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ABSTRACT

Graph Neural Network (GNN) based recommender systems have

been attracting more and more attention in recent years due to their

excellent performance in accuracy. Representing user-item interac-

tions as a bipartite graph, a GNNmodel generates user and item rep-

resentations by aggregating embeddings of their neighbors. How-

ever, such an aggregation procedure often accumulates information

purely based on the graph structure, overlooking the redundancy of

the aggregated neighbors and resulting in poor diversity of the rec-

ommended list. In this paper, we propose diversifying GNN-based

recommender systems by directly improving the embedding genera-

tion procedure. Particularly, we utilize the following three modules:

submodular neighbor selection to find a subset of diverse neighbors

to aggregate for each GNN node, layer attention to assign attention

weights for each layer, and loss reweighting to focus on the learn-

ing of items belonging to long-tail categories. Blending the three

modules into GNN, we present DGRec (Diversified GNN-based

Recommender System) for diversified recommendation. Experi-

ments on real-world datasets demonstrate that the proposedmethod

can achieve the best diversity while keeping the accuracy compara-

ble to state-of-the-art GNN-based recommender systems. We open

source DGRec at https://github.com/YangLiangwei/DGRec.

CCS CONCEPTS

• Information systems→ Recommender systems; Collabora-

tive filtering.
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1 INTRODUCTION

We live in an era of information overflow [26], with data cre-

ated every moment too large to digest in time. Recommender sys-

tems [32, 34ś36] target mitigating the problem by providing people

with the most relevant information in the massive data. Recom-

mender systems play an essential role in our daily life, such as the

news feed [40], music suggestions [6], online advertising [10], and

shopping recommendations [12]. To maximize the utility of recom-

mendation systems, accuracy is often the only criterion measuring

how likely the users would interact with given items. Companies

and researchers have been building sophisticated methods [38, 41]

to optimize accuracy during all steps in recommender systems.

However, a well-designed recommender system should be eval-

uated from multiple perspectives, e.g. diversity [49]. Accuracy can

only reflect correctness, and pure accuracy-targeted methods may

lead to the echo chamber/filter bubble [11] effects, trapping users in

a small subset of familiar items without exploring the vast majority

of others. To break the filter bubble, diversification in recommender

systems is receiving increasing attention. Through an online A/B

test, research [16] shows that the number of users’ engagements

and the average time spent greatly benefit from diversifying the rec-

ommender systems. Diversified recommendation targets increase

the dissimilarity among recommended items to capture users’ var-

ied interests. Nevertheless, optimizing diversity alone often leads to

decreases in accuracy. Accuracy and diversity dilemma [50] reflects

such a trade-off. Therefore, diversified recommender systems aim

to increase diversity with minimal costs on accuracy [2, 5, 49].

661



WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Liangwei Yang et al.

Graph-based recommender systems [34] have attracted more

and more research attention. Graph-based methods have several ad-

vantages. Representing users’ historical interactions as a user-item

bipartite graph can give us easy access to high-order connectivi-

ties. Graph neural network [30] is a family of powerful learning

methods for graph-structured data [13, 19]. The common practice

of graph-based recommender systems is designing suitable graph

neural networks to aggregate information from the neighborhood

of every node to generate the node embedding. This procedure also

provides opportunities for diversified recommendation [49]. Firstly,

the user/item embedding is easily affected by its neighbors, and

we can manipulate the choice of neighbors to obtain a more diver-

sified embedding representation. Secondly, the unique high-order

neighbors of each user/item node can provide us with personalized

distant interests for diversification, which can be naturally captured

by stacking multiple GNN layers.

Achieving diversified recommendations using GNNs comes with

the following challenges. Firstly, how to effectively manipulate

the neighborhood to increase diversity is still an open question.

The popular ones will submerge the long-tail items if we have a

direct aggregation on all neighbors. Secondly, the over-smoothing

problem [22] occurs when directly stacking multiple GNN layers.

Over-smoothingwould lead to similar representations among nodes

in the graph, dramatically decreasing the accuracy performance.

Thirdly, as seen in Figure 1, the item occurrence in data and the

number of items within each category both follow the power-law

distribution. Training under such distribution would focus on the

popular items/categories, which only constitute a small part of the

items/categories. Meanwhile, the long-tail items/categories are un-

perceptible during the training stage. Researches in graph-based

diversified recommendation is very limited. Early endeavors [50]

assign different probabilities on edges to boost the information

flow of long-tail items. DGCN [49] is the first work to diversify

over graph neural networks. It fails to consider the high-order

connectivities and the long tail categories.

In this paper, we propose DGRec to cope with the previously

mentioned challenges. We design the following three modules. 1.

Submodular neighbor selection firstly integrates submodular

optimization into GNN. It finds a diversified subset of neighbors by

optimizing a submodular function. Information aggregated from

the diversified subset can help us uncover the long-tail items and

reflect them in the aggregated representation. 2. Layer attention

aims to handle the over-smoothing problem. It stabilizes the train-

ing on deep GNN layers and enables DGRec to take advantage of

high-order connectivities for diversification. 3. Loss reweighting

reduces the weight on popular items/categories. It assists the model

in focusing more on the long-tail items/categories. Our contribu-

tions are summarized as follows:

• We design three modules for the diversified recommendation

and propose DGRec that achieves the best trade-off between

accuracy and diversity.

• The three modules can be easily applied to graph neural net-

work based methods to increase recommendation diversity

with a small cost on accuracy.
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Figure 1: Long tail distribution in Recommender System on

TaoBao dataset [49].

• We conduct extensive experiments on real-world datasets

to show the effectiveness of DGRec and the influences of

different modules.

The remaining paper is organized as follows. Section 2 gives the

required preliminaries. Section 3 illustrates DGRec in detail and

the three proposed modules for diversification. Section 4 conducts

extensive experiments to evaluate the effectiveness of DGRec, and

discusses the influence of different modules. Section 5 represents

the most related works for reference, and we conclude DGRec and

discuss future research directions in Section 6.

2 PRELIMINARIES

This section introduces some work preliminaries, including task for-

mulation, graph neural network, and accuracy-diversity dilemma.

2.1 Problem Statement

For diversified recommendation task, we have a set of usersU =

{𝑢1, 𝑢2, ..., 𝑢 |U |}, a set of items I = {𝑖1, 𝑖2, ..., 𝑖 |I |}, and a mapping

function 𝐶 (·) that maps each item to its category. The observed

user-item interactions can be represented as an interaction matrix

R ∈ R |U |×|I | , where 𝑅𝑢,𝑖 = 1 if user 𝑢 has interacted with item

𝑖 , or 𝑅𝑢,𝑖 = 0 otherwise. For a graph based recommender model,

the historical interactions are represented by a user-item bipartite

graph G = (V, E), whereV = U∪I and there is an edge 𝑒𝑢,𝑖 ∈ E
between 𝑢 and 𝑖 if 𝑅𝑢,𝑖 = 1.

Learning from the user-item bipartite graph G, a recommender

system aims to recommend top 𝑘 interested items {𝑖1, 𝑖2, ..., 𝑖𝑘 } for
each user𝑢. The diversified recommendation task requires the top 𝑘

recommended items to be dissimilar to each other. The dissimilarity

(or diversity) of a recommended list is usually measured by the

coverage of recommended categories | ∪𝑖∈{𝑖1,...,𝑖𝑘 } 𝐶 (𝑖) | [28, 49].

2.2 Graph Neural Network

A Graph Neural Network is a deep learning model that operates on

graph structures, and it has achieved great success in the applica-

tion of many real-world tasks with graph-structured data, including

social networks [24, 44], email networks [21] and user-item interac-

tion graphs in recommender systems [42]. A GNN model learns the

representations of node embeddings by aggregating information

from their neighbors, so that connected nodes in the graph struc-

ture tend to have similar embeddings. The operation of a general

GNN computation can be expressed as follows:

e
(𝑙+1)
𝑢 = e

(𝑙)
𝑢 ⊕ AGG(𝑙+1) ({e(𝑙)𝑖 | 𝑖 ∈ N𝑢 }), (1)
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where e
(𝑙)
𝑢 indicates node 𝑢’s embedding on the 𝑙-th layer, N𝑢 is

the neighbor set of node 𝑢, AGG(𝑙) (·) is a function that aggregates

neighbors’ embeddings into a single vector for layer 𝑙 , and ⊕ com-

bines 𝑢’s embedding with its neighbor’s information. AGG(·) and
⊕ can be simple or complicated functions.

2.3 Submodular Function

A submodular function is a set function defined on a ground set 𝑉

of elements: 𝑓 : 2𝑉 → R. The key defining property of submodular

functions is the diminishing-returns property, i.e.,

𝑓 (𝑣 |𝐴) ≥ 𝑓 (𝑣 |𝐵) ∀𝐴 ⊂ 𝐵 ⊂ 𝑉 , 𝑣 ∈ 𝑉 and 𝑣 ∉ 𝐵. (2)

Here we use a shorthand notation 𝑓 (𝑣 |𝐴) := 𝑓 ({𝑣} ∪𝐴) − 𝑓 (𝐴) to
represent the gain of an element 𝑣 conditioned on the set 𝐴. The

diminishing-returns property naturally describes the diversity of

a set of elements, and submodular functions have been applied to

various diversity-related machine learning tasks with great success

in practice, such as text summarization, sensor placement, and train-

ing data selection [15, 47]. Submodular functions are also applied

as a re-ranking method to diversify recommendations, which is or-

thogonal to the relevance prediction model. Submodular functions

also exhibit nice theoretical properties to be solved with strong

approximation guarantees using efficient algorithms [27].

3 METHOD

In this section, we first present the backbone GNN-based recom-

mender system of DGRec, and then illustrate the three modules to

obtain diversified recommendations during the embedding gener-

ation procedures. The framework of DGRec is shown in Figure 2.

More specifically, it consists of the following components: Submod-

ular neighbor selection, Layer attention and Loss reweighting.

3.1 Overall Training Framework

Based on the user-item bipartite graph G, a GNN-based recom-

mender system generates user/item embeddings by graph neural

networks to predict user’s preference.

3.1.1 Embedding Layer. Similar to the learning representation of

words and phrases, the embedding technique is also widely used

in recommender systems [14, 29]: an embedding layer is a look-up

table that maps the user/item ID to a dense vector:

E(0) =
(

e
(0)
1 , e

(0)
2 , . . . , e

(0)
|U |+|I |

)

, (3)

where e(0) ∈ R𝑑 is the 𝑑-dimensional dense vector for user/item.

An embedding indexed from the embedding table is then fed into a

GNN for information aggregation. Thus it is noted as the "zero"-th

layer output e
(0)
𝑖 .

3.1.2 Light Graph Convolution. We utilize the light graph convolu-

tion [14] (LGC) as the backbone GNN layer. It abandons the feature

transformation and nonlinear activation, and directly aggregates

neighbors’ embeddings, and is defined as:

e
(𝑙+1)
𝑢 =

∑︁

𝑖∈N𝑢

1
√︁

|N𝑢 |
√︁

|N𝑖 |
e
(𝑙)
𝑖 ,

e
(𝑙+1)
𝑖 =

∑︁

𝑢∈N𝑖

1
√︁

|N𝑖 |
√︁

|N𝑢 |
e
(𝑙)
𝑢 ,

(4)

where e
(𝑙)
𝑢 and e

(𝑙)
𝑖 are user 𝑢’s and item 𝑖’s embedding at the 𝑙-th

layer, respectively. 1√
|N𝑢 |
√
|N𝑖 |

is the normalization term following

GCN [18]. N𝑢 is 𝑢’s neighborhood that selected by submodular

function as illustrated in Section 3.2. Each LGC layer would gen-

erate one embedding vector for each user/item node. Embedding

generated from different layers are from the different receptive field.

The final user/item representation is obtained by layer attention

illustrated in Section 3.3:

e𝑢 = Layer_Attention
(

e
(0)
𝑢 , e

(1)
𝑢 , . . . , e

(layer num)
𝑢

)

,

e𝑖 = Layer_Attention
(

e
(0)
𝑖 , e

(1)
𝑖 , . . . , e

(layer num)
𝑖

)

.
(5)

3.1.3 Model Optimization. After we obtain e𝑢 and e𝑖 , the score

of 𝑢 and 𝑖 pair is calculated by dot product of the two vectors. For

each positive pair (𝑢, 𝑖), a negative item 𝑗 is randomly sampled

to compute the Bayesian personalized ranking (BPR) [29] loss. To

increase recommendation diversity, we propose to reweight the

loss to focus more on the long-tail categories:

L =

∑︁

(𝑢,𝑖) ∈E
𝑤𝐶 (𝑖)L𝑏𝑝𝑟 (𝑢, 𝑖, 𝑗) + 𝜆∥Θ∥22, (6)

where 𝑤𝐶 (𝑖) is the weight for each sample based on its category,

which is illustrated in Section 3.4. 𝜆 is the regularization factor. 𝑗 is

a randomly sampled negative item.

3.2 Submodular Neighbor Selection

In GNN-based recommender systems, user/item embedding is ob-

tained by aggregating information from all neighbors. Popular items

would overwhelm the long-tail items. In Figure 2(a), the user’s em-

bedding would be much more similar to books if we aggregate

all the neighbors. At the same time, the necklace information is

overwhelmed in the user’s representation. The submodular neigh-

bor selection module aims to select a set of diverse neighbors for

aggregation. In our setting of GNN neighbor selection, the ground

set for a user node 𝑢 consists of all of its neighbors N𝑢 . Facility
location function [8] is a widely used submodular function that

evaluates the diversity of a subset of items by first identifying the

most similar item in the selected subset S𝑢 to every item 𝑖 in the

ground set (max𝑖′∈S𝑢 sim(𝑖, 𝑖 ′) ∀𝑖 ∈ N𝑢\S𝑢 ) and then summing

over the similarity values. Intuitively, a subset with a high function

value indicates that for every item in the ground set, there exists a

similar item in the selected subset, or in other words, the selected

subset is very diverse and representative of the ground set. The

facility location function is formally defined as follows:

𝑓 (S𝑢 ) =
∑︁

𝑖∈N𝑢\S𝑢
max
𝑖′∈S𝑢

sim(𝑖, 𝑖 ′), (7)

where S𝑢 is the selected neighbor subset of user 𝑢, and sim(𝑖, 𝑖 ′)
is the similarity of 𝑖 and 𝑖 ′, which is measured by Gaussian kernel

parameterized by a kernel width 𝜎2:

sim(𝑖, 𝑖 ′) = exp

(

− ||e𝑖 − e𝑖
′ | |2

𝜎2

)

. (8)

S𝑢 is constrained to having no greater than 𝑘 items for some con-

stant 𝑘 , i.e., |S𝑢 | ≤ 𝑘 . Maximizing the submodular function (7)

under cardinality constraint is NP-hard, but it can be approximately

solved with 1−𝑒−1 bound by the greedy algorithm [27]. The greedy
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(a) Submodular Neighbor Selection (b) Layer Attention

Attention

(c) Loss Reweight

Figure 2: The framework of DGRec. (a) Submodular neighbor selection module (Section 3.2) finds a diversified subset of

neighbors on the embedding space for aggregation. (b) Layer attention module (Section 3.3) alleviates the over-smoothing

problem from high-order connections. (c) Loss reweighting module (Section 3.4) adjusts weight for each sample to focus on the

training of long-tail categories.

algorithm starts with an empty set S𝑢 := ∅, and adds one item

𝑖 ∈ I\S𝑢 with the largest marginal gain to S𝑢 every step:

S𝑢 ← S𝑢 ∪ 𝑖∗,
𝑖∗ = argmax

𝑖∈N𝑢\S𝑢
[𝑓 (S𝑢 ∪ 𝑖) − 𝑓 (S𝑢 )] . (9)

After 𝑘 steps of greedy neighbor selection, we can obtain the diver-

sified neighborhood subset of each user. The subset is then used

for aggregation. We also note that our framework works for any

choice of a submodular function. We choose the facility location

function as it is generally applicable to numerical features (with cer-

tain similarity metric). We also discuss other choices of submodular

functions in the empirical studies.

3.3 Layer Attention

Different GNN layers generate embeddings based on information

from different subsets of nodes: the 𝑙-th layer would aggregate from

the 𝑙-th hop neighbors. We can reach a diversified embedding by

aggregating from the high-order neighbors. However, the direct

stack of several GNN layers would cause the over-smoothing prob-

lem [22]. As shown in Figure 2(b), layer attention is designed in

DGRec to increase diversity by high-order neighbors and mitigate

the over-smoothing problem at the same time.

For each user/item, we have 𝐿 embeddings generated by 𝐿 GNN

layers. Layer attention aims to get the final representation by learn-

ing a Readout function on [e(0) , e(1) , . . . , e(𝐿) ] by attention [23]:

e = Readout( [e(0) , e(1) , . . . , e(𝐿) ]) =
𝐿
∑︁

𝑙=0

𝑎 (𝑙)e(𝑙) , (10)

where 𝑎 (𝑙) is the attention weight for 𝑙-th layer. It is calculated as:

𝑎 (𝑙) =
exp(⟨WAtt, e

(𝑙) ⟩)
∑L
𝑙 ′=0 exp(⟨WAtt, e

(𝑙 ′) ⟩)
. (11)

HereWAtt ∈ R𝑑 is the parameter for attention computation. The

attention mechanism can learn different weights for GNN layers

to optimize the loss function. It can effectively alleviate the over-

smoothing problem [23].

3.4 Loss Reweighting

As shown in Figure 1, the number of items within each category

is highly imbalanced and follows the power-law distribution. A

small number of categories contains the most items while leaving

the large majority of categories with only a limited number of

items. Training the model by directly optimizing the mean loss

over all samples would leave the training of long-tail categories

imperceptible. In DGRec, we propose to reweight the sample loss

during training based on its category. As shown in Figure 2(c),

DGRec would decrease the weight relatively if the item belongs to

popular categories, and increase the weight relatively if it belongs

to long-tail categories.

In practice, we borrow the idea of class-balanced loss [9] to

reweight the sample (𝑢, 𝑖) based on the category effective number

of items. The weights𝑤𝐶 (𝑖) in Equation 6 are calculated by:

𝑤𝐶 (𝑖) =
1 − 𝛽

1 − 𝛽 |𝐶 (𝑖) |
, (12)

where 𝛽 is the hyper-parameter that decides the weight. A larger 𝛽

would further decrease the weight of popular categories.

4 EXPERIMENT

In this section,We conduct extensive experiments on two real-world

datasets to answer the following research questions (RQs):

• RQ1: Does DGRec outperform existing methods in the di-

versified recommendation?

• RQ2: How do the hyper-parameters influence DGRec, and

how can we trade off accuracy and diversity in DGRec?

• RQ3: Are the three components inDGRec necessary to boost

diversification?

• RQ4: What is the influence of different submodular func-

tions?

4.1 Experimental Setup

4.1.1 Datasets. To evaluate the effectiveness of DGRec, we con-

duct experiments on two real-world datasets with category infor-

mation. The statistics of the two datasets are shown in Table 1.

• TaoBao [49]: This dataset contains users’ behavior on TaoBao

platform, which was provided by Alimama1. This dataset

1https://github.com/tsinghua-fib-lab/DGCN/tree/main/data
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Table 1: Statistics of the Datasets

Dataset TaoBao Beauty

Users 82,633 8,159

Items 136,710 5,862

Interactions 4,230,631 98,566

Categories 3,108 41

Average Category Size 43.986 139.595

contains users’ multiple kinds of behaviors, including click-

ing, purchasing, adding items to carts, and item favoring. All

those behaviors are treated as positive samples. To ensure

the quality of the dataset, the 10-core setting is adopted, i.e.,

only users/items with at least 10 interactions are retained.

• Beauty [20]: This dataset contains product review infor-

mation and metadata from Amazon2. Following the setting

in [20], the 5-core version is adopted to ensure data quality.

For both datasets, we randomly split out 60% for training, 20% for

validation, and 20% for testing. Validation sets are used for hyper-

parameter tuning and early stopping. We report results on the test

set as the final results.

4.1.2 Baselines. To empirically evaluate and studyDGRec, we com-

pare our model with representative recommender system baselines.

Note that DGRec is compatible with the re-ranking-based methods

such as DPP [5], MMR [4], DUM [2] and Diversified PMF [31]. Thus

we do not compare those methods in the experiments. Selected

baselines are shown as follows:

• Popularity: It is a non-personalized recommendationmethod

that only recommends popular items to users.

• MF-BPR [29]: It factorizes the interaction matrix into user

and item latent factors.

• GCN [18]: It is one of the most widely used graph neural

networks.

• LightGCN [14]: It is the state-of-the-art recommender sys-

tem. LightGCN is a GCN-based model but removes the trans-

formation matrix, non-linear activation, and self-loop.

• DGCN [49]: It is the current state-of-the-art diversified rec-

ommender system based on GNN.

4.1.3 Evaluation Metrics. Following previous works [5, 7, 49], we

use two different kinds of metrics to evaluate the accuracy and

diversity respectively. We aim to get a diversified item set during

the retrieval stage, so Recall and Hit Ratio (HR) are used to measure

the accuracy. Coverage is used to measure diversity, which counts

the number of covered categories of recommended items. To save

space, we only report Top-100 and Top-300 retrieval results. We

can reach the same conclusion for other top-N retrievals.

4.1.4 Parameter Setting. In experiments, we tune all the base-

lines using the validation set and report the results on the test

set. Adam [17] is used as the optimizer. Following the setting of

DGCN, we fix the embedding size to be 32 and randomly sample 4

negative items for each positive user-item pair for a fair comparison.

Other hyper-parameters are tuned by grid search. Early stopping

2http://jmcauley.ucsd.edu/data/amazon/links.html
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Figure 3: Accuracy-Diversity trade-off comparison on TaoBao

dataset. The upper-right model is enlarged.

is utilized to alleviate the over-fitting problem. We stop training if

the performance on validation set does not improve in 10 epochs.

4.2 Performance Evaluation (RQ1)

We report the experiment results in Table 2 (TaoBao dataset) and

Table 3 (Beauty dataset). We have the following observations:

• DGRec generally achieves the best on Coverage@100 and

Coverage@300 except being second to Popularity in terms

of Coverage@300 on the Beauty dataset. Considering Cover-

age@300 on the Beauty dataset, DGRec is just slightly lower

than Popularity. It shows that DGRec can achieve the most

diversified recommendation results.

• Though LightGCN always achieves the best Recall and Hit

Ratio, its Coverage is always the lowest. It shows that Light-

GCN can not achieve an accuracy-diversity balance.

• While achieving the best Coverage, DGRec has similar re-

sults with the second best on Recall and Hit Ratio. It shows

DGRec increases the diversity with a small cost on the accu-

racy, which well balances the accuracy-diversity trade-off.

• DGRec surpasses DGCN on all metrics. It shows DGRec sur-

passes the SoTA model, and the design of DGRec is superior

in both accuracy and diversity.

To make a clearer comparison of all methods, we illustrate the

accuracy-diversity trade-off in Figure 3. Accuracy and diversity are

measured by Recall@300 and Coverage@300, respectively. We can

clearly observe that DGRec stands in the most upper-right position,

which shows DGRec achieves the best trade-off. Compared with

DGRec, all other models with similar accuracy (GCN,MF-BPR) have

an obvious drop in diversity. Compared with LightGCN, DGRec

greatly increases diversity with a small sacrifice on accuracy.

4.3 Parameter Sensitivity (RQ2)

In this section, we study the influence of different hyper-parameters

on DGRec, and how to trade-off between accuracy/diversity.

4.3.1 Layer Number. The layer number is an influential hyper-

parameter in the GNN-based recommender system, which indicates
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Table 2: Overall comparison on TaoBao dataset, the best and second-best results are in bold and underlined, respectively.

Method
TaoBao

Recall@100 Recall@300 HR@100 HR@300 Coverage@100 Coverage@300

Popularity 0.0186 0.0357 0.1496 0.2562 38.2449 75.9837

MF-BPR [29] 0.0487 0.0971 0.3103 0.4889 34.0812 71.8802

GCN [18] 0.0446 0.0923 0.2840 0.4634 37.2577 79.2985

LightGCN [14] 0.0528 0.1063 0.3261 0.5097 32.7069 69.3502

DGCN [49] 0.0394 0.0831 0.2634 0.4369 38.1183 84.4989

DGRec 0.0472 0.0951 0.3026 0.4817 39.0597 89.1684

Table 3: Overall comparison on Beauty dataset, the best and second-best results are in bold and underlined, respectively.

Method
Beauty

Recall@100 Recall@300 HR@100 HR@300 Coverage@100 Coverage@300

Popularity 0.1012 0.2096 0.1833 0.3124 16.0213 27.9336

MF-BPR [29] 0.2310 0.3863 0.3404 0.4966 15.8728 25.6659

GCN [18] 0.2388 0.3897 0.3423 0.3897 16.5311 25.5634

LightGCN [14] 0.2517 0.4205 0.3688 0.5318 15.0203 23.9421

DGCN [49] 0.2395 0.3790 0.3418 0.4792 18.2876 26.9694

DGRec 0.2399 0.3915 0.3420 0.5021 19.0557 27.5704

the number of GNN layers stacked to generate the user/item em-

bedding. We compare our proposed layer attention with the mean

aggregation [14] on both accuracy and diversity. Experimental re-

sults are shown in Figure 4. With the mean aggregation, we can see

Recall@300 drops quickly with the increase of layers. It reflects the

well-known over-smoothing problem [22] in GNN. The increase

in Coverage@300 verifies our hypothesis that we can obtain a di-

verse embedding representation by adding more information from

higher-order connections. However, mean aggregation does not

make an effective trade-off between accuracy and diversity. The

sharp drop on Recall@300 makes the increased diversity mean-

ingless. With the proposed layer attention, DGRec does not suffer

from the over-smoothing problem and achieves gradually increased

Recall@300 with the increase of layers. It shows layer attention

can effectively learn different attention weights for each layer to fit

the data. At the same time, DGRec generally achieves a high Cov-

erage@300. It shows the layer attention module can retain a good

performance on diversity with a different number of layers. When

mean aggregation and layer attention achieve similar Recall@300 (2

layers), Coverage@300 of layer attention is much larger than mean

aggregation. The case is similar if we compare Recall@300 when

they achieve similar Coverage@300. It shows layer attention used

in DGRec can achieve a much better accuracy diversity trade-off

than mean aggregation.

4.3.2 Hyper-parameter 𝛽 . This hyper-parameter is introduced in

Section 3.4 to control the weight on loss calculated on each sam-

ple. With a larger 𝛽 , DGRec would concentrate more on the items

that belong to long-tail categories. The accuracy-diversity trade-off

diagram is shown in Figure 5. With the increase of 𝛽 , accuracy grad-

ually drops, and diversity increases. It indicates focusing on the

training of long-tail categories can greatly increase diversity. We
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Figure 4: Layer combination experiments on TaoBao dataset.

Mean combines embedding learned from different layers by

mean average. Layer attention combines these embeddings

by the attention module illustrated in Section 3.3.

can also observe that the accuracy drops slowly with the increase in

diversity. When 𝛽 = 0.95,DGRec achieves a Coverage@300 of more

than 105 and Recall@300 of more than 0.086. Experimental results

show that by focusing on the training of items belonging to the

long-tail categories, 𝛽 can be used effectively to balance between

diversity and accuracy.

4.3.3 Hyper-parameter 𝜎 and 𝑘 . 𝜎 and 𝑘 are introduced in Sec-

tion 3.2. 𝑘 is the budget for neighbor selection, and 𝜎 is used to

compute the pair-wise similarity of neighbors. Experimental results

are shown in Figure 6.

We can observe that DGRec is not that sensitive to 𝜎 . DGRec has

a stable good performance on both Recall@300 and Coverage@300

with 𝜎 varies from 0.01 to 100. With different 𝜎 , we can also see

the trade-off between accuracy/diversity. When Coverage@300

achieves the best at 10, Recall@300 is the worst.

𝑘 is the number of neighbors for GNN aggregation. Neighbors

are selected by submodular function to maximize diversity. As we
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Figure 5: Accuracy-diversity trade-off by loss reweighting.
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Figure 6: Parameter sensitivity of 𝜎 and 𝑘 . 𝜎 controls the simi-

larity computation and𝑘 is the number of selected neighbors.

can see from Figure 6, Recall@300 gradually decreases, and Cov-

erage@300 increases with the increase of 𝑘 . Submodular neighbor

selection selects a diversified subset of neighbors. With a larger

set, DGRec can aggregate from more diversified neighbors, which

would lead to an increase in diversity. At the same time, accuracy

would drop as a trade-off. We can also observe that Recall@300

does not drop much with the increase in diversity.

Experiments on 𝜎 and 𝑘 show DGRec is not sensitive to the sub-

modular selection module, and DGRec would not have a dramatic

change because of this module. Meanwhile, this module can also

balance accuracy and diversity by 𝜎 and 𝑘 .

4.4 Ablation Study (RQ3)

In this section, we perform an ablation study on the TaoBao dataset

by removing each of the three modules. Experiment results are

shown in Table 4. We can have the following observations:

• The intactDGRec achieves the best C@300. The combination

of proposed modules can effectively increase diversity.

• When we remove the submodular neighbor selection mod-

ule, C@300 drops from 89.1684 to 84.9129 while there is

Table 4: Ablation study on TaoBao dataset. We show DGRec’

performance when removing each of the modules.

Method R@300 HR@300 C@300

DGRec 0.0951 0.4817 89.1684

w/o Submodular selection 0.0982 0.4869 84.9129

w/o Layer attention 0.1009 0.4976 82.9553

w/o Loss reweighting 0.0886 0.4612 79.3286

only a tiny difference on Recall@300 and HR@300. It shows

the submodular neighbor selection module can increase the

diversity with minimal cost on accuracy.

• When we remove the layer attention module, C@300 de-

creases with the increase on R@300 andHR@300. It indicates

layer attention balances accuracy and diversity.

• Whenwe remove the loss reweightingmodule, R@300, HR@300,

and C@300 all drop greatly. The loss reweighting module

has the largest impact on DGRec because it not only bal-

ances the training on long-tail categories but also guides the

learning of layer attention.

4.5 Choice of Submodular Functions (RQ4)

In this section, we compare the influence of different submodu-

lar functions on model performance. We use two commonly used

submodular functions to replace the facility location function. Ex-

perimental results are shown in Figure 7. Model A utilizes bucket

coverage submodular function [39]. Before selection, it clusters

on each dimension and divides each dimension into buckets. The

submodular function counts the gain on covered buckets. Model B

utilizes category coverage submodular function [39]. This function

counts the gain on covered categories. Model C is DGRec, which

utilizes the facility location function. Among the three models,

model A and model C do not need item category information. They

directly select neighbors based on neighbor embedding. Model B

needs item category information to be able to compute category

coverage gain during each selection.

From Figure 7, we observe that compared with the other two

models, model A has much higher performance on Recall@300 and

much lower performance on Coverage@300. It shows the selection

of submodular functions has an influential impact on performance.

Model B and model C achieve similar results with respect to Re-

call@300 and Coverage@300. It indicates the embedding learned

by model C can accurately capture the category information, and

the facility location function enlarges the category coverage dur-

ing neighbor selection. We select the facility location function in

DGRec for two reasons. Firstly, it can nearly achieve the best di-

versity compared with other methods. Secondly, it does not need

category information during aggregation, which can enlarge the

application scenarios when the category information is unobserved.

5 RELATEDWORK

In this section, we introduce the related work of DGRec, which

includes Graph Neural Network based recommender system and

diversified recommendation.
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Figure 7: The influence of different submodular functions.

A: bucket coverage function, B: category coverage function,

and C: facility location function.

5.1 Graph Neural Network based Recommender
System

With GNN showing excellent performance on graph-structured

data, GNN-based recommender systems [34] are attracting more

and more attention. These methods represent the user’s historical

interactions as a user-item bipartite graph with easy access to high-

order connectivity. GCMC [3] utilizes encoder-decoder structure

on graph to complete interaction matrix. SpectralCF [48] is the first

to study the spectral domain of the user-item bipartite graph. It pro-

poses spectral convolution operation to find the latent interactions,

and greatly increase the recommendation performance on cold-start

items. PinSAGE [46] designs a special random walk to accelerate

the learning on the large-scale bipartite graph, which is applied

on the Pinterest platform. NGCF [37] directly aggregates informa-

tion from neighbors in the bipartite graph, and explicitly injects

the collaborative signal in the learned embedding. LightGCN [14]

simplifies NGCF by removing the overhead computation of linear

transformation and non-linear activation. The simplified operation

not only achieves better performance but also reduces the train-

ing time. UltraGCN [25] takes a further step in simplifying graph

convolutional network. It skips the finite layers of aggregation, and

directly computes the infinite convolution stage as a constraint

during training. MetaKRec [43] reconstructs the knowledge graph

as edges between items before graph convolution.

Previous GNN-based recommender systems nearly all focus on

increasing accuracy while leading to poor diversity. DGRec is also

built upon Graph Neural Network. The proposed three modules

can be added to previous GNN-based recommender systems and

make up for their diversity shortcomings.

5.2 Diversified Recommendation

Diversified recommendation aims to recommend users with a diver-

sified subset of items to help users find unexplored interests. Diver-

sified recommendation is first proposed by Ziegler et al. [51]. They

use a greedy method to select items during the retrieval procedure.

Zhou et al. [50] points out the accuracy/diversity dilemma, and pro-

pose HeatS/ProbS methods to choose the information propagation

probability for each edge in the user/item bipartite graph. Cheng

et al. [7] introduced a new pairwise accuracy metric and a normal-

ized topic coverage diversity metric to measure the performance of

accuracy and diversity. Then several re-ranking-based methods are

proposed to diversify recommendation lists after the retrieval pro-

cedure. DUM [2] uses the submodular function to greedy guide the

selection of item selection in the re-ranking procedure to maximize

the item’s utility. Diversified PMF [31] computes 𝑙2 loss between

items as diversity. Determinantal point process (DPP) [5] re-ranks

items to achieve the largest determinant on the item’s similarity

matrix. Antikacioglu and Ravi [1] formulate a recommender sys-

tem as a subgraph selection problem from diversified super graphs,

and they use minimum-cost network flow methods to achieve a

fast algorithm in diversification. Teo et al. [33] assign global/local

diversification weights in the training of recommender systems.

CB2CF [16] designs sliding spectrum decomposition to capture

user’s diversity perception over long item lists. Through online

testing, CB2CF shows diversification can increase the number of

engagements and time spent on the Xiaohongshu platform. DD-

Graph [45] selects implicit edges by quantile progressive candi-

date selection and re-constructs the user-item bipartite graph to

increase diversity. DGCN [49] is the first GNN-based diversified

recommendation method. It selects node neighbors based on the

inverse category frequency for diverse aggregation and further uti-

lizes category-boosted negative sampling and adversarial learning

to diverse items in the embedding space.

DGRec focuses on diversifying the GNN-based recommender

system in the retrieval stage. Among the previous methods, the

re-ranking-based methods such as DPP and DUM are compatible

with our method. DGCN is the most similar work with DGRec. We

both focus on how to increase diversity on GNN-based methods.

6 CONCLUSIONS

In this paper, we target diversifying GNN-based recommender sys-

tems with diversified embedding generation. We design three mod-

ules that can be easily applied to GNN-based recommender systems

to achieve diversification with minimal cost on accuracy. Based on

the three modules, we propose DGRec. When considering diver-

sity, it surpasses the state-of-the-art diversified recommender sys-

tem. It also achieves comparable accuracy with the most advanced

accuracy-based recommender system. DGRec enables the trade-off

between accuracy and diversity by several hyper-parameters. Ex-

tensive experiments on real-world datasets illustrate the influence

of different modules.
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