Downloaded 05/21/23 to 132.174.253.119 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. DISCRETE MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 1687-1710

ON THE COVER TIME OF THE EMERGING GIANT*
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Abstract. Let p = 1# It is known that if N = e3n — oo, then with high probability (w.h.p.)
Gn,p has a unique giant largest component. We show that if in addition, e = e(n) — 0, then w.h.p.
the cover time of Gp,p is asymptotic to nlog? N; previously Barlow, Ding, Nachmias, and Peres had
shown this up to constant multiplicative factors.
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1. Introduction. Let G = (V, E) be a connected graph with vertex set V' of
size n and an edge set E. In a simple random walk W on a graph G, at each step,
a particle moves from its current vertex to a randomly chosen neighbor. For v € V|
let C, be the expected time taken for a simple random walk starting at v to visit
every vertex of G. The wvertexr cover time Cg of G is defined as Cqg = max,cy C,.
The (vertex) cover time of connected graphs has been extensively studied. It was
shown by Feige [16], [17] that for any connected graph G, the cover time satisfies
(1—o(1))nlogn < Cg < (14 0(1))5n3.

In a series of papers, Cooper and Frieze have asymptotically established the cover
time in a variety of random graph models. The following theorem lists some of the
main results. (Here A, =~ B,, if A, = (1+0(1))B,, as n — 0.)

THEOREM 1. The following asymptotic estimates for the cover time hold with high
probability (w.h.p.):

4] If G = G, withp = CIZg”, ¢ > 1, then Cg =~ ¢(c)nlogn, where ¢(c) =
clog(55).

[5] If G = Gy, withr = O(1), a random r-regular graph, then Cg ~ “=inlogn.
[6] Let G = Gy g withd >3 and r = (%)Ud be the random geometric graph

on n vertices in dimension d.* Then Cg =~ ¢(c)nlogn.
[7) If D = Dy, (the random digraph counterpart of G, ), then Cp = ¢(c)n
logn.
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1Here T is the volume of the Euclidean ball of radius one in R?. The random geometric graph
G = Gy, 4, is defined as follows: we choose n points independently uniformly at random from [0, l}d
to be the vertices of G, and two points are joined by an edge if and only if they are at most distance
r-apart.
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Cooper and Frieze [8] also established the cover time of the giant component Cy
of the random graph G, , with p = ¢/n, where ¢ > 1 is a constant. They showed in
this setting that w.h.p. the cover time C¢, satisfies

cx(2 —x)

Cor 4(cx —1Inc)

n(lnn)?,
where x denotes the solution in (0,1) of x =1 — e~ ",

This raises the question as to what happens in G,, , if p = (14 ¢)/n, € > 0, and
we allow ¢ — 0. It is known that a unique giant component emerges w.h.p. only
when e3n — co. Barlow et al. [1] showed that w.h.p.

(1) Cc, = ©(nlog’(e*n)).

Cooper, Frieze, and Lubetzky [9] showed that if CfQ) denotes the 2-core of the giant
component C; of G, (Cy stripped of its attached trees), then, in this range of p,

w.h.p. CC<2) ~ ign log2(53n), but they were not able to determine the cover time
1

of the giant C; asymptotically. We do this in the current paper, confirming their

conjecture.

We prove the following theorem.

THEOREM 2. Let p = &€ with e = £(n) > 0, € — 0 such that 3n — co. Let C,
be the giant component of G, . Then w.h.p.

Ce, = nlog?(3n).

Our proof is very different from the proof in [9]. We will use the notion of a
Gaussian free field (GFF). This was used in the breakthrough paper of Ding, Lee, and
Peres [13] that describes a deterministic algorithm for approximating Cg to within a
constant factor. This was later refined by Ding [14] and by Zhai [22]. Tt is the latter
paper that we will use. In the next section, we will describe the tools needed for our
proof. Then in section 3 we will use these tools to prove Theorem 2.

2. Tools.

2.1. GFF. Definition 1. For our purposes, given a graph G = (V, E), a GFF
is a random vector (1,,v € V') whose joint distribution is Gaussian with

(i) E(ny) =0forallv eV,
(i) my, = 0 for some fixed vertex vy € V,
(iii) E((ny — nw)?) = Reg(v,w) for all v,w € V.

Note that in particular, Var(n,) = E(n2) = Reg(v,v0). (Here Reg is the effective
resistance between v and w, when G is treated as an electrical network where each
edge is a resistor of resistance one. See Doyle and Snell [15] or Lewin, Peres, and
Wilmer [21] for nice discussions of this notion.) As its name suggests, Reg is most
naturally defined in terms of electrical networks. For us the following mathematical
definition will suffice: for a graph G = (V, E) and vertices v,w € V, we use the
commute time identity to define

(v, w) + 7(w, )

) Run(v,w) = R0,

where 7(v,w) is the expected time for a simple random walk starting at v to reach w.
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Note that, as suggested by the electrical analog, we have
(3) Reg (v, w) < dist(v, w).

This is a simple consequence of Rayleigh’s monotonicity law (delete all edges except
for a shortest path from v to w); see [15].

In the continuous setting, the GFF generalizes Brownian motion (or the Brownian
bridge) and can be seen as a model of a random surface. In the discrete setting, the
GFF can be seen as generalizing Brownian motion on a line to an analog of Brownian
motion on the topology of the graph. In particular, if G is a path with ¢ edges and
the fixed vertex vy is an endpoint of the path, then the normals 7, in the GFF for
the path can be generated in terms of Brownian motion W (t) by setting 7, to be
W (dist(v, vg))-

The important thing for the present paper is a remarkable connection between
the GFF on a graph and its cover time. Let us define

M= E(1g1€a&< My )-

Ding, Lee, and Peres [13] proved that there are universal constants c;, co such that
(4) c1l|E|M? < Cq < co| E|M?,

Next let R = max, wev Rem(v,w). Zhai [22] proved the following theorem.

THEOREM 3 (Zhai). Let G = (V, E) be a finite undirected graph with a specified
vertex vg € V. There are universal positive constants c1,cs such that if we let 7.4, be
the first time that all the vertices in V' have been visited at least once for the walk on
G started at vy, we have

(5) Pr (

Teow — |E|M2‘ > |E|(VAR- M + AR)) < crem

for any A > ¢;.
Setting X = %, this gives after crude estimates

o0 R R
|EX71|§E\X71|:/0 Pr(|X1|>t)dt§C’< M2+M2>

for a universal constant C. Note that R and M do not depend on vy (for M, ob-
serve that for any fixed vertex w, E[max,cv 1,] = E[(maxyev (y — M) + Tw] =
E[max,cv (17, — nw)], since the Gaussians have mean 0; see also Remark 1.3 in [22]).
After taking the maximum over vy we thus get that Cq = max,,, E7.,, satisfies

(6) CG:|E|M2<1+O< ]\52+]52>>.

Now, as we will see in the next section, the number of edges in the emerging giant is
given by the following theorem.

THEOREM 4. Let G = G, be as in Theorem 2. Then

(7 |E(Cy)| =~ 2en  w.h.p.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/21/23 to 132.174.253.119 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1690 ALAN M. FRIEZE, WESLEY PEGDEN, AND TOMASZ TKOCZ

This follows from the work in [11] as we will see in section 2.2.
Our main contribution is the following theorem.

THEOREM 5. Let G = Gy p be as in Theorem 2, and let M the the expected
mazimum of a GFF on G as defined above. Then

_ log(e’n)
(8) M =~ 7(25)1/2 w.h.p.

This immediately implies Theorem 2 as follows.

Proof of Theorem 2. In view of (6) obtained from Theorem 3, Theorem 5 implies
Theorem 2 if we can show that w.h.p. R = o(M?). Now, we know from (1), (4), and
(7) (or from Theorem 5) that w.h.p. M = Q(c~/?log(e®n)). Therefore to prove that
R = o(M?) it will be sufficient to prove

1 3
(9) R=0 (Og(5 ")> .

3

This can be verified as follows: First we observe that the effective resistance between
two vertices of a graph G is always bounded above by the diameter of G; see (3).
Second, it was proved in [12] that w.h.p. the diameter of G,, ,, is asymptotically equal
to 31%(55"), and so (9) follows immediately. |
2.2. Structure of the emerging giant. Ding et al. [11] describe the following
construction of a random graph, which we denote by H. Let 0 < p < 1 satisfy
pe ™ = (1+¢)e” %9, Let N'(u, 0?) denote the normal distribution with mean p and
variance o2.
GIANTCONSTRUCTION
Step 1. Let A ~ N (1 +e—pu, Ein)7 and assign independent and identically dis-
tributed (i.i.d). variables D, ~ Poisson(A) (u € [n]) to the vertices, condi-
tioned that Y D,1p, >3 is even. (While A can be negative, we show in (11)
below that it is positive w.h.p.)
Let Np = [{u: Dy, =k} | and N>3 = >, -5 Nji. Select a random graph
K; on N>3 vertices uniformly among all graphs with Ny, vertices of degree k
for all £ > 3.
Step 2. Replace each edge e € E(K7) by a path P, of length Geom(1 — ) to
create Ky. (Hereafter, K denotes the graph from Step 1 whose vertices are
the subset of vertices of H consisting of these original vertices of degree > 3,
and Ko DO K; denotes the graph created by the end of this step.)
Step 3. Attach an independent Poisson(u)-Galton-Watson tree with root v to
each vertex v of Ko.
The main result of [11] is the following theorem.

THEOREM 6. Let ¢ — 0 such that e3n — co. For any graph property A, Pr(H €
A) — 0 implies that Pr(Cy € A) — 0.

We will work with this construction for the remainder of the manuscript. For our
application of the GFF, we make the convenient choice that vy is a vertex in Kj.

Proof of Theorem 4. Let H be the graph constructed in Steps 1-3. In view of
Theorem 6, in order to show |E(C1)| = 2en, we show |E(H)| ~ 2en. We observe that

(10) 1—p—eel0,&%.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/21/23 to 132.174.253.119 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON THE COVER TIME OF THE EMERGING GIANT 1691

Recall from Step 1 that A ~ N(1+¢ — p, %) Applying the Chebyshev inequality
we see that for any 6 > 0, we have

1
Pr(|]A—EA)| >0) < .
PA—E() 2 0) < 5
Putting 6 = n=/3, we see that 6%en = en'/3 — oo, so
(11) A=EA+0m Y3 =2 +0(n ? +&2) w.h.p.

The restriction Y D,1p,>3 is even will be satisfied with constant probability, and
then we see that w.h.p.

4
(12) N>z~ 55371, and almost all vertices of Ky have degree three.
Therefore, w.h.p.,

(13) |E(K1)| ~ 34 5, — 98y,
23

The expected length of each path constructed by Step 2 is asymptotically equal to
1/(1—p) =~ 1/e. The path lengths are independent with geometric distributions (which
have exponential tails), and so their sum is concentrated around their mean (by virtue
of, e.g., Bernstein’s inequality) which is asymptotically equal to |E(K7) i ~ 2e%n.
Thus, w.h.p., |E(K3)| = 2¢?n. Note also that in Ky, w.h.p., there is no path longer
than % log N23.

Furthermore, the expected size of each tree in Step 3 is also asymptotically equal
to 1/e. These trees are independently constructed whose sizes also have exponentially
decaying tails, and so the total number of edges is concentrated around its mean which
is asymptotically equal to | E(K2)|1 ~ 2en. Thus, w.h.p. |E(H)| &~ 2en, which proves
Theorem 4. 0

Let
N = &%n, and let x denote the smallest power of 2 which is at least 1/e.

LEMMA 1. W.h.p. |P.| < %%N for all paths P, created in Step 2.
Proof.

Pr <|Pe| > 210§N> < (1—e(l —e))2loeN/e < N (2-0(1),
The result now follows from (13) and the Markov inequality. 0

2.2.1. Galton—Watson trees. A key parameter for us will be the probability
that a Galton—-Watson tree with Poisson(u) offspring distribution survives for at least
k levels. The following lemma was proved by Ding et al. (see Lemma 4.2 in [12]).

LEMMA 2. Let 0 < pu < 1 and € > 0 satisfy pe " = (1 +¢e)e= (1), Let T be a
Poisson(p)-Galton—-Watson tree. Let Ly denote the kth level of T. Then there exist
absolute constants ¢1 < co such that for any k > 1/¢ we have

er(eexp {—k(e +c1c?)}) < Pr(Ly #0) < eafe exp { k(e — ca2?)}).

Their proof also easily gives the following result.
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LEMMA 3. For k < 1/¢ we have

Pr(Lk#®)<%.

We shall need the following result about trees attached in Step 3. Here and
throughout the remainder of the paper,

N = &3n.

LEMMA 4. Consider the construction of the graph H from Steps 1-3. Let 0 <
v < 1. Let T be the set of trees attached in Step 3 of GIANTCONSTRUCTION. Then,
w.h.p. (referring to the entire construction, not just Step 3), we have the following:

(a)

(14)
1
There are between 501N1*7+0(6) and 2N ~7TOC) trees in T of depth at least
ve~1log N.
(b)
2log N

ere are no trees in T of depth exceedin %8 .

(15) Th T of depth ding .

In fact the probability of the event in (15) is 1 — O(N—(1—o(1)),
Here c1,co > 0 are the universal constants from Lemma 2.

Proof. (a) Let p, denote Pr(Ly # 0) for k, = [ye~'log N], v > 0. Conditioning
on the results of Step 1 and Step 2, the number v, of trees created in Step 3 of depth
at least k is a binomial with number of trials |V (K3)| and probability of success p,.
Recall [V (K3)| & (1 + o(1))2X. It follows from Lemma 2 that

4N 1 4
(1+ 0(1))? = cieexp{—(y+O0(g))logN)} = %Nkwro(g)

< E(pr) < L?le’ka(s)'

Since 1 — v > 0 and € — 0, note that eventually 1 — v + O(g) > dy for some positive
universal constant &y, so N2=710E) — o0,

Thus conditional on the results of Step 1 and Step 2, v, is distributed as a
binomial with mean going to infinity, and so we have that if 0 < v < 1, then the
Chernoff bounds imply (14).

(b) Tt follows from Lemma 2 that the probability that any fixed tree has depth at
least 26! log N is O(e N~=27°(1)). There are w.h.p. O(e?n) trees, and so the expected
number of trees with this or greater depth is O(e?n x eN—27°(1)) = O(N~1—o()),
The result now follows from the Markov inequality. ]

2.3. Normal properties. In this section we describe several properties of the
normal distribution that we will use in our proof.

First suppose that g1, g2, ..., gs are independent copies of A'(0,1). Then if G5 =
maxi=1i,....s 9i,

loglog s + log(4m) — 2y 1
16 E (Gs) = /21 - 0 ,
(16) (@) 83 v8log s + log s
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where v = 0.577... is the Euler-Mascheroni constant. For a proof see Cramér
[10, Formula (28.6.16) on page 376].

Next suppose that (X;)1<i<s and (Y;)1<i<s are two centered Gaussian vectors in
R® such that E(X; — X;)? <E(Y; — Y;)? for all 1 <4,j < s. Then,

(17) Emax{X;:i=1,2,...,s8}) <E(max{Y; :i=1,2,...,s})

(sometimes refered to as Slepian’s lemma). See Fernique [18, Theorem 2.1.2 and
Corollary 2.1.3]. Finally we have that if (X;)i1<;<s is a centered Gaussian vector and
0? = max; Var(X;), then

(18) E(1n<1?<XSXi) < o4/2logs.

This can be found, for example, in the appendix of the book by Chatterjee [3]; it
follows from a simple union bound. Nevertheless, repeated carefully chosen applica-
tions of (18) will suffice to prove our upper bound on M. (Importantly, observe by
comparison with (16) that independent normals are asymptotically the worst case for
the expected maximum.)

We also have

(19) Pr(| max X; — E( max X;)| >t) <2 /27
1<i<s 1<i<s

See, for example, Ledoux [19].

2.4. First visit time lemma. In this section we give a lemma that the first
author has used (along with Colin Cooper) many times in the study of the cover time
of various models of random graphs. Let G denote a fixed connected graph, and let u
be some arbitrary vertex from which a walk W, is started. Let W, (¢) be the vertex
reached at step ¢, and let P () = Pr(W,(t) = x). In the following lemma, w = w(n)
is an arbitrary function that tends to oo with n, and T" = T},,;, is a mixing time in
the sense that for ¢t > T,,;.

P(z) - m,

20
(20) max p

u,x€V

1
<=
w

Next, considering the walk W,,, starting at v, let r, = Pr(W, () = v) be the proba-
bility that this walk returns to v at step t =0,1,....

For t > 0, let A;(v) be the event that W, does not visit v in steps T, T+ 1, ..., t.
The vertex u will have to be implicit in this definition. Let 7, be the steady state
probability of vertex v and

T
(21) R, =Y .
t=0

LEMMA 5. Suppose that

(22) Ty = o(1).
Then, for allt > T,
(23) Pr(A;(v)) = exp {_77'0(1 —l—gU(Tm))t} +o(TeM/T)

for some absolute constant ¢ > 0.
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In the lemma as used by Cooper and Frieze [4, 5, 6, 7, 8, 9], there was a technical
condition that has been removed by Manzo, Quattropani, and Scoppola [20], and we
have taken advantage of this improvement to the lemma.

2.5. Effective resistance on K5. Recall that the emerging giant can be mod-
eled as a collection of independent Poisson—Galton—Watson trees attached to K. Our
proof will depend on a bound on the effective resistance of K5 and then show that
this bound suffices to analyze the effective resistance within the Galton—Watson trees.
Recall that we think of the graph as an electrical network where each edge is a resistor
of resistance one.

There are several steps to the analysis, and we give an outline here. The main
result of the section is Lemma 6.

(a) At the top level we bound effective resistance between v,vy € V(K3) using
the commute time identity, (2).

(b) We observe that a random walk on K5 is rapidly mixing, and so bounding
commute times reduces to bounding the expected time to visit vy from the
steady state using the first visit lemma. We transform K5 into a related graph
K5 to ensure that (22) holds and such that a bound on resistance for K yields
a bound on resistance in Ks.

(¢) To apply Lemma 5 we need to bound R, the expected number of returns to a
vertex v within the mixing time 7. Almost all vertices of Ko, K o are far from
short cycles, and so their local neighborhoods are trees. We prune these trees
so that they induce binary trees in K;. This just simplifies some calculations.
Pruning increases R, and effective resistances, and thus it suffices to bound
R, on these pruned trees.

(d) Having control of the R, allows Lemma 5 to control commute times. When
we apply this lemma in section 3.2, we find some minor correlation problem.
This will be handled with the use of the edge-deletion graphs K. defined
below.

Transforming Ko. Let {1 = [rklog N/loglog N]. We replace each such path of
length ¢ in K5 by one of length [¢/¢1]¢;. Rayleigh’s law ([15], [21]) states that
increasing the resistance of any edge increases all effective resistances. Placing a
vertex in the middle of an edge has the same effect as that of increasing the resistance
of that edge. This implies that all resistances between vertices are increased by this
change of path length. Now every path has a length which is a multiple of ¢, and so
if we replace paths, currently of length k/; by paths of length k, then we change all
resistances by the same factor ¢;. We let Ky = (V E) denote the graph obtained in
the above manner and let Reff denote effective resistance in K2

For e € E(K1) we let Regr . denote effective resistance in Ky — E(P,). In addition,
for each e € E(Kl) we shorten paths Ps, f #ein Ky — E(P.). The graph obtained

is K2 o= (V E ). Let Reﬁ‘ e > R ot denote effective resistance in Kg .

Remark 1. From our construction, we see that Reff,e is independent of the length
of P.. The usefulness of this construct will become apparant when we estimate the
size of the sets U"7F in section 3.2.1.

Suppose next that we arbitrarily orient the induced paths P.,e € E(K7) from h,
to te, where e = {he,t.}. For v € V(K3)\ V(K7), we let e;(v) denote the edge of K
whose division includes v. We note that
(24)
Reff(U7UO) < Reff,el(v) (tel(v)vv()) < élReff,el(v) (tel(v)aUO) for all v € V(KQ) \V(Kl)
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For k > 1 we let

A\k = {6 € E(Ky): Eeﬂ,e(te,vo) > /Zk} .
1

Most vertices in K; have tree-like neighborhoods. We will define the notion of a tree-
like vertex formally below. Suffice it to say at the moment that w.h.p. there are at
most log'®® N vertices that are not tree-like.

LEMMA 6. Ift. € V(K3) is tree-like, then
~ 14
(25) Pr(e € Ay|K;) < e~ (o)rk, El <k <2logN.

Here we are conditioning on the output of Step 1 in GIANTCONSTRUCTION; the prob-
ability space is just over the randomness in Step 2.

Proof. We use the commute time identity (2) ([15], [21]) for a random walk Wi
on the graph K, to write, for v € e € E(K}),

(26) 2§eﬂ‘)e(v, v0)|Ee| = 7(v,v0) + (v, v),

where 7(v, w) is the expected time for W, to reach w when started at v.

The proof of this lemma is unfortunately quite long. We break it up into a
sequence of claims that we will verify subsequently. In what follows v € V(K7) will
be fixed, and e will be a fixed, edge of K7 that contains v.

CLAIM 1. W.h.p., the mizing time Tynis 0f)7\/\e is O((loglog N)?log N), assuming
we take w = N in (20).

For vertices v,w € V(K1) we bound 7(v,w) by Toniz plus the expected time to
reach w from the steady state of W.

CraM 2. The expected time for )7\/\6 to reach vertex v from the steady state is
O(Ry/m,), where R, is as defined in (21).

Fix e € E(K;). For a vertex v € V(K;) we let N, (the neighborhood) be the
subgraph of Kj induced by the set of vertices on paths of length at most L =
1000loglog N in K7 —e. Then let N be the subgraph of K> — e that is obtained
from N, through the execution of Step 2 and the subsequent shortening of paths that
creates K. R

We say that v € V(K7) is tree-like if N, (and hence N,,) induces a tree.

CramM 3. W.h.p. the following hold:
(a) For all v, N, contains at most one cycle.
(b) The number of non-tree-like vertices is at most log**® N .

In view of this claim, we will mainly focus on tree-like vertices and deal with the
non-tree-like vertices fairly crudely. Let T, denote the tree induced by N, and let T
denote the tree induced by N,. Let B, = B, (the boundary) denote the leaves of T,
(equivalently, the leaves of Ty,).

Cram 4. If w € f?v, then the expected number of visits to v from w in .[?2, n
time Tz, 05 0o(1).

Thus, if we make EU into absorbing states for the Walkfv\e, then R, is the expected
number of returns before absorption, plus o(1). So let R, be the expected number
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of visits to v before the walk is absorbed into §U. Thus R, < R, + o(1). Next let
Pesc(v) be the escape probability; i.e., the probability that a random walk started at v
doesn’t return to v before being absorbed. Then

- 1 1
27 R, = and Pege(V) = ————.
(27) ! pGSC(U) Pesc () DyReg (v, By)

Recall that D, denotes the degree of vertex v. For a proof of the second equation in
(27), see Doyle and Snell [15, section 1.3.4].

We now prune 7;,: moving level by level from the neighbors of the root v, we
prune T so that we obtain a tree of depth L in which every vertex other than the
root or the leaves has degree three. It is possible that the root v already has degree
two. Remember that we have deleted one edge e, incident to v. We denote the pruned
tree by T,. Rayleigh’s principle and (27) show that the pruning decreases the escape
probability and increases the expected number of returns which is now denoted R,.
(Note that the pruning can only reduce the expected number of visits in Claim 4.)
Let T}y be the subtree of ﬁ, corresponding to T,.

An edge f € E(K;) gives rise to a path Py in K, and we let W(f) = A(Pl) -1,
where (-) denotes [£(-)/¢1]. Note that our definition of ¢; means that w.h.p. almost
all of the paths P; in [?2 consist of a single edge and for these v» = 0. Also let
V() =2 reprs) ¥(f)- Let Wy ={v e V(K1) : ¢(v) < sk}

CramM 5. W.h.p., if v € V(K3), then

SK(K — O, — og 1o, 2
(a) Pr(v ¢ W) < exp{— =0 irqoQon s M)y

(b) ifve W; and e € E(Ky) and to = v, then

ﬁ (t §)< % SZOu
eff,e\le, Pt.) > %4_% s> 1.

In summary, ifﬁef{‘7e(te71}()) > kk/l1, thent. ¢ W, where sk/4+1/2 = kx/l; > 1.
Therefore, for k as in (25),

Pr(e € Ay, | K1) < Pr(vé¢ W,)

cexnd (4kr — 201)((1 — €)log N — 1000(log log N)?)
=P {1 loglog N

— 67(270(1))1{16.

This would complete the proof of Lemma 6. We must now substantiate our claims.

Proof of Claim 1. For a graph G = (V, E), let eg(S5) denote the number of edges
contained in the set S C V and eq(S : §) be the number of edges with exactly one

end in S. For a graph G and S CV let ®5(S) = e%fgf), where D(S) is the sum of
degrees of vertices in S. The conductance ®g of G is equal to minpsy<|g| Pa(S). It
is shown in [11, Lemma 3.5] that w.h.p. ®x, > ¢, for some absolute constant ¢; > 0.

We need the conductance of K7 — f, where f is an arbitrary edge of K;.
CLAIM 6. In Ky, w.h.p., e(S) <|S| for |S| <log'/? N.

Assume this claim for now, and condition on the event in the claim. Let &(S : S)
denote the edges other than f between S and S. Then we have é(S : §) > e(S :
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S) —1. If 2 < |S| < log'/? N, then because the minimum degree in K, is at least 3,
é(S:8)>e(S:8)—1> 18]~ 1. If |S| > log"/? N, then ¢(S : §) > 3¢1|S|, and then
e(S:8) > (3c1 — WHSL and so the conductance of K1 — f is at least ¢1/2.

The conductance of Ky . is at least & - =—1—— because each edge of K; — e
> 2 2loglog N

is replaced by a path of length at most 2loglog N. Finally note that for a random

2
walk on a graph GG, we have that after ¢ steps max{|P1£t) () — 7|} < (11— ‘bTG)t; see,
for example, [21]. Putting t = C(loglog N)?log N yields the claim for C sufficiently

large. O

__ Proof of Claim 2. This will follow from Lemma 5 applied to the random walk on
K, once we have verified (22). Here T = O(log*™*™® N) and maxm, = O(IOgN) and

o(1)
so T'm, = O(W)‘ Then we have, from (23), that the expected time to reach v
is of order

S Pra) = X (e {- T AEOTTNL | rpmem)) Lol

.
t>T t>T Ry v

Proof of Claim 3. For this claim we use the configuration model of Bollobds [2]
as applied to K;. We note that w.h.p. A = 2¢ in Step 1 (see (10)) and also that
Nkzg ~ N.

(a) If N, contains more than one cycle, then K7 contains a set S of at most
s < 4L vertices that contain at least s + 1 edges. The probability II of this can be

A

bounded as follows: let ¢ = AS% ~ @ be the probability that Poisson(A) > 3.
In the following, s is the size of S. Then 3s < D < Mj is the total degree of S, and

dy,...,ds are the individual degrees. Here M; ~ 2N Wlll be a high probability bound

on |E(K1)|. We multiply by the probability [];_, A%e % that these are the degrees.

Tdg
Then we choose 2s+ 2 configuration points and pair them up in (2513_2) (S(ff)% ways.
The final term (S?)J]r\,l)SJrl bounds the probability of the pairings. Thus

<), 3 (1) ()b ()

D=3sdi+:-+ds=D

1yeeesds>
. d; —A D_—As .. D 2542
But (i) [T;_, A ‘; =4 (g , (ii) (25+2) < ﬁ, and
D—3s
(i) Zdli =D [Tz a1 < mzdlj A+ =D (415, —3)- SO,

L /Ne\® e s s+1\*"
I< —
<2(%) serome (57)

% AD pD2s+2 Z D —3s
65(D — 3s)! di—3,...,ds — 3
D=3s di+-+ds=D

di,...,ds>3

But (i) 1/¢ ~ 6/(2¢)% and A ~ 2¢ and > g, .. = (dl_?_?’; _5) =sP73. So,
= et

1yeerss 2

o(s) s s+1 M D n2s+2 ,D—3s
H<Z Ne 6 | s+1 Z ((2+0(1?)5) D#st2g '
3s(s+ 1)12s+1 \ 3N = 6°(D — 3s)!
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_ (2+o())PDX DTy

Next let up =

(D—-3s)!
2542 25+2)/D
upy1 _ (2+o0(1))es (D+1 (2 + o(1))e es 1
< < _1 N |
up ~— D -—3s D = D — 35 f21fD73s+105s

and so if Dy = 3s + 10es we see that up, > ZD>DO ug and then

o) s+1 Do D 2542 D—3s
s (2e)3s(s+ 1)125+1 \ 3N (D — 3s)!

D=3s

<

e (1)3 2L <6 (3s + 10&-?8)6+206+2/SS106>S =o(1).

N S

s=4
(b) The number of non-tree-like vertices is at most the number of vertices that
are within L of a cycle of length at most L. We can bound the expected number of
such vertices as follows: we choose s vertices for the cycle and then another t for the
path in (7 ) (V) s!t! ways. We sum over the degree sequence of the chosen vertices.

The factor %= 1d1

bounds the probability the path plus cycle exists.

L s+t
Z (JZ> (f)s't‘ Z H < d |¢ 22];(11) B where dO = ds

s,t=4 d;>3,i€[s+t] i=1
L t -
SHL Adig=A
<>
- d -2)!
s,t=4d; >3,i€[s+1] z=1

L 0o Ade_ s+t
3 (2 W)

s, t=4 3
L 0o Ad 3 s+t
<2102 @
s, t=4 —3=0
<1lo g5000 N.
The claim follows from applying the Markov inequality. 0

Proof of Claim 4. We bound the number of returns as follows. Consider a random
walk X on {0,1,2,...}, where we start the walk at 0 and when at 0 < i < L we go to
i 4+ 1 with probability 1/3 and to ¢ — 1 with probability 2/3. Whenever we are at 0
we move to 1 on the next move. Here 0 represents an arbitrary boundary vertex, and
L represents v. At each point of the walk on T, where we are at a vertex of Ky, we
have probability at most 1/3 of moving closer to v.

Now consider a time t when X' (t) = L/2. If X(¢t + L/4) > L/2, then at least L/8
of these L /4 moves must be in the increasing direction. But the Chernoff bounds then
imply that

L L L1 L L 1 1
Pr{X(t+—)>—=)<Pr|B > — )< —— X = < ——.
r( (+4>—2>— r( ’"(4 3)—8)—exp{ 12X27}—log3N

It follows from this that the probability a walk from the boundary reaches v in T steps
is at most T/ log® N, and then the expected number of visits is at most T2/log® N =
o(1). d
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Proof of Claim 5. (a) For an edge e of T,, we have that Pr(y(e) > t) < (1 —
£(1 —¢))*1, a probabilistic bound on the length of the path P, in Step 2 of GIANT-
CONSTRUCTION (see (10)). The ¢ values of each such edge are independent, and so
as Tv contains m < 3 . 21000loglog N edges, then

Pr(v ¢ W) < > [[a—e@—g)=“

s14-Fsm=t>sk i=1

_ <m“ 1)(1 (1= )t

t—1

= <3 (e R

Let u; denote the summand in (28). We have that if sk < m, then

(29) iu < i 2me - ex _rel=¢e)log ¥ 2S<
b= P loglog N -

t=skK t=skK
m t (ke(1 — €)log N — 700(log log N )?)
S exp ] -
t=sn loglog N
— - 2
< exp ~ sk(ke(l —¢)log N — 800(loglog N)?) .
loglog N
And
rke(l —e)log N \'
(30) Z up < Z <2€ - exp {_
t>max{sk,m} t>max{sk,m} log log N
— - 2
< exp ~ ski(re(1 — ) log N — 800(log log N)?) |
loglog N

Part (a) of the claim follows from (29) and (30).

(b) Given T;* with ¥ (v) = s we modify it in such a way that the expected number
of returns increase and then bound this as claimed. Roughly speaking, we concentrate
all the resistance at the induced paths incident with v; by proving that this only
increases effective resistance, it allows us to reduce the problem of bounding the
effective resistance to this case.

Suppose then that v # w € V(K;)NV(T) and w’s neighbors in K5 are wg, w1, wa,
where wy is the one closer to v than w on the tree T,F. Suppose also that ¥ ({w,w;})+
PY({w,wz}) > 0. We transform T by increasing the length of the path from w to wg
by ¥ ({w, w1 })+¢({w,wz}) and reducing the lengths of the paths joining w to w; and
w to wsy to be single edges so that ¥(w,wr) = ¥(w,ws) = 0. This preserves the sum
of v values, and we claim that ﬁeff?e (v, Ev) does not decrease. In this way, ﬁv does
not decrease; see (27). To see this, let p(w),w € V(T.) be the effective resistance
between w and Ev as measured in the subtree with root w. Let wg,wi,ws be as
before, and let w3 be the other neighbor of wq further from v (if it exists). Before the
transformation, we have

1 1 1

(81) p(wo) {(wo, w) + ! * {(wo, w3) + p(ws)’

1 + 1
Twg, w1 ) Fp(wy) T Lwg,wa)Fp(wa)
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and after the transformation we have
(32)
1 1 1

_ + .
plwo)  Llwg,w) + L(w,wr) + £(w, wg) — 2+ ————  L(wo, ws) + p(ws)

1+p(wy) + 1+p(w2)

The R.H.S. of (32) is at most the R.H.S. of (31). This follows from the inequality

1 1
(33) a+ B+ 1 > 0.

*+a oz+'y+,6+6

After multiplying through by (a+ 8+~ +0)(7y+ ) we obtain an expression with only
positive terms. We apply (33) with o = (w,w1) — 1,8 = l(w,wa) — 1,7 = p(wy),d =
p(ws).

Proceeding in this way, we end up with a tree in which all maximal induced
paths in T are of length one, except for the one incident with v. Furthermore, v is
unchanged, and resistance is not decreased by this transformation. The sum of the
lengths of the maximal induced paths incident with v is then ¢ (v) 4+ 2 (recall that v
has degree 2 in T)f).

Finally, we balance the lengths of these two paths incident with v by replacing
the path lengths at v by 1+ [w(v)] and 1 + Lw(”) 1]. This increases resistance because,
for positive integers x,y, we have * + > ((z+y)/21 + L(l+y)/2J

Note next that the effective resmtance between the root of a binary tree and its
leaves is at most one. To see this we let Ry be the effective resistance if the depth is
d. Then we have

1 7Rd_1+1

Ry= —

It then follows that

S SUR S Ui o) [ ) [ )
Regre(v,By) < — +Lqﬁyj 2+ Y(v) 2+ ¥(v)

1+ 252

Proof of Claim 6. Let ¢ ~ & ~2 2¢ be the probability that Poisson(A) > 3.
For a set S C V(K;) with |S| = s, we have

Prezsens Y S [anwor(2)

D>3sdi+--+ds=D i=1

D s+1 AD SD
D
(34) < Z 2 <N) X pE X Br-

D>3s

Explanation. Let My = (K 1), and let D = D(S) denote the sum of the degrees
in S5 >4 oqa—p =1 d ,¢ bounds the probability that this sum is D. To bound

the probability that e(S) > s+1 we have to choose some subset of the D configuration
points of size s+ 1 that pair with configuration points in .S. We bound the probability

that such a set of configuration points exist by 27 (%)SH. Note here that M; > 3N/2,
and the probability that a configuration point of S pairs with another such point is
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bounded by (D —1)/(2M —1), conditional on previous pairings of points in S. Finally,
s oD
we bound Zngs Zd1+---+dS:D Hi:l % by %~
D
Letting up = 2DADD3% we see that

YD < 9xes/D x (24 0(1))e x = < 1.
Up+1 D

So,
Pr(3|S| <log'? N :e(S) > |S| + 1)

1/2 10g1/2N 3 s
< Blog "N Z <N> (eo(l)x8><3><6><e>< <8)>

- N o s 27 N
og!'/? N
1 1/2N1 g
< ?’OgT 3 150° = o(1). O
s=4

This completes the proof of Lemma 6. (Because there are so few non-tree-like
vertices, for such v we will bound Reg (v, vg) by the diameter O(@) of Ky.) O

3. Proof of Theorem 5. Theorem 6 allows us to work with H instead of Cf,
and we assume from now on that H has the following properties that have been shown
or claimed to hold w.h.p. above, namely:

Assumed properties of H (APOH):

(i) [V(Ey)|~4N/3,

t+

here are between %clNl_’H‘O(E) and 2co N1=7TO() trees of depth at least
2log N
=k

(vii
~e~!log N, and there are no trees of depth exceeding

In what follows, we may write in terms of unconditional probabilities and expectations,
but these will refer to the GFF and will assume that H is a fixed graph with property
APOH. There are some places where we have to prove further properties of H, but
we will be sure to flag them.

3.1. Lower bound. It turns out that for the lower bound, it suffices to consider
the maximum over a very restricted set, consisting just of a single vertex from each
sufficiently deep tree.

LEMMA 7.

log(e3n)
E (1&%)@ 2 (1+o) 55z

Proof. We first identify a subset of vertices on which the GFF behaves as having
independent components and then produce a lower bound using Slepian’s comparison
(17) combined with (16). Consider the set of Galton-Watson trees attached to H of
depth at least d = i~ !, i to be chosen. Choose one vertex at depth d from each
tree to create Sq. It follows from (14) with v = i/log N that there will be at least
cN'1=7+0() guch trees for some constant ¢ > 0. Let (7),)yes, be a random vector
with ii.d. N(0,ve~!log N) entries. Then 7, — 7),, has variance exactly 2y~ !log N,
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whereas 7, — 1, has variance at least 2ye~!log N (the graph-distance between v and
w is at least 2d = 2ie~! = 2ye~1log N), and so it follows from (17) that

(35) E(max{n, : v € S3}) > E(max {7, : v € Sg}).
Applying (16) we see that
B(max {7, v € 54}) > (1 -+ 0(1))(2log(Sa) /2 - (e log N)/2.

7, has the same distribution as a standard Gaussian multiplied by (ve~!log N )1/ 2,

Using |Sy| > ¢N1=710(E) | we obtain

(36) E(max {7, : v € Sg}) > (1 + 0(1))(2log(ecN1=7+FOENL/2 . (e~ og N)1/2
~ (1= 7)log N

o172
Putting v = 1/2 in (36) and applying (35) yields
log N
E >E > (1 1 .
(g, ) = B (e ) = 0ot 550
Recalling that N = £3n, this finishes the proof of the lemma. 0

The important task is to achieve a matching upper bound.

3.2. Upper bound. We begin with an outline of the proof of the upper bound.

We let k := [1/e] and will write ¢y = [logy k]. We say that v € G is a d-
survivor if it has at least one d-descendant z4(v), that is, a vertex x4(v) such that
dist(Ks, 24(v)) = dist(Ka, v) + dist(v, 24(v)) = dist(K2,v) + d.

Recall that we have oriented the induced paths P, from h, to t.. See the paragraph
following Remark 1. Then for each such e and v € V(FP,) we let di(v) denote the
distance from v to V(K7) traversing P, in the chosen direction. Let e(v) denote the
edge of K5 corresponding to the path P, containing v.

Each v € V(H) \ V(K>) lies in a Galton—Watson tree with a root w = paw (v) €
V(K>3) lying on a path created in Step 2 from an edge e. Let dy (v) = di(w), and let

Uik — {v € V(Ky) : di(v) € [ik, (i + 1)k — 1], e(paw (v)) € Ay, \Z,m} ,

and define for each 1 < j < 2log N and 0 < i,k < 2log N a set U"7F by choosing,
for each k-survivor in U ” —LE an arbitrary s-descendant x,.;(v);_ these chosen k-
descendants comprise U*/*. Evidently, we have for U = U, ; x50 U that
E ) <E u E v Tu
(37) (max7,) < E(max7n,) + E(max(, — )
for any function u : V' — U. We will bound the two terms on the R.H.S. separately.
Let s
e’ log N

T =

é (25)1/2 5

1
Where 5 = ma,X{1057 m}
LEMMA 8. With the notation introduced above, we have

(38) E(rgggnu) < (1 +0(1))Ts.
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LEMMA 9. There is a function v :V — U such that
(39) E(max(n, —nu(w))) = o(Ts)-

Observe that the proof of the upper bound in Theorem 5 follows from (37) and
Lemmas 8 and 9; it remains just to prove these two lemmas.

3.2.1. Proof of Lemma 8. We let Z; ; , = max,cyiix 7, and
(40)

E ) =E Ziin) <T E Ziin—Ts.
() =B (g P STt Bl =T

2log N

=1Ts + Z / Pr(Zi,j,k > t)dt
i.j,k=0 " t=Ts

The bounds on 4, j, k follow from Lemmas 1, 4, 6, respectively.

Our task now is to bound the sum of integrals in (40). In words, the idea is that
U is partitioned into smaller pieces U»/** such that each piece is of a small enough
cardinality such that the Gaussian concentration of Z; ;) around its mean allows us
to control the above integrals.

Let a vertex of v of K5 be tree-like if the endpoint ¢, of the path P. containing it
is a tree-like vertex of K. Similarly, a vertex of a Galton—Watson tree is tree-like if
its root is tree-like. Now write

Uhik — UZTJJC U U]Z\}];k’

where U%’j * and Uji\}j ** are those vertices whose Galton—Watson trees are attached at
tree-like and non-tree-like vertices of K, respectively.

Case 1: Ui’ for kg =log'/? N < k < 2log N: tree-like vertices. Be-
cause we are bounding the sum of integrals on the R.H.S. of (40) it will be safe to
ignore events of probability o(log”® N). So from now on, w.h.p. will mean with
probability 1 — o(log_3 N). We will work assuming that K7 is fixed and satisfies the
conditions APOH(i) and (ii) defined at the beginning of section 3. We can then focus
on 0 < 4,4,k <2log N. This is because it follows from Lemmas 1, 2, and 6 that these
bounds hold with probability 1 — O(N~1=0(1),

CrAM 7. We have that w.h.p.
(41) |[UE*| <0 (Ne—f“—f)””ﬂ“f)) for0<i,j <2logN, ko < k < 2log N.

Proof. We write

U = Y 1g,

veUHIi—1.k
where the event B, is the that vertex v is a k-survivor. We have

(42)
E(jUz"*

)=0 (nN(l — (1 —¢))rt . e @moDrkbr (1 _ g(1 —¢))=U~D. se*“)
-0 ( Ne—s(lfs>n<i+j+<2fo<1>>k>) :

where Gk = 119251/%'
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Ezxplanation. For a fixed vertex in Ko, the expected number of vertices at level ¢ of
a Galton—Watson tree rooted at this vertex will be at most (1—e(1—¢))*. Each vertex
v in such a level has probability Pr (B,) < Pr (L, # 0) of being a k-survivor and we
use Lemma 2 to upper bound Pr (L, # () by O(ee="). Wald’s identity implies that
the expected number of vertices in the Galton—Watson tree rooted at a fixed vertex
lying in U** is thus (1 — g(1 — £))*0—1 . ge—=x,

In expectation there are O(kN(1 — g(1 — ¢))* - e~ 2=0()FROk) vertices w € Ky
for which e(w) € Ay and di(w) > ki; here we have used Lemma 6 to bound the
probability that a vertex w for which dy(w) > ki has e(w) € A, and applied Wald’s
identity as before. Applying Wald’s identity a final time gives (42).

Equation (41) follows from the Markov inequality. (There are O(log® N) choices
for 4, j, k, and there is a factor e(!=°(1)k > ¢(1=o(1))ko difference between the expres-
sions in (41), (42).) |

Given (41), we proceed to bound the sum in (40) term by term. (We wish to
show that the sum is o(Ts).) To bound the probabilities Pr (Z; ; 1, > t), we will use
the concentration of the maximum of a Gaussian process around its expectation,
whereas the expectations E(Z; ; ;) will be simply treated with the union bound.

First we estimate the expectations.

CLAIM 8. Fori,j > 0,k > ko,
(43) E(Zijx) < e *T;.

Proof. For v € U* | we know that 7, has variance at most (i +j + k + 1) (by
the definition of U%7:¥ the graph-distance from v to Ky is 7, and x(i + k + 1) comes
from the definition of Ay). It then follows from (18) in section 2.3 and |U%JF| <
CNefs(lfs)n(H»j%»k) that

(44) E(Zij1) < (2log(CNe =s0=anHIth N2 (5 4 5 + k + 1))1/2,
It follows from 2(xy)'/? < x + y that we can write

E(Z; i) < (26" DY 2 (ke(i + j 4 k)2 (log(CN) — (1 — &)k(i + j + k)))/?
< (1+7¢)log(CN)

—20/3
< (o)1/2 < e 23Ty,

and then E(Z; ;x) < e 2/3T5 < e79/2T;.

Case 2: ko < kg = logl/2 N: tree-like vertices. We first let U’ be the
set of vertices v of Ky for which dist(v,tcw)) € [ir, (i + 1)x — 1]. Given K; and
|E(K1)| =~ 2N the size of U” is a binomial random variable with success probability
at most p™* < (1 —¢(1 —¢))™*. So, w.h.p.

U?| < 2Ne 51790 L 1og!'® N for all 0 < i < 2log N.

The first term comes from the Chernoff bounds, and the log'® N term is there for the
case where the expectation Ne¢(1=9)i ig less than log? N, in which case we just use
the Markov inequality. This estimate is valid conditonal on U.

For each v € U? recall that p = (1 —¢)'~¢, and let p; = p*U~Y . ge7% hound
the probability that v has a descendant at level jx that is a x-survivor. Then if U*J
denotes the set of descendants of such vertices v € U?, we have

E(|UY)) < |U'|p; < (2Ne =079 +10g™" N)p;.
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Applying the Chernoff bounds we see that conditional on U, w.h.p.

|UH7| < 2(2Nes(1=9)ir | 1og!0 N)p; + log'® N
S 4N€7€(176)(’L‘+j71)n .ge ER + 210g10 N.

It then follows using (18) that for all k < ko = log'/? N that

(45) E(Zijk) <

(2 1)1/2 (1 n 2loglog N

log N ) (HE(i—l—j—l—lOgl/Q N))1/2(10g(4N)—5(1—5)%3(2’4—]’))1/2.

If nowi+j < ﬁ log N, then we see that

k'/2logN _ Ts
EZ ) < ——— < —.

( »]yk) = 9 =7
If i +j > 145log N, then we use 2xy)/? < x4y and (i +j —|—log1/2N) < (i+
7)1+ 199 ). Applying this in (45) gives

10g1/2N
(1 * L) /2
log'/? N e?logN  _
E(Zijx) < W(bg(m) +4elog N) < i < 302y

Case 3: Non-tree-like vertices. Claim 3 says that w.h.p. there are at most
log!'® N non-tree-like vertices of K1; we have

E(|Uy"*| | Claim 3) = O(log!® Ne~s(1=o)s(+0)),

and so w.h.p.
|UJ’LV_],k| — O(log200 NG*E(lfg)K(’L“F]')).

And then, using the bound of @ on the diameter from [12] to bound effective
resistance in Ky, we have

E(Zi,j,k) _ O(log(Clog2OO Ne—e(l—s)n(i—!—j))l/Q(g—l logN)l/Q)
= O((e ' log N loglog N)¥/2) = o(Ty),

and we can continue as in (46).
This completes our estimates for E(Z; ; 1). d

We proceed to estimate the probability the probability that Z; ;; significantly
exceeds its mean.

To estimate this probability we use the Gaussian concentration for the maximum,
(19) in section 2.3. As already remarked, this inequality will not be affected by the
conditioning, and it yields

(46)

12 t?
Pr(Zijp > B(Ziyp) +1) < 2expd - ——— <2exp|—TEoo
r(Zijx > E(Zijr) +1) exp{ 2(Z+J+k+l)n} exp{ 13510gN}
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where in the last inequality we use i, j, k < 2log N. Thus,

E—B(Zi 1))
(47) / Pr(Zi, > t)dt < / exp {((M))} ”
t>Ts t>Ts 13k log N

= /13klog N e du
s> Ts—E(Z; j 1)

Vi3rlog N

T — E(Z1))’
_ /215012 N _( 4 4,5,k )
© (H °8 P { 13xlog N

Plugging (43) into (47) we see that
Ts —E(Z: ; 2 1 — e—9/2)272
eXp{—( 3 (Zijk)) } < exp{—( € )15 }

13k log N 13k log N
(1 —e9/2)2e2 log N
< _
= o { 26kKe
<N

for some universal constant ¢ > 0, as ke < 2, €2® — 1, and (1 — e~%/2)? ~ §2/4.
So,

(48) / Pr(Z iz > t)dt < 5/?log!/? N - N~0° < N~ T,
t>Ts

Thus

2log N

2
/ Pr(Z; ;x> t)dt <8N~ Tslog® N
i,j,k=0"12Ts
clog N
< exp {_logg/?’N +0(1) + loglogN} Ts

(49) = o(T}).

3.2.2. Proof of Lemma 9. To prove Lemma 9 we let W} denote the set of
vertices whose distance to Ky is divisible by k. Our goal now is to show that a
general vertex v is n-close to some vertex u(v) € U, i.e., as measured by (7, — 1y);
we will do this by showing that v is 7-close to its H-nearest (as measured by graph-
distance) ancestor y € W,; this will suffice since our choice of U ensures that some
vertex u € U has the property that y is also the 7n-closest ancestor of w in Wi.

We will consider sets Jy, J1, Ja, ..., Jo,, bo = [logy k] of ordered pairs of vertices
in H with the following properties (see Figure 1):

A. For (v1,v2) € J;, we have that vy, vy € Wy and that vy is a 2i-descendant of
V1.

B. Jp is the set of all edges in H that are outside of K.

C. For each i, we have, for each 2i-survivor vy € Wyi \ Wait1 belonging to ma(J;),
that exactly one 2'-descendant x(ve) € Wait1 of vy is paired in J; 41 with its
2+ _ancestor v; € Waitr.

D. For all ¢, ma(Ji41) C m2(J;). (Here m; is the projection function returning the
jth coordinate of a tuple.)

Notice that pairings Jy, J1, ..., Jy, with these properties exist by induction; hav-
ing constructed Jy, . .., J;, we construct J;11 by choosing pairs via properties C and D;
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(y(v2), 2(v2)) € Jia
v = y(”2)
Wait1 € Woi

Vg

WQi \ W2i+1

(ve, 2(v2)) € J;

x(v)
Fi1G. 1. The sets Wy, Jg.

in particular, for each 2¢ survivor vo in m(J;) at distance k2! from K for odd k, we
choose a 2'-descendant x(vs), and add the pair (vq,z(v2)) to J;+1, where vy is the
2i+1 ancestor of x(ve) (and the 2 ancestor of vs).

So we fix some choice of the pairings Jo,...,Js,. We write J; for the set of
unordered pairs which occur (in some order) in J;. The heart of our argument is the
following lemma.

LEMMA 10. Given any vertex v € V, let a(v) be its H-closest ancestor in W,.
There is a sequence v = Vg, V1, Ve, ...,V = a(v) such that the following hold:
(a) For each j=1,...,t, {vj_1,v;} € J; for some i.
(b) For eachi=0,...,Lly, at most 1+2(¢y —1i) of the pairs {vo,v1},{vi,va},...,
{vi—1,ve} belong to J;.
Proof of Lemma 10. Fix a vertex v € V. Our goal is to find a chain v =
Vg, V1,02, ..., v = a(v) such that its consecutive links {vj_1,v;} are all in the sets J;,

and each set J; contains at most 1+ 2(¢p — ¢) links. We shall do this recursively, and
in order to keep track of it, we need the following parameters:

Pp(v) =max{0<i</{y|ve Wy}
Y(v) =max {0 <i < P(v) |vem()}.
CLAIM 9. Given any v, there is a vertex a(v) such that either

(a) ¢(a(v)) > ¢(v) and (a(v),v) € Jyw), or else
(b) ¢(a(v)) = é(v) andp(a(v)) > P (v), and there exists z(v) such that (2(v), a(v))
and (z(v),v) are both in Jy ().

Proof. Consider the vertex v, and let i = ¢(v). We consider two cases:
Case 1: ¢(v) = ¢(v). In this case, by definition of ¢ (v), we have that there is a
vertex a(v) such that (a(v),v) in J;. In particular, as 2° is the largest power of 2 such
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that v € Wy and v is a 2%-descendant of a(v), we have that a(v) € Wayit1, that is,
that ¢(a(v)) > i+ 1, as claimed.

Case 2: ¥(v) = j < ¢(v). In this case, by definition of ¥ (v), we have that
there is a vertex z such that (z,v) in J;. Now by property C of the pairings {.J;}, z
has a 27-descendant a(v) which is in 72(J;41); in particular, we have that 1 (a(v)) >
j+1>1(v). (Note for clarity that a(v) and v are at the same distance from K; in
Case 2, and so ¢(a(v)) = ¢(v).) And by property D, a(v) € m2(J;) as well, and thus
(z,a(v)) € J;, completing the proof of the claim. This concludes the proof of Claim
1 and thus also Lemma 10. 0

Observe that Lemma 10 follows from Claim 9; indeed, one can construct the
claimed sequence recursively as follows: given the partially constructed sequence v =
Vo, V1,...,Us we append either the single term a(vs) or the two terms z(vy), a(vs),
according to which case of part (a) of the claim applies, and terminate if ¢(a(vs)) = £o.
Observe that a consecutive pair v,v’ in vy, ...,v; belongs (as an unordered pair) to
J; only if either

(i) v' = a(v) and ¢(v') > ¢(v), or
(ii) v = 2(v), the term after v’ is v" = a(v), and Y (v") > ¥ (v), or
(iii) the term before v is 0, v = z(0), v/ = a(?d), and P (v') > (D).

Since (¢(v), ¥ (v)) increases lexicographically in this way along the path, we have the
claimed upper bound of 1 + 2(¢y — i) on the number of of consecutive pairs from .J;.
This finishes the proof of Lemma 10. ]

Now we are ready to finish the proof of Lemma 9. Thanks to Lemma 10, we can
decompose 7, — Na(v) = 22:1 1j—1 — 7;, and using a chaining argument as before we
get

Lo
En,y (rgleag o 77a(v>|) <En (;(1 + 2t~ )By max_ n. - an>

o
(50) <O (EH <Z(£0_i+1)\/§(\/210g|']i)>> :

i=0
Here, Eg, is expectation over the larger space of the random graph H together
with the GFF, while E,, is the expectation of a fixed GFF and Ep is an expectation
just over the random choice of H (this is to handle /log|J;|, as we do not have a
high probability statement about |J;| covered by APOH, and we will only be able
to control Eg|J;|). The first inequality follows from part (b) of Lemma 10, and the
second inequality follows from the union bound on the maximum (18).

Given (50), our task is to bound Eg(|J;]) for 0 < i < ¢y and then show that the

sum in (50) is o(Ts). We have from property C that
(51)

Eu(.i]) = O (EH|WT>| x Qi) ~0 ((e% < i x ;) =0 (2(1—_%) =0 (5)

j=0

(the number of vertices on Ky is e2n, and p/ 2" bounds the expected number of vertices
on level j2%). Going back to (50) we see that

Lo

. i EN
(52) En, (rpeagsm - na@)) <> (b —i+ )V 2108 (55 )-

=0
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Here we use that Eg(v/log|Ji]) < \/log E(]J;]) by Jensen’s inequality (log?z is a
concave function) and (51).

It only remains to deal with the R.H.S. of (52). Given v € V, we let u(v) be a
closest vertex in U to v (in the graph-distance). Suppose for now that u(v) = a(v),
where a(v) is provided by Lemma 10.

To get a high probability result, we will use the Markov inequality: if we denote
Y = E,(max,ev [0y — Na(w)|), we have Pry (Y > (log N)Y*EpY) < (log N)~1/4, and
this explains the logl/ 4 N factor in (53) below. We check that the ratio between the
terms 7+ 1 and ¢ in (52) equals

-t 210g2

Eo—z—i—l 1og en) — 2ilog 2
which is strictly larger than, say, 19—0 for 0 < ¢ < ¢y — 10. Thus the last 10 terms
dominate this sum, and we get that w.h.p.
(53)
n log‘o’/4 N
E (max|77v Na(w)]) <O (log1/4N x V2t [2]1og (22? )) =0 iz )= o(Ts).

This concludes the proof of Lemma 9 in the case u(v) = a(v). If u(v) # av),

then since N = Nu(v) = (nv - na(v)) + (na(v) - na(a(v))) (na(u(v)) — T v)) by the
triangle inequality we can obtain the same bound as above up to the constant 3.
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