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Abstract

Security analyses for consensus protocols in blockchain research have primarily focused on the
synchronous model, where point-to-point communication delays are upper bounded by a known finite
constant. These models are unrealistic in noisy settings, where messages may be lost (i.e. incur
infinite delay). In this work, we study the impact of message losses on the security of the proof-of-work
longest-chain protocol. We introduce a new communication model to capture the impact of message
loss called the 0-co model, and derive a region of tolerable adversarial power under which the consensus
protocol is secure. The guarantees are derived as a simple bound for the probability that a transaction
violates desired security properties. Specifically, we show that this violation probability decays almost
exponentially in the security parameter. Our approach involves constructing combinatorial objects
from blocktrees, and identifying random variables associated with them that are amenable to analysis.
This approach improves existing bounds and extends the known regime for tolerable adversarial
threshold in settings where messages may be lost.

1 Introduction

Blockchain is the data structure used by peers (miners) in a peer-to-peer network to maintain a common
ledger in a decentralized manner. The consistency of this ledger is ensured through consensus protocols
such as the longest-chain protocol. Following this protocol, an honest miner groups transactions into a
block and appends its block to the longest chain in its view, before broadcasting the new blockchain to
all other peers. Further, the system may have adversarial users that deviate from the protocol arbitrarily.
Despite adversarial users attempting to disrupt the system and peer-to-peer communication incurring
message delays, the parties following the protocol must agree on a consistent ledger.

Blockchain security has been studied under various consensus protocols (see [BSABT19, GK20| for a
survey). Of these, the longest-chain protocol is of great interest, due its heavy use in modern blockchain
implementations. The longest-chain protocol has been modeled under various assumptions: for exam-
ple, discrete time is used in |GKR20, BKM™20|, and continuous time dynamics is used in |[LGR21}
Ren19,[DKT20]. Further, the protocol has also been studied for a variety of leader election mechanisms
in the consensus protocol. For instance, |[PSS17,Renl9, GKL20| assume the proof-of-work mechanism,
whereas [PS17, KRDO17,[FZ17| assume a proof-of-stake mechanism. All these works establish security
of the longest-chain protocol for the synchronous communication model, where communication delays
are upper bounded by a known finite constant. A common theme among these results is that in the
synchronous delay model, the longest-chain protocol is ‘secure’ under sufficient honest representation,
with high probability.

In this work, we analyze the impact of message losses on the security of the longest-chain protocol
following proof-of-work leader election, by introducing and analyzing an appropriate communication
network model. We motivate this by reviewing some existing communication models in the literature
and the known security guarantees associated with them.

1.1 Related Work

The underlying communication network can delay the successful delivery of peer-to-peer message broad-
casts. Popular blockchains such as Bitcoin use the Internet as their communication network. Since this
communication is subject to delay, it is natural to model the delays incurred by each block, and study
the impact of delay on the security of the longest-chain protocol.

Let 0 < ¢ < j. Let b; represent the ¢-th mined honest block. Let delay (b; — b;) denote the time taken
for block b; to reach the miner of block b;, and let 3 represent the fraction of adversarial computational
power in the system. Finally, let A be the rate at which blocks are mined in the system. Various
descriptions of delay (b; — b;) lead to different communication network models:



Instantaneous Model The original white-paper by Satoshi Nakamoto [Nak08| assumes an ideal com-
munication channel, i.e. delay (b; — b;) = 0. In this model, the longest-chain protocol is provably secure
when the honest computational power in the system exceeds the adversarial computational power, i.e.
when § < 1— 3, or equivalently, when 8 < 1/2.

Synchronous Model The model assumes a deterministic delay for each block that is upper bounded
by a known constant A, i.e., delay (b; = b;) < A < co. This delay effectively reduces the growth rate of
the chain held by an honest user. Even so, it has been proved |[DKT"20, GKR20| that the synchronous
model is secure with high probability if and only if
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where A is the total mining rate of the honest users.

Partially Synchronous Model The partially synchronous model assumes the existence of some
unknown and adversarially chosen ‘Global Stabilization Time (GST)’ such that the delays are un-
bounded before GST, but bounded after it |[DLS88]. Therefore, at any time ¢, the delay satisfies
delay (b; — b;) < A +max (0,GST — ¢). If certain conditions are met, the partially synchronous model is
known to be secure with high probability after the Global Stabilization Time [NTT21].

Sleepy Model The sleepy model considers the setting where miners may either be online or offline,
and their participation status may change during the execution of the protocol [PS17|. Let h; denote the
miner of block b;. The incurred delay is thus

0  h; is awake when b; is mined

delay (b; — b;) = .
v 2 {oo h; is asleep when b; is mined

Pass and Shi [PS17] showed that consensus can be achieved in the sleepy model with high probability, if
a majority of the awake miners at any point in time are honest.

Random Delay Model The random delay model assumes that the point-to-point delays are inde-
pendent and identically distributed, i.e. delay (b; — b;) ~ X, where X is some known distribution. The
longest-chain protocol is shown to be secure with high probability in the random delay model, if the
delay distribution satisfies certain conditions and the adversarial representation in the system is below a
certain threshold [SGH21].

Except for the random delay model, none of the above models account for the possibility that point-
to-point communication may incur infinite delay, i.e. messages may be lost at random. For instance,
the sleepy model allows infinite delay for users that are offline, but does not account for noise in the
communication process. In contrast, we introduce and analyze a new communication model to study the
impact of lost messages on blockchain security.

1.2 Contributions

0-oo Model We introduce the 0-co model, where the delays are independent and identically distributed
over the set {0,00}. Specifically, for any 4, j > 0 such that i < j:

delay (b > by) = {0 with probability 1 —d
oo with probability d

This simple model postulates that a message sent point-to-point is either immediately received or per-

manently lost. This delay is independent for each user, and for each block. The modeling choice aligns

with our objective of studying the effect of message losses.

We remark that the 0-oo model is a special case of the i.i.d. random delay model introduced
in [SGH21|, which identifies a region of tolerable adversarial power as a function of the delay distri-
bution. Specifically, if d is the probability of message loss and § is the fraction of computational power
in the system that is adversarial, it is shown that the 0-co model is secure with high probability when

B < 21(1__22). However, this characterization is not tight for the 0-co model, and the analysis in [SGH21|
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Figure 1: Improvement in the region of tolerable adversarial power

breaks down in the high-noise regime. For example, security of the model cannot be established when
d > 1/2, i.e. more than half the messages are lost on average.

It is reasonable to wonder if adversarial computational power can at all be tolerated in the high-noise
regime, for instance, when almost all messages are lost. Our work answers this question in the affirmative,
by expanding the known security threshold for the 0-co model. In particular, our sufficient condition for
security is % < 1 —d. Figure |l{ shows this improvement.

Our method of analysis is significantly different from that in [SGH21|: we introduce a transmission-
graph that captures the history of communication delays between blocks, and identify special paths in
the graph that are linked to random variables which are amenable to analysis. Specifically, we identify
special objects such as forward-special and backward-special blocks, and associate with them random
variables such as forward-unheard and backward-unheard. Our technique also presents a new approach
to infer the inclusion of special blocks in the chain held by an honest user through the concept of user-
unheard-criterion. The method of analysis is inspired from [DKT™ 20|, where security of the synchronous
model is established by considering races between honest and adversarial chains. However, our approach
does not rely on message delays being finite, and we hope that the tools we introduce are of utility in the
study of consensus mechanisms in more general settings, as well as of independent mathematical interest.
Our contributions are summarized as:

e We introduce the 0-co model as a playground for studying the impact of message losses. This model
provides a starting step for more complex models involving message losses.

e We introduce combinatorial objects of independent interest such as the transmission-graph. We
also identify random variables (forward-unheard, backward-unheard) associated with this graph
that are amenable to analysis, and introduce the user-unheard-criterion. These concepts may be
utilized in security analysis of blockchain protocols in more general settings.

e We prove that the longest-chain protocol is secure in the 0-oo model if certain conditions are
met. These conditions are fairly general, and considerably extend the known threshold of tolerable
adversarial power. In this regime, we show that the probability of security violation decays almost
exponentially in the security parameter.

2 System Model

In this section, we describe our system model. We consider the setting where infinitely many miners
participate in the longest-chain protocol for an infinite duration, and use proof-of-work as the leader
election mechanism.

Ledgers, Transactions, Miners, and Blocks Blockchain is the data structure at the heart of the
decentralized mechanism to maintain and update a ledger. The ledger is simply an ordered list of
transactions. Transactions are assumed to be available to all the miners as soon as they are made.



Miners verify the validity of transactions, and update the ledger by grouping the transactions into blocks
and linking blocks to form a blockchain. A block is an abstract data structure that contains a hash pointer
to a parent block, a cryptographic signature of the block’s miner, transactions, and other metadata. The
first block in the system is called the genesis block.

Longest-Chain Protocol and Proof-of-Work Miners follow the proof-of-work longest-chain proto-
col for consensus. Following this protocol, a miner groups any and all transactions that are not included
in this longest chain into a block, and attempts to append the block to the longest chain in its view. To
do so, it must solve a hash puzzle and include the solution as proof-of-work. If the miner is successful, it
broadcasts its chain as a message to other miners over a peer-to-peer network, subject to a communica-
tion delay. Upon receiving this message, an honest miner adopts the new chain if the received chain is
longer than the chain in the miner’s memory. Ties are broken using any deterministic rule, for example,
by choosing the chain that terminates in the block that hashes to a lower value. The process continues
indefinitely. We assume there are infinitely many miners, and at any finite time, a miner who successfully
solves the hash puzzle is doing so for the first time almost surely.

Parties in the Protocol We refer to parties in the protocol as users. Users that contribute to modi-
fying the ledger through appending blocks to the blockchain are called miners. A miner is either honest
or corrupt. Honest miners follow the longest-chain protocol, whereas corrupt miners may deviate from
the protocol. For simplicity, all corrupt users are grouped into a single entity called the adversary. This
allows corrupt miners to communicate instantaneously, and captures the strong setting of perfect coor-
dination between corrupt miners. The adversary can mine on any previously mined block, but its block
must contain the proof-of-work to be valid. It can reveal its chain to any subset of honest users, and
can delay its message by arbitrary amounts of time. It can also not include all the transactions it knows
about that were not in ancestor blocks. We use (3 to represent the fraction of computational power in
the system that is adversarial.

Mining Process The mining process is abstracted as follows. Let A denote the total mining rate of
the system. We consider a continuous time model where blocks are mined as a Poisson process with rate
A. Since 8 denotes the fraction of power that is adversarial and since successive mining instances are
independent, adversarial block arrivals follow a Poisson process with rate SA.

Blockchains and Blocktrees From any block, a unique sequence of blocks leading back to the genesis
block can be identified via the hash pointers. We call this sequence a blockchain, or simply a chain. The
convention is that the genesis block is the first block of a chain, and the terminating block is called the
tip. At any given slot, honest users store a single chain in their memory.

Communication Delays We consider the setting where messages are either instantaneously delivered
or permanently lost in an independent and identically distributed manner. Let delay (b; — b;) denote the
delay incurred by block b; to reach the miner of block b;. It is assumed that:

0, with probability 1 —d

delay (b; — b;) =
v ( 2 {oo, with probability d

Here, d is the probability of message loss in an instance of point-to-point communication.

3 Main Result

In this section, we outline the desired security properties and present our main result. We define security
on the level of transactions. It is desirable that a transaction eventually makes it to the ledger, and stays
permanently at the same position in the ledger. This notion is formalized in Definition [3.1

Definition 3.1 (Security). Let 7 > 0. Let H be any set of honest users. For any h € H, let Ci(t) denote
the chain held by user h at time t. We say that a transaction tx made at some time s is (1, H)-secure if
for any hi,he € H and any s1,82 > s+ 7, it holds that tx is included in a block b that is at the same
position in Cp, (s1) and Cp,(s2).



In the literature, security of a transaction is often defined as the confluence of persistence and liveness.
A transaction satisfies liveness if it is eventually added to the ledger, and it satisfies persistence if it
remains in the same position in the ledger for all future time, after a confirmation time. We remark
that our definition of security implies these notions of persistence and liveness, and is consistent with
existing definitions of security, such as in |[GKL15,[DKT*20|. Specifically, if a transaction tx satisfies
(7, H)-security, then it is part of the chain held by all users in H before a confirmation time 7 time has
elapsed. Furthermore, once this confirmation time elapses, the transaction remains at the same position
in the ledger for all future time. Our main result shows that if certain conditions are satisfied, then any
transaction tx satisfies (7, H) security except with a probability that decays almost exponentially in the
confirmation time and scales linearly in the size of H. It is stated as Theorem

Theorem 3.2 (Main Result). Let 8 be the fraction of computational power in the system that is adver-
sarial, and d be the probability of message loss. If % < (1 —d), then for every e > 0, there exist positive
constants a and b such that for all 7 > 0 and for any honest transaction tx and any finite set of honest
users H:

P (tx violates (1, H)-security) < exp (—ar'™%) + |H|exp (—b7).

The result states that under a certain threshold of tolerable adversarial power, the probability of
security violation for any transaction and any finite set of users decays (almost) exponentially in the
confirmation time. Hence, this violation probability can be made arbitrarily small by appropriately
selecting the confirmation time. The sufficient condition % < 1 — d significantly improves the known
threshold of tolerable adversarial power for the 0-co model (Figure . We also remark that our bound
for the probability violation comprises of two terms, the latter of which scales linearly in |#H|. This
linear scaling is expected, because no single message is successfully transmitted to all users in the model.
Therefore, requiring a larger set of users to permanently adopt a transaction in their ledger requires a
larger waiting time.

4 Definitions and Preliminaries

This section introduces key quantities that are used extensively in the analysis. In Section [£1] we
introduce the combinatorial objects on which the analysis is performed, such as the main-blocktree and
the transmission-graph. Properties of these objects are presented alongside to motivate their purpose.
In Section key random variables that are amenable to analysis, and associated with special paths in
the transmission-graph are identified. These quantities are illustrated through an example in Section
In Section [£4] these random variables and are used to define ‘catch-up events’, and the notion of ‘n-
Nakamoto blocks’. Finally, Section [£.5] introduces the ‘user-unheard-criterion’, which is used to infer
useful information about the blockchain held by a user.

4.1 Graphs and Trees

Three combinatorial objects at the core of our analysis are the main-blocktree and the transmission-graph.

Main-blocktree Any block can be uniquely traced back to the first block in the system (called genesis
block). The set of all blocks generated (mined) up till time ¢ forms a directed tree, which we refer to as
the main-blocktree and denote it by MB(t). Here, MB(t) = (V4, E), where the vertex set V; is the set of
all blocks mined up till time ¢ and the set of directed edges F; comprises all parent-to-child block pairs.
MB(t) represents the global information about the system, and both honest and adversarial blocks are
included in it. Figure shows an example of the vicinity of the j-th honest block, b; in some MB(?).

Definition 4.1 (Heights). Let b; be the j-th honest block. The height of b; in a blocktree is the length
of the directed path (counting edges) from the genesis block to b;. We denote the height of b; in the
main-blocktree by heightyg (b;).

Transmission-graph At any time ¢, we associate with the main-blocktree MB(t), a graph consisting
of only honest blocks that we call the transmission-graph. The transmission-graph at time ¢, denoted
TG(¢) is a directed acyclic graph that represents the history of network delays among the honest miners.
Here, TG(t) = (V4, E;), where the vertex set V; is the set of honestly mined blocks up till time ¢. An
edge between b; and b; is present if delay (b; — b;) = 0. A useful observation about TG(T') is presented
in Lemma [£.2
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Figure 2: Graphs and trees used in analysis

Lemma 4.2. Let b; and by, be the i-th and k-th honest blocks such that i < k. At any time t, suppose
there exists a path A, 1, of length n from b; to by in TG(¢), i.e.

-Ai,k3 bi =TV — V1 —-~-—Un=bk.
Then,
heightMB (bk) — heightMB (bz) 2 n

Proof. If v;—1 and v; are two blocks in TG(¢) such that there is an edge from v;_; to v;, then the miner
of block v; has heard of block v;_1. Therefore, it adds its block at a height greater than that of v;_1, so
we have

heightyg (v;) > heightyg (vi—1) + 1
Repeatedly applying this inequality over the path from b; to by yields the desired result. O

4.2 Special Sequences of Honest Blocks

Relative to the j-th honest block b;, we define sequences of special blocks that correspond to forward and
backward paths in TG(t). We also define notions of ‘forward unheard’ and ‘backward unheard’.

4.2.1 Forward Special Blocks
Relative to the j-th honest block b;, we define a sequence of ‘forward special (FS)’ blocks as follows.

Definition 4.3 (j-FS Sequence). Let j > 0 and let b; be the j-th honest block. The j-FS sequence is a

sequence of blocks (b2,b, b2, ---) such that b0 = b;, and for all k > 1, b* is the first block to hear of pr—t
3075075 J J J J

We refer to blocks in the j-FS sequence as j-FS blocks. For 0 < j < k, denote by FS; (b;) the number
of j-FS blocks mined between b; and by, (inclusive). Note that FS; (br_1) > 1, because b; is always a j-FS
block. The j-FS sequence associated with the transmission-graph in Figure is shown in Figure
Notice that FS; (bj4+5) = 3 and FS; (b;46) = 4. This example is explored in more detail in Section
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Figure 3: j-FS Sequence

Remark 4.4. Let 0 < j < k. Let d be the probability of message loss. The random variable FS; (by) has
the same distribution as 1 + Ei:f Be; (1 — d), where Be; (1 —d) are i.i.d. Bernoulli random variables
with success probability equal to 1 — d. This is because b; is a j-FS block, and every subsequent block is
independently j-FS with probability 1 — d.

Lemma 4.5. Let j > 0. The j-FS sequence (b?7 b;, b?, -++) 18 a forward directed path in the transmission-

graph. Further, if k > i > 0, then the heights of the j-FS blocks b; and b? satisfy:
heightyg (b}) — heightyg (b}) > k — i

Proof. Let k > 0. Since the miner of b?“ has heard of bf, there is an edge from b;? to bf“. The
conclusion follows from Lemma [£.2] O

Definition 4.6 (Forward Unheard). Let k > j > 0. The Forward Unheard for block by with respect
to block b; is denoted FU; (by) and defined as the number of consecutive j-FS blocks that the miner of
bi has not heard of, going backwards along the j-FS sequence from the last such block mined before by.
If the miner of by has not heard of any j-FS block, then we toss independent biased coins (with failure
probability equal to the probability of message loss) and continue to increment the count until a success
s encountered.

Remark 4.7. Let 0 < j < k. Let d be the probability of message loss. The random variable FU; (by)
has the same distribution as Geom (1 — d) — 1, where Geom(1 — d) is a geometric random variable, with
minimum value 1. Further, if k' > 0 such that k' # k, then FU; (by) and FU; (by/) are independent.

The intuition for defining FU; (by) as above is illustrated through an example in Section

4.2.2 Backward Relative Special Honest
Relative to the j-th honest block b;, we define a sequence of ‘backward special (BS) blocks as follows.

Definition 4.8 (j-BS Sequence). Let j > 0, and let b; be the j-th honest block. The j-BS sequence is a
sequence of blocks (b?,bj_l, bj_2, --+) such that b) = b; and b; " is the most recently mined block heard by
bj._(i_l) for alli>1.

For 0 < < j, denote by BS; (b;) the number of j-BS blocks mined between b; and b; (inclusive). Note
that BS; (b;) > 1, since b; is always a j-BS block. The j-BS sequence associated with the transmission-
graph in Figure is shown in Figure [4] Notice that BS; (bj_5) = 4 and BS; (b;—¢) = 5. This example
is explored in more detail in Section
Remark 4.9. Let 0 <¢ < j. Let d be the probability of message loss. The random variable BS; (b;) has

the same distribution as 1 + ch;zl Bey (1 — d), where Bey (1 —d) are i.i.d. Bernoulli random variables
with success probability equal to 1 — d. This is because b; is a j-BS block, and every previous block is
independently j-BS with probability 1 — d.

0 p-1

Lemma 4.10. Letj > 0. The j-BS sequence (b], z 7b;2, -++) is a backward directed path in transmission-
graph. Further, if k > i > 0, then the heights of the j-BS blocks bj_i and bj_k satisfy:

heightyg (b; ") — heightyg (b;") > k — i
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Proof. Let i > 0. Since the miner of b;(ifl) has heard of b;i, there is an edge from b;i to b;(ifl). The
conclusion follows from Lemma [£2] O

Definition 4.11 (Backward Unheard). Let j > i > 0. The Backward Unheard for block b; with respect
to block b; is denoted BU; (b;) and defined as the number of consecutive j-BS blocks whose miners have
not heard of b;, going backwards along the j-BS sequence from the first such block mined after b;. If
none of the miners of j-BS blocks have heard of b;, then we toss independent biased cones (with failure
probability equal to the probability of message loss) and continue to increment the count until a success
is encountered.

Remark 4.12. Let 0 < ¢ < j. Let d be the probability of message loss. The random variable BU; (b;)
has the same distribution as Geom (1 — d) — 1, where Geom(1 — d) is a geometric random variable, with
manimum value 1. Further, if i' > 0 such that i’ # i, then BU; (b;) and BU; (by/) are independent.

The intuition for defining BU; (b;) as above is illustrated through an example in Section The
usefulness of these quantities is evident from Lemma [£.13]

Lemma 4.13. Let: < j < k.
(1) If FS; (bg—1) > FU; (bx), then heightyg (bx) — heightyg (b;) > FS; (br—1) — FU; (bg).
(’LZ) If BSJ (bz+1) > BUJ (bl), then heightMB (b]) — heightMB (bz) > BSJ (b,+1) — BUJ (bl)

Proof. We prove statement (i). Let m = FS; (by—1) — FU; (by) > 0. Consider the j-FS sequence
(63,65, -+, 07", ---). Note that FS; (by_1) is the number of j-FS blocks mined before by, and FU; (by.) is
the number of consecutive blocks from this sequence that were not heard by by going backward. There-
fore, by, has heard of b7, and will mine at a greater height. Since the j-FS blocks are all mined at different

heights, we have
heightMB (bk) — heightMB (b]) > heightMB (b;n) — heightMB (b?) Z m = FSJ (bk_l) — FU] (bk),

as desired. The proof of statement (ii) is essentially the same, because the forward sequences FS; and
FU; map to the backward sequences BS; and BU; under reversing the directions of the edges in the
transmission-graph. O

4.3 An Example

Some of the concepts introduced above are best understood through an example. Consider the main-
blocktree in Figure and its associated transmission-graph in Figure The same transmission-
graph is shown again in Figure [5] where the j-FS and j-BS blocks are highlighted. Recall that in the
transmission-graph, a directed edge from b; to by indicates that the miner of by has heard of the block
b;.

j-FS Sequence By definition, b; is a j-FS block. The miner of the next block b;4; has heard of the
most recent j-FS block b;, so b} = b;11 is a j-FS block. The miner of bj;2 has heard of b;, so we have
that bj1o = b? is also a j-FS block. However, the miners of b;y3, bj 14 and b;15 have not heard of b?, SO
these blocks are not j-FS. Finally, the miner of b;1¢ has heard of b?, so we have that b?- = bjy¢. Notice

that no two j-FS blocks can share the same height.
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Figure 5: Example of j-FS and j-BS sequence

Forward Unheard Let us consider FU; (b;) with k = j 4+ 4. Starting from b, we count the number
of consecutive j-FS blocks that the miner of by has not heard of, going backwards in the j-FS sequence.
The j-FS sequence at the mining time of by, is (b, b;41,bj4+2). Going backwards in this sequence, we see
that the miner of by has not heard of b; 12, but has heard of b;; ;. Therefore, we stop the count and have
FU; (bya) = 1.

j-BS Sequence By definition, b; is a j-BS block. Since the miner of the most recent j-BS block (b,)
has heard of the previous block b;;, we have that b;_; = bj_1 is a j-BS block. Similarly, the miner of
bj_1 has heard of b;_», so we have that b;_o = bj_2 is a j-BS block. However, the miner of bj_2 has not
heard of b;_3, and so b;_3 is not a j-BS block. Notice that no two j-BS blocks can share the same height.

Backward Unheard Let us consider BU; (b;) with ¢ = j — 3. Starting from the first j-BS block mined
after b;, we count the number of consecutive j-BS blocks that have not heard of b;, going backwards in
the j-BS sequence. The j-BS sequence at the mining time of b; is b;,b;_1,b;—2. Going backwards in
this sequence, we see that the miners of b;_» and b;_; have not heard of b;, but the miner of b; has.
Therefore, we stop the count and have BU; (bj_3) = 2.

4.4 Catch-up Events and n-Nakamoto Blocks

In this section, we define catch-up events and n-Nakamoto blocks.

Adversarial arrivals Let a(b;, b;) denote the number of adversarial blocks mined between the mining
times of the i-th and j-th honest blocks. Similarly, let a(bé-, bf) denote the number of adversarial blocks
mined between the i-th and k-th j-FS blocks.

Definition 4.14 (Catch-up Events). Let 0 <i < j < k, and let 0 < n < 1. The forward and backward
catch-up events are respectively defined as:
é
B : alby,bi) = - FS; (i) — FU; (by) 8y
B albi,by) =0+ BS; (biy1) — BU; () 2)
%

These events are catch-up events in the following sense. If the event B % occurs for some j < k
and 0 < 7 < 1, then more adversarial blocks have been mined in [7;, 7] than effective j-FS blocks. For
instance, when 7 = 1, more adversarial blocks have been mined in [7;, 7%] than the number of blocks in the
J-FS sequence from b; up to the last j-FS block heard by the miner of by. If these adversarial blocks were
to form a side chain rooted at b;, then there is a possibility that b, mines on this side chain. However,
such an attack would fail if the catch-up events did not occur, because there would necessarily be a chain
longer than the adversarial side chain that the miner of by is aware of. Here, 1 is a robustness measure:

If the catch-up event does not occur for a small value of 7, then the honest blocks have a considerable
lead over adversarial side chains.

Longest Chains of the main-blocktree A longest chain of the main-blocktree at time ¢ is a path in
MB(t) whose length is no shorter than any path in MB(¢). Notice that MB(¢) can have multiple longest
chains.



n-Nakamoto Blocks A desirable property for honest block b; is the existence of some 0 < 1 < 1 such

_>
that none of the events Bg-n,g occur for any ¢ < j and none of the events EE? occur for any k > j.

Intuitively, this ensures that adversarial chains rooted at any block b; with 7 < ’j are never long enough
for any block by, with & > j to extend them. In turn, this suggests that block b; would be in every
longest chain of the main-blocktree right from being mined. We formalize this property using the notion
of n-Nakamoto blocks below, and make this intuition rigorous in Section

Definition 4.15 (n-Nakamoto Block). Let j > 0 and 0 < n < 1. The j-th honest block b; is said to be
an n-Nakamoto block if the event

N O [BRIO N [ER] 3)

i1 1<j k:k>j
OCCUrTsSs.

We remark that an 7-Nakamoto block is also an n'-Nakamoto block, for any n’ € [n, 1].

4.5 User-unheard-criterion

n-Nakamoto blocks are useful because they belong to every longest chain of the main-blocktree. However,
this is not equivalent to n-Nakamoto blocks belonging to any user’s chain for all future time. This is
because at any given time, a given user has not necessarily heard of all the blocks in MB(t). In this
section, we introduce the tools that are relevant to analyzing the state of a user’s chain with respect to
the main-blocktree. We begin by introducing ‘Unheard’ with respect to a user.

Definition 4.16 (User-unheard, Unheard), (bf)) Let j > 0 and let bj be the j-th honest block. Let
(b?,b}, -++) denote the j-FS sequence. Let h be an honest user. For any k > 0, we define Unheardy, (bf)
as the number of consecutive j-FS blocks that the user h has not heard of, going backwards along the j-FS
sequence from bf If h has not heard of any j-FS block, then we toss independent biased coins (with failure
probability equal to the probability of message loss) and continue to increment the count until a success

18 encountered.

Remark 4.17. Let j,k > 0. Let h be any honest user and d be the probability of message loss. Let
Geom(1 — d) be a geometric random variable, with minimum value 1. The distribution of the random
variable Unheardy, (b;“) depends on h:

o Ifh has not mined any block after the mining time of b;, then Unheard, (bf) has the same distribution
as Geom (1 —d) — 1.

e If h is a miner of a j-FS block, then h has heard of its own block as well as the j-FS block that
immediately preceded it. However, all other delays from the miners of j-FS blocks to h are still

independent and identically distributed. In this case, Unheardy (bf) is stochastically dominated by
Geom(1 — d).

o Ifh is a miner of a block by with £ > j, such that by is not a j-FS block, then the delay from the most
recent j-FS block before by to h is infinity. However, all other delays from the miners of j-FS blocks
to h are still independent and identically distributed. In this case, Unheardy, (b;“) is stochastically
dominated by Geom(1 — d).

In all cases, we have Unheardy, (bf) < Geom (1 — d), where the < sign indicates stochastic domination.

We compare ‘forward-unheard’ (denoted FU; (bx)) and ‘user-unheard’ (denoted Unheardy, (bf)) Al-
though similar in spirit, the quantity FU; (by) counts the number of consecutive j-FS blocks not heard by
the miner of block by, going backwards in the j-FS sequence from the last such block before by, whereas
the quantity Unheard), (b;“) fixes an honest user h and similarly counts the number of consecutive such
blocks not heard by h. Since by, and b, are mined by two different miners, then FU; (by) and FU; (by) are
independent random variables. However, Unheard,, (bf) and Unheardy, (bg) need not be independent.

Next, we introduce the user-unheard-criterion, which will later allow us to infer useful information
about the state of a user’s chain from the main-blocktree.

Definition 4.18 (User-unheard-criterion). Let h be an honest user. Let j > 1, ko > 1, and 0 < n < 1.
We say that the (h, j,n, ko)-user-unheard-criterion is satisfied if

Unheard,, (b%) < (1277> k, k> ko, (4)

10



5 Proof Outline

In this section, we present an outline of the proof of Theorem [3.2] First, deterministic and probabilistic
results are stated. These results are used as building blocks in the proof sketch of our main result,
Theorem [3.2] which is presented in Section [5.3] Rigorous proofs of all the results, including the main
result are relegated to the appendix.

5.1 Deterministic Results

Theorem 5.1. Let j > 1 and 0 < n < 1. Let b; be the j-th honest block, and 7; be the mining time of
bj. Suppose b; is an n-Nakamoto block. Then:

(1) b; is the unique honest block at its height in MB(t) for allt > ;.
(i) b; is in every longest chain of MB(t) for allt > ;.
(i) b; is the unique block at its height in MB(7;).
(v) For any k such that k > j, by is a descendant of b; in the main-blocktree.

Proof. See Appendix O

Theorem 5.2. Let h be an honest user. Let 5 > 1 and 0 <n < 1. Let ko = {127—"77—‘ Let Cy,(t) denote the

chain held by h at time t. If b; is an n-Nakamoto block, and if the (h, j, 0, ko)-user-unheard-criterion is
satisfied, then b; € Cp(t) for all t > Tf(’, where Tfo is the mining time of the ko-th j-FS block.

Proof. See Appendix O

5.2 Probabilistic Results

Lemma 5.3. Let0<i<j<j <k, and 0 <n<1. The events:
%
o EE? and B;Z)k are independent.
%
. BEZ) and E§'7,)k are independent.
Proof. See Appendix O

Theorem 5.4. Let j > 1 and 0 <7 < 1. Recall that b; is the j-th honest block and N§n) is the event that
b; is an n-Nakamoto block. If % <n-(1—d), then there exists a positive constant py > 0 such that

P(N) = po >0

Proof. See Appendix [B2] O
%
Lemma 5.5. Let0<n<1landi<j<k. Let Bgnlg and Egnj) be the catch-up events defined in , .
If % <n-(1—=d), there exists a constant ¢ > 0 such that
= —c(k—j
P(E) et
P (EE?) <e U9
Proof. See Appendix [B-3] O

Theorem 5.6. Let 0 < n < 1. Let 8 be the fraction of computational power in the system that is

adversarial and d be the probability of message loss. Let BéigH be the event that there are no n-Nakamoto

blocks in [s,s +t]. If % <n-(1—d), then there exists a constant co > 0 such that for any s,t > 0,

P (B§73+t) < eVt

Proof. See Appendix [B:4] O

11



Theorem 5.7. Let 0 < n < 1. Let B be the fraction of computational power in the system that is

adversarial and d be the probability of message loss. Let BéigH be the event that there are no n-Nakamoto

blocks in [s,s +t]. If % < n-(1—=d), then for every € > 0, there exist positive constants A, a such that
for any s,t > 0,

P (BEZ)H) < Aexp (fatlfs) .

Proof. See Appendix [Bf] O

Theorem 5.8. Let 0 < nn < 1. Suppose the fraction B of computational power in the system that is
adversarial, and the probability d of message loss satisfies % <n-(1—-=d). Given s >0, let by be the
first n-Nakamoto block mined after time s. There exist constants C, ¢ > 0 such that for any honest user

h and for all k' > 1,
P ((h, J,n, k') -user-unheard-criterion fails) < Ce="

Proof. See Appendix O

5.3 Proof Sketch

n-Nakamoto blocks are special blocks that are part of every longest chain in the main-blocktree, for
all time after they are mined (Theorem [5.1)). Therefore, if a transaction is included in an 7-Nakamoto
block or in any of its ancestors, then it will be included in every longest chain of the main-blocktree.
Furthermore, if an honest user is up-to-date with the main-blocktree (specifically, by satisfying a relevant
user-unheard-criterion, and therefore having heard of more forward special blocks with respect to the
n-Nakamoto block, than adversarial blocks), then it is reasonable to expect that the honest user will
also include the transaction in its chain. This idea is formalized in the user-unheard-criterion, and made
rigorous in Theorem [5.2]

The core idea behind the proof of the main result (Theorem is to show that n-Nakamoto blocks
occur frequently with high probability (Theorem [5.7). In turn, this implies that a transaction is highly
likely to be included in an n-Nakamoto block or its ancestor, soon after it is made. Theorem then
shows that it is also highly likely that a relevant user-unheard-criterion will hold for the honest user, once
a waiting time has elapsed.

To prove Theorem we bootstrap from a milder version of it, which is stated as Theorem
Inspired by the proof strategy in [DKT*20|, we prove Theorem by separating catch-up events into
long and short-term catch-up events. We show that long term catch-ups occur rarely as a consequence of
Lemma [5.5] and short-term catch-up probabilities are bounded using a lower bound on the probability
that the j-th block is an n-Nakamoto block (Theorem , and the fact that non-overlapping catch-up
events are independent (Lemma . This establishes that a transaction is highly likely to be included
in the main-blocktree for all future time, once a waiting period has elapsed. This proves thereom

Next, we show that an honest user is likely to always be up-to-date with the main-blocktree, forever
after a waiting time. This is done by explicitly bounding the probability that a relevant user-unheard-
criterion is violated using tools from stochastic analysis. This proves Theorem [5.8]

Theorems [5.7] and [5.8] together imply the main result. The details of this proof are presented in

Appendix [B.7]

6 Conclusion

In this work, we introduced the 0-oco model: a framework to study the impact of random message losses on
the security of the proof-of-work longest-chain protocol. We investigated the security of this protocol by
analyzing the transmission-graph, a dynamically evolving graph that captures the delays incurred by the
blocks mined by honest miners. Specifically, we studied special sequences of blocks and identified random
variables associated with them that are amenable to analysis. These random variables were used to define
useful objects and desirable events, such as n-Nakamoto blocks and user-unheard-criterion respectively.
These ideas allowed us to generalize analysis techniques from the synchronous delay model to a setting
where delays are possibly infinite. We showed that the condition % < 1—d is sufficient for a transaction
to satisfy desired security properties except with a probability that decays almost exponentially in the
security parameter. This greatly improved the known threshold of the fraction of adversarial power that
is tolerable for a given probability of message loss in an instance of point-to-point communication.

12
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A Proofs of Deterministic Results

A.1 Proof of Theorem [5.1]

Theorem Let j > 1 and 0 <n < 1. Let b; be the j-th honest block, and 7; be the mining time of
bj. Suppose b; is an n-Nakamoto block. Then:

(i) b; is the unique honest block at its height in MB(t) for allt > 7.
(i) b; is in every longest chain of MB(t) for all t > ;.
(iit) bj is the unique block at its height in MB(7;).
(i) For any k such that k > j, by, is a descendant of b; in the main-blocktree.

Proof. Let N§") be the event that b; is an 7-Nakamoto block. Recall that

= NS N [ER)

i 4<g k:k>j

(n)

Suppose N,™ occurs, so that b; is an 7-Nakamoto block.

(i) Let t > 7;. We show that b; is the unique honest block at its height in MB(t), i.e. for any i,k >0
such that ¢ < j < k, we show that

heightyg (b;) < heightyg (b;) < heightyg (bk) - (5)

c
We begin by proving the first inequality in (5). Since Ng") occurs, it follows that the event [Eyﬂ

occurs. Therefore, we have

@
heightyg (b;) — heightyg (b;) > BS; (biy1) — BU; (b;)

(b)
> n-BS; (biy1) — BU; (b;)

©
> a(bi7 bj);
where (a) is from Lemma [4.13] (b) follows from the fact that 7 < 1, and (c) is the definition of
C
EW . Since a(b;,b;) > 0, it follows that height b;) < height b;). Similarly, the occurrence
0. J MB mB (0j

_> C
of [Byﬂ implies that heightyg (b;) < heightyg (b). Thus, b; is the unique honest block at its
height in MB(¢).

(ii) We show that b; is in every longest chain of MB(t). Let V be any longest chain in MB(¢), i.e.
V=10 = V1 = — Vheightyg(b;) — "~ Um—1 — Um,

where vg is the genesis block, Vheight,,;(b;) =: v is the block at the height of b;, and m is the height
of MB(t). It suffices to show that v = b;. In fact, since b; is the unique honest block at its height,

14



it suffices to only show that v must be an honest block. Starting from v and traversing blocks in
V in the backward direction, let b; denote the first honest block encountered in V, not including v
itself. Since the genesis block is honest, such a b; exists. Similarly, we also want to traverse blocks
in V along the forward direction. Here, we have two cases:

Case 1: There is an honest block in V after v. In this case, let by be the first honest block in V
after v. Let H denote heightyg (br), and V; be the sequence b; — -+ —v — -+ — by.

Case 2: There is no honest block in V after v. In this case, let by be the first honest block
mined after time t. Let H = m denote the height of the main-blocktree, and V; be the sequence
bi_"'_v_"'_/u’rnn

In both cases, let N denote the number of blocks in Vy, not including b;. Notice that the blocks are
at consecutive heights. We have:

N = H — heightyg (b;)

(a)

> heightyg (b;) + FS; (bi—1) — FU; (bx) — heightyg (b;)
(b)

> (FS; (bk—1) — FU; (b)) + (BS; (bit1) — BU; (b;))

()
> (a(bi,b;) + 1) + (a(b;,by) + 1)
> a’(biv bk) + la

where (a) follows from Lemma in case 1, and the fact that j-FS blocks are mined at different
heights in case 2. Further, (b) is due to Lemma and the fact that n < 1, and (c¢) follows because

(o} _> (o}
the events [E“ﬂ and [Byk)} occur. However, by definition of b; and b, all blocks in V; after b;

1
except for by and possibly v are adversarial. Therefore, there must be at least one honest block in
V1 strictly between b; and bg. Since the only possibility for this is v, it follows that v must be an
honest block. Since b; is the unique honest block at the height of v, we conclude that b; in every
longest chain of MB(t), as desired.

(ili) Let v be a block in MB(7;) such that heightyg (v) = heightyg (b;). Let T be the tine of ancestors
of v. Traversing blocks along the backward direction starting from v, let b; denote the first honest
block encountered. The portion of 7 between b; and v consists of only adversarial blocks. However,

heightyg (v) — heightyg (b;) = heightyg (b;) — heightyg (b;)

(a)
> 1+ BS; (bir1) — BU; (b;)

(®)
> a(bi, bj),

where (a) is from Lemma and (b) is true because b; is an n-Nakamoto block. Since v is the
only possibility for an honest block in the portion of 7 after b;, it follows that v must be an honest
block. From (i), we conclude that v = b;. This concludes the proof.

(iv) Let k > j. Since b, is an n-Nakamoto block, we have from the proof of (i) that heightyg (bx) >
heightyg (b;). Let v denote the ancestor of by, at the height of b; in the main-blocktree. Starting from
v and traversing blocks along the ancestors of v, let b; denote the first honest block encountered.
This is exactly case 1 in the proof of (ii), and it follows that v = b,.

O

A.2 Proof of Theorem [5.2

Theorem Let h be an honest user. Let j > 1 and 0 <n < 1. Let ky = [12_—7’7]—‘ Let Cp(t) denote the

chain held by h at time t. If b; is an n-Nakamoto block, and if the (h, j,n, ko)-user-unheard-criterion is
satisfied, then b; € Cy(t) for all t > Tfo, where Tfo is the mining time of the kq-th j-FS block.
Proof. Let |C(t)| denote the number of blocks in Cp(t). Let 7; denote the mining time of b;, and let TJ]»C

— c
denote the mining time of bé?. Since b; is an n-Nakamoto block, we know that the event [B;’Q} occurs

for all k£ > j. In turn, this implies
a5y <m-(k+1) Yk > 0.

7777

15



However, n(k+1) < (HT”) k whenever k > kq. Further, since (h, j,7, ko)-user-unheard-criterion holds,
we have that Unheard,, (b%) < (17?’7) k whenever k > ko. These facts imply:
a(b9,b511) < k — Unheard,, (%) Vk > ko. (6)

71777

Fix k£ > kg. Let t be such that T]’-“ <t< T;H_l. We show that h includes b; in its chain at time ¢.

Since a(b?, b?“) > 0, it follows from @ that Unheard;, (bf) < k. Therefore, h has heard of at least
one j-FS block. Therefore, |Cy(t)| > heightyg (bj). Let v € Cp(t) be the block at the height of b;. To
show that b; € Cy(t), it suffices by statement (iv) in Theorem to prove that Cp(t) contains at least
one honest block mined in [T]k, 00).

Let C,(t)[" denote the sub-chain of Cj(t) starting from v, i.e. Cy(t)[? contains blocks of Cj(t) that
are at height no less than that of v. We show that (6) implies that C,(¢)* cannot contain all adversarial
blocks. We know from statement (iii) of Theorem [5.1|that b; is the unique block at its height in MB(7;).

Therefore, all blocks in C,(¢)[" are mined at or after time 7;. Since ¢ < Tk+1 we have

a (b)
a(b), o5 ") D Unheard,, (b%) < [Ch(t)"],

where (a) is the same as (6) and (b) follows from the fact that i has heard of b7", where m = k —
Unheard,, (bf) Therefore, h adopts a chain that has length at least heightyg (v) + m. We conclude that

there exists an honest block b, € Cy(t)/". From statement (iv) in Theorem [5.1] it follows that Cp,(t)
contains b;.
The above argument is true for all t € [rF,7/"), so it follows that h € Cp(t) for all t € [7F,7/F1).

Since this is true for all k > ko, it follows that h € C,(t) for all ¢ > Tj’-co, as desired. O

B Proofs of Probabilistic Results

B.1 Proof of Lemma 5.3
Lemma Let0<i<j<j <k,and 0<n<1. The events:

ﬁ
o EE? and Byﬂk are independent.

_>
. BEZ) and E§‘7,)k are independent.
Proof. We prove only the first statement, since the second uses a similar argument. For any m €
{i,5,7',k}, let 7,,, denote the mining time of b,,,. The LHS of the event

—
B albyr,bi) > - FSjr (bs1) — FU» (by)

depends on the number of adversarial arrivals in [7;/, 7;]. Further, the RHS depends on the delays from
b, to all the honest blocks mined in [7j/, 7).
In contrast, the LHS of the event

E(W) . bz, b > - BSJ (bi+1) - BUJ (bl)

depends on the number of adversarial arrivals in [r;, 7;]. Further, the RHS depends on the delays from
all the honest blocks mined in [r;, ;) to b;.
Since honest and adversarial arrivals are independent Poisson processes, and since the delay associated

with any two blocks in [7;, 7;] is independent of the delay assoc1ated with any two blocks in [7;/, 73], and

since the two intervals do not overlap, it follows that E(m and B @k are independent. O

B.2 Proof of Theorem [5.4]

Theorem Let j > 1 and 0 < n < 1. Recall that b; is the j-th honest block and Ng-") s the event that
b; is an n-Nakamoto block. If % <n-(1—=d), then there exists a positive constant py > 0 such that

P (N = po >0
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C
Proof. Fix j. Recall that the event Ngm = %g") ﬂ?;n), where %Em = N [%E?] and ?;T’) =

i1 4<g
N

|:—>
k: k>j

Bgnlz ] ° From Lemma it follows that %gn) and ﬁ;n) are independent events. Therefore,
mY _ (m) mY\ _ (m) (m)
() =p(EPNEY) =p(EP)r(E).

Thus, it suffices to show the existence of p > 0 such that P (E;n)) >pand P (E;")) > p.

Notation: If an i.i.d. random process is a sequence of random variables with known distribution, say
Geometric or Bernoulli with parameter g, we refer to the i-th random variable in the sequence as Geom;(q)
or Be;(q) respectively.

Showing P (ﬁgn)> > p > 0: By definition, the event ﬁy’) occurs if

a(bj, bg) —n - FS; (bg—1) < —FU; (by) Yk > j. (7)
Notice that the LHS are RHS are independent random variables. The random variables inn the LHS are:

k—j
a(b;,by) = (Geom; (1 —5) —1), (8)

i=1

k—j—-1
FSj (br—1) =1+ Z Be; (1 —d), (9)
i=1

where equation follows from the fact that there are Geom (1 — 8) — 1 adversarial arrivals between
two successive honest arrivals, and the fact that the number of adversarial arrivals in disjoint intervals is
independent. Equation @[) follows from Remark
Let (X;: i > 1) be an i.i.d. random process, with X; ~ Geom; (1 —3) —1—1n-Be; (1 —d). Let W; =

>-7_, X; denote the sum of the first j terms of the process (X;: i > 1). Finally, it follows from Remark 4.7
that (FU; (bx) : k > j) is identical to the i.i.d. random process (Y;: ¢ > 0), with Y; ~ Geom; (1 —d) — 1.
Using these random variables, equation can be equivalently stated as

k—j

le < —Yk_j vk > 7. (10)

i=1

Let v be a constant to be determined later, such that 0 < v < 7. The inequality in holds if Ex N Eg
occur, where

Ea: D X;<—vi Vix1
j=1
Eg: —vi< =Y; Vi>1

Here, Ep and Eg are independent events. Therefore, we have P (?;n)> > P(EaNEg) = P(Ea) P (Ep).
It suffices to show the existence of py,ps > 0 such that P(Ea) > p; and P(Eg) > py. First, we bound
P (Eg).

oo

P(Es) =P ( [){Yi<~i} | =[] (@ —d") =p2 >0,

i>1 i=1

since (Y;: ¢ > 1) is an i.i.d process with 14 Y; ~ Geom; (1 — d). Notice that ps > 0 for all 0 < d < 1 and
for all v > 0.

Next, we bound P (Ea). Fix some ¢ € N, and let ¢ be a positive constant given by ¢ = (n—~)¢.
Consider the following two desirable events:

1W< —l—c

20 max (Wesm — Wy +9m) < ¢
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It is clear that 1Ny = Ea, and that ; and 5 are independent events, since Poisson arrivals over disjoint
intervals are independent. Therefore, it suffices to find constants pi1,p12 > 0 such that P(;) > py1; and
P(2) > p12.

l
P(1)2P<in<—7€—c> (11)
=1

l

ZP(Z(Geomi(l—ﬁ)—l—n-Bei(l—d))<—7£—c> (12)
l

:P(Z(Geomi(l_ﬁ)_U'Bei(l—d))S(l—v)f—c> (13)
4

> P (ﬂ [{Geom; (1 — 8) = 1} N {Be; (1 —d) = 1}]) (14)

=Pu ;O, (15)

for fixed ¢, since v < 1 and since c¢ is chosen to be sufficiently small. Here, the inequality in holds
because one way to satisfy the inequality in the event in is when both LHS and RHS of the inequality
equal (1 —n)¢.

It remains to show pjo > 0. Consider the random process (Z;: ¢ > 1), where Z; = X; + 7.
Then, (37", Z;: m >1) and (Weypm, — We + ym: m > 1) follow the same distribution. The Kingman
bound |Kin64] yields,

m
Pl =F (?,3 Z < ) > 1 =i,
- oi=1

where
0" :sup{9>0: E[eezl < 1}}
Since ¢ > 0, we see that p;2 > 0if 6* > 0. We show that 8* > 0 if % < n(l—d). A simple computation
yields
ElZ) =Dz -0 (1-d) 47
1-7 ’
If % < n(1 —d), then there exists 0 < v < 7 such that E[Z;] < 0. Since E [e?*!]

%E [6921]9:0 = E[Z,] < 0, we know that there exists §; > 0 such that E [¢?%]
implies 0* > 67 > 0.
The above argument is summarized as

P (ﬁy)) > P(EA)P(EB) > IED(1) 'P(2) 'P(EB) > P11 pr2-p2=:p>0. (16)

g—o = 1, and

9=, < 1, which then

Showing P (%y])) > p > 0: For any i,k > 0 such that j —i = k—j, it follows from Remarks

%
and [4.12| that P (Ef?) =P (By’k)) By symmetry, we have

p(E0) =p (ﬂ my)

2
where the constant p > 0 is the same as in . This concludes the proof. O
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B.3 Proof of Lemma [5.5]

%
Lemma Let0<np<landi<j<k. Let B;YQ and §§2) be the catch-up events defined in , .
If % <n-(1—d), there exists a constant ¢ > 0 such that

, -
Proof. First, we show the existence of ¢ > 0 such that P (E%) < e~<(k=3) Recall that the event Bgnk)
is defined as
B
j,k: a(bj, bk) Z n- FS] (bk—l) - FUj (bk) .

From Remarks [£.4] [£.7] and these random variables are characterized as:

k—j
a(bj,bx) = Y (Geom; (1—f) —1),
i=1
k—j—1
FS; (be-1) =1+ > Be;j(1—d),
=1

FU; (bx) = Geom (1 — d) — 1.

Further, the three random variables a(b;, bx), FS; (bx—1),FU; (by) are mutually independent. Consider
the following desirable events associated with them.

1: a(bj,bk) < %(/{—]) (1+E)
2: FS; (bg—1) > (1 = d) (k= j) (1 —9)
5 FU; (by) < (k — ) [(1—5)n~(1—d)—1_66(1+5)
Clearly, 1 Ny N3 — [ggnk)r Therefore, we have
P([ER]) 2PGnns) =P PE)PG). (17)

It suffices to find bounds for each term separately in the RHS of .
Bounding i: Since E[a(b;, b;)] = % (k — j), it follows from the Chernoff bound that

(k—j) 1+ e)) < (b=,

1

6)4‘@

(14 Be)log (14 Be) >0

Bounding 5: It follows from the Hoeffding bound that
k—j—1
IP’(§)z]P’<1+ > Bei(l—d) < (1—d)(k—j)(1—5)>
i=1

k—j
gp<zsei<1—d>s(l—d)(k—j><1—6>>

—eo(k—7
< e—c2(kd)

2
where cp = @ > 0.
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1
there exist €,6 > 0 such that ¢4 > 0. Since 1+ FU; (bi) follows a geometric distribution, we have

Bounding 3: Consider the quantity ¢4 = [(1 —6)n-(1-d)— % (1+¢)|. If % < n(1—d), then

P(5) =P (Geom (1 —d) — 1> ¢4 (k—3))
=P (Geom (1 —d) >1+cq(k—7))
— 1 — gea(k=3)
>1— 663(14—3')’

for some c3 > 0.

Combining these facts together, we revisit . We have

P([ER]) zr0P@PEH) (18)
=(1-PH)A-P(E)1-P3)) (19)
> (1 — 6—01(k—J)> (1 e-Cz(k—j)> (1 6—03(k—j)> (20)
> (1 e—Co(k—J)) (21)
> 1 = eelk=i), (22)

where ¢y = max {c1,ca,c3} > 0, and subsequently ¢ > 0. We conclude the existence of ¢ > 0 for which
P(BY) < etk

It remains to show that P (EEUJ)) < e=¢U=9 The proof is very similar, so the details are omitted.
Recall that

EEZ) Cb(bi, bj) > UM BSj (bi+1) — BUj (b1> s
where the random variables involved may be written as

—1

<.

a(bi,b;) =y (Geomy (1 — ) — 1),
k=1
j—i—1
BS; (biy1) =1+ > Bep(1—d),
k=1

BU; (b;) = Geom (1 — d) — 1,
Thus, if kK —j = j — i, we see that
e a(b;,b;) and a(bj, by) follow the same distribution.
e BS; (bi+1) and FS; (by—1) follow the same distribution.
e BU, (b;) and FU; (by) follow the same distribution.

Therefore, the same concentration inequalities apply, and we conclude that for the same constant ¢ in ,
we have P (EE?) < e—cli=9), O

B.4 Proof of Theorem [5.6|

Theorem Let 0 < n < 1. Let B be the fraction of computational power in the system that is
adversarial and d be the probability of message loss. Let Bgls)ﬂ be the event that there are no n-Nakamoto

blocks in [s,s +t]. If % <n-(1—d), then there exists a constant co > 0 such that for any s,t >0,

5,5+t

P (B(’?) ) S efco\/z
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Figure 6: Partitioning [s, s + ] into sub-intervals

Proof. For any i > 0, let 7; denote the mining time of block b;. Partition the interval [s,s + ¢] into

V/t intervals of length v/t each. Group these sub-intervals into threes, so that there are v/t/3 groups of

sub-intervals, namely I, I, - -, I\/{/3. Thus, I, = [s +3(—1)Vt, s+ SE\/Z]. Further, let Sy represent

the middle sub-interval of Iy, so that Sy = [s + (3¢ — 2) /%, s + (3¢ — 1) \/1], as shown in Figure @
Consider the following desirable events.

N n BNl N E
J: TjE[S‘F\/E,SJFt*\/ﬂ Ti<l‘l§i\/{ 'rk>k)‘l'ii\/E -
Vi3 ; B0
9 U Hy, where Hy: U m [Eyﬂ n ﬂ [By]]z]
=1 j: ;€S i<g k>
J:Ti€5e TiZTj]—\/{ Tk.g‘rjj—\/{ -

C
First, observe that 1Ny — [B£"3 +t] . This is because 1 ensures that no catch-up events (neither B

(1)
i,j0

%
nor Bgnk)) occur when b; and b, are separated in time by more than v/t from bj, for any b; mined in

[s + Vt,s +t — v/t]. This means that the existence of a block b; in this interval for which no catch-up
event occurs whenever i and k are within v/t of 7; is sufficient to ensure that b; is a Nakamoto block.

C
This is exactly the event 5. Since UyS; C [s +VE, s+t — \/f], it follows that 1Ny — {Bg"3+t} . Thus,

P(BM..) <P(GS) +P(GY).
Next, we bound the probability of each term in the RHS separately.

Bounding P (G§): Fix § > 0. Consider the following events:

Di: {#{i: 7 €[s,s+t]} > 2M\,t},

Dy: {EI T, Tk € [8,5 +1]: (k—1i) < (1 =8) \pVt, 7 — 73 > \/Z}

By the tail bound for Poisson random variables, we know that P (D) < e~¢? for some ¢y > 0. We now

show that P (Dsy) < e~V for some c1 > 0. Let T i, := 7, — 7; be the random variable denoting the time
between the i-th and k-th mining. Let M (t) = (1 — &) A,v/t. Notice that

m {Ti,i+M(t) < ﬁ} = Ds.

1€ [s,5+1]

For any honest arrival time 7;, we have

i+ M(t) M)
E[Timp] =E| 3, (m—m-1)| === 1=Vt
j=ti

Applying the Chernoff bound, we see that there exists ¢ > 0 such that

P (Ti,H—M(t) > \/i) <P (Ti,i—HVI(t) > (1-6)Vi+ 5\/%) <oVt
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Thus, we get

P(Dg) =P {Ti,i+M(t) > \/Z}

i: Ty E[s,5+1]

<P U {Tismew > vi} | nDs | +B(D)

i T E[s,s41]

22t
< (Z P (Ti7i+JW(t) > ﬁ)) + e~ Cot
=1

— t
< eVt

for some ¢; > 0. Thus, P (Dy) < e=“V?. We may therefore bound P (G¢) as

P(Gj) <P (D;UDy) +P(Gf NDfND3)

< P(D1) -‘r]P’(DQ) -‘rP(Gi N DI NDj)
2t [ [3-M(1) o0 N

et S (5 e ) o | 5 2@
i=1 |\ i=0 k=j+M(t)
2t [ [3-M(1) o0

< ecot e—Cl\/g + Z Z e—cli—i) 4 Z e—¢(k—=j)
j=1 [\ i=0 k=j+M(t)
2Apt [e's)

< e—cot +e—c1\/2+ Z 9 Z e—cm

j=1 \ m=M(t)

:efcgt_i_efcl\/z_'_ 4Ant —cM(t)
1—ec

:e_COt-i-e_cl\/z-i- 4)‘ht 6—0(1—6)/\;”/2
1—ec

—ca3Vi
< eVt

for some c3 > 0.

Bounding P (G§): We have G§ = 2/:%{3 H$. Notice that Hj are mutually independent for distinct £ by
Lemma Recall that

Hy = U R;, where R?: ﬂ [EEZ)T ﬂ ﬂ [ggnk)r
j: €S i<j k>3
Ti>Ti =/t T <Tj+VE

Let My be the number of honest blocks mined in Sy, and Ny be the number of n-Nakamoto blocks mined
in Sy. Since Hy is contained in the event M, > 1, we have for each £ € {1,2,--- ,/t/3}:

PH)=P| |J R

j: ;€S

=P U ROJN{Me =13

j: T;E€Se
JiT; €S
2
>3, (23)
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where pg is the lower bound on the probability that b; is an n-Nakamoto block, obtained in Theorem
The inequality in deserves some elaboration: Since M, is a non-negative integer valued random
variable, we have from the second moment method that

2
END® _  (podnv®)"t  Nipgt _ pj

E[N?] ~ )\h\/g+()\h\/g)2 To2xt T 27

for sufficiently large ¢. Here, we used the fact that E[N,] = poAnv/%, and E [Nf] <E [ME] = AViE+
2
()\h\/f) )

Thus, P(HS) < 1— 2 < 1, which yields

P(Nez21)=P(N,>0) >

Vit/3 Vt/3 o\ Vi/3
Py —p| (| =[rpmn<(1-4) <o
=1 =1
for some ¢4 > 0, since the Hy’s are mutually independent events. Therefore, we conclude that
P(BM,,) SP(GS)+P(Gy) < eVl el <oVl

for some cq > 0, as desired. O

B.5 Proof of Theorem

Theorem Let 0 < n < 1. Let B be the fraction of computational power in the system that is

adversarial and d be the probability of message loss. Let B§1,75)+t be the event that there are no n-Nakamoto

blocks in [s,s + t]. If % < n-(1—=d), then for every € > 0, there exist positive constants A, a such that
for any s,t >0,

P (BSQH) < Aexp (—at'™?).
Proof. Fix m > 1. Consider the following statement for m:
S[m] : ¥ 0 >m, 3 ag >0, A9 > 0 such that P (BQS)H) < Agexp (—agtl/e)

In Theorem we proved that S[2] is true. Next, we show the following:

S[m] = S [Qm_l].

m

Assume S[m] is true. For any ¢ > 0, let 7; denote the mining time of block b;. Partition the interval

[s,s + t] into #3m=1 intervals of length ¢Zm—1 each. Group these sub-intervals into threes, so that there
m—1
are 27— groups of sub-intervals, namely Iy, I, - - , I ety Thus,
t2m—

I = [s+3(0—1)t7T s+ 30t7]
Sp: = [s+ (3¢ —2)t7=T, s+ (3¢ — 1) t70=T] .

Consider the following desirable events.

} m1° QI
1 N N B2 N N [s%
Ji T [sHIT st T | <, k>,
| \mi<tj—t2m-1 TR >Tj+t2m =1 |
m—1
t2m—1 /3
. ) m1° Bm1°
O U | I T 1 o B A N1
=1 j: ;€S 1<J k>j
Tz‘ZTj*t%"_l Tk§7j+t2m_l |

Observe that 1Ny = {Bgigﬂ} .
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Bounding P (G§): We show that P (G§) < e~°**""" for some c3 > 0. This is done following the steps
in Theorem [5.6] Fix 6 > 0 and consider the following events:

Dyi: {#{i: 7 €[s,5+ 1]} > 2\4t},
Dy {EI Ti, Tk € [$,8+ t]: (k—i)<(1—5))\htﬁm—l,7-k_7-i>t2w717_l}.

By the tail bound for Poisson random variables, we know that P (D;) < e~ for some ¢y > 0. We now

show that P (Dy) < e~ **™™" for some ¢; > 0. Let T,y := 7 — 7; be the random variable denoting the
time between the i-th and k-th mining. Let M(t) = (1 — 6) AptZ=-7. Notice that

ﬂ {Ti,iJrM(t) < \/i} = Ds.

i€ [s,s+1]

For any honest arrival time 7;, we have

i+ M(1)
Mt m
E[Tmw] =E| Y. (—7-1)| = )\i) =(1—0)tmmT.
=i

Applying the Chernoff bound, we see that there exists ¢ > 0 such that

P (Ti,i+M(t) > tzr;nifl) S IED (E,’L‘-{-M(t) > (1 - (5) t% + 5t%) S 6_0t2m71 .

Thus, we get

P(D2) =P U {Tirm) >t$}
i: TyE€[s,5+1]

<P U  {Thisme >t7=1} | nD§ | +P(Dy)
it T, €[s,5+t]

2Apt
= (Z P (E,i—i-M(t) > t27:tn1)> + e—Cot

=1

< ,clt2m7,n;1
> € )

for some ¢; > 0. Thus, P (D3) < e~ """, We may therefore bound P (G$) as
P(G§) <P (D;UD3) + P (G N DS NDS)
<P(Dy)+P(D3) +P (G ND{ND3)

2t [ [i—M(t)

< oot pgmertThT | > S (Ef"j) + oo (?YQ)
1=0

J=1 1 k=j-+M(t)
m 2t [ [5—M(t) o
< e Cot _|_e—01t2m’1 + Z Z 6—0(.j—i) + Z e—C(k—j)
=1 |\ =0 k=j+M(t)

22t [e%e)

< e*COt _’_67c1t2"€n7*1 + Z 9 Z e—cm

j=1 m=DM(t)

— g Cot _’_e—cltz"TL’L*I 4Ant e—cM(t)

:efcot_kefcltm + 4>\ht 676(175)Ahtm

m
—cat2m—1
<e ;

for some c3 > 0.
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m—1
Bounding P (G§): We have G§ = E:TI /3 H$. Notice that Hj are mutually independent for distinct ¢
by Lemma 5.3} Since S[m] is true, we have

m L
P (H ) < P (B(n) ) S Am exp (—am (t2m—1 ) m) S Am exp (_amtl/(Qm—l))
+(3¢-2)t 2T L5+ (30— 1)t27" 1

Therefore, it follows that

3 s F-S y
P (GS) = ﬂ HS | = H P (HS) (A exp ( a, tl/(2m71)>) < meatTT
=1 =1

for some ¢4 > 0, since the Hy’s are mutually independent events. Therefore, we have

P (B§"3+t) SP(GS) +P(GS) < eot™ T emntT T < g emamt! ™
where m’ = 5=, and @, Apyy > 0. In turn, this implies that S [2m 1] is true.

Finally, consider the recursion given by my,; = 22 w’;k L and the initial condition m; = 2. We have
proved that S[m4] is true and that S [my41] is true whenever S[my] is true. By induction, it follows that
S[my] is true for all k € N. Since my, = k;gl and limg_,, my = 1, we conclude that for every ¢ > 0, there
exist positive constants A, a such that P (Bg S)+t) < Aexp (—at'~¢). This concludes the proof. O

B.6 Proof of Theorem [5.8|

Theorem Let 0 < n < 1. Suppose the fraction B of computational power in the system that is

adversarial, and the probability d of message loss satisfies % <n-(1—=d). Given s >0, let by be the

first n-Nakamoto block mined after time s. There exist constants C, ¢ > 0 such that for any honest user
h and for all k' > 1,

P ((h, J,n, k') -user-unheard-criterion fails) < Ce~"
Proof. By the union bound, we have
P G Unheard,, (b%) > =myel) < i P ( Unheardy, (b%) > LUAVAN (24)
k=K' Y 2 i Y 2

1 —d). Thus, for all k£ > 1, we have

(
(Geom(l —d)> (1;”) k:)

From remark it follows that Unheard;, (b%) < Geom
1—
P (Unheardh (%) > <277> k) P

for some positive constants Cy and ¢. Combining this with yields

P < U {Unheardh (b}}) > (1;77> k}) < Z Cy - ek =C. e*‘:k/,

k=K' k=k’

IN

Co -

where C' = 1_080,C is a positive constant. This concludes the proof. O

B.7 Proof of Theorem [3.2]
Before we prove our main result, we recall a useful lemma about Poisson random variables.
Lemma B.1. Let X be a Poisson random variable with mean p. Then
(i) P(X >2u) < e 3k,
(i) ]P’(X < %/L) < emEH,
Proof. The proof follows from Theorem 4.5 in [MU17|. O
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We are now ready to state and prove our main result.

Theorem Let B be the fraction of computational power in the system that is adversarial, and d be
the probability of message loss. If % < (1 —d), then for every e > 0, there exist positive constants a
and b such that for all T > 0 and for any honest transaction tx and any finite set of honest users H.:

P (tx violates (1, H)-security) < exp (—ar'~%) + |H|exp (—b7).

Proof. Let n be such that % <n-(l—=d). Let kg = {127—"77—‘7 and fix an honest subset of users H.
The idea of the proof is as follows: if an 7-Nakamoto block b; is mined in the time interval (s, s + t1),
and kg number of J-FS blocks are mined before time s + t; + to, and if all users h € H satisfy the
(h, J,n, ko)-user-unheard-criterion, then Theorems and together imply that the n-Nakamoto block
by is included in Cp(t) for all t > s + t; + t2. Since tx must be included in either b; or its ancestors, tx
satisfies (t1 + to, H)-security.

Let b; be the first n-Nakamoto block mined after time s. Let Ty = 75 — s denote the time between
s and the mining time of the first n-Nakamoto block. For the r-th honest block b, and any time ¢, let
N,.(t) denote the number of r-FS blocks mined until time ¢. Consider the following events:

Ei: Ty >t
El: The (h,J,7, ko) -user-unheard-criterion is violated

E32 U {Nr(8+t1 +t2)<k0}.

riTrE[s,s+1t1]

By the first paragraph of the proof, the union bound gives

PP (tx violates (t1 + t2, H)-security) < P (E;) + Z P (E%) + P (E3). (25)
heH

From Theorem 5.7} we have that for any ¢ > 0, there exist positive constants A’, @’ such that P (E;) <
A’ (exp —a't%_a).

From Theorem we have that there exist positive constants C, ¢’ such that P (ES) < Cexp (—c'kp)
for all h € H.

It remains to bound P (E3). Let A\, denote the aggregate mining rate of the honest users. Let
to > %. Let M be the number of honest miners in [s, s+11], so that M has the Poisson distribution

with mean A, (1 — d) t;. Therefore, we have from Lemma [B.1] that

—4Apt
3 .

P(M > 2X\pt1) < exp <

For r > 1, consider the r-th honest miner b, after time s and consider the r-FS sequence. Let U,
denote the number of r-FS blocks mined in [7,, 7,- 4+ t2]. Then, U, has the Poisson probability distribution
with mean A\p, (1 — d) t2. Applying Lemma we get

P(U, < ko) <P (Ur < %)\h(l —d)t2> < exp (M_d)tz) :

8

Therefore, we have

P(Es) =P(EsN{M > 2\pt1}) + P (Es N {M < 2\pt1})

2Apt1
SP(N > 2\t) + > P (U, < ko)
r=1
—4Mpt A (1—d)t
< exp ( 3h 1) +2M\pt - exp <h(8)2) .
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Therefore, combining and the bounds on PP (Ey), P (E%), and P (E3) yields

P (tx violates (t1 + to, H)-security) < P (E;) + Z P (E}) + P (E3)

heH
— 4Nt
< Alexp ( atl E Cexp (—cts) +exp( hl)
3
heH
—Ap(1=d)t
onoe (L1

< Aexp (—at; %) + B ([H| + t1) exp (—bts)

for some positive constants A, a, B, and b. The following lemma therefore completes the proof of Theorem
0.2

Lemma B.2. Let e > 0. Suppose there exist positive constants A, a, B, b such that for allt; > 0, to > 0
and for any honest transaction tx and any finite set of honest users H:

P (tx violates (t1 + to, H)-security) < Aexp (—at; %) + B (|H| + t1) exp (—bt2). (26)

Then there exist positive constants a’” and b such that for all T > 0 and for any honest transaction tx
and any finite set of honest users H.:

P (tx violates (1, H)-security) < exp (—a”'7'7¢) + [H|exp (—b"'7). (27)

Proof. The lefthand side of is zero if H = ) so assume without loss of generality that |H| > 1. Given
T >0, let t; =ty =7/2. Then yields

P (tx violates (7, H)-security) < Aexp (—(a/2'")7'7%) + 2B (|H| + 7) exp (—(b/2)7). (28)

Let o’ and b’ be positive constants such that a’ < a/2'~¢ and b’ < b/2. Let 7 be so large that
Aexp (—[(a/2'7¢) — a']717°) <1 and 2Bexp (—[(b/2) — b']7) < 1 for all 7 > 7. Then for 7 > 7

P (tx violates (7, H)-security) < exp (—a'7' ™) + (|H| + 7) exp (—'7) (29)

Let b be a positive constant with " < b. Then, using the assumption |H| > 1,

(M| +7) exp (=0'7) = [H]exp (="7) 4 7 exp (~b'7) — [H(exp (~b7) — exp (~b'r)
< [H|exp (=b"71) + Texp (—=b'1) — (exp (=b"7) — exp (=b'T))
= [H|exp (—b"7) — (exp (=b"7) — (1 + 7) exp (—b'7))
< |H|exp (=b"7) for all 7 sufficiently large (30)

Combining and implies that there exists 7/ such that
P (tx violates (7, H)-security) < exp (—a’'7'"%) + Texp (—b"7) for 7 > 7 (31)

Select positive constants a’”’ and b’ such that @’/ < a’ and v/ < b" and

1 <exp(—a"7'"¢) +rexp(—b"7) for0<7<7 (32)
Combining and yields for all 7 > 0. O
This concludes the proof of Theorem [3.2] O
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