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Abstract

Eukaryotes and bacteria have evolved entirely different
mechanisms to cope with the problem of how to reconcile
regulatory specificity in transcription, the recognition of specific
DNA sequences by transcriptional activators, with speed, the
ability to quickly respond to environmental change. It is argued
here that eukaryotes enhance the specificity of
activator—promoter recognition via ATP-dependent chromatin
remodeling, whereas bacteria employ allosteric effectors to
control specific activator—DNA binding reactions.
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Introduction

Regulated transcription depends on the recognition of
specific DNA sequences by transcriptional activators,
which promote the transcription of genes that bear their
recognition motifs, but not other genes. The principle
appears to be straightforward. Both bacteria and eu-
karyotes make use of it to regulate transcription in a
gene-specific manner; yet differences abound.

In the absence of it allosteric effector, cyclic-AMP
(cAMP), the bacterial transcriptional activator CRP
binds DNA nonspecifically with a standard free energy
change of AF° = —9 /g7 per molecule, corresponding
to an equilibrium association constant of approximately
104 M1 [1]. [Throughout we assume that molecules
exchange energy with a heat reservoir of absolute tem-
perature T. At 25°C, kT = 4.1 x 10721 J, where 4 is
the Boltzmann constant. The standard free energy
change of the activator-promoter binding reaction is

related to the ratio of on-rate and off-rate constants,
Ky /k_, via AF° = — kgTin(ky/k_).]

In the presence of micromolar concentrations of cAMP,
AF° decreases to —23 47" per molecule for high affinity
target sequences of CRP [1]. Thus, the energetic dif-
ference between specific and nonspecific DNA binding,
AAF°, may be as large as —14 457 per molecule,
corresponding to a 10°-fold increase in DNA affinity
upon cAMP binding. The affinity increase accounts for
CRP’s ability to specifically select its target genes,
approximately 3% of E. coli’s genes.

Surprisingly, for many eukaryotic transcriptional activa-
tors, AAF*° is comparatively small, between —2.5 and —
54T per molecule, corresponding to a 10!-fold to
10%-fold difference in affinity between correct and
incorrect sequences [2]. Differences in affinity between
different sequences and the same activator are largely
attributable to differences in DNA residence time, z.e.
different dissociation rate constant [3]. In vitro, average
residence times fall into the range of 3 to 100 seconds at
specific DNA sequences, and 0.1 to 1 second at non-
specific sequences [3].

In principle, short activator dwell times on target se-
quences are desirable, for frequent random dissociation
of the activator provides the opportunity for reevalua-
tion, for hypothesis testing: The activator may rebind its
target sequence, if need be, or else is exported into the
cytosol, if transcription of the target gene is no longer
required—many cukaryotic activators are regulated in
this way. This however begs the question of how cells
reconcile the dual requirements of speed, z¢., openness
to change, and specificity.

Unlike bacterial activators, which make specific
contacts—i.e., contacts that rely on structural comple-
mentarity—with RNA polymerase or its associated sigma
factor [4], eukaryotic activators are thought to activate
transcription by nonspecific “recruitment” of a host of
proteins [5], among them general transcription factors,
the mediator complex, chromatin remodelers and his-
tone modifying enzymes [6—11], but not RNA poly-
merase. Recruitment occurs by virtue of multivalent
“fuzzy” contacts: variable interactions between a
randomly coiled activation domain and hydrophobic
patches of the target protein that are devoid of structural
complementarity [6]. The mechanism of recruitment
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2 Gene regulation

may have evolved to allow for both high affinity binding
and the quick exchange of binding partners [6].
Evidently, unlike bacterial activators, individual eukary-
otic activators must be able to facilitate multiple pro-
moter transitions. What explains the need for this
“activator multitasking” in eukaryotic transcription?

Perhaps the most conspicuous difference between bac-
teria and eukaryotes with immediate impact on tran-
scription has been the invention of the nucleosome,
which imposed a transcriptionally repressive default
state upon nuclear genes [12—14]. 'Transcriptionally
induced eukaryotic promoters are thought to randomly
transition between alternative nucleosome configura-
tions, including the nucleosome-free and fully nucleo-
somal promoter, the prevailing configuration in
repressing conditions [15,16]. While the purpose of
nucleosome removal for transcription is evident, the goal
of nucleosome reformation in activating conditions is
not. Both formation and removal of nucleosomes are
catalyzed by ATP-dependent chromatin remodelers
[17]. In steady state, the net result appears to be no
other than ATP hydrolysis. Do ATP-fueled promoter
nucleosome dynamics serve a purpose, or do they
represent a “futile cycle” [18], the expenditure of free
energy to no effect?

Results

To explore the implications of activator-mediated
recruitment of ATP-dependent chromatin remodelers
on transcriptional error—ze., initiation of transcription
by an incorrect activator—we consider the following
model (Figure 1): a promoter with one nucleosome and
one site for activator binding, which may either be
occupied by a correct (ze., specific) or incorrect (non-
specific) activator. Thus, we may distinguish six pro-
moter “microstates”: The nucleosomal activator-free
promoter (State 0), the nucleosomal promoter bound
to the correct activator (State 1) or incorrect activator
(State 2), and the nucleosome-free promoter bound to
the correct activator (State 3) or incorrect activator

On the assumption of a time-homogeneous Markov
process [21], the probability current from state # to 7, Cins
is a linear function of the probability mass at state 7,
Du(t)—te., €3 (1) = wjypa(2), where @y, is a (pseudo first-
order) rate constant. The #er current between two
adjoining nodes (states), thus, is given by

Tin(t) = 6in(2) — 64§ () 1

The system dynamics, then, are described by the
Markovian master equation:

ap;(r)
.[//l‘ = Zﬂ:]/ﬂ ([) 2
for all /. The system is in steady state when &p;(z) /dt = 0
for all /. Steady state probabilities, p;, are uniquely defined
since the reaction graph is strongly connected, ze., every
node can be reached from any other by one or more tran-
sitions [22].

For simplicity, we assume that the activator on-rates are
equal for correct and incorrect activator and indepen-
dent of the presence of the nucleosome (ze., w1g, @720,
w45,w35 =44 ), and that the rate of transcription in States
3 and 4 is the same (ie., both activators are equally
“strong”). Correct and incorrect activators, thus, are
distinguished only by their off-rate constants, #_1; < #_;
(¢f. Figure 1). Furthermore, we put

f=p3/pa 3

and call f the fidelity of the process; f is the ratio of tran-
scription events per time initiated by the correct versus
incorrect activator in steady state [23].

By solving the set of linear equations ) ,J;, = 0 forallj
(¢f. Eq. (2)), the steady state probabilities p; may be
calculated as rational functions of the rate constants,
which gives

’=5

(State 4), and finally the naked promoter (State 5).
Representation of allowed transitions between micro-
states by directed edges (arrows) generates a reaction
graph with two cyclic subgraphs, one each for the correct
and incorrect activator, that is mirror symmetrical with
regard to nodes and edges, but not labels [19,20]. The
two subgraphs share one edge and two nodes (Figure 1).
Only activator-bound states without nucleosome (States
3 and 4) are assumed to be transcriptionally active.

. ) ((,éfz +M)(r—my +ryomy +rik_y)+bim (kg +Eh 2+ ZM)) 4
(kg +M)Y(r—my +rimy +rik_p)+himy(k_y+ 4k o+ 2M)

where, M=my +m_.

In thermodynamic equilibrium, the detailed balance
conditions are fulfilled [24], ze.,

Jn=0 5

for all 7, #. Application of Eq. (5) to any closed loop (cycle)
shows that the product of all rate constants that are
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Figure 1

Activator-Promoter Recognition Boeger 3

ve
2

1

Current Opinion in Systems Biology

Reaction graph for nucleosomal proofreading of activator—promoter recognition. The promoter is depicted as a box, correct and incorrect activators by a
triangle and inverted triangle, respectively. The gray dot represents promoter nucleosomes. Gray shading indicates transcriptionally active states. Labels

on directed edges are (pseudo first-order) rate constants.

encountered as the loop is traversed clockwise equals the
product of the rate constants encountered in the counter-
clockwise direction (the cycle condition for detailed bal-
ance) [22]. Applied to the cycle for the correct activator (¢f.
Figure 1), the cycle condition for detailed balance yields
rokym_k_y = lkymik_qr—, and after cancelation of
common terms:

r_my = rym_ 6

(The same result is obtained for the incorrect activator
cycle.) Eq. (6). is both necessary and sufficient for equi-
librium [25]. Replacement of r_my in Eq. (4). with
rem_ gives

The ratio on the right side of Eq. (7) may be expressed
in energetic terms. A simple calculation shows that
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fo = e 8
where, 8 = (k7).

Unlike many bacterial transcription factors (e.g., CRP at
class II promoters), eukaryotic activators don’t have to
bind DNA at a fixed position relative to core promoter
sequences to be effective. This, in principle, allows for
simultaneous activation by both correct and incorrect
activators. The model of Figure 1 ignores this possibility,
an assumption that is valid only in the limit of infinite
activator dilution, #; — 0 Actual fidelities are expected
to fall well below fy, which therefore marks the upper
bound to fidelity in equilibrium [23]. This upper limit is
called the “Hopfield barrier” [26] to activator fidelity.

However, away from equilibrium the process may sur-
pass the Hopfield barrier: For 7, — 0 (violating Eq. (6)),
followed by M —0 (while keeping all other constants
fixed), we find with Eq. (4) and Eq. (8). that

f _’fg — e—ZﬂAAFO ) 9

This remarkable result is analogous to the results of
Hopfield and Ninio for the suppression of enzymatic
error by kinetic proofreading [27,28].

The graph of Figure 1 focuses on the state of the pro-
moter; it is equivalent to the reaction topology sug-
gested by Nino. Focus on the activator state instead
yields a graph equivalent to Hopfield’s [29]. The
conclusion is the same in either case: At the expense of
breaking the time-reversal symmetry of detailed bal-
ance, the process fidelity may surpass its Hopfield
barrier.

The steady-state rate of entropy production (change in
total entropy) in the subgraph for the correct activator is
given by

AStor
ar

— T3 A8 10

where, J31 = Js3 = Jyo (in steady state) is the probability
net current in the subgraph and

AST = by In (“’”*) 11
m_ry

is the entropy change in the coupled heat reservoir per
counterclockwise cycle [29]. Notably, it can be shown that
the logarithmic argument in Eq. (11), r—my/(m_ry), is
equal to the ratio of forward and reverse cycle probabilities
[30,31], which according to Eq. (11) exponentially in-
creases with AS7".

For detailed balance, AS”” = 0 and J31 = 0, since
remy = rym_ (cf. Eq. (6)). For ry <r_my/m_,
detailed balance is broken, AS"* > 0 and J3; > 0 (the
net probability current runs counterclockwise), for
A8/ dr > 0 by virtue of the second law of
thermodynamics (the analogous argument holds for
clockwise cycles in the incorrect-activator subgraph).
The reduction of error beyond its equilibrium value
requires entropy production [32].

TAS’? > 0 is the energy that the system dissipates into
the heat bath per cycle (0—1—3—5—0 for the cor-
rect activator, and 0—2—4—5—0 for the incorrect
activator, ¢f. Figure 1). This energy must be supplied by
a coupled work reservoir, since the change in system
energy for a circular path is zero (first law of thermo-
dynamics). The coupling occurs in the transition from
State 1 to 3 (2 to 4 for the incorrect activator) on the
assumption that the activator recruits ATP-dependent
chromatin remodelers for nucleosome removal. The
coupling allows for violation of detailed balance:

my r
i 12
m_" r_

(¢f. Eq. (6)) [31]. The free energy of ATP hydrolysis, in
part, is transferred to the system — nucleosome removal
drives the system away from equilibrium (work is done
on the system) — and fully dissipated only upon
nucleosome reformation. As a consequence, both acti-
vator binding reactions, with the repressed and dere-
pressed promoter, are out of equilibrium too: the
activator is more likely to bind to, rather than dissociate
from, the repressed promoter, and more likely to disso-
ciate from, rather than bind to, the derepressed pro-
moter (¢f. Figure 1).

In vivo, the free energy change of ATP hydrolysis may be
as large as —23 47" per molecule [33]. Thus, hydrolysis
of a single ATP per “forward” cycle (0—1—3—>5—0
for the correct activator) reduces the chance of the
reverse cycle by a factor of ¢=23=10710 (¢f. Eq. (11)).
Yet, effective kinetic proofreading of activator identity
requires that the binding reaction between incorrect
activator and the repressed promoter remains close to
equilibrium (almost all binding events, then, are rejec-
ted, i.e., reversed), which is achieved via small 4/ and
74+. The detailed fluctuation theorem of stochastic
thermodynamic shows that “violations” of the second
law—here, dissociation (rejection) of the incorrect
activator from the repressed promoter—are probable
only if the forward reaction, activator binding to the
repressed promoter, produces little entropy, on the order
of kg [30,31]. On the other hand, binding events be-
tween correct activator and the repressed promoter
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should not be rejected too often, or else transcription
becomes exceedingly noisy [23]. In general, biochemical
processes evolved not toward maximum specificity but
the right balance between specificity, speed, and energy
cost (ze., free energy dissipation, entropy produc-
tion) [19,34—36].

The above analysis suggests that the ATP-consuming
removal and reformation of promoter nucleosomes is
not futile at all; rather, free energy is expended to
“distill” activator-promoter interactions [23]. The result
of this distillation—improved regulatory specificity—is
achieved without affecting the energetics of
activator—DNA binding.

Not surprisingly, gains in fidelity due to free energy
expenditure disappear unless initiation of transcription
remains dependent on the presence of the activator on
the promoter after nucleosome removal [23], 7.e., State 5
must be transcriptionally inactive. The requirement for
activator multitasking is thus explained. Beyond
recruitment of chromatin remodelers for nucleosome
removal, activators recruit mediator and general tran-
scription factors for transcription [8,37], which may
render subsequent transcription events dependent on
the persistent interaction between activator and
promoter.

Activation of ¢70-dependent bacterial promoters, the
predominant promoter class in bacteria, are activated by
stabilization of the closed complex through direct
physical contact between activator and polymerase. The
mechanism requires activator—DNA binding in close
proximity and fixed rotational orientation relative to
RNA polymerase [4]. In contrast, ¢54-dependent pro-
moters are controlled by activators whose activation
domain is an AAA+ ATPase that utilizes the free energy
of ATP hydrolysis to reconfigure ¢54 for open complex
formation [4]. Like eukaryotic activators, activators of
g54-dependent promoters may bind DNA at variable
rotational positions far from the core promoter and come
in contact with the transcription apparatus via looping of
the intervening DNA. However, the free energy
consumed in the activation process does not increase
regulatory fidelity, since the activator is not required for
any other step than open complex formation [38].

How, then, do bacterial activators reconcile the dual re-
quirements for speed (openness to change) and speci-
ficity? For one, bacterial transcription factors are
effective at only a small number of specific positions
relative to the core promoter sequences [4] for which
correct and incorrect transcription factors must compete.

The possibility of activation by incorrect activators is
further limited by the fact that different promoter clas-
ses entail different mechanisms of activation—activators
that stimulate 054-dependent promoters don’t activate
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070-dependent promoters and vice versa. In contrast, the
activation mechanism of eukaryotic activators appears to
be universal: enhancers and core promoters may be
arbitrarily mixed and matched [39], further underscoring
the specificity problem of transcriptional activation in
the eukaryotic cell.

Finally, the DNA residence time of bacterial transcrip-
tion factors is subject to allosteric regulation [40]. This
allows for the active removal of transcription factors
from their specific DNA-binding sites. For example, the
lac repressor resides at the lac O operator for tens of
minutes in the absence of its allosteric effector [41], but
dissociates from DNA within seconds in its presence
[42]. The energy required for removal is provided by the
interaction between repressor and its allosteric
effector [40].

The cAMP-CRP complex dwells longer on its high-
affinity target sequence than most eukaryotic activa-
tors—nearly 300 s, on average [43]—Dbut less long than
would be expected if the on-rate constant for DNA
binding were similar to eukaryotic activators. This,
however, is not the case. On-rate constants are close to
the diffusion limit for bacterial transcription factors
[40], but not eukaryotic activators [3]. The reason for
this disparity is not known [44]—DNA binding may
constrain the conformation of eukaryotic activators to a
greater extent than their bacterial counterparts, perhaps
because allosteric regulation of DNA binding requires
greater conformational rigidity. Whatever the reason,
high on-rate constants allow for large AF° without
risking unduly long DNA-residence times.

Conclusion

Eukaryotes and bacteria arguably employ fundamentally
different strategies to resolve the conflict between
regulatory specificity and speed. The conjectured
ceukaryotic mechanism distills activator—promoter in-
teractions by kinetic proofreading. The distillation re-
quires the expenditure of free energy from a coupled
work reservoir, possibly by virtue of ATP-dependent
chromatin remodeling enzymes. The bacterial mecha-
nism, instead, relies on equilibrium thermodynamics
with fast activator on-rates and allosteric regulation of
DNA residence times. Although kinetic proofreading
explains many experimental observations, and the
cukaryotic cell, no doubt, expends free energy in tran-
scriptional regulation, a demonstration that the regula-
tory process is irreversible, ze., out of equilibrium,
remains a major experimental challenge [45,46].
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