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Abstract
Security analyses for consensus protocols in blockchain research have primarily focused on the

synchronous model, where point-to-point communication delays are upper bounded by a known finite
constant. These models are unrealistic in noisy settings, where messages may be lost (i.e. incur
infinite delay). In this work, we study the impact of message losses on the security of the proof-of-work
longest-chain protocol. We introduce a new communication model to capture the impact of message
loss called the 0-∞ model, and derive a region of tolerable adversarial power under which the consensus
protocol is secure. The guarantees are derived as a simple bound for the probability that a transaction
violates desired security properties. Specifically, we show that this violation probability decays almost
exponentially in the security parameter. Our approach involves constructing combinatorial objects
from blocktrees, and identifying random variables associated with them that are amenable to analysis.
This approach improves existing bounds and extends the known regime for tolerable adversarial
threshold in settings where messages may be lost.

1 Introduction
Blockchain is the data structure used by peers (miners) in a peer-to-peer network to maintain a common
ledger in a decentralized manner. The consistency of this ledger is ensured through consensus protocols
such as the longest-chain protocol. Following this protocol, an honest miner groups transactions into a
block and appends its block to the longest chain in its view, before broadcasting the new blockchain to
all other peers. Further, the system may have adversarial users that deviate from the protocol arbitrarily.
Despite adversarial users attempting to disrupt the system and peer-to-peer communication incurring
message delays, the parties following the protocol must agree on a consistent ledger.

Blockchain security has been studied under various consensus protocols (see [BSAB+19,GK20] for a
survey). Of these, the longest-chain protocol is of great interest, due its heavy use in modern blockchain
implementations. The longest-chain protocol has been modeled under various assumptions: for exam-
ple, discrete time is used in [GKR20, BKM+20], and continuous time dynamics is used in [LGR21,
Ren19,DKT+20]. Further, the protocol has also been studied for a variety of leader election mechanisms
in the consensus protocol. For instance, [PSS17, Ren19, GKL20] assume the proof-of-work mechanism,
whereas [PS17,KRDO17, FZ17] assume a proof-of-stake mechanism. All these works establish security
of the longest-chain protocol for the synchronous communication model, where communication delays
are upper bounded by a known finite constant. A common theme among these results is that in the
synchronous delay model, the longest-chain protocol is ‘secure’ under sufficient honest representation,
with high probability.

In this work, we analyze the impact of message losses on the security of the longest-chain protocol
following proof-of-work leader election, by introducing and analyzing an appropriate communication
network model. We motivate this by reviewing some existing communication models in the literature
and the known security guarantees associated with them.

1.1 Related Work
The underlying communication network can delay the successful delivery of peer-to-peer message broad-
casts. Popular blockchains such as Bitcoin use the Internet as their communication network. Since this
communication is subject to delay, it is natural to model the delays incurred by each block, and study
the impact of delay on the security of the longest-chain protocol.

Let 0 ≤ i < j. Let bi represent the i-th mined honest block. Let delay (bi → bj) denote the time taken
for block bi to reach the miner of block bj , and let β represent the fraction of adversarial computational
power in the system. Finally, let λ be the rate at which blocks are mined in the system. Various
descriptions of delay (bi → bj) lead to different communication network models:
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Instantaneous Model The original white-paper by Satoshi Nakamoto [Nak08] assumes an ideal com-
munication channel, i.e. delay (bi → bj) = 0. In this model, the longest-chain protocol is provably secure
when the honest computational power in the system exceeds the adversarial computational power, i.e.
when β < 1− β, or equivalently, when β < 1/2.

Synchronous Model The model assumes a deterministic delay for each block that is upper bounded
by a known constant ∆, i.e., delay (bi → bj) ≤ ∆ <∞. This delay effectively reduces the growth rate of
the chain held by an honest user. Even so, it has been proved [DKT+20,GKR20] that the synchronous
model is secure with high probability if and only if

β <
1

1 + (1− β)λ∆
(1− β) ,

where λ is the total mining rate of the honest users.

Partially Synchronous Model The partially synchronous model assumes the existence of some
unknown and adversarially chosen ‘Global Stabilization Time (GST)’ such that the delays are un-
bounded before GST, but bounded after it [DLS88]. Therefore, at any time t, the delay satisfies
delay (bi → bj) ≤ ∆+max (0,GST− t). If certain conditions are met, the partially synchronous model is
known to be secure with high probability after the Global Stabilization Time [NTT21].

Sleepy Model The sleepy model considers the setting where miners may either be online or offline,
and their participation status may change during the execution of the protocol [PS17]. Let hi denote the
miner of block bi. The incurred delay is thus

delay (bi → bj) =

{︄
0 hj is awake when bi is mined
∞ hj is asleep when bi is mined

.

Pass and Shi [PS17] showed that consensus can be achieved in the sleepy model with high probability, if
a majority of the awake miners at any point in time are honest.

Random Delay Model The random delay model assumes that the point-to-point delays are inde-
pendent and identically distributed, i.e. delay (bi → bj) ∼ X, where X is some known distribution. The
longest-chain protocol is shown to be secure with high probability in the random delay model, if the
delay distribution satisfies certain conditions and the adversarial representation in the system is below a
certain threshold [SGH21].

Except for the random delay model, none of the above models account for the possibility that point-
to-point communication may incur infinite delay, i.e. messages may be lost at random. For instance,
the sleepy model allows infinite delay for users that are offline, but does not account for noise in the
communication process. In contrast, we introduce and analyze a new communication model to study the
impact of lost messages on blockchain security.

1.2 Contributions
0-∞Model We introduce the 0-∞ model, where the delays are independent and identically distributed
over the set {0,∞}. Specifically, for any i, j ≥ 0 such that i < j:

delay (bi → bj) =

{︄
0 with probability 1− d

∞ with probability d
.

This simple model postulates that a message sent point-to-point is either immediately received or per-
manently lost. This delay is independent for each user, and for each block. The modeling choice aligns
with our objective of studying the effect of message losses.

We remark that the 0-∞ model is a special case of the i.i.d. random delay model introduced
in [SGH21], which identifies a region of tolerable adversarial power as a function of the delay distri-
bution. Specifically, if d is the probability of message loss and β is the fraction of computational power
in the system that is adversarial, it is shown that the 0-∞ model is secure with high probability when
β < 1−2d

2(1−d) . However, this characterization is not tight for the 0-∞ model, and the analysis in [SGH21]
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Figure 1: Improvement in the region of tolerable adversarial power

breaks down in the high-noise regime. For example, security of the model cannot be established when
d > 1/2, i.e. more than half the messages are lost on average.

It is reasonable to wonder if adversarial computational power can at all be tolerated in the high-noise
regime, for instance, when almost all messages are lost. Our work answers this question in the affirmative,
by expanding the known security threshold for the 0-∞ model. In particular, our sufficient condition for
security is β

1−β < 1− d. Figure 1 shows this improvement.
Our method of analysis is significantly different from that in [SGH21]: we introduce a transmission-

graph that captures the history of communication delays between blocks, and identify special paths in
the graph that are linked to random variables which are amenable to analysis. Specifically, we identify
special objects such as forward-special and backward-special blocks, and associate with them random
variables such as forward-unheard and backward-unheard. Our technique also presents a new approach
to infer the inclusion of special blocks in the chain held by an honest user through the concept of user-
unheard-criterion. The method of analysis is inspired from [DKT+20], where security of the synchronous
model is established by considering races between honest and adversarial chains. However, our approach
does not rely on message delays being finite, and we hope that the tools we introduce are of utility in the
study of consensus mechanisms in more general settings, as well as of independent mathematical interest.
Our contributions are summarized as:

• We introduce the 0-∞ model as a playground for studying the impact of message losses. This model
provides a starting step for more complex models involving message losses.

• We introduce combinatorial objects of independent interest such as the transmission-graph. We
also identify random variables (forward-unheard, backward-unheard) associated with this graph
that are amenable to analysis, and introduce the user-unheard-criterion. These concepts may be
utilized in security analysis of blockchain protocols in more general settings.

• We prove that the longest-chain protocol is secure in the 0-∞ model if certain conditions are
met. These conditions are fairly general, and considerably extend the known threshold of tolerable
adversarial power. In this regime, we show that the probability of security violation decays almost
exponentially in the security parameter.

2 System Model
In this section, we describe our system model. We consider the setting where infinitely many miners
participate in the longest-chain protocol for an infinite duration, and use proof-of-work as the leader
election mechanism.

Ledgers, Transactions, Miners, and Blocks Blockchain is the data structure at the heart of the
decentralized mechanism to maintain and update a ledger. The ledger is simply an ordered list of
transactions. Transactions are assumed to be available to all the miners as soon as they are made.
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Miners verify the validity of transactions, and update the ledger by grouping the transactions into blocks
and linking blocks to form a blockchain. A block is an abstract data structure that contains a hash pointer
to a parent block, a cryptographic signature of the block’s miner, transactions, and other metadata. The
first block in the system is called the genesis block.

Longest-Chain Protocol and Proof-of-Work Miners follow the proof-of-work longest-chain proto-
col for consensus. Following this protocol, a miner groups any and all transactions that are not included
in this longest chain into a block, and attempts to append the block to the longest chain in its view. To
do so, it must solve a hash puzzle and include the solution as proof-of-work. If the miner is successful, it
broadcasts its chain as a message to other miners over a peer-to-peer network, subject to a communica-
tion delay. Upon receiving this message, an honest miner adopts the new chain if the received chain is
longer than the chain in the miner’s memory. Ties are broken using any deterministic rule, for example,
by choosing the chain that terminates in the block that hashes to a lower value. The process continues
indefinitely. We assume there are infinitely many miners, and at any finite time, a miner who successfully
solves the hash puzzle is doing so for the first time almost surely.

Parties in the Protocol We refer to parties in the protocol as users. Users that contribute to modi-
fying the ledger through appending blocks to the blockchain are called miners. A miner is either honest
or corrupt. Honest miners follow the longest-chain protocol, whereas corrupt miners may deviate from
the protocol. For simplicity, all corrupt users are grouped into a single entity called the adversary. This
allows corrupt miners to communicate instantaneously, and captures the strong setting of perfect coor-
dination between corrupt miners. The adversary can mine on any previously mined block, but its block
must contain the proof-of-work to be valid. It can reveal its chain to any subset of honest users, and
can delay its message by arbitrary amounts of time. It can also not include all the transactions it knows
about that were not in ancestor blocks. We use β to represent the fraction of computational power in
the system that is adversarial.

Mining Process The mining process is abstracted as follows. Let λ denote the total mining rate of
the system. We consider a continuous time model where blocks are mined as a Poisson process with rate
λ. Since β denotes the fraction of power that is adversarial and since successive mining instances are
independent, adversarial block arrivals follow a Poisson process with rate βλ.

Blockchains and Blocktrees From any block, a unique sequence of blocks leading back to the genesis
block can be identified via the hash pointers. We call this sequence a blockchain, or simply a chain. The
convention is that the genesis block is the first block of a chain, and the terminating block is called the
tip. At any given slot, honest users store a single chain in their memory.

Communication Delays We consider the setting where messages are either instantaneously delivered
or permanently lost in an independent and identically distributed manner. Let delay (bi → bj) denote the
delay incurred by block bi to reach the miner of block bj . It is assumed that:

delay (bi → bj) =

{︄
0, with probability 1− d

∞, with probability d
.

Here, d is the probability of message loss in an instance of point-to-point communication.

3 Main Result
In this section, we outline the desired security properties and present our main result. We define security
on the level of transactions. It is desirable that a transaction eventually makes it to the ledger, and stays
permanently at the same position in the ledger. This notion is formalized in Definition 3.1.

Definition 3.1 (Security). Let τ > 0. Let H be any set of honest users. For any h ∈ H, let Ch(t) denote
the chain held by user h at time t. We say that a transaction tx made at some time s is (τ,H)-secure if
for any h1, h2 ∈ H and any s1, s2 > s + τ , it holds that tx is included in a block b that is at the same
position in Ch1(s1) and Ch2(s2).
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In the literature, security of a transaction is often defined as the confluence of persistence and liveness.
A transaction satisfies liveness if it is eventually added to the ledger, and it satisfies persistence if it
remains in the same position in the ledger for all future time, after a confirmation time. We remark
that our definition of security implies these notions of persistence and liveness, and is consistent with
existing definitions of security, such as in [GKL15, DKT+20]. Specifically, if a transaction tx satisfies
(τ,H)-security, then it is part of the chain held by all users in H before a confirmation time τ time has
elapsed. Furthermore, once this confirmation time elapses, the transaction remains at the same position
in the ledger for all future time. Our main result shows that if certain conditions are satisfied, then any
transaction tx satisfies (τ,H) security except with a probability that decays almost exponentially in the
confirmation time and scales linearly in the size of H. It is stated as Theorem 3.2.

Theorem 3.2 (Main Result). Let β be the fraction of computational power in the system that is adver-
sarial, and d be the probability of message loss. If β

1−β < (1− d), then for every ε > 0, there exist positive
constants a and b such that for all τ ≥ 0 and for any honest transaction tx and any finite set of honest
users H:

P (tx violates (τ,H)-security) ≤ exp
(︁
−aτ1−ε

)︁
+ |H| exp (−bτ) .

The result states that under a certain threshold of tolerable adversarial power, the probability of
security violation for any transaction and any finite set of users decays (almost) exponentially in the
confirmation time. Hence, this violation probability can be made arbitrarily small by appropriately
selecting the confirmation time. The sufficient condition β

1−β < 1 − d significantly improves the known
threshold of tolerable adversarial power for the 0-∞ model (Figure 1). We also remark that our bound
for the probability violation comprises of two terms, the latter of which scales linearly in |H|. This
linear scaling is expected, because no single message is successfully transmitted to all users in the model.
Therefore, requiring a larger set of users to permanently adopt a transaction in their ledger requires a
larger waiting time.

4 Definitions and Preliminaries
This section introduces key quantities that are used extensively in the analysis. In Section 4.1, we
introduce the combinatorial objects on which the analysis is performed, such as the main-blocktree and
the transmission-graph. Properties of these objects are presented alongside to motivate their purpose.
In Section 4.2, key random variables that are amenable to analysis, and associated with special paths in
the transmission-graph are identified. These quantities are illustrated through an example in Section 4.3.
In Section 4.4, these random variables and are used to define ‘catch-up events’, and the notion of ‘η-
Nakamoto blocks’. Finally, Section 4.5 introduces the ‘user-unheard-criterion’, which is used to infer
useful information about the blockchain held by a user.

4.1 Graphs and Trees
Three combinatorial objects at the core of our analysis are the main-blocktree and the transmission-graph.

Main-blocktree Any block can be uniquely traced back to the first block in the system (called genesis
block). The set of all blocks generated (mined) up till time t forms a directed tree, which we refer to as
the main-blocktree and denote it by MB(t). Here, MB(t) = (Vt, Et), where the vertex set Vt is the set of
all blocks mined up till time t and the set of directed edges Et comprises all parent-to-child block pairs.
MB(t) represents the global information about the system, and both honest and adversarial blocks are
included in it. Figure 2(a) shows an example of the vicinity of the j-th honest block, bj in some MB(t).

Definition 4.1 (Heights). Let bj be the j-th honest block. The height of bj in a blocktree is the length
of the directed path (counting edges) from the genesis block to bj. We denote the height of bj in the
main-blocktree by heightMB (bj).

Transmission-graph At any time t, we associate with the main-blocktree MB(t), a graph consisting
of only honest blocks that we call the transmission-graph. The transmission-graph at time t, denoted
TG(t) is a directed acyclic graph that represents the history of network delays among the honest miners.
Here, TG(t) = (Vt, Et), where the vertex set Vt is the set of honestly mined blocks up till time t. An
edge between bi and bj is present if delay (bi → bj) = 0. A useful observation about TG(T ) is presented
in Lemma 4.2.
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Figure 2: Graphs and trees used in analysis

Lemma 4.2. Let bi and bk be the i-th and k-th honest blocks such that i < k. At any time t, suppose
there exists a path Ai,k of length n from bi to bk in TG(t), i.e.

Ai,k : bi = v0 − v1 − · · · − vn = bk.

Then,

heightMB (bk)− heightMB (bi) ≥ n

Proof. If vi−1 and vi are two blocks in TG(t) such that there is an edge from vi−1 to vi, then the miner
of block vi has heard of block vi−1. Therefore, it adds its block at a height greater than that of vi−1, so
we have

heightMB (vi) ≥ heightMB (vi−1) + 1

Repeatedly applying this inequality over the path from bi to bk yields the desired result.

4.2 Special Sequences of Honest Blocks
Relative to the j-th honest block bj , we define sequences of special blocks that correspond to forward and
backward paths in TG(t). We also define notions of ‘forward unheard’ and ‘backward unheard’.

4.2.1 Forward Special Blocks

Relative to the j-th honest block bj , we define a sequence of ‘forward special (FS)’ blocks as follows.

Definition 4.3 (j-FS Sequence). Let j ≥ 0 and let bj be the j-th honest block. The j-FS sequence is a
sequence of blocks (b0j , b

1
j , b

2
j , · · · ) such that b0j = bj, and for all k ≥ 1, bkj is the first block to hear of bk−1

j .

We refer to blocks in the j-FS sequence as j-FS blocks. For 0 ≤ j < k, denote by FSj (bk) the number
of j-FS blocks mined between bj and bk (inclusive). Note that FSj (bk−1) ≥ 1, because bj is always a j-FS
block. The j-FS sequence associated with the transmission-graph in Figure 2(b) is shown in Figure 3.
Notice that FSj (bj+5) = 3 and FSj (bj+6) = 4. This example is explored in more detail in Section 4.3.
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Figure 3: j-FS Sequence

Remark 4.4. Let 0 ≤ j ≤ k. Let d be the probability of message loss. The random variable FSj (bk) has
the same distribution as 1 +

∑︁k−j
i=1 Bei (1− d), where Bei (1− d) are i.i.d. Bernoulli random variables

with success probability equal to 1 − d. This is because bj is a j-FS block, and every subsequent block is
independently j-FS with probability 1− d.

Lemma 4.5. Let j ≥ 0. The j-FS sequence (b0j , b
1
j , b

2
j , · · · ) is a forward directed path in the transmission-

graph. Further, if k > i ≥ 0, then the heights of the j-FS blocks bij and bkj satisfy:

heightMB

(︁
bkj
)︁
− heightMB

(︁
bij
)︁
≥ k − i

Proof. Let k ≥ 0. Since the miner of bk+1
j has heard of bkj , there is an edge from bkj to bk+1

j . The
conclusion follows from Lemma 4.2.

Definition 4.6 (Forward Unheard). Let k ≥ j ≥ 0. The Forward Unheard for block bk with respect
to block bj is denoted FUj (bk) and defined as the number of consecutive j-FS blocks that the miner of
bk has not heard of, going backwards along the j-FS sequence from the last such block mined before bk.
If the miner of bk has not heard of any j-FS block, then we toss independent biased coins (with failure
probability equal to the probability of message loss) and continue to increment the count until a success
is encountered.

Remark 4.7. Let 0 ≤ j ≤ k. Let d be the probability of message loss. The random variable FUj (bk)
has the same distribution as Geom (1− d) − 1, where Geom(1 − d) is a geometric random variable, with
minimum value 1. Further, if k′ ≥ 0 such that k′ ̸= k, then FUj (bk) and FUj (bk′) are independent.

The intuition for defining FUj (bk) as above is illustrated through an example in Section 4.3.

4.2.2 Backward Relative Special Honest

Relative to the j-th honest block bj , we define a sequence of ‘backward special (BS) blocks as follows.

Definition 4.8 (j-BS Sequence). Let j ≥ 0, and let bj be the j-th honest block. The j-BS sequence is a
sequence of blocks (b0j , b

−1
j , b−2

j , · · · ) such that b0j = bj and b−i
j is the most recently mined block heard by

b
−(i−1)
j for all i ≥ 1.

For 0 ≤ i ≤ j, denote by BSj (bi) the number of j-BS blocks mined between bi and bj (inclusive). Note
that BSj (bi) ≥ 1, since bj is always a j-BS block. The j-BS sequence associated with the transmission-
graph in Figure 2(b) is shown in Figure 4. Notice that BSj (bj−5) = 4 and BSj (bj−6) = 5. This example
is explored in more detail in Section 4.3.

Remark 4.9. Let 0 ≤ i ≤ j. Let d be the probability of message loss. The random variable BSi (bj) has
the same distribution as 1 +

∑︁j−i
k=1 Bek (1− d), where Bek (1− d) are i.i.d. Bernoulli random variables

with success probability equal to 1 − d. This is because bj is a j-BS block, and every previous block is
independently j-BS with probability 1− d.

Lemma 4.10. Let j ≥ 0. The j-BS sequence (b0j , b
−1
j , b−2

j , · · · ) is a backward directed path in transmission-
graph. Further, if k > i ≥ 0, then the heights of the j-BS blocks b−i

j and b−k
j satisfy:

heightMB

(︁
b−k
j

)︁
− heightMB

(︁
b−i
j

)︁
≥ k − i
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Proof. Let i ≥ 0. Since the miner of b−(i−1)
j has heard of b−i

j , there is an edge from b−i
j to b

−(i−1)
j . The

conclusion follows from Lemma 4.2.

Definition 4.11 (Backward Unheard). Let j ≥ i ≥ 0. The Backward Unheard for block bi with respect
to block bj is denoted BUj (bi) and defined as the number of consecutive j-BS blocks whose miners have
not heard of bi, going backwards along the j-BS sequence from the first such block mined after bi. If
none of the miners of j-BS blocks have heard of bi, then we toss independent biased cones (with failure
probability equal to the probability of message loss) and continue to increment the count until a success
is encountered.

Remark 4.12. Let 0 ≤ i ≤ j. Let d be the probability of message loss. The random variable BUj (bi)
has the same distribution as Geom (1− d) − 1, where Geom(1 − d) is a geometric random variable, with
minimum value 1. Further, if i′ ≥ 0 such that i′ ̸= i, then BUj (bi) and BUj (bi′) are independent.

The intuition for defining BUj (bi) as above is illustrated through an example in Section 4.3. The
usefulness of these quantities is evident from Lemma 4.13.

Lemma 4.13. Let i < j < k.

(i) If FSj (bk−1) > FUj (bk), then heightMB (bk)− heightMB (bj) ≥ FSj (bk−1)− FUj (bk).

(ii) If BSj (bi+1) > BUj (bi), then heightMB (bj)− heightMB (bi) ≥ BSj (bi+1)− BUj (bi).

Proof. We prove statement (i). Let m = FSj (bk−1) − FUj (bk) > 0. Consider the j-FS sequence
(b0j , b

1
j , · · · , bmj , · · · ). Note that FSj (bk−1) is the number of j-FS blocks mined before bk, and FUj (bk) is

the number of consecutive blocks from this sequence that were not heard by bk going backward. There-
fore, bk has heard of bmj , and will mine at a greater height. Since the j-FS blocks are all mined at different
heights, we have

heightMB (bk)− heightMB (bj) > heightMB

(︁
bmj
)︁
− heightMB

(︁
b0j
)︁
≥ m = FSj (bk−1)− FUj (bk) ,

as desired. The proof of statement (ii) is essentially the same, because the forward sequences FSj and
FUj map to the backward sequences BSj and BUj under reversing the directions of the edges in the
transmission-graph.

4.3 An Example
Some of the concepts introduced above are best understood through an example. Consider the main-
blocktree in Figure 2(a) and its associated transmission-graph in Figure 2(b). The same transmission-
graph is shown again in Figure 5, where the j-FS and j-BS blocks are highlighted. Recall that in the
transmission-graph, a directed edge from bj to bk indicates that the miner of bk has heard of the block
bj .

j-FS Sequence By definition, bj is a j-FS block. The miner of the next block bj+1 has heard of the
most recent j-FS block bj , so b1j = bj+1 is a j-FS block. The miner of bj+2 has heard of b1j , so we have
that bj+2 = b2j is also a j-FS block. However, the miners of bj+3, bj+4 and bj+5 have not heard of b2j , so
these blocks are not j-FS. Finally, the miner of bj+6 has heard of b2j , so we have that b3j = bj+6. Notice
that no two j-FS blocks can share the same height.
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Figure 5: Example of j-FS and j-BS sequence

Forward Unheard Let us consider FUj (bk) with k = j + 4. Starting from bk, we count the number
of consecutive j-FS blocks that the miner of bk has not heard of, going backwards in the j-FS sequence.
The j-FS sequence at the mining time of bk is (bj , bj+1, bj+2). Going backwards in this sequence, we see
that the miner of bk has not heard of bj+2, but has heard of bj+1. Therefore, we stop the count and have
FUj (bj+4) = 1.

j-BS Sequence By definition, bj is a j-BS block. Since the miner of the most recent j-BS block (bj)
has heard of the previous block bj+1, we have that bj−1 = b−1

j is a j-BS block. Similarly, the miner of
b−1
j has heard of bj−2, so we have that bj−2 = b−2

j is a j-BS block. However, the miner of b−2
j has not

heard of bj−3, and so bj−3 is not a j-BS block. Notice that no two j-BS blocks can share the same height.

Backward Unheard Let us consider BUj (bi) with i = j− 3. Starting from the first j-BS block mined
after bi, we count the number of consecutive j-BS blocks that have not heard of bi, going backwards in
the j-BS sequence. The j-BS sequence at the mining time of bi is bj , bj−1, bj−2. Going backwards in
this sequence, we see that the miners of bj−2 and bj−1 have not heard of bi, but the miner of bj has.
Therefore, we stop the count and have BUj (bj−3) = 2.

4.4 Catch-up Events and η-Nakamoto Blocks
In this section, we define catch-up events and η-Nakamoto blocks.

Adversarial arrivals Let a(bi, bj) denote the number of adversarial blocks mined between the mining
times of the i-th and j-th honest blocks. Similarly, let a(bij , b

k
j ) denote the number of adversarial blocks

mined between the i-th and k-th j-FS blocks.

Definition 4.14 (Catch-up Events). Let 0 ≤ i < j < k, and let 0 < η ≤ 1. The forward and backward
catch-up events are respectively defined as:

−→
B

(η)
j,k : a(bj , bk) ≥ η · FSj (bk−1)− FUj (bk) (1)
←−
B

(η)
i,j : a(bi, bj) ≥ η · BSj (bi+1)− BUj (bi) (2)

These events are catch-up events in the following sense. If the event
−→
B

(η)
j,k occurs for some j < k

and 0 < η ≤ 1, then more adversarial blocks have been mined in [τj , τk] than effective j-FS blocks. For
instance, when η = 1, more adversarial blocks have been mined in [τj , τk] than the number of blocks in the
j-FS sequence from bj up to the last j-FS block heard by the miner of bk. If these adversarial blocks were
to form a side chain rooted at bj , then there is a possibility that bk mines on this side chain. However,
such an attack would fail if the catch-up events did not occur, because there would necessarily be a chain
longer than the adversarial side chain that the miner of bk is aware of. Here, η is a robustness measure:
If the catch-up event does not occur for a small value of η, then the honest blocks have a considerable
lead over adversarial side chains.

Longest Chains of the main-blocktree A longest chain of the main-blocktree at time t is a path in
MB(t) whose length is no shorter than any path in MB(t). Notice that MB(t) can have multiple longest
chains.
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η-Nakamoto Blocks A desirable property for honest block bj is the existence of some 0 < η ≤ 1 such
that none of the events

−→
B

(η)
j,k occur for any i < j and none of the events

←−
B

(η)
i,j occur for any k > j.

Intuitively, this ensures that adversarial chains rooted at any block bi with i < j are never long enough
for any block bk with k > j to extend them. In turn, this suggests that block bj would be in every
longest chain of the main-blocktree right from being mined. We formalize this property using the notion
of η-Nakamoto blocks below, and make this intuition rigorous in Section 5.

Definition 4.15 (η-Nakamoto Block). Let j ≥ 0 and 0 < η ≤ 1. The j-th honest block bj is said to be
an η-Nakamoto block if the event

N
(η)
j :

⎡⎣ ⋂︂
i : i<j

[︂←−
B

(η)
i,j

]︂c⎤⎦⋂︂⎡⎣ ⋂︂
k : k>j

[︂−→
B

(η)
j,k

]︂c⎤⎦ (3)

occurs.

We remark that an η-Nakamoto block is also an η′-Nakamoto block, for any η′ ∈ [η, 1].

4.5 User-unheard-criterion
η-Nakamoto blocks are useful because they belong to every longest chain of the main-blocktree. However,
this is not equivalent to η-Nakamoto blocks belonging to any user’s chain for all future time. This is
because at any given time, a given user has not necessarily heard of all the blocks in MB(t). In this
section, we introduce the tools that are relevant to analyzing the state of a user’s chain with respect to
the main-blocktree. We begin by introducing ‘Unheard’ with respect to a user.

Definition 4.16 (User-unheard, Unheardh
(︁
bkj
)︁
). Let j ≥ 0 and let bj be the j-th honest block. Let

(b0j , b
1
j , · · · ) denote the j-FS sequence. Let h be an honest user. For any k ≥ 0, we define Unheardh

(︁
bkj
)︁

as the number of consecutive j-FS blocks that the user h has not heard of, going backwards along the j-FS
sequence from bkj . If h has not heard of any j-FS block, then we toss independent biased coins (with failure
probability equal to the probability of message loss) and continue to increment the count until a success
is encountered.

Remark 4.17. Let j, k ≥ 0. Let h be any honest user and d be the probability of message loss. Let
Geom(1 − d) be a geometric random variable, with minimum value 1. The distribution of the random
variable Unheardh

(︁
bkj
)︁

depends on h:

• If h has not mined any block after the mining time of bj, then Unheardh
(︁
bkj
)︁

has the same distribution
as Geom (1− d)− 1.

• If h is a miner of a j-FS block, then h has heard of its own block as well as the j-FS block that
immediately preceded it. However, all other delays from the miners of j-FS blocks to h are still
independent and identically distributed. In this case, Unheardh

(︁
bkj
)︁

is stochastically dominated by
Geom(1− d).

• If h is a miner of a block bℓ with ℓ > j, such that bℓ is not a j-FS block, then the delay from the most
recent j-FS block before bℓ to h is infinity. However, all other delays from the miners of j-FS blocks
to h are still independent and identically distributed. In this case, Unheardh

(︁
bkj
)︁

is stochastically
dominated by Geom(1− d).

In all cases, we have Unheardh
(︁
bkj
)︁
≤ Geom (1− d), where the ≤ sign indicates stochastic domination.

We compare ‘forward-unheard’ (denoted FUj (bk)) and ‘user-unheard’ (denoted Unheardh
(︁
bkj
)︁
). Al-

though similar in spirit, the quantity FUj (bk) counts the number of consecutive j-FS blocks not heard by
the miner of block bk, going backwards in the j-FS sequence from the last such block before bk, whereas
the quantity Unheardh

(︁
bkj
)︁

fixes an honest user h and similarly counts the number of consecutive such
blocks not heard by h. Since bk and bℓ are mined by two different miners, then FUj (bk) and FUj (bℓ) are
independent random variables. However, Unheardh

(︁
bkj
)︁

and Unheardh
(︁
bℓj
)︁

need not be independent.
Next, we introduce the user-unheard-criterion, which will later allow us to infer useful information

about the state of a user’s chain from the main-blocktree.

Definition 4.18 (User-unheard-criterion). Let h be an honest user. Let j ≥ 1, k0 ≥ 1, and 0 < η < 1.
We say that the (h, j, η, k0)-user-unheard-criterion is satisfied if

Unheardh
(︁
bkj
)︁
<

(︃
1− η

2

)︃
k, ∀k ≥ k0, (4)
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5 Proof Outline
In this section, we present an outline of the proof of Theorem 3.2. First, deterministic and probabilistic
results are stated. These results are used as building blocks in the proof sketch of our main result,
Theorem 3.2 which is presented in Section 5.3. Rigorous proofs of all the results, including the main
result are relegated to the appendix.

5.1 Deterministic Results
Theorem 5.1. Let j ≥ 1 and 0 < η ≤ 1. Let bj be the j-th honest block, and τj be the mining time of
bj. Suppose bj is an η-Nakamoto block. Then:

(i) bj is the unique honest block at its height in MB(t) for all t ≥ τj.

(ii) bj is in every longest chain of MB(t) for all t ≥ τj.

(iii) bj is the unique block at its height in MB(τj).

(iv) For any k such that k > j, bk is a descendant of bj in the main-blocktree.

Proof. See Appendix A.1

Theorem 5.2. Let h be an honest user. Let j ≥ 1 and 0 < η < 1. Let k0 =
⌈︂

2η
1−η

⌉︂
. Let Ch(t) denote the

chain held by h at time t. If bj is an η-Nakamoto block, and if the (h, j, η, k0)-user-unheard-criterion is
satisfied, then bj ∈ Ch(t) for all t ≥ τk0

j , where τk0
j is the mining time of the k0-th j-FS block.

Proof. See Appendix A.2.

5.2 Probabilistic Results
Lemma 5.3. Let 0 ≤ i < j ≤ j′ < k, and 0 ≤ η ≤ 1. The events:

•
←−
B

(η)
i,j and

−→
B

(η)
j′,k are independent.

•
−→
B

(η)
i,j and

←−
B

(η)
j′,k are independent.

Proof. See Appendix B.1.

Theorem 5.4. Let j ≥ 1 and 0 ≤ η ≤ 1. Recall that bj is the j-th honest block and N
(η)
j is the event that

bj is an η-Nakamoto block. If β
1−β < η · (1− d), then there exists a positive constant p0 > 0 such that

P
(︂
N

(η)
j

)︂
≥ p0 > 0

Proof. See Appendix B.2.

Lemma 5.5. Let 0 < η ≤ 1 and i < j < k. Let
−→
B

(η)
j,k and

←−
B

(η)
i,j be the catch-up events defined in (1), (2).

If β
1−β < η · (1− d), there exists a constant c > 0 such that

P
(︂−→
B

(η)
j,k

)︂
≤ e−c(k−j)

P
(︂←−
B

(η)
i,j

)︂
≤ e−c(j−i)

Proof. See Appendix B.3.

Theorem 5.6. Let 0 < η ≤ 1. Let β be the fraction of computational power in the system that is
adversarial and d be the probability of message loss. Let B(η)

s,s+t be the event that there are no η-Nakamoto
blocks in [s, s+ t]. If β

1−β < η · (1− d), then there exists a constant c0 > 0 such that for any s, t ≥ 0,

P
(︂
B

(η)
s,s+t

)︂
≤ e−c0

√
t

Proof. See Appendix B.4.
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Theorem 5.7. Let 0 < η ≤ 1. Let β be the fraction of computational power in the system that is
adversarial and d be the probability of message loss. Let B(η)

s,s+t be the event that there are no η-Nakamoto
blocks in [s, s+ t]. If β

1−β < η · (1− d), then for every ε > 0, there exist positive constants A, a such that
for any s, t > 0,

P
(︂
B

(η)
s,s+t

)︂
≤ A exp

(︁
−at1−ε

)︁
.

Proof. See Appendix B.5.

Theorem 5.8. Let 0 < η < 1. Suppose the fraction β of computational power in the system that is
adversarial, and the probability d of message loss satisfies β

1−β < η · (1− d). Given s ≥ 0, let bJ be the
first η-Nakamoto block mined after time s. There exist constants C, c > 0 such that for any honest user
h and for all k′ ≥ 1,

P ((h, J, η, k′) -user-unheard-criterion fails) ≤ Ce−ck′

Proof. See Appendix B.6.

5.3 Proof Sketch
η-Nakamoto blocks are special blocks that are part of every longest chain in the main-blocktree, for
all time after they are mined (Theorem 5.1). Therefore, if a transaction is included in an η-Nakamoto
block or in any of its ancestors, then it will be included in every longest chain of the main-blocktree.
Furthermore, if an honest user is up-to-date with the main-blocktree (specifically, by satisfying a relevant
user-unheard-criterion, and therefore having heard of more forward special blocks with respect to the
η-Nakamoto block, than adversarial blocks), then it is reasonable to expect that the honest user will
also include the transaction in its chain. This idea is formalized in the user-unheard-criterion, and made
rigorous in Theorem 5.2.

The core idea behind the proof of the main result (Theorem 3.2) is to show that η-Nakamoto blocks
occur frequently with high probability (Theorem 5.7). In turn, this implies that a transaction is highly
likely to be included in an η-Nakamoto block or its ancestor, soon after it is made. Theorem 5.8 then
shows that it is also highly likely that a relevant user-unheard-criterion will hold for the honest user, once
a waiting time has elapsed.

To prove Theorem 5.7, we bootstrap from a milder version of it, which is stated as Theorem 5.6.
Inspired by the proof strategy in [DKT+20], we prove Theorem 5.6 by separating catch-up events into
long and short-term catch-up events. We show that long term catch-ups occur rarely as a consequence of
Lemma 5.5, and short-term catch-up probabilities are bounded using a lower bound on the probability
that the j-th block is an η-Nakamoto block (Theorem 5.4), and the fact that non-overlapping catch-up
events are independent (Lemma 5.3). This establishes that a transaction is highly likely to be included
in the main-blocktree for all future time, once a waiting period has elapsed. This proves thereom 5.7.

Next, we show that an honest user is likely to always be up-to-date with the main-blocktree, forever
after a waiting time. This is done by explicitly bounding the probability that a relevant user-unheard-
criterion is violated using tools from stochastic analysis. This proves Theorem 5.8.

Theorems 5.7 and 5.8 together imply the main result. The details of this proof are presented in
Appendix B.7.

6 Conclusion
In this work, we introduced the 0-∞ model: a framework to study the impact of random message losses on
the security of the proof-of-work longest-chain protocol. We investigated the security of this protocol by
analyzing the transmission-graph, a dynamically evolving graph that captures the delays incurred by the
blocks mined by honest miners. Specifically, we studied special sequences of blocks and identified random
variables associated with them that are amenable to analysis. These random variables were used to define
useful objects and desirable events, such as η-Nakamoto blocks and user-unheard-criterion respectively.
These ideas allowed us to generalize analysis techniques from the synchronous delay model to a setting
where delays are possibly infinite. We showed that the condition β

1−β < 1−d is sufficient for a transaction
to satisfy desired security properties except with a probability that decays almost exponentially in the
security parameter. This greatly improved the known threshold of the fraction of adversarial power that
is tolerable for a given probability of message loss in an instance of point-to-point communication.
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A Proofs of Deterministic Results

A.1 Proof of Theorem 5.1
Theorem 5.1. Let j ≥ 1 and 0 < η ≤ 1. Let bj be the j-th honest block, and τj be the mining time of
bj. Suppose bj is an η-Nakamoto block. Then:

(i) bj is the unique honest block at its height in MB(t) for all t ≥ τj.

(ii) bj is in every longest chain of MB(t) for all t ≥ τj.

(iii) bj is the unique block at its height in MB(τj).

(iv) For any k such that k > j, bk is a descendant of bj in the main-blocktree.

Proof. Let N
(η)
j be the event that bj is an η-Nakamoto block. Recall that

N
(η)
j =

⎡⎣ ⋂︂
i : i<j

[︂←−
B

(η)
i,j

]︂c⎤⎦⋂︂⎡⎣ ⋂︂
k : k>j

[︂−→
B

(η)
j,k

]︂c⎤⎦
Suppose N

(η)
j occurs, so that bj is an η-Nakamoto block.

(i) Let t ≥ τj . We show that bj is the unique honest block at its height in MB(t), i.e. for any i, k ≥ 0
such that i < j < k, we show that

heightMB (bi) < heightMB (bj) < heightMB (bk) . (5)

We begin by proving the first inequality in (5). Since N
(η)
j occurs, it follows that the event

[︂←−
B

(η)
i,j

]︂c
occurs. Therefore, we have

heightMB (bj)− heightMB (bi)
(a)

≥ BSj (bi+1)− BUj (bi)

(b)

≥ η · BSj (bi+1)− BUj (bi)

(c)
> a(bi, bj),

where (a) is from Lemma 4.13, (b) follows from the fact that η ≤ 1, and (c) is the definition of[︂←−
B

(η)
i,j

]︂c
. Since a(bi, bj) ≥ 0, it follows that heightMB (bi) < heightMB (bj). Similarly, the occurrence

of
[︂−→
B

(η)
j,k

]︂c
implies that heightMB (bj) < heightMB (bk). Thus, bj is the unique honest block at its

height in MB(t).

(ii) We show that bj is in every longest chain of MB(t). Let V be any longest chain in MB(t), i.e.

V = v0 − v1 − · · · − vheightMB(bj)
− · · · − vm−1 − vm,

where v0 is the genesis block, vheightMB(bj)
=: v is the block at the height of bj , and m is the height

of MB(t). It suffices to show that v = bj . In fact, since bj is the unique honest block at its height,
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it suffices to only show that v must be an honest block. Starting from v and traversing blocks in
V in the backward direction, let bi denote the first honest block encountered in V, not including v
itself. Since the genesis block is honest, such a bi exists. Similarly, we also want to traverse blocks
in V along the forward direction. Here, we have two cases:
Case 1: There is an honest block in V after v. In this case, let bk be the first honest block in V
after v. Let H denote heightMB (bk), and V1 be the sequence bi − · · · − v − · · · − bk.
Case 2: There is no honest block in V after v. In this case, let bk be the first honest block
mined after time t. Let H = m denote the height of the main-blocktree, and V1 be the sequence
bi − · · · − v − · · · − vm.
In both cases, let N denote the number of blocks in V1, not including bi. Notice that the blocks are
at consecutive heights. We have:

N = H − heightMB (bi)

(a)

≥ heightMB (bj) + FSj (bk−1)− FUj (bk)− heightMB (bi)

(b)

≥ (FSj (bk−1)− FUj (bk)) + (BSj (bi+1)− BUj (bi))

(c)

≥ (a(bi, bj) + 1) + (a(bj , bk) + 1)

> a(bi, bk) + 1,

where (a) follows from Lemma 4.13 in case 1, and the fact that j-FS blocks are mined at different
heights in case 2. Further, (b) is due to Lemma 4.13 and the fact that η ≤ 1, and (c) follows because
the events

[︂←−
B

(η)
i,j

]︂c
and

[︂−→
B

(η)
j,k

]︂c
occur. However, by definition of bi and bk, all blocks in V1 after bi

except for bk and possibly v are adversarial. Therefore, there must be at least one honest block in
V1 strictly between bi and bk. Since the only possibility for this is v, it follows that v must be an
honest block. Since bj is the unique honest block at the height of v, we conclude that bj in every
longest chain of MB(t), as desired.

(iii) Let v be a block in MB(τj) such that heightMB (v) = heightMB (bj). Let T be the tine of ancestors
of v. Traversing blocks along the backward direction starting from v, let bi denote the first honest
block encountered. The portion of T between bi and v consists of only adversarial blocks. However,

heightMB (v)− heightMB (bi) = heightMB (bj)− heightMB (bi)

(a)

≥ η · BSj (bi+1)− BUj (bi)

(b)
> a(bi, bj),

where (a) is from Lemma 4.13, and (b) is true because bj is an η-Nakamoto block. Since v is the
only possibility for an honest block in the portion of T after bi, it follows that v must be an honest
block. From (i), we conclude that v = bj . This concludes the proof.

(iv) Let k > j. Since bj is an η-Nakamoto block, we have from the proof of (i) that heightMB (bk) >
heightMB (bj). Let v denote the ancestor of bk at the height of bj in the main-blocktree. Starting from
v and traversing blocks along the ancestors of v, let bi denote the first honest block encountered.
This is exactly case 1 in the proof of (ii), and it follows that v = bj .

A.2 Proof of Theorem 5.2
Theorem 5.2. Let h be an honest user. Let j ≥ 1 and 0 < η < 1. Let k0 =

⌈︂
2η
1−η

⌉︂
. Let Ch(t) denote the

chain held by h at time t. If bj is an η-Nakamoto block, and if the (h, j, η, k0)-user-unheard-criterion is
satisfied, then bj ∈ Ch(t) for all t ≥ τk0

j , where τk0
j is the mining time of the k0-th j-FS block.

Proof. Let |Ch(t)| denote the number of blocks in Ch(t). Let τj denote the mining time of bj , and let τkj

denote the mining time of bkj . Since bj is an η-Nakamoto block, we know that the event
[︂−→
B

(η)
j,k

]︂c
occurs

for all k > j. In turn, this implies

a(b0j , b
k+1
j ) < η · (k + 1) ∀k > 0.
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However, η (k + 1) ≤
(︁
1+η
2

)︁
k whenever k ≥ k0. Further, since (h, j, η, k0)-user-unheard-criterion holds,

we have that Unheardh
(︁
bkj
)︁
<
(︁
1−η
2

)︁
k whenever k ≥ k0. These facts imply:

a(b0j , b
k+1
j ) < k − Unheardh

(︁
bkj
)︁
∀k ≥ k0. (6)

Fix k ≥ k0. Let t be such that τkj ≤ t < τk+1
j . We show that h includes bj in its chain at time t.

Since a(b0j , b
k+1
j ) ≥ 0, it follows from (6) that Unheardh

(︁
bkj
)︁
< k. Therefore, h has heard of at least

one j-FS block. Therefore, |Ch(t)| ≥ heightMB (bj). Let v ∈ Ch(t) be the block at the height of bj . To
show that bj ∈ Ch(t), it suffices by statement (iv) in Theorem 5.1 to prove that Ch(t) contains at least
one honest block mined in [τkj ,∞).

Let Ch(t)⌈v denote the sub-chain of Ch(t) starting from v, i.e. Ch(t)⌈v contains blocks of Ch(t) that
are at height no less than that of v. We show that (6) implies that Ch(t)⌈v cannot contain all adversarial
blocks. We know from statement (iii) of Theorem 5.1 that bj is the unique block at its height in MB(τj).
Therefore, all blocks in Ch(t)⌈v are mined at or after time τj . Since t < τk+1

j , we have

a(b0j , b
k+1
j )

(a)
< k − Unheardh

(︁
bkj
)︁ (b)

≤ |Ch(t)⌈v|,

where (a) is the same as (6) and (b) follows from the fact that h has heard of bmj , where m = k −
Unheardh

(︁
bkj
)︁
. Therefore, h adopts a chain that has length at least heightMB (v) +m. We conclude that

there exists an honest block bk ∈ Ch(t)⌈v. From statement (iv) in Theorem 5.1, it follows that Ch(t)
contains bj .

The above argument is true for all t ∈ [τkj , τ
k+1
j ), so it follows that h ∈ Ch(t) for all t ∈ [τkj , τ

k+1
j ).

Since this is true for all k ≥ k0, it follows that h ∈ Ch(t) for all t ≥ τk0
j , as desired.

B Proofs of Probabilistic Results

B.1 Proof of Lemma 5.3
Lemma 5.3. Let 0 ≤ i < j ≤ j′ < k, and 0 ≤ η ≤ 1. The events:

•
←−
B

(η)
i,j and

−→
B

(η)
j′,k are independent.

•
−→
B

(η)
i,j and

←−
B

(η)
j′,k are independent.

Proof. We prove only the first statement, since the second uses a similar argument. For any m ∈
{i, j, j′, k}, let τm denote the mining time of bm. The LHS of the event

−→
B

(η)
j′,k : a(bj′ , bk) ≥ η · FSj′ (bk−1)− FUj′ (bk)

depends on the number of adversarial arrivals in [τj′ , τk]. Further, the RHS depends on the delays from
bj′ to all the honest blocks mined in [τj′ , τk).

In contrast, the LHS of the event

←−
B

(η)
i,j : a(bi, bj) ≥ η · BSj (bi+1)− BUj (bi)

depends on the number of adversarial arrivals in [τi, τj ]. Further, the RHS depends on the delays from
all the honest blocks mined in [τi, τj) to bj .

Since honest and adversarial arrivals are independent Poisson processes, and since the delay associated
with any two blocks in [τi, τj ] is independent of the delay associated with any two blocks in [τj′ , τk], and
since the two intervals do not overlap, it follows that

←−
B

(η)
i,j and

−→
B

(η)
j′,k are independent.

B.2 Proof of Theorem 5.4
Theorem 5.4. Let j ≥ 1 and 0 ≤ η ≤ 1. Recall that bj is the j-th honest block and N

(η)
j is the event that

bj is an η-Nakamoto block. If β
1−β < η · (1− d), then there exists a positive constant p0 > 0 such that

P
(︂
N

(η)
j

)︂
≥ p0 > 0
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Proof. Fix j. Recall that the event N
(η)
j =

←−
E

(η)
j

⋂︁−→
E

(η)
j , where

←−
E

(η)
j =

⋂︁
i : i<j

[︂←−
B

(η)
i,j

]︂c
and

−→
E

(η)
j =⋂︁

k : k>j

[︂−→
B

(η)
j,k

]︂c
. From Lemma 5.3, it follows that

←−
E

(η)
j and

−→
E

(η)
j are independent events. Therefore,

P
(︂
N

(η)
j

)︂
= P

(︂←−
E

(η)
j

⋂︂−→
E

(η)
j

)︂
= P

(︂←−
E

(η)
j

)︂
P
(︂−→
E

(η)
j

)︂
.

Thus, it suffices to show the existence of p > 0 such that P
(︂←−
E

(η)
j

)︂
≥ p and P

(︂−→
E

(η)
j

)︂
≥ p.

Notation: If an i.i.d. random process is a sequence of random variables with known distribution, say
Geometric or Bernoulli with parameter q, we refer to the i-th random variable in the sequence as Geomi(q)
or Bei(q) respectively.

Showing P
(︂−→
E

(η)
j

)︂
≥ p > 0: By definition, the event

−→
E

(η)
j occurs if

a(bj , bk)− η · FSj (bk−1) < −FUj (bk) ∀k > j. (7)

Notice that the LHS are RHS are independent random variables. The random variables inn the LHS are:

a(bj , bk) =

k−j∑︂
i=1

(Geomi (1− β)− 1) , (8)

FSj (bk−1) = 1 +

k−j−1∑︂
i=1

Bei (1− d) , (9)

where equation (8) follows from the fact that there are Geom (1− β) − 1 adversarial arrivals between
two successive honest arrivals, and the fact that the number of adversarial arrivals in disjoint intervals is
independent. Equation (9) follows from Remark 4.4.

Let (Xi : i ≥ 1) be an i.i.d. random process, with Xi ∼ Geomi (1− β)− 1− η · Bei (1− d). Let Wj =∑︁j
i=1 Xi denote the sum of the first j terms of the process (Xi : i ≥ 1). Finally, it follows from Remark 4.7

that (FUj (bk) : k > j) is identical to the i.i.d. random process (Yi : i > 0), with Yi ∼ Geomi (1− d)− 1.
Using these random variables, equation (7) can be equivalently stated as

k−j∑︂
i=1

Xi < −Yk−j ∀k > j. (10)

Let γ be a constant to be determined later, such that 0 < γ < η. The inequality in (10) holds if EA ∩ EB

occur, where

EA :

i∑︂
j=1

Xj < −γi ∀i ≥ 1

EB : − γi < −Yi ∀i ≥ 1.

Here, EA and EB are independent events. Therefore, we have P
(︂−→
E

(η)
j

)︂
≥ P (EA ∩ EB) = P (EA)P (EB).

It suffices to show the existence of p1, p2 > 0 such that P (EA) ≥ p1 and P (EB) ≥ p2. First, we bound
P (EB).

P (EB) = P

⎛⎝⋂︂
i≥1

{Yi ≤ γi}

⎞⎠ =

∞∏︂
i=1

(︁
1− d1+γi

)︁
=: p2 > 0,

since (Yi : i ≥ 1) is an i.i.d process with 1+Yi ∼ Geomi (1− d). Notice that p2 > 0 for all 0 ≤ d < 1 and
for all γ > 0.

Next, we bound P (EA). Fix some ℓ ∈ N, and let c be a positive constant given by c = (η − γ) ℓ.
Consider the following two desirable events:

1 : Wℓ ≤ −γℓ− c

2 : max
m≥0

(Wℓ+m −Wℓ + γm) < c

17



It is clear that 1∩2 =⇒ EA, and that 1 and 2 are independent events, since Poisson arrivals over disjoint
intervals are independent. Therefore, it suffices to find constants p11, p12 > 0 such that P (1) ≥ p11 and
P (2) ≥ p12.

P (1) = P

(︄
ℓ∑︂

i=1

Xi ≤ −γℓ− c

)︄
(11)

= P

(︄
ℓ∑︂

i=1

(Geomi (1− β)− 1− η · Bei (1− d)) ≤ −γℓ− c

)︄
(12)

= P

(︄
ℓ∑︂

i=1

(Geomi (1− β)− η · Bei (1− d)) ≤ (1− γ) ℓ− c

)︄
(13)

≥ P

(︄
ℓ⋂︂

i=1

[{Geomi (1− β) = 1} ∩ {Bei (1− d) = 1}]

)︄
(14)

= p11 > 0, (15)

for fixed ℓ, since γ < η and since c is chosen to be sufficiently small. Here, the inequality in (14) holds
because one way to satisfy the inequality in the event in (13) is when both LHS and RHS of the inequality
equal (1− η) ℓ.

It remains to show p12 > 0. Consider the random process (Zi : i ≥ 1), where Zi = Xi + γ.
Then, (

∑︁m
i=1 Zi : m ≥ 1) and (Wℓ+m −Wℓ + γm : m ≥ 1) follow the same distribution. The Kingman

bound [Kin64] yields,

P (2) = P

(︄
max
m≥0

m∑︂
i=1

Zi < c

)︄
≥ 1− e−θ∗c =: p12,

where

θ∗ = sup
{︁
θ > 0: E

[︁
eθZ1 ≤ 1

]︁}︁
.

Since c > 0, we see that p12 > 0 if θ∗ > 0. We show that θ∗ > 0 if β
1−β < η (1− d). A simple computation

yields

E [Z1] =
β

1− β
− η · (1− d) + γ,

If β
1−β < η (1− d), then there exists 0 < γ < η such that E [Z1] < 0. Since E

[︁
eθZ1

]︁
θ=0

= 1, and
d
dθE

[︁
eθZ1

]︁
θ=0

= E [Z1] < 0, we know that there exists θ1 > 0 such that E
[︁
eθZ1

]︁
θ=θ1

< 1, which then
implies θ∗ > θ1 > 0.

The above argument is summarized as

P
(︂−→
E

(η)
j

)︂
≥ P (EA)P (EB) ≥ P (1) · P (2) · P (EB) ≥ p11 · p12 · p2 =: p > 0. (16)

Showing P
(︂←−
E

(η)
j

)︂
≥ p > 0: For any i, k ≥ 0 such that j− i = k−j, it follows from Remarks 4.4, 4.7, 4.9

and 4.12 that P
(︂←−
B

(η)
i,j

)︂
= P

(︂−→
B

(η)
j,k

)︂
. By symmetry, we have

P
(︂←−
E

(η)
j

)︂
= P

(︄
j⋂︂

i=0

[︂←−
B

(η)
i,j

]︂c)︄

= P

⎛⎝ 2j+1⋂︂
k=j+1

[︂−→
B

(η)
j,k

]︂c⎞⎠
≥ P

⎛⎝ ⋂︂
k:k>j

[︂−→
B

(η)
j,k

]︂c⎞⎠
= P

(︂−→
E

(η)
j

)︂
≥ p,

where the constant p > 0 is the same as in (16). This concludes the proof.
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B.3 Proof of Lemma 5.5
Lemma 5.5. Let 0 < η ≤ 1 and i < j < k. Let

−→
B

(η)
j,k and

←−
B

(η)
i,j be the catch-up events defined in (1), (2).

If β
1−β < η · (1− d), there exists a constant c > 0 such that

P
(︂−→
B

(η)
j,k

)︂
≤ e−c(k−j)

P
(︂←−
B

(η)
i,j

)︂
≤ e−c(j−i)

Proof. First, we show the existence of c > 0 such that P
(︂−→
B

(η)
j,k

)︂
≤ e−c(k−j). Recall that the event

−→
B

(η)
j,k

is defined as
−→
B

(η)
j,k : a(bj , bk) ≥ η · FSj (bk−1)− FUj (bk) .

From Remarks 4.4, 4.7, 4.9 and 4.12, these random variables are characterized as:

a(bj , bk) =

k−j∑︂
i=1

(Geomi (1− β)− 1) ,

FSj (bk−1) = 1 +

k−j−1∑︂
i=1

Bei (1− d) ,

FUj (bk) = Geom (1− d)− 1.

Further, the three random variables a(bj , bk),FSj (bk−1) ,FUj (bk) are mutually independent. Consider
the following desirable events associated with them.

1 : a(bj , bk) <
β

1− β
(k − j) (1 + ε)

2 : FSj (bk−1) > (1− d) (k − j) (1− δ)

3 : FUj (bk) ≤ (k − j)

[︃
(1− δ) η · (1− d)− β

1− β
(1 + ε)

]︃

Clearly, 1 ∩2 ∩3 =⇒
[︂−→
B

(η)
j,k

]︂c
. Therefore, we have

P
(︂[︂−→

B
(η)
j,k

]︂c)︂
≥ P (1 ∩2 ∩3) = P (1)P (2)P (3) . (17)

It suffices to find bounds for each term separately in the RHS of (17).

Bounding 1: Since E [a(bj , bk)] =
β

1−β (k − j), it follows from the Chernoff bound that

P (c1) = P
(︃
a(bj , bk) ≥

β

1− β
(k − j) (1 + ε)

)︃
≤ e−c1(k−j),

where c1 =
β

1− β
(1 + ε) log (1 + ε) +

1

1− β
(1 + βε) log (1 + βε) > 0

Bounding 2: It follows from the Hoeffding bound that

P (c2) = P

(︄
1 +

k−j−1∑︂
i=1

Bei (1− d) ≤ (1− d) (k − j) (1− δ)

)︄

≤ P

(︄
k−j∑︂
i=1

Bei (1− d) ≤ (1− d) (k − j) (1− δ)

)︄
≤ e−c2(k−j),

where c2 = δ2(1−d)
2 > 0.
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Bounding 3: Consider the quantity c4 =
[︂
(1− δ) η · (1− d)− β

1−β (1 + ε)
]︂
. If β

1−β < η (1− d), then
there exist ε, δ > 0 such that c4 > 0. Since 1 + FUj (bk) follows a geometric distribution, we have

P (c3) = P (Geom (1− d)− 1 > c4 (k − j))

= P (Geom (1− d) > 1 + c4 (k − j))

= 1− dc4(k−j)

≥ 1− ec3(k−j),

for some c3 > 0.

Combining these facts together, we revisit (17). We have

P
(︂[︂−→

B
(η)
j,k

]︂c)︂
≥ P (1)P (2)P (3) (18)

= (1− P (c1)) (1− P (c2)) (1− P (c3)) (19)

≥
(︂
1− e−c1(k−j)

)︂(︂
1− e−c2(k−j)

)︂(︂
1− e−c3(k−j)

)︂
(20)

≥
(︂
1− e−c0(k−j)

)︂3
(21)

≥ 1− e−c(k−j), (22)

where c0 = max {c1, c2, c3} > 0, and subsequently c > 0. We conclude the existence of c > 0 for which
P
(︂−→
B

(η)
j,k

)︂
≤ e−c(k−j).

It remains to show that P
(︂←−
B

(η)
i,j

)︂
≤ e−c(j−i). The proof is very similar, so the details are omitted.

Recall that
←−
B

(η)
i,j : a(bi, bj) ≥ η · BSj (bi+1)− BUj (bi) ,

where the random variables involved may be written as

a(bi, bj) =

j−i∑︂
k=1

(Geomk (1− β)− 1) ,

BSj (bi+1) = 1 +

j−i−1∑︂
k=1

Bek (1− d) ,

BUj (bi) = Geom (1− d)− 1,

Thus, if k − j = j − i, we see that

• a(bi, bj) and a(bj , bk) follow the same distribution.

• BSj (bi+1) and FSj (bk−1) follow the same distribution.

• BUj (bi) and FUj (bk) follow the same distribution.

Therefore, the same concentration inequalities apply, and we conclude that for the same constant c in (22),
we have P

(︂←−
B

(η)
i,j

)︂
≤ e−c(j−i).

B.4 Proof of Theorem 5.6
Theorem 5.6. Let 0 < η ≤ 1. Let β be the fraction of computational power in the system that is
adversarial and d be the probability of message loss. Let B(η)

s,s+t be the event that there are no η-Nakamoto
blocks in [s, s+ t]. If β

1−β < η · (1− d), then there exists a constant c0 > 0 such that for any s, t ≥ 0,

P
(︂
B

(η)
s,s+t

)︂
≤ e−c0

√
t
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…

…

𝑰𝟏 𝑰𝟐 𝑰 𝒕/𝟑

𝑺𝟏 𝑺𝟐 𝑺 𝒕/𝟑

Figure 6: Partitioning [s, s+ t] into sub-intervals

Proof. For any i ≥ 0, let τi denote the mining time of block bi. Partition the interval [s, s + t] into√
t intervals of length

√
t each. Group these sub-intervals into threes, so that there are

√
t/3 groups of

sub-intervals, namely I1, I2, · · ·, I√t/3. Thus, Iℓ =
[︁
s+ 3 (ℓ− 1)

√
t, s+ 3ℓ

√
t
]︁
. Further, let Sℓ represent

the middle sub-interval of Iℓ, so that Sℓ = [s+ (3ℓ− 2)
√
t, s+ (3ℓ− 1)

√
t], as shown in Figure 6.

Consider the following desirable events.

1 :
⋂︂

j : τj∈[s+
√
t,s+t−

√
t]

⎡⎢⎢⎣
⎛⎜⎜⎝ ⋂︂

i<j

τi<τj−
√
t

[︂←−
B

(η)
i,j

]︂c⎞⎟⎟⎠⋂︂
⎛⎜⎜⎝ ⋂︂

k>j

τk>τj+
√
t

[︂−→
B

(η)
j,k

]︂c⎞⎟⎟⎠
⎤⎥⎥⎦

2 :

√
t/3⋃︂

ℓ=1

Hℓ, where Hℓ :
⋃︂

j : τj∈Sℓ

⎡⎢⎢⎣
⎛⎜⎜⎝ ⋂︂

i<j

τi≥τj−
√
t

[︂←−
B

(η)
i,j

]︂c⎞⎟⎟⎠⋂︂
⎛⎜⎜⎝ ⋂︂

k>j

τk≤τj+
√
t

[︂−→
B

(η)
j,k

]︂c⎞⎟⎟⎠
⎤⎥⎥⎦

First, observe that 1∩2 =⇒
[︂
B

(η)
s,s+t

]︂c
. This is because 1 ensures that no catch-up events (neither

←−
B

(η)
i,j ,

nor
−→
B

(η)
j,k ) occur when bi and bk are separated in time by more than

√
t from bj , for any bj mined in

[s +
√
t, s + t −

√
t]. This means that the existence of a block bj in this interval for which no catch-up

event occurs whenever i and k are within
√
t of τj is sufficient to ensure that bj is a Nakamoto block.

This is exactly the event 2. Since ∪ℓSℓ ⊂
[︁
s+
√
t, s+ t−

√
t
]︁
, it follows that 1∩2 =⇒

[︂
B

(η)
s,s+t

]︂c
. Thus,

P
(︂
B

(η)
s,s+t

)︂
≤ P (Gc

1) + P (Gc
2) .

Next, we bound the probability of each term in the RHS separately.

Bounding P (Gc
1): Fix δ > 0. Consider the following events:

D1 : {# {i : τi ∈ [s, s+ t]} > 2λht} ,

D2 :
{︂
∃ τi, τk ∈ [s, s+ t] : (k − i) < (1− δ)λh

√
t, τk − τi >

√
t
}︂
.

By the tail bound for Poisson random variables, we know that P (D1) ≤ e−c0t for some c0 > 0. We now
show that P (D2) ≤ e−c1

√
t for some c1 > 0. Let Ti,k := τk − τi be the random variable denoting the time

between the i-th and k-th mining. Let M(t) = (1− δ)λh

√
t. Notice that⋂︂

i∈[s,s+t]

{︂
Ti,i+M(t) <

√
t
}︂

=⇒ Dc
2.

For any honest arrival time τi, we have

E
[︁
Ti,i+M(t)

]︁
= E

⎡⎣i+M(t)∑︂
j=i

(τj − τj−1)

⎤⎦ =
M(t)

λh
= (1− δ)

√
t.

Applying the Chernoff bound, we see that there exists c > 0 such that

P
(︂
Ti,i+M(t) >

√
t
)︂
≤ P

(︂
Ti,i+M(t) > (1− δ)

√
t+ δ

√
t
)︂
≤ e−c

√
t.
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Thus, we get

P (D2) = P

⎛⎝ ⋃︂
i : τi∈[s,s+t]

{︂
Ti,i+M(t) >

√
t
}︂⎞⎠

≤ P

⎛⎝⎛⎝ ⋃︂
i : τi∈[s,s+t]

{︂
Ti,i+M(t) >

√
t
}︂⎞⎠ ∩ Dc

1

⎞⎠+ P (D1)

≤

(︄
2λht∑︂
i=1

P
(︂
Ti,i+M(t) >

√
t
)︂)︄

+ e−c0t

≤ e−c1
√
t,

for some c1 > 0. Thus, P (D2) ≤ e−c1
√
t. We may therefore bound P (Gc

1) as

P (Gc
1) ≤ P (D1 ∪ D2) + P (Gc

1 ∩ Dc
1 ∩ Dc

2)

≤ P (D1) + P (D2) + P (Gc
1 ∩ Dc

1 ∩ Dc
2)

≤ e−c0t + e−c1
√
t +

2λht∑︂
j=1

⎡⎣⎛⎝j−M(t)∑︂
i=0

P
(︂←−
B

(η)
i,j

)︂⎞⎠+

⎛⎝ ∞∑︂
k=j+M(t)

P
(︂−→
B

(η)
j,k

)︂⎞⎠⎤⎦
≤ e−c0t + e−c1

√
t +

2λht∑︂
j=1

⎡⎣⎛⎝j−M(t)∑︂
i=0

e−c(j−i)

⎞⎠+

⎛⎝ ∞∑︂
k=j+M(t)

e−c(k−j)

⎞⎠⎤⎦
≤ e−c0t + e−c1

√
t +

2λht∑︂
j=1

⎛⎝2

∞∑︂
m=M(t)

e−cm

⎞⎠
= e−c0t + e−c1

√
t +

4λht

1− e−c
e−cM(t)

= e−c0t + e−c1
√
t +

4λht

1− e−c
e−c(1−δ)λh

√
t

≤ e−c3
√
t,

for some c3 > 0.

Bounding P (Gc
2): We have Gc

2 =
⋂︁√

t/3
ℓ=1 Hc

ℓ. Notice that Hc
ℓ are mutually independent for distinct ℓ by

Lemma 5.3. Recall that

Hℓ =
⋃︂

j : τj∈Sℓ

Rℓ
j , where Rℓ

j :

⎛⎜⎜⎝ ⋂︂
i<j

τi≥τj−
√
t

[︂←−
B

(η)
i,j

]︂c⎞⎟⎟⎠⋂︂
⎛⎜⎜⎝ ⋂︂

k>j

τk≤τj+
√
t

[︂−→
B

(η)
j,k

]︂c⎞⎟⎟⎠ .

Let Mℓ be the number of honest blocks mined in Sℓ, and Nℓ be the number of η-Nakamoto blocks mined
in Sℓ. Since Hℓ is contained in the event Mℓ ≥ 1, we have for each ℓ ∈

{︁
1, 2, · · · ,

√
t/3
}︁
:

P (Hℓ) = P

⎛⎝ ⋃︂
j : τj∈Sℓ

Rℓ
j

⎞⎠
= P

⎛⎝⎛⎝ ⋃︂
j : τj∈Sℓ

Rℓ
j

⎞⎠⋂︂ {Mℓ ≥ 1}

⎞⎠
≥ P

⎛⎝ ⋃︂
j:τj∈Sℓ

N
(η)
j

⎞⎠
≥ p20

2
, (23)
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where p0 is the lower bound on the probability that bj is an η-Nakamoto block, obtained in Theorem 5.4.
The inequality in (23) deserves some elaboration: Since Mℓ is a non-negative integer valued random
variable, we have from the second moment method that

P (Nℓ ≥ 1) = P (Nℓ > 0) ≥ (E [Nℓ])
2

E [N2
ℓ ]
≥

(︁
p0λh

√
t
)︁2

t

λh

√
t+

(︁
λh

√
t
)︁2 ≥ λ2

hp
2
0t

2λ2
ht
≥ p20

2
,

for sufficiently large t. Here, we used the fact that E [Nℓ] = p0λh

√
t, and E

[︁
N2

ℓ

]︁
≤ E

[︁
M2

ℓ

]︁
= λh

√
t +(︁

λh

√
t
)︁2

.

Thus, P (Hc
ℓ) ≤ 1− p2

0

2 < 1, which yields

P (Gc
2) = P

⎛⎝√
t/3⋂︂

ℓ=1

Hc
ℓ

⎞⎠ =

√
t/3∏︂

ℓ=1

P (Hc
ℓ) ≤

(︃
1− p20

2

)︃√
t/3

≤ e−c4
√
t,

for some c4 > 0, since the Hℓ’s are mutually independent events. Therefore, we conclude that

P
(︂
B

(η)
s,s+t

)︂
≤ P (Gc

1) + P (Gc
2) ≤ e−c3

√
t + e−c4

√
t ≤ e−c0

√
t,

for some c0 > 0, as desired.

B.5 Proof of Theorem 5.7
Theorem 5.7. Let 0 < η ≤ 1. Let β be the fraction of computational power in the system that is
adversarial and d be the probability of message loss. Let B(η)

s,s+t be the event that there are no η-Nakamoto
blocks in [s, s+ t]. If β

1−β < η · (1− d), then for every ε > 0, there exist positive constants A, a such that
for any s, t > 0,

P
(︂
B

(η)
s,s+t

)︂
≤ A exp

(︁
−at1−ε

)︁
.

Proof. Fix m > 1. Consider the following statement for m:

S[m] : ∀ θ ≥ m, ∃ aθ > 0, Aθ > 0 such that P
(︂
B

(η)
s,s+t

)︂
≤ Aθ exp

(︂
−aθt1/θ

)︂
In Theorem 5.6, we proved that S[2] is true. Next, we show the following:

S[m] =⇒ S
[︃
2m− 1

m

]︃
.

Assume S[m] is true. For any i ≥ 0, let τi denote the mining time of block bi. Partition the interval
[s, s + t] into t

m−1
2m−1 intervals of length t

m
2m−1 each. Group these sub-intervals into threes, so that there

are t
m−1
2m−1

3 groups of sub-intervals, namely I1, I2, · · · , I
t

m−1
2m−1 /3

. Thus,

Iℓ : =
[︁
s+ 3 (ℓ− 1) t

m
2m−1 , s+ 3ℓt

m
2m−1

]︁
,

Sℓ : =
[︁
s+ (3ℓ− 2) t

m
2m−1 , s+ (3ℓ− 1) t

m
2m−1

]︁
.

Consider the following desirable events.

1 :
⋂︂

j : τj∈
[︂
s+t

m
2m−1 ,s+t−t

m
2m−1

]︂

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝ ⋂︂

i<j

τi<τj−t
m

2m−1

[︂←−
B

(η)
i,j

]︂c
⎞⎟⎟⎟⎠⋂︂

⎛⎜⎜⎜⎝ ⋂︂
k>j

τk>τj+t
m

2m−1

[︂−→
B

(η)
j,k

]︂c
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

2 :

t
m−1
2m−1 /3⋃︂
ℓ=1

Hℓ, where Hℓ :
⋃︂

j : τj∈Sℓ

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝ ⋂︂

i<j

τi≥τj−t
m

2m−1

[︂←−
B

(η)
i,j

]︂c
⎞⎟⎟⎟⎠⋂︂

⎛⎜⎜⎜⎝ ⋂︂
k>j

τk≤τj+t
m

2m−1

[︂−→
B

(η)
j,k

]︂c
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

Observe that 1∩2 =⇒
[︂
B

(η)
s,s+t

]︂c
.
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Bounding P (Gc
1): We show that P (Gc

1) ≤ e−c3t
m

2m−1 for some c3 > 0. This is done following the steps
in Theorem 5.6. Fix δ > 0 and consider the following events:

D1 : {# {i : τi ∈ [s, s+ t]} > 2λht} ,
D2 :

{︁
∃ τi, τk ∈ [s, s+ t] : (k − i) < (1− δ)λht

m
2m−1 , τk − τi > t

m
2m−1

}︁
.

By the tail bound for Poisson random variables, we know that P (D1) ≤ e−c0t for some c0 > 0. We now
show that P (D2) ≤ e−c1t

m
2m−1 for some c1 > 0. Let Ti,k := τk − τi be the random variable denoting the

time between the i-th and k-th mining. Let M(t) = (1− δ)λht
m

2m−1 . Notice that⋂︂
i∈[s,s+t]

{︂
Ti,i+M(t) <

√
t
}︂

=⇒ Dc
2.

For any honest arrival time τi, we have

E
[︁
Ti,i+M(t)

]︁
= E

⎡⎣i+M(t)∑︂
j=i

(τj − τj−1)

⎤⎦ =
M(t)

λh
= (1− δ) t

m
2m−1 .

Applying the Chernoff bound, we see that there exists c > 0 such that

P
(︁
Ti,i+M(t) > t

m
2m−1

)︁
≤ P

(︁
Ti,i+M(t) > (1− δ) t

m
2m−1 + δt

m
2m−1

)︁
≤ e−ct

m
2m−1

.

Thus, we get

P (D2) = P

⎛⎝ ⋃︂
i : τi∈[s,s+t]

{︁
Ti,i+M(t) > t

m
2m−1

}︁⎞⎠
≤ P

⎛⎝⎛⎝ ⋃︂
i : τi∈[s,s+t]

{︁
Ti,i+M(t) > t

m
2m−1

}︁⎞⎠ ∩ Dc
1

⎞⎠+ P (D1)

≤

(︄
2λht∑︂
i=1

P
(︁
Ti,i+M(t) > t

m
2m−1

)︁)︄
+ e−c0t

≤ e−c1t
m

2m−1
,

for some c1 > 0. Thus, P (D2) ≤ e−c1t
m

2m−1 . We may therefore bound P (Gc
1) as

P (Gc
1) ≤ P (D1 ∪ D2) + P (Gc

1 ∩ Dc
1 ∩ Dc

2)

≤ P (D1) + P (D2) + P (Gc
1 ∩ Dc

1 ∩ Dc
2)

≤ e−c0t + e−c1t
m

2m−1
+

2λht∑︂
j=1

⎡⎣⎛⎝j−M(t)∑︂
i=0

P
(︂←−
B

(η)
i,j

)︂⎞⎠+

⎛⎝ ∞∑︂
k=j+M(t)

P
(︂−→
B

(η)
j,k

)︂⎞⎠⎤⎦
≤ e−c0t + e−c1t

m
2m−1

+

2λht∑︂
j=1

⎡⎣⎛⎝j−M(t)∑︂
i=0

e−c(j−i)

⎞⎠+

⎛⎝ ∞∑︂
k=j+M(t)

e−c(k−j)

⎞⎠⎤⎦
≤ e−c0t + e−c1t

m
2m−1

+

2λht∑︂
j=1

⎛⎝2

∞∑︂
m=M(t)

e−cm

⎞⎠
= e−c0t + e−c1t

m
2m−1

+
4λht

1− e−c
e−cM(t)

= e−c0t + e−c1t
m

2m−1
+

4λht

1− e−c
e−c(1−δ)λht

m
2m−1

≤ e−c3t
m

2m−1
,

for some c3 > 0.
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Bounding P (Gc
2): We have Gc

2 =
⋂︁t

m−1
2m−1 /3

ℓ=1 Hc
ℓ. Notice that Hc

ℓ are mutually independent for distinct ℓ
by Lemma 5.3. Since S[m] is true, we have

P (Hc
ℓ) ≤ P

(︃
B

(η)

s+(3ℓ−2)t
m

2m−1 ,s+(3ℓ−1)t
m

2m−1

)︃
≤ Am exp

(︃
−am

(︁
t

m
2m−1

)︁ 1
m

)︃
≤ Am exp

(︂
−amt1/(2m−1)

)︂
Therefore, it follows that

P (Gc
2) = P

⎛⎜⎝t
m−1
2m−1 /3⋂︂
ℓ=1

Hc
ℓ

⎞⎟⎠ =

t
m−1
2m−1 /3∏︂
ℓ=1

P (Hc
ℓ) ≤

(︂
Am exp

(︂
−amt1/(2m−1)

)︂)︂t m−1
2m−1 /3

≤ e−c4t
m

2m−1
,

for some c4 > 0, since the Hℓ’s are mutually independent events. Therefore, we have

P
(︂
B

(η)
s,s+t

)︂
≤ P (Gc

1) + P (Gc
2) ≤ e−c3t

m
2m−1

+ e−c4t
m

2m−1 ≤ Am′e−am′ t1/m
′

,

where m′ = m
2m−1 , and am′ , Am′ > 0. In turn, this implies that S

[︁
2m−1

m

]︁
is true.

Finally, consider the recursion given by mk+1 = 2mk−1
mk

, and the initial condition m1 = 2. We have
proved that S[m1] is true and that S [mk+1] is true whenever S[mk] is true. By induction, it follows that
S[mk] is true for all k ∈ N. Since mk = k+1

k and limk→∞ mk = 1, we conclude that for every ε > 0, there

exist positive constants A, a such that P
(︂
B

(η)
s,s+t

)︂
≤ A exp

(︁
−at1−ε

)︁
. This concludes the proof.

B.6 Proof of Theorem 5.8
Theorem 5.8. Let 0 < η < 1. Suppose the fraction β of computational power in the system that is
adversarial, and the probability d of message loss satisfies β

1−β < η · (1− d). Given s ≥ 0, let bJ be the
first η-Nakamoto block mined after time s. There exist constants C, c > 0 such that for any honest user
h and for all k′ ≥ 1,

P ((h, J, η, k′) -user-unheard-criterion fails) ≤ Ce−ck′

Proof. By the union bound, we have

P

(︄ ∞⋃︂
k=k′

{︃
Unheardh

(︁
bkJ
)︁
>

(︃
1− η

2

)︃
k

}︃)︄
≤

∞∑︂
k=k′

P
(︃
Unheardh

(︁
bkJ
)︁
>

(︃
1− η

2

)︃
k

)︃
. (24)

From remark 4.17, it follows that Unheardh
(︁
bkJ
)︁
≤ Geom (1− d). Thus, for all k ≥ 1, we have

P
(︃
Unheardh

(︁
bkJ
)︁
>

(︃
1− η

2

)︃
k

)︃
≤ P

(︃
Geom (1− d) >

(︃
1− η

2

)︃
k

)︃
≤ C0 · e−ck,

for some positive constants C0 and c. Combining this with (24) yields

P

(︄ ∞⋃︂
k=k′

{︃
Unheardh

(︁
bkJ
)︁
>

(︃
1− η

2

)︃
k

}︃)︄
≤

∞∑︂
k=k′

C0 · e−ck = C · e−ck′
,

where C = C0

1−e−c is a positive constant. This concludes the proof.

B.7 Proof of Theorem 3.2
Before we prove our main result, we recall a useful lemma about Poisson random variables.

Lemma B.1. Let X be a Poisson random variable with mean µ. Then

(i) P (X ≥ 2µ) ≤ e−
4
3µ.

(ii) P
(︁
X ≤ 1

2µ
)︁
≤ e−

1
8µ.

Proof. The proof follows from Theorem 4.5 in [MU17].
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We are now ready to state and prove our main result.

Theorem 3.2. Let β be the fraction of computational power in the system that is adversarial, and d be
the probability of message loss. If β

1−β < (1− d), then for every ε > 0, there exist positive constants a
and b such that for all τ ≥ 0 and for any honest transaction tx and any finite set of honest users H:

P (tx violates (τ,H)-security) ≤ exp
(︁
−aτ1−ε

)︁
+ |H| exp (−bτ) .

Proof. Let η be such that β
1−β < η · (1− d). Let k0 =

⌈︂
2η
1−η

⌉︂
, and fix an honest subset of users H.

The idea of the proof is as follows: if an η-Nakamoto block bJ is mined in the time interval (s, s + t1),
and k0 number of J-FS blocks are mined before time s + t1 + t2, and if all users h ∈ H satisfy the
(h, J, η, k0)-user-unheard-criterion, then Theorems 5.1 and 5.2 together imply that the η-Nakamoto block
bJ is included in Ch(t) for all t ≥ s + t1 + t2. Since tx must be included in either bJ or its ancestors, tx
satisfies (t1 + t2,H)-security.

Let bJ be the first η-Nakamoto block mined after time s. Let TJ = τJ − s denote the time between
s and the mining time of the first η-Nakamoto block. For the r-th honest block br and any time t, let
Nr(t) denote the number of r-FS blocks mined until time t. Consider the following events:

E1 : TJ > t1

Eh
2 : The (h, J, η, k0) -user-unheard-criterion is violated

E3 :
⋃︂

r:τr∈[s,s+t1]

{Nr (s+ t1 + t2) < k0} .

By the first paragraph of the proof, the union bound gives

P (tx violates (t1 + t2,H)-security) ≤ P (E1) +
∑︂
h∈H

P
(︁
Eh
2

)︁
+ P (E3) . (25)

From Theorem 5.7, we have that for any ε > 0, there exist positive constants A′, a′ such that P (E1) ≤
A′ (︁exp−a′t1−ε

1

)︁
.

From Theorem 5.8, we have that there exist positive constants C, c′ such that P
(︁
Eh
2

)︁
≤ C exp (−c′k0)

for all h ∈ H.
It remains to bound P (E3). Let λh denote the aggregate mining rate of the honest users. Let

t2 > 2k0

(1−d)λh
. Let M be the number of honest miners in [s, s+ t1], so that M has the Poisson distribution

with mean λh (1− d) t1. Therefore, we have from Lemma B.1 that

P (M > 2λht1) ≤ exp

(︃
−4λht1

3

)︃
.

For r ≥ 1, consider the r-th honest miner br after time s and consider the r-FS sequence. Let Ur

denote the number of r-FS blocks mined in [τr, τr + t2]. Then, Ur has the Poisson probability distribution
with mean λh (1− d) t2. Applying Lemma B.1, we get

P (Ur ≤ k0) ≤ P
(︃
Ur ≤

1

2
λh (1− d) t2

)︃
≤ exp

(︃
−λh (1− d) t2

8

)︃
.

Therefore, we have

P (E3) = P (E3 ∩ {M > 2λht1}) + P (E3 ∩ {M < 2λht1})

≤ P (N > 2λht1) +

2λht1∑︂
r=1

P (Ur ≤ k0)

≤ exp

(︃
−4λht1

3

)︃
+ 2λht1 · exp

(︃
−λh (1− d) t2

8

)︃
.
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Therefore, combining (25) and the bounds on P (E1), P
(︁
Eh
2

)︁
, and P (E3) yields

P (tx violates (t1 + t2,H)-security) ≤ P (E1) +
∑︂
h∈H

P
(︁
Eh
2

)︁
+ P (E3)

≤ A′ exp
(︁
−a′t1−ε

1

)︁
+
∑︂
h∈H

C exp (−ct2) + exp

(︃
−4λht1

3

)︃
+ 2λht1 exp

(︃
−λh (1−d) t2

8

)︃
≤ A exp

(︁
−at1−ε

1

)︁
+B (|H|+ t1) exp (−bt2)

for some positive constants A, a, B, and b. The following lemma therefore completes the proof of Theorem
3.2.

Lemma B.2. Let ε > 0. Suppose there exist positive constants A, a, B, b such that for all t1 > 0, t2 > 0
and for any honest transaction tx and any finite set of honest users H:

P (tx violates (t1 + t2,H)-security) ≤ A exp
(︁
−at1−ε

1

)︁
+B (|H|+ t1) exp (−bt2) . (26)

Then there exist positive constants a′′′ and b′′′ such that for all τ ≥ 0 and for any honest transaction tx
and any finite set of honest users H:

P (tx violates (τ,H)-security) ≤ exp
(︁
−a′′′τ1−ε

)︁
+ |H| exp (−b′′′τ) . (27)

Proof. The lefthand side of (26) is zero if H = ∅ so assume without loss of generality that |H| ≥ 1. Given
τ ≥ 0, let t1 = t2 = τ/2. Then (26) yields

P (tx violates (τ,H)-security) ≤ A exp
(︁
−(a/21−ϵ)τ1−ε

)︁
+ 2B (|H|+ τ) exp (−(b/2)τ) . (28)

Let a′ and b′ be positive constants such that a′ < a/21−ϵ and b′ < b/2. Let τ̄ be so large that
A exp

(︁
−[(a/21−ϵ)− a′]τ1−ε

)︁
≤ 1 and 2B exp (−[(b/2)− b′]τ) ≤ 1 for all τ ≥ τ̄ . Then for τ ≥ τ̄

P (tx violates (τ,H)-security) ≤ exp
(︁
−a′τ1−ε

)︁
+ (|H|+ τ) exp (−b′τ) (29)

Let b′′ be a positive constant with b′′ < b. Then, using the assumption |H| ≥ 1,

(|H|+ τ) exp (−b′τ) = |H| exp (−b′′τ) + τ exp (−b′τ)− |H|(exp (−b′′τ)− exp (−b′τ))
≤ |H| exp (−b′′τ) + τ exp (−b′τ)− (exp (−b′′τ)− exp (−b′τ))
= |H| exp (−b′′τ)− (exp (−b′′τ)− (1 + τ) exp (−b′τ))
≤ |H| exp (−b′′τ) for all τ sufficiently large (30)

Combining (29) and (30) implies that there exists τ̄ ′ such that

P (tx violates (τ,H)-security) ≤ exp
(︁
−a′τ1−ε

)︁
+ τ exp (−b′′τ) for τ ≥ τ̄ ′ (31)

Select positive constants a′′′ and b′′′ such that a′′′ < a′ and b′′′ < b′′ and

1 ≤ exp
(︁
−a′′′τ1−ε

)︁
+ τ exp (−b′′′τ) for 0 ≤ τ ≤ τ̄ ′ (32)

Combining (31) and (32) yields (27) for all τ ≥ 0.

This concludes the proof of Theorem 3.2.
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