+y)/2c .
Note next that the e↵ective resistance between the root of a binary tree and its

leaves is at most one. To see this we let Rd be the e↵ective resistance if the depth is
d. Then we have

Rd =
1

1
Rd�1+1 + 1

Rd�1+1

=
Rd�1 + 1

2
.

It then follows that

bRe↵,e(v, bBv) 
1

1

1+d (v)

2
e
+ 1

1+b (v)

2 c
=

⇣
1 + d (v)2 e

⌘⇣
1 +

j
 (v)
2

k⌘

2 +  (v)

⇣
1 +  (v)

2

⌘2

2 +  (v)

=
 (v)

4
+

1

2
.

Proof of Claim 6. Let � ⇡ ⇤3e�⇤

6 ,⇤ ⇡ 2" be the probability that Poisson(⇤) � 3.
For a set S ✓ V (K1) with |S| = s, we have

Pr(e(S) � s+ 1) 
X

D�3s

X

d1+···+ds=D

sY

i=1

⇤di

di!�
⇥ 2D

✓
D

N

◆s+1


X

D�3s

2D
✓
D

N

◆s+1

⇥ ⇤D

�s
⇥ sD

D!
.(34)

Explanation. Let M1 = |E(K1)|, and let D = D(S) denote the sum of the degrees

in S;
P

d1+···+ds=D

Qs
i=1

⇤di

di!�
bounds the probability that this sum is D. To bound

the probability that e(S) � s+1 we have to choose some subset of the D configuration
points of size s+1 that pair with configuration points in S. We bound the probability

that such a set of configuration points exist by 2D
�
D
N

�s+1
. Note here thatM1 � 3N/2,

and the probability that a configuration point of S pairs with another such point is
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bounded by (D�1)/(2M�1), conditional on previous pairings of points in S. Finally,

we bound
P

D�3s

P
d1+···+ds=D

Qs
i=1

1
di!

by sD

D! .

Letting uD = 2D⇤DDs sD

D! we see that

uD

uD+1
 2⇥ es/D ⇥ (2 + o(1))"⇥ s

D
⌧ 1.

So,

Pr(9|S|  log1/2 N : e(S) � |S|+ 1)

 3 log1/2 N

N

log1/2 NX

s=4

✓
N

s

◆✓
eo(1) ⇥ 8⇥ 3⇥ 6⇥ e3

27
⇥
⇣ s

N

⌘◆s

 3 log1/2 N

N

log1/2 NX

s=4

150s = o(1).

This completes the proof of Lemma 6. (Because there are so few non-tree-like
vertices, for such v we will bound bRe↵,e(v, v0) by the diameter O( logN

" ) of K2.)

3. Proof of Theorem 5. Theorem 6 allows us to work with H instead of C1,
and we assume from now on that H has the following properties that have been shown
or claimed to hold w.h.p. above, namely:

Assumed properties of H (APOH):

(i) |V (K1)| ⇡ 4N/3,
(ii) |E(K1)| ⇡ 2N ,
(iii) |V (K2)| ⇡ 2"2n,
(iv) |E(K2)| ⇡ 2"2n,
(v) |V (H)| ⇡ 2"n,
(vi) |E(H)| ⇡ 2"n,
(vii) there are between 1

2c1N
1��+O(") and 2c2N1��+O(") trees of depth at least

�"�1 logN , and there are no trees of depth exceeding 2 logN
" .

In what follows, we may write in terms of unconditional probabilities and expectations,
but these will refer to the GFF and will assume that H is a fixed graph with property
APOH. There are some places where we have to prove further properties of H, but
we will be sure to flag them.

3.1. Lower bound. It turns out that for the lower bound, it su�ces to consider
the maximum over a very restricted set, consisting just of a single vertex from each
su�ciently deep tree.

Lemma 7.

E

✓
max

v2V (G)
⌘v

◆
� (1 + o(1))

log("3n)

(2")1/2
.

Proof. We first identify a subset of vertices on which the GFF behaves as having

independent components and then produce a lower bound using Slepian’s comparison
(17) combined with (16). Consider the set of Galton–Watson trees attached to H of
depth at least d = i"�1, i to be chosen. Choose one vertex at depth d from each
tree to create Sd. It follows from (14) with � = i/ logN that there will be at least
cN1��+O(") such trees for some constant c > 0. Let (b⌘v)v2Sd be a random vector
with i.i.d. N (0, �"�1 logN) entries. Then b⌘v � b⌘w has variance exactly 2�"�1 logN ,
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1702 ALAN M. FRIEZE, WESLEY PEGDEN, AND TOMASZ TKOCZ

whereas ⌘v � ⌘w has variance at least 2�"�1 logN (the graph-distance between v and
w is at least 2d = 2i"�1 = 2�"�1 logN), and so it follows from (17) that

(35) E(max {⌘v : v 2 Sd}) � E(max {b⌘v : v 2 Sd}).

Applying (16) we see that

E(max {b⌘v : v 2 Sd}) � (1 + o(1))(2 log(|Sd|)1/2 · (�"�1 logN)1/2.

⌘̂v has the same distribution as a standard Gaussian multiplied by (�"�1 logN)1/2.
Using |Sd| � cN1��+O("), we obtain

(36) E(max {b⌘v : v 2 Sd}) � (1 + o(1))(2 log(cN1��+O(")))1/2 · (�"�1 logN)1/2

⇡ (2�(1� �))1/2 logN

"1/2
.

Putting � = 1/2 in (36) and applying (35) yields

E

✓
max

v2V (G)
⌘v

◆
� E

✓
max
v2Sd

⌘v

◆
� (1 + o(1))

logN

(2")1/2
.

Recalling that N = "3n, this finishes the proof of the lemma.

The important task is to achieve a matching upper bound.

3.2. Upper bound. We begin with an outline of the proof of the upper bound.
We let  := d1/"e and will write `0 = dlog2 e. We say that v 2 G is a d-

survivor if it has at least one d-descendant xd(v), that is, a vertex xd(v) such that
dist(K2, xd(v)) = dist(K2, v) + dist(v, xd(v)) = dist(K2, v) + d.

Recall that we have oriented the induced paths Pe from he to te. See the paragraph
following Remark 1. Then for each such e and v 2 V (Pe) we let d1(v) denote the
distance from v to V (K1) traversing Pe in the chosen direction. Let e(v) denote the
edge of K2 corresponding to the path Pe containing v.

Each v 2 V (H) \ V (K2) lies in a Galton–Watson tree with a root w = ⇢GW (v) 2
V (K2) lying on a path created in Step 2 from an edge e. Let d1(v) = d1(w), and let

U i,0,k =
n
v 2 V (K2) : d1(v) 2 [i, (i+ 1)� 1], e(⇢GW (v)) 2 bAk \ bAk+1

o
,

and define for each 1  j  2 logN and 0  i, k  2 logN a set U i,j,k by choosing,
for each -survivor in U i,j�1,k, an arbitrary -descendant x(v); these chosen -
descendants comprise U i,j,k. Evidently, we have for U =

S
i,j,k�0 U

i,j,k that

(37) E(max
v2V

⌘v)  E(max
u2U

⌘u) +E(max
v2V

(⌘v � ⌘u(v)))

for any function u : V ! U . We will bound the two terms on the R.H.S. separately.
Let

T� =
e� logN

(2")1/2
,

where � = max{10", 1
log1/3 N

}.

Lemma 8. With the notation introduced above, we have

(38) E(max
u2U

⌘u)  (1 + o(1))T�.
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Lemma 9. There is a function u : V ! U such that

(39) E(max
v2V

(⌘v � ⌘u(v))) = o(T�).

Observe that the proof of the upper bound in Theorem 5 follows from (37) and
Lemmas 8 and 9; it remains just to prove these two lemmas.

3.2.1. Proof of Lemma 8. We let Zi,j,k = maxv2Ui,j,k ⌘v and

(40)

E(max
v2U

⌘v) = E

✓
max

0i,j,k2 logN
Zi,j,k

◆
 T� +

X

0i,j,k2 logN

E (max(Zi,j,k � T�, 0))

= T� +
2 logNX

i,j,k=0

Z

t�T�

Pr(Zi,j,k � t)dt.

The bounds on i, j, k follow from Lemmas 1, 4, 6, respectively.
Our task now is to bound the sum of integrals in (40). In words, the idea is that

U is partitioned into smaller pieces U i,j,k such that each piece is of a small enough
cardinality such that the Gaussian concentration of Zi,j,k around its mean allows us
to control the above integrals.

Let a vertex of v of K2 be tree-like if the endpoint te of the path Pe containing it
is a tree-like vertex of K1. Similarly, a vertex of a Galton–Watson tree is tree-like if
its root is tree-like. Now write

U i,j,k = U i,j,k
T [̇ U i,j,k

N ,

where U i,j,k
T and U i,j,k

N are those vertices whose Galton–Watson trees are attached at
tree-like and non-tree-like vertices of K2, respectively.

Case 1: U i,j,k
T for k0 = log1/2 N  k  2 logN : tree-like vertices. Be-

cause we are bounding the sum of integrals on the R.H.S. of (40) it will be safe to
ignore events of probability o(log�3 N). So from now on, w.h.p. will mean with
probability 1� o(log�3 N). We will work assuming that K1 is fixed and satisfies the
conditions APOH(i) and (ii) defined at the beginning of section 3. We can then focus
on 0  i, j, k  2 logN . This is because it follows from Lemmas 1, 2, and 6 that these
bounds hold with probability 1�O(N�1�o(1)).

Claim 7. We have that w.h.p.

(41) |U i,j,k
T |  O

⇣
Ne�"(1�")(i+j+k)

⌘
for 0  i, j  2 logN, k0  k  2 logN.

Proof. We write

|U i,j,k| =
X

v2Ui,j�1,k

1Bv ,

where the event Bv is the that vertex v is a -survivor. We have

E(|U i,j,k
T |) = O

⇣
N(1� "(1� "))i · e�(2�o(1))k✓k · (1� "(1� "))(j�1) · "e�"

⌘
(42)

= O
⇣
Ne�"(1�")(i+j+(2�o(1))k)

⌘
,

where ✓k = 1k�`1/.
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Explanation. For a fixed vertex in K2, the expected number of vertices at level t of
a Galton–Watson tree rooted at this vertex will be at most (1�"(1�"))t. Each vertex
v in such a level has probability Pr (Bv)  Pr (L 6= ;) of being a -survivor and we
use Lemma 2 to upper bound Pr (L 6= ;) by O("e�"). Wald’s identity implies that
the expected number of vertices in the Galton–Watson tree rooted at a fixed vertex
lying in U i,j,k is thus (1� "(1� "))(j�1) · "e�".

In expectation there are O(N(1 � "(1 � "))i · e�(2�o(1))k✓k) vertices w 2 K2

for which e(w) 2 bAk and d1(w) � i; here we have used Lemma 6 to bound the
probability that a vertex w for which d1(w) � i has e(w) 2 bAk and applied Wald’s
identity as before. Applying Wald’s identity a final time gives (42).

Equation (41) follows from the Markov inequality. (There are O(log3 N) choices
for i, j, k, and there is a factor e(1�o(1))k � e(1�o(1))k0 di↵erence between the expres-
sions in (41), (42).)

Given (41), we proceed to bound the sum in (40) term by term. (We wish to
show that the sum is o(T�).) To bound the probabilities Pr (Zi,j,k � t), we will use
the concentration of the maximum of a Gaussian process around its expectation,
whereas the expectations E(Zi,j,k) will be simply treated with the union bound.

First we estimate the expectations.

Claim 8. For i, j � 0, k � k0,

(43) E(Zi,j,k)  e��/2T�.

Proof. For v 2 U i,j,k, we know that ⌘v has variance at most (i+ j + k + 1) (by
the definition of U i,j,k, the graph-distance from v to K2 is j, and (i+ k+1) comes
from the definition of bAk). It then follows from (18) in section 2.3 and |U i,j,k| 
CNe�"(1�")(i+j+k) that

(44) E(Zi,j,k)  (2 log(CNe�"(1�")(i+j+k)))1/2 · ((i+ j + k + 1))1/2.

It follows from 2(xy)1/2  x+ y that we can write

E(Zi,j,k)  (2"�1)1/2("(i+ j + k))1/2(log(CN)� "(1� ")(i+ j + k)))1/2

 (1 + 7") log(CN)

(2")1/2
 e�2�/3T�,

and then E(Zi,j,k)  "�2�/3T�  e��/2T�.

Case 2: k0  k0 = log1/2 N : tree-like vertices. We first let U i be the
set of vertices v of K2 for which dist(v, te(v)) 2 [i, (i + 1) � 1]. Given K1 and
|E(K1)| ⇡ 2N the size of U i is a binomial random variable with success probability
at most µi  (1� "(1� "))i. So, w.h.p.

|U i|  2Ne�"(1�")i + log10 N for all 0  i  2 logN.

The first term comes from the Cherno↵ bounds, and the log10 N term is there for the
case where the expectation Ne�"(1�")i is less than log2 N , in which case we just use
the Markov inequality. This estimate is valid conditonal on U .

For each v 2 U i recall that p = (1 � ")1�", and let pj = p(j�1) · "e�" bound
the probability that v has a descendant at level j that is a -survivor. Then if U i,j

denotes the set of descendants of such vertices v 2 U i, we have

E(|U i,j |)  |U i|pj  (2Ne�"(1�")i + log10 N)pj .
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Applying the Cherno↵ bounds we see that conditional on U , w.h.p.

|U i,j |  2(2Ne�"(1�")i + log10 N)pj + log10 N

 4Ne�"(1�")(i+j�1) · "e�" + 2 log10 N.

It then follows using (18) that for all k  k0 = log1/2 N that

(45) E(Zi,j,k) 

(2"�1)1/2
✓
1 +

2 log logN

logN

◆
("(i+ j+log1/2 N))1/2(log(4N)�"(1�")(i+ j))1/2.

If now i+ j  1
100 logN , then we see that

E(Zi,j,k) 
1/2 logN

9
 T�

4
.

If i + j � 1
100 logN , then we use 2(xy)1/2  x + y and (i + j + log1/2 N)  (i +

j)(1 + 100
log1/2 N

). Applying this in (45) gives

E(Zi,j,k) 

⇣
1 + 101

log1/2 N

⌘

(2")1/2
(log(4N) + 4" logN)  e�/2 logN

(2")1/2
 "��/2T�.

Case 3: Non-tree-like vertices. Claim 3 says that w.h.p. there are at most
log100 N non-tree-like vertices of K1; we have

E(|U i,j,k
N | | Claim 3) = O(log100 Ne�"(1�")(i+j)),

and so w.h.p.

|U i,j,k
N | = O(log200 Ne�"(1�")(i+j)).

And then, using the bound of 3 logN
" on the diameter from [12] to bound e↵ective

resistance in K2, we have

E(Zi,j,k) = O(log(C log200 Ne�"(1�")(i+j))1/2("�1 logN)1/2)

= O(("�1 logN log logN)1/2) = o(T�),

and we can continue as in (46).
This completes our estimates for E(Zi,j,k).

We proceed to estimate the probability the probability that Zi,j,k significantly
exceeds its mean.

To estimate this probability we use the Gaussian concentration for the maximum,
(19) in section 2.3. As already remarked, this inequality will not be a↵ected by the
conditioning, and it yields

Pr(Zi,j,k � E(Zi,j,k) + t)  2 exp

⇢
� t2

2(i+ j + k + 1)

�
 2 exp

⇢
� t2

13 logN

�
,

(46)D
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where in the last inequality we use i, j, k  2 logN . Thus,
Z

t�T�

Pr(Zi,j,k � t)dt 
Z

t�T�

exp

⇢
� (t�E(Zi,j,k))2

13 logN

�
dt(47)

=
p
13 logN

Z

u�
T��E(Zi,j,k)

p
13 log N

e�u2

du

= O

✓
1/2 log1/2 N exp

⇢
� (T� �E(Zi,j,k))2

13 logN

�◆
.

Plugging (43) into (47) we see that

exp

⇢
� (T� �E(Zi,j,k))2

13 logN

�
 exp

⇢
� (1� e��/2)2T 2

�

13 logN

�

 exp

⇢
� (1� e��/2)2e2� logN

26"

�

 N�c�2

for some universal constant c > 0, as "  2, e2� ! 1, and (1� e��/2)2 ⇡ �2/4.
So,

(48)

Z

t�T�

Pr(Zi,j,k � t)dt  1/2 log1/2 N ·N�c�2  N�c�2T�.

Thus

2 logNX

i,j,k=0

Z

t�T�

Pr(Zi,j,k � t)dt  8N�c�2T� log
3 N

 exp

⇢
� c logN

log2/3 N
+O(1) + log logN

�
T�

= o(T�).(49)

3.2.2. Proof of Lemma 9. To prove Lemma 9 we let Wk denote the set of
vertices whose distance to K2 is divisible by k. Our goal now is to show that a
general vertex v is ⌘-close to some vertex u(v) 2 U , i.e., as measured by (⌘v � ⌘u);
we will do this by showing that v is ⌘-close to its H-nearest (as measured by graph-
distance) ancestor y 2 W; this will su�ce since our choice of U ensures that some
vertex u 2 U has the property that y is also the ⌘-closest ancestor of u in W.

We will consider sets J0, J1, J2, . . . , J`0 , `0 = dlog2 e of ordered pairs of vertices
in H with the following properties (see Figure 1):

A. For (v1, v2) 2 Ji, we have that v1, v2 2 W2i and that v2 is a 2i-descendant of
v1.

B. J0 is the set of all edges in H that are outside of K2.
C. For each i, we have, for each 2i-survivor v2 2 W2i \W2i+1 belonging to ⇡2(Ji),

that exactly one 2i-descendant x(v2) 2 W2i+1 of v2 is paired in Ji+1 with its
2i+1-ancestor v1 2 W2i+1 .

D. For all i, ⇡2(Ji+1) ⇢ ⇡2(Ji). (Here ⇡j is the projection function returning the
jth coordinate of a tuple.)

Notice that pairings J0, J1, . . . , J`0 with these properties exist by induction; hav-
ing constructed J0, . . . , Ji, we construct Ji+1 by choosing pairs via properties C and D;
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So, Z

t�T�

Pr(Zi,j,k � t)dt  1/2 log1/2 N ·N�c�2  N�c�2T�. (48)

Thus

2 logNX

i,j,k=0

Z

t�T�

Pr(Zi,j,k � t)dt  8N�c�2T� log
3 N  exp

⇢
� c logN

log2/3 N
+O(1) + log logN

�
T�

= o(T�). (49)

3.2.2 Proof of Lemma 15

To prove Lemma 15 we let Wk denote the set of vertices whose distance to K2 is divisible by
k. Our goal now is to show that a general vertex v is ⌘-close to some vertex u(v) 2 U , i.e.
as measured by (⌘v � ⌘u); we will do this by showing that v is ⌘-close to its H-nearest (as
measured by graph distance) ancestor y 2 W; this will su�ce since our choice of U ensures
that some vertex u 2 U has the property that y is also the ⌘-closest ancestor of u in W.

v1 = y(v2)

v2

x(v2)

(y(v2), x(v2)) 2 Ji+1

W2i+1 ✓ W2i

W2i \W2i+1

W2i

(v2, x(v2)) 2 Ji

Figure 1: The sets Wk, Jk.

25

Fig. 1. The sets Wk, Jk.

in particular, for each 2i survivor v2 in ⇡2(Ji) at distance k2i from K2 for odd k, we
choose a 2i-descendant x(v2), and add the pair (v1, x(v2)) to Ji+1, where v1 is the
2i+1 ancestor of x(v2) (and the 2i ancestor of v2).

So we fix some choice of the pairings J0, . . . , J`0 . We write J̄i for the set of
unordered pairs which occur (in some order) in Ji. The heart of our argument is the
following lemma.

Lemma 10. Given any vertex v 2 V , let ↵(v) be its H-closest ancestor in W.

There is a sequence v = v0, v1, v2, . . . , vt = ↵(v) such that the following hold:

(a) For each j = 1, . . . , t, {vj�1, vj} 2 J̄i for some i.
(b) For each i = 0, . . . , `0, at most 1+2(`0� i) of the pairs {v0, v1} , {v1, v2} , . . . ,

{vt�1, vt} belong to J̄i.

Proof of Lemma 10. Fix a vertex v 2 V . Our goal is to find a chain v =
v0, v1, v2, . . . , vt = ↵(v) such that its consecutive links {vj�1, vj} are all in the sets Ji,
and each set Ji contains at most 1 + 2(`0 � i) links. We shall do this recursively, and
in order to keep track of it, we need the following parameters:

�(v) = max {0  i  `0 | v 2 W2i}
 (v) = max {0  i  �(v) | v 2 ⇡2(Ji)} .

Claim 9. Given any v, there is a vertex a(v) such that either

(a) �(a(v)) > �(v) and (a(v), v) 2 J�(v), or else

(b) �(a(v)) = �(v) and  (a(v)) >  (v), and there exists z(v) such that (z(v), a(v))
and (z(v), v) are both in J (v).

Proof. Consider the vertex v, and let i = �(v). We consider two cases:
Case 1:  (v) = �(v). In this case, by definition of  (v), we have that there is a
vertex a(v) such that (a(v), v) in Ji. In particular, as 2i is the largest power of 2 such
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that v 2 W2i and v is a 2i-descendant of a(v), we have that a(v) 2 W2i+1 , that is,
that �(a(v)) � i+ 1, as claimed.

Case 2:  (v) = j < �(v). In this case, by definition of  (v), we have that
there is a vertex z such that (z, v) in Jj . Now by property C of the pairings {Ji}, z
has a 2j-descendant a(v) which is in ⇡2(Jj+1); in particular, we have that  (a(v)) �
j + 1 >  (v). (Note for clarity that a(v) and v are at the same distance from K1 in
Case 2, and so �(a(v)) = �(v).) And by property D, a(v) 2 ⇡2(Jj) as well, and thus
(z, a(v)) 2 Jj , completing the proof of the claim. This concludes the proof of Claim
1 and thus also Lemma 10.

Observe that Lemma 10 follows from Claim 9; indeed, one can construct the
claimed sequence recursively as follows: given the partially constructed sequence v =
v0, v1, . . . , vs we append either the single term a(vs) or the two terms z(vs), a(vs),
according to which case of part (a) of the claim applies, and terminate if �(a(vs)) = `0.
Observe that a consecutive pair v, v0 in v0, . . . , vt belongs (as an unordered pair) to
J̄i only if either

(i) v0 = a(v) and �(v0) > �(v), or
(ii) v0 = z(v), the term after v0 is v00 = a(v), and  (v00) >  (v), or
(iii) the term before v is v̂, v = z(v̂), v0 = a(v̂), and  (v0) >  (v̂).

Since (�(v), (v)) increases lexicographically in this way along the path, we have the
claimed upper bound of 1 + 2(`0 � i) on the number of of consecutive pairs from J̄i.
This finishes the proof of Lemma 10.

Now we are ready to finish the proof of Lemma 9. Thanks to Lemma 10, we can
decompose ⌘v � ⌘↵(v) =

Pt
j=1 ⌘j�1 � ⌘j , and using a chaining argument as before we

get

EH,⌘

✓
max
v2V

|⌘v � ⌘↵(v)|
◆

 EH

 
`0X

i=0

(1 + 2(`0 � i))E⌘ max
{a,b}2J̄i

|⌘a � ⌘b|
!

 O

 
EH

 
`0X

i=0

(`0 � i+ 1)
p
2i(

p
2 log |Ji|)

!!
.(50)

Here, EH,⌘ is expectation over the larger space of the random graph H together
with the GFF, while E⌘ is the expectation of a fixed GFF and EH is an expectation
just over the random choice of H (this is to handle

p
log |Ji|, as we do not have a

high probability statement about |Ji| covered by APOH, and we will only be able
to control EH |Ji|). The first inequality follows from part (b) of Lemma 10, and the
second inequality follows from the union bound on the maximum (18).

Given (50), our task is to bound EH(|Ji|) for 0  i  `0 and then show that the
sum in (50) is o(T�). We have from property C that
(51)

EH(|Ji|) = O

✓
EH |W2i |⇥

1
2i

◆
= O

0

@("2n)⇥
X

j�0

µ
j2i ⇥ 1

2i

1

A = O

✓
"
2
n

2i(1� µi)

◆
= O

⇣
"n

22i

⌘

(the number of vertices on K2 is "2n, and µj2i bounds the expected number of vertices
on level j2i). Going back to (50) we see that

(52) EH,⌘

✓
max
v2V

|⌘v � ⌘↵(v)|
◆


`0X

i=0

(`0 � i+ 1)
p
2i
r

2 log
⇣ "n
22i

⌘
.
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Here we use that EH(
p
log |Ji|) 

p
logE(|Ji|) by Jensen’s inequality (log1/2 x is a

concave function) and (51).
It only remains to deal with the R.H.S. of (52). Given v 2 V , we let u(v) be a

closest vertex in U to v (in the graph-distance). Suppose for now that u(v) = ↵(v),
where ↵(v) is provided by Lemma 10.

To get a high probability result, we will use the Markov inequality: if we denote
Y = E⌘(maxv2V |⌘v �⌘↵(v)|), we have PrH(Y > (logN)1/4EHY )  (logN)�1/4, and

this explains the log1/4 N factor in (53) below. We check that the ratio between the
terms i+ 1 and i in (52) equals

`0 � i

`0 � i+ 1

p
2

s

1� 2 log 2

log("n)� 2i log 2

which is strictly larger than, say, 10
9 for 0  i  `0 � 10. Thus the last 10 terms

dominate this sum, and we get that w.h.p.
(53)

E⌘(max
v2V

|⌘v�⌘↵(v)|)  O

✓
log1/4 N ⇥

p
2`0

r
2 log

⇣ "n

22`0

⌘◆
= O

 
log3/4 N

"1/2

!
= o(T�).

This concludes the proof of Lemma 9 in the case u(v) = ↵(v). If u(v) 6= ↵(v),
then since ⌘v � ⌘u(v) = (⌘v � ⌘↵(v)) + (⌘↵(v) � ⌘↵(↵(v))) + (⌘↵(u(v)) � ⌘u(v)), by the
triangle inequality we can obtain the same bound as above up to the constant 3.
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