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ABSTRACT

Although a variety of methods have been proposed for sequential

recommendation, it is still far from being well solved partly due

to two challenges. First, the existing methods often lack the simul-

taneous consideration of the global stability and local fluctuation

of user preference, which might degrade the learning of a user’s

current preference. Second, the existing methods often use a scalar

based weighting schema to fuse the long-term and short-term pref-

erences, which is too coarse to learn an expressive embedding of

current preference. To address the two challenges, we propose a

novel model called Time Lag aware Sequential Recommendation

(TLSRec), which integrates a hierarchical modeling of user prefer-

ence and a time lag sensitive fine-grained fusion of the long-term

and short-term preferences. TLSRec employs a hierarchical self-

attention network to learn users’ preference at both global and

local time scales, and a neural time gate to adaptively regulate the

contributions of the long-term and short-term preferences for the

learning of a user’s current preference at the aspect level and based

on the lag between the current time and the time of the last behav-

ior of a user. The extensive experiments conducted on real datasets

verify the effectiveness of TLSRec.
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1 INTRODUCTION

In recent years, sequential recommendation, also known as session-

based or sequence-aware recommendation, has been attracting
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increasing interest of researchers [7, 21]. Sequential recommender

systems aim to capture the time-sensitive preference (or needs) of

users by modeling the sequential dependency between their behav-

iors based on their historical interaction data (e.g., click, purchase,

and check-in) that are collected sequentially by online platforms

such as e-commerce websites and location-based networks. The

information about the sequential dependency and time-sensitive

preference can be used for applications where items need to be

recommended based on a user’s previous interactions. For example,

a sequential recommender system can timely recommend AirPod

to a user after she/he purchases an iPhone.

1.1 Related Work

A variety of methods have been proposed for sequential recom-

mendation. Early works are often based on Markov chain which

assumes each interaction highly depends on its previous ones

[9, 21, 24, 32, 33]. Recently, inspired by the impressive success of

deep learning techniques in the fields of natural language process-

ing and computer vision, lots of deep learning based models have

also been proposed for sequential recommendation and achieved

the state-of-the-art performance [7, 36]. Early deep learning based

methods utilize recurrent neural networks (RNN) to characterize

the dynamics of interaction sequences [6, 10, 11], which however

suffers from inability to capture the long-term dependency be-

tween interactions, i.e., one interaction likely depends not only on

the recent interactions but also on early ones. To overcome this

drawback, another line of deep learning based methods employs

attention mechanism [2, 5, 17ś19, 22, 27ś29, 31, 34] and graph neu-

ral network (GNN) [4, 13, 30, 32] to model sequential dependency

relationships between interactions and identify relevant items.

1.2 Challenges

Notwithstanding the improvements on sequential recommendation,

it is still far from being well solved partly due to the following two

challenges.

• Unification of Stability and Fluctuation of Preferences

In sequential recommender systems, user behaviors are of-

ten organized into sessions or transactions and basically

driven by a mix of two factors, long-term preference and

short-term preference. The long-term preference reflects a

user’s general interest which usually changes slowly and

keeps relative stable across sessions, while the short-term

preference represents a user’s taste in a session which might

deviate from her/his long-term preference [8, 14, 26]. For

example, a user usually prefers to "classic music", but prob-

ably in some days she/he is particularly fond of "rock and

roll" because of the influence of her/his friends. However, the

existing methods for sequential recommendation often treat
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the user preference as a flat distribution over sessions, with-

out distinguishing its global stability and local fluctuation,

which might degrade the learning of user preference. We

need a method which can capture the stability of long-term

preference at global time scale, as well as the fluctuation of

short-term preference at local time scale.

• Fine-grained Fusion of Long-termand Short-termPref-

erences To make effective sequential recommendations, it is

extremely important to simultaneously capture users’ long-

term preferences across different sessions and their short-

term preferences in recent sessions, so that the current pref-

erence of users can be learned. Recently, some sequential

recommendation models have been proposed for fusing the

embeddings of long-term preference and short-term prefer-

ence with static weights as hyper-parameters [1, 26] or using

dynamic attentional coefficients produced by an attention

network [8]. However, no matter whether the static weights

or the dynamic attentional coefficients they use, in the exist-

ing models a preference embedding vector is weighted by a

scalar, which implicitly assumes that different dimensions in

the same preference embedding have the same importance.

We argue that such scalar based weighting scheme is too

coarse for learning an expressive fused preference embed-

ding, as in real world, a user’s behaviors might depend more

on some aspects than on other aspects of preference. For

example, a user might buy a science fiction book because

the genre aspect of her/his long-term preference to movie

is science fiction and she/he currently likes reading. In this

example, the genre aspect should be weighted more than

other aspects of the long-term preference. Therefore, we

need a more fine-grained fusing mechanism that can adap-

tively capture the different contributions of different aspects

of long-term preference and short-term preference for the

fusion of them.

1.3 Contributions

To address the above challenges, we propose a novel model called

Time Lag aware Sequential Recommendations (TLSRec), which

integrates a hierarchical modeling of user preference and a time

lag sensitive fine-grained fusion of the long-term and short-term

preferences. At first, in contrast with the traditional sequential

recommendation methods that capture the long-term preference

directly from the flat sequence of interactions without considering

the preference fluctuation between local sessions, TLSRec can si-

multaneously model the global stability and local fluctuation of a

user’s preference with a hierarchical self-attention network con-

sisting of a short-erm preference learning layer and a long-term

preference learning layer. Such unified modeling offers TLSRec the

ability to understand a user’s preference at both local and global

time scales. Particularly, in order to capture the preference fluctu-

ation between local sessions, TLSRec learns a session embedding

for each session to encode a user’s preference local to a session,

with a self-attention module at the short-term preference learning

layer. At the same time, in order to capture the intrinsic stable

preference of a user, TLSRec will pool the session embeddings into

a long-term preference embedding with a multi-head self-attention

module at the long-term preference learning layer. Due to the dif-

ferent self-attention heads, not only the long-term dependency

between sessions but also the interactions between dimensions of

session embeddings can be perceived by the long-term preference

embedding to enhance its ability to capture the stable intrinsic

preference.

To overcome the challenge of fine-grained fusion of the long-

term preference and short-term preference for sequential recom-

mendations, inspired by the idea of the gates in long short-term

memory (LSTM) [12, 20], we propose a neural time gate for TLSRec

to learn a fused preference embedding aware of time lag. Compared

with traditional methods which weigh the long-term preference and

short-term preference with manually defined scalars as vector-wise

weights, the proposed neural time gate has two advantages. First, it

offers TLSRec the ability to adaptively regulate the contributions of

the long-term preference and the short-term preference based on

the time lag. The idea here is that which preference accounts more

for a user’s next behavior heuristically depends on the time lag,

i.e., how long has it been since her/his last behavior. As we will see

in later experiments, the neural time gate will learn to act in accor-

dance with the intuition that the longer (shorter) the time lag, the

more the impact of a user’s long-term (short-term) preference on

her/his next behavior. Second, in contrast with the existing works,

the neural time gate offers a fusion of the long-term preference and

short-term preference at a finer granularity level. Unlike the exist-

ing works, the neural time gate will generate a gating vector instead

of a scalar, whose dimensions serve as dimension-wise weights to

differentially weigh the corresponding dimensions of the long-term

embedding and short-term embedding. Due to the gate based fusion

of the long-term preference and short-term preference, TLSRec can

learn a more representative and comprehensive hybrid embedding

for current preference. Finally, the contributions of this paper can

be summarized as follows:

• We propose a novel model called Time Lag aware Sequential

Recommendations (TLSRec), which can capture the stability

and fluctuation of user preference, and learn a fused prefer-

ence embedding with a fined-grained fusion of the long-term

preference and short-term preference.

• We propose a hierarchical self-attention network to unite

the learning of the long-term preference and short-term

preference, which leads to a better comprehension of the

stability of user preference at global time scale as well as the

fluctuation of user preference at local time scale.

• We propose a neural time gate to offer a gate based fine-

grained fusion of the long-term preference and short-term

preference at the dimension level, by which a more represen-

tative and more comprehensive fused preference embedding

can be learned.

• We extensively evaluate TLSRec on real-world datasets. The

experimental results demonstrate the general improvements

of TLSRec over the baselines, as well as the effectiveness of

the proposed hierarchical self-attention network and neural

time gate.
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2 PRELIMINARIES

Let U be a set of N users and V a set of M items. The inter-

actions of user u ∈ U sorted chronologically is organized as

a sequence of T sessions Su
= ⟨Su

1 ,S
u
2 , · · · ,S

u
T
⟩. Each session

Su
i
= {vu

i ,1,v
u
i ,2, · · · ,v

u
i , |Sui |} is a subset of V , where vu

i , j
∈ V

(1 ≤ j ≤ |Su
i
|) is the jth item user u interacts with in the session

Su
i
. Let t(v) be the time when the interaction with itemv ∈ V hap-

pens, and then for any vu
i
∈ Su

i
and any vu

j
∈ Su

j
, t(vu

i
) < t(vu

j
) if

i < j.

Given a useru ∈ U and her/his historical sessionsSu
= ⟨Su

1 ,S
u
2 ,

· · · ,Su
T
⟩, we want to recommend k items that u will most prob-

ably interact with in the next session Su
T+1

. This problem can be

formulated as a ranking problem of all items for user u based on

the rating prediction r̂u ,v of user u over item v ∈ V .

3 PROPOSED MODEL

3.1 Overview of TLSRec

The architecture of TLSRec is shown in Figure 1. As we can see

from Figure 1, given as inputs the historical session sequence

⟨Su
1 ,S

u
2 , · · · ,S

u
T
⟩ of a specific user u, the lag ∆t between the time

when the recommendation is made and the time of the last interac-

tion of u, and a candidate item v , TLSRec is supposed to produce

the predicted rating r̂u ,v of u on v .

First, TLSRec uses an M-dimensional one-hot vector to encode

an item, and transforms each item vu
i , j

in each session Su
i
to its

corresponding item embedding eu
i , j

∈ Rd through the item embed-

ding layer, where d is the dimensionality of embeddings, 1 ≤ i ≤ T ,

and 1 ≤ j ≤ |Su
i
|.

Then at the short-term preference learning layer, the item em-

beddings in a session Su
i
will be aggregated into its corresponding

session embedding su
i
∈ Rd with a self-attention module shared

across sessions. The session embedding su
i
encodes user u’s short-

term preference which is local to session Su
i
, and the differences

between them reflect the fluctuation of user preference among short

time periods. At the same time, note that the current short-term

preference embedding zu
short

is just the same as the last session

embedding su
T
, as the current preference of a user is often revealed

by the interactions in her/his most recent session [34, 35].

The task of the long-term preference learning layer is to gener-

ate the long-term preference embedding zu
long

∈ Rd by fusing the

session embeddings with a multi-head self-attention module. As we

have mentioned before, the multiple self-attentional heads enable

TLSRec to capture the interactions between dimensions of session

embeddings, which leads to the more representative and compre-

hensive attentional session embeddings zu
i
∈ Rd at the global time

scale. Meanwhile, as the same as the existing transformer-based

models do [15, 22, 29], TLSRec will incorporate the session embed-

dings with a learnable position embedding pi ∈ Rd (1 ≤ i ≤ T )

before feeding them into the multi-head self-attention module, so

that the temporal dependency between sessions can be perceived

by the long-term preference embedding. At last, the attentional

session embeddings zu
i
are fused into the long-term preference em-

beddingzu
long

via a vanilla attentionmodule, bywhich the long-term

preference can be aware of the different contributions of different

sessions.

Once the long-term preference embedding zu
long

and the short-

term preference embedding zu
short

are prepared, TLSRec will merge

them through the neural time gate to generate the final preference

embedding zu . For regulating the contributions of the long-term

preference and the short-term preference, the neural time gate

will generate an intermediate gate vector д ∈ Rd based on the

time embedding y ∈ Rd of the time lag ∆t to adaptively weight

the dimensions of zu
long

and zu
short

. At last, TLSRec will make the

rating prediction r̂u ,v based on the inner product of the preference

embedding zu and the item embedding ev of the candidate item v .

3.2 Hierarchical Self-Attention Network

3.2.1 Item Embedding. For any item v ∈ V , we obtain its embed-

ding ev ∈ Rd by a lookup over a learnable matrixW I ∈ Rd×M ,

i.e., ev =W
I
v , wherev ∈ RM is a one-hot vector representing the

item v . For the items {vu
i ,1,v

u
i ,2, · · · ,v

u
i ,m

} of session Su
i
of a user

u, we horizontally assemble their item embeddings into an item

embedding matrix Ei = [eu
i , j
]m
j=1 ∈ Rd×m , wherem = |Si | and the

jth column eu
i , j

∈ Rd (1 ≤ j ≤ m) is the embedding of item vu
i , j
.

3.2.2 Short-term Preference Learning. Given a user u ∈ U and

her/his historical session sequence Su
= ⟨Su

1 ,S
u
2 , · · · , S

u
T
⟩, the

task of the short-term preference learning layer is to generate the

session embeddings su
i
representingu’s preference local to each ses-

sion Su
i
, 1 ≤ i ≤ T , using a self-attention module. For this purpose,

each item embedding eu
i , j

in session Su
i
will first be transformed to

three vectors, a query vector qi , j ∈ Rd , a key vector ki , j ∈ Rd , and
a value vectorvi , j ∈ Rd , 1 ≤ j ≤ m, via the following operations:

QS
i =W

Q
S
Ei ,K

S
i =W

K
S Ei ,V

S
i =W

V
S Ei , (1)

where QS
i
= [qi , j ]mj=1 ∈ Rd×m , KS

i
= [ki , j ]mj=1 ∈ Rd×m , V S

i
=

[vi , j ]mj=1 ∈ Rd×m , andW
Q
S

∈ Rd×d ,W K
S

∈ Rd×d ,W V
S

∈ Rd×d
are the projection matrices that will be learned. Then we generate

the attentional item embeddings êu
i , j

(1 ≤ j ≤ m) using the self-

attention mechanism [29]:

Êi = SelfAttention(QS
i ,K

S
i ,V

S
i ) = V

S
i Â, (2)

where Êi = [êu
i , j
]m
j=1 ∈ Rd×m , and Â = softmax

( (Q S
i )TK S

i√
d

)
∈

R
m×m is the self-attentionmatrix. The cell âj ,l at the jth row and lth

column of Â represents the attention score of the jth itemvu
i , j

to the

lth itemvu
i ,l

in sessionSu
i
, and can be computed as âj ,l =

exp(aj ,l )∑m
k=1

aj ,k
,

where aj ,l =
qi , j

Tki ,l√
d

is the unnormalized attention score. Finally,

the session embedding su
i
is generated by summing up over the

attentional item embeddings êu
i , j

(1 ≤ j ≤ m):

sui =

m∑

j=1

êui , j . (3)

Aswewill see later, the last session embedding su
T
will be used as the

current short-term preference embedding zu
short

since it represents
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Figure 1: The architecture of TLSRec.

a user’s current preference which might deviate from her/his long-

term preference.

3.2.3 Long-term Preference Learning. The task of the long-term

preference learning layer is to generate the long-term embedding

zu
long

∈ Rd encoding the long-term preference of user u at the

global time scale, by using a multi-head self-attention module to

fuse her/his local preferences represented by the session embed-

dings su
i

∈ Rd (1 ≤ i ≤ T ) which are outputs of the session

embedding layer. As self-attention mechanism is not aware of the

temporal positions of inputs, therefore to capture the temporal

dependency between session embeddings, we first enhance each

session embedding su
i
by injecting a learnable position embedding

pi ∈ Rd as follow:

Ŝ = S + P, (4)

where Ŝ = [̂su
i
]Ti=1 ∈ Rd×T is the enhanced session embedding

matrix, S = [su
i
]Ti=1 ∈ Rd×T is the original session embedding

matrix, P = [pi ]Ti=1 ∈ Rd×T is the position embedding matrix, and

ŝu
i
= su

i
+ pi .

Now we are going to generate the attentional session embedding

matrix Z = [zu
i
]Ti=1 ∈ Rd×T , where each column zu

i
∈ Rd is

the attentional session embedding corresponding to ŝu
i
. We first

define the basic multi-head self-attention function for matrix Ŝ =

[̂su
i
]Ti=1 ∈ Rd×T as

MultiHeadSelfAttention(Ŝ) =W OConcat(H1; · · · ;Hh ), (5)

where Concat(H1; · · · ;Hh ) ∈ Rd×T represents the vertical con-

catenation of the h headsHj ∈ R
d
h
×T (1 ≤ j ≤ h), andW O ∈ Rd×d

is a learnable projection matrix. Similar to Equation (1), in order to

generate each header Hj , we build the query vector, the key vector,

and the value vector for each enhanced session embedding via the

following transformations:

QH
j =W

Q
j
Ŝ,KH

j =W
K
j Ŝ,V

H
j =W

V
j Ŝ . (6)

Then as same as Equation (2), each attention head Hj is obtained

by the self-attention mechanism:

Hj = SelfAttention(QH
j ,K

H
j ,V

H
j )

= VH
j softmax

( (QH
j )

TKH
j√

d/h

)
,

(7)

where h is the number of heads andW
Q
j
,W K

j ,W V
j

∈ R
d
h
×d are the

learnable transformation matrices. Note that due to the sequential

nature, it is supposed that the ith attentional session embedding zi
depends only on previous i − 1 sessions. Therefore, we will mask

the connection between qi and kj if i < j, by substituting zero for

qTi kj , where qi and kj are the ith column ofQ (the query vector

of zu
i
) and the jth column of K (the key vector of zu

j
), respectively.

As the transformer-based models do [29], to stabilize and accel-

erate the training of the multi-head self-attention network, we add

a residual connection followed via a normalization:

Norm
(
MultiHeadAttention(Ŝ) + Ŝ

)
. (8)

For a matrix X = [xi ]Ti=1 ∈ Rd×T , the normalization function is

defined as

Norm(X ) = [norm(xi )]Ti=1, norm(x) = α ⊗ x − µ
√
σ 2
+ ϵ
+ β, (9)

where α ∈ Rd and β ∈ Rd are learnable scaling factors and bias

terms, ⊗ represents element-wise product, µ and σ 2 are the mean

and variance of x , respectively, and ϵ is a positive constant in case

the illegal division incurred by zero variance.

To capture non-linear interactions between the latent dimen-

sions, we further apply a feed-forward network FFN to the output

of Equation (8). Then the final attentional session embedding matrix

can be obtained by:

Z = FFN

(
Norm

(
MultiHeadAttention(Ŝ) + Ŝ

))
, (10)
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where the feed-forward network is defined as

FFN(X = [xi ]Ti=1 ∈ Rd×T ) = [ffn(xi )]Ti=1,

ffn(x ∈ Rd ) =W F
2 max(0,W F

1 x + b1) + b2,
(11)

whereW F
1 ∈ R4d×d ,W F

2 ∈ Rd×4d , b1 ∈ R4d , and b2 ∈ Rd are

the learnable transformation matrices and bias terms. Note that

Equation (10) constitutes a multi-head self-attention block, and in

practice we can stack more than one multi-head self-attention block

(i.e., iteratively apply Equation (10)) to enhance the expressiveness

of the attentional session embeddings.

Once the attentional session embeddingszu
i
are obtained through

Equation (10), we can finally generate the long-term preference

embedding zu
long

via a vanilla attention module:

zulong =

T∑

i=1

ωiz
u
i ,ωi =

exp
(
f Tu ϕ(WLz

u
i
+ bL)

)

∑T
i=1 exp

(
f Tu ϕ(WLz

u
i
+ bL)

) , (12)

whereωi is the attentional coefficient of zu
i
,ϕ is the ReLU activation

function,WL ∈ Rd×d and bL ∈ Rd are the learned transformation

matrix and bias terms, respectively, and fu ∈ Rd is the embedding

of useru. Similar to item embedding, fu is also obtained by a lookup

over a learnable user embedding matrixW U ∈ Rd×N : fu =W
Uu,

where u ∈ RN is the one-hot encoding of user u.

3.3 Neural Time Gate

Now the long-term preference embedding zu
long

and the short-term

preference embedding zu
short

have been prepared by the hierarchical

self-attention network. Next we will produce the final preference

embedding used for rating prediction, by fusing zu
long

and zu
short

via

the proposed neural time gate.

The task of the neural time gate is to adjust the contributions

of the long-term preference embedding and the current short-term

preference embedding at dimension level, based on the lag ∆t be-

tween the time of last interaction and the time when a recommenda-

tion needs to be made. To encode the time lag into an intermediate

embedding, we first discretize it by its multiples of the minimum

time gap ∆min bewteen any two successive interactions of a give

user. In this idea, the discretized time lag δ ∈ N is computed as

δ = min(⌈ ∆t

∆min
⌉,C), (13)

where C ∈ N represents the maximal value of δ . By Equation (13),

the ∆t is mapped to a positive number not more than C . Then we

can get the time embedding y ∈ Rd by a lookup over a learnable

embedding matrix Y ∈ Rd×C as follow:

y = Yδ, (14)

where δ ∈ RC is the one-hot vector of the discretized time lag.

Then the normalized gating vector д ∈ Rd can be computed by the

Sigmoid function

д = sigmoid(Wlz
u
long +Wsz

u
short +Wδy + bд), (15)

whereWl ,Ws ,Wδ ∈ Rd×d and bд ∈ Rd are the learnable weight

matrices and bias vector, respectively. Finally, the fused preference

embedding of the given user u is obtained by the following fusion

based on д:

zu = д ⊗ zushort + (1 − д) ⊗ zulong, (16)

where ⊗ represents element-wise product. Note that д is a vector

rather than a scalar, which enables the neural time gate to regu-

late the contributions of the long-term preference and short-term

preference at the dimension granularity.

3.4 Rating Prediction

Finally, we adopt a dot product of the fused preference embedding

zu and the item embedding ev as the prediction of the normalized

rating that user u gives to item v , i.e.,

r̂u ,v = sigmoid(zTuev ). (17)

3.5 Model Learning

3.5.1 Training Set Building. We first build a training set Ou for

each user u, where each instance o ∈ Ou is a sequence of T + 1

sessions, i.e o = ⟨Su
1 , · · · ,S

u
T
,Su

T+1
⟩. During the training, the first

T sessions Su
1 , · · · ,S

u
T
are used as input of the model, while the

last session Su
T+1

serves as ground truth for the supervision of

the training. For a training data set, a user’s sessions are divided

whenever the time interval between two successive interactions is

more than a chosen threshold.

Since the length of different session sequences might be different,

for a sequence with length greater thanT , we use a sliding window

of width T to split it into subsequences of the fixed length T + 1,

while for a sequence with length less than or equal to T , we use

the first session to pad to the left to the sequence until its length

becomes T + 1. Similarly, the length of a session (i.e. the number

of items contained in a session) might also be different from each

other. For a session whose length is less than the length of the

longest session, we will repeatedly pad that session with its last

item until its length becomesm, wherem = maxu ∈U,1≤i≤T (|Su
i
|).

3.5.2 Model Optimization. As our goal is to recommend a ranked

list of items, we are more interested in the relative ranking order

of the rating predictions rather than their absolute values. For a

training instance o = ⟨S1, · · · ,ST , ST+1⟩, let V+o = ST+1 be the
ground truth. For each item v ∈ V+o , we sample an unobserved

item v ′
< V+o to form a negative sample set V−

o . We expect the

predicted rating of an item v ∈ V+o will be greater than that of an

item v ′ ∈ V−
o , i.e., r̂u ,v > r̂u ,v ′ . For this purpose, we define a pair-

wise loss function based on the principle of Bayesian Personalized

Ranking (BPR) [23]:

L(Θ) = −
∑

u ∈U

∑

o∈Ou

∑

v ∈V+o ,v ′∈V−
o

logσ (̂ru ,v − r̂u ,v ′) + λ ∥ Θ ∥22 ,

(18)

where Θ represents all the learnable parameters and λ is a nonneg-

ative parameter controlling the contribution of the regularization

term. In the experiments, we will apply Adam algorithm [16] to

optimize our model.
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Table 1: The statistics of datasets

Dataset #Users #Items #Interactions Avg. #sessions
per user

Avg. length
per session

Density

Amazon Book 4,621 170,474 517,556 12 9 0.0006
Amazon Video 1,709 12,434 64,298 8 5 0.0030
Movielens-1M 5,492 3,692 970,346 29 6 0.0478
Lastfm 953 22,372 16,641,736 950 18 0.7805

4 EXPERIMENTS

4.1 Experimental Setting

4.1.1 Datasets. We conduct the experiments on four real-world

datasets whose statistics are summarized in Table 1. In this paper,

we only consider implicit feedbacks (e.g. clicks), and hence explicit

feedbacks (e.g. ratings) in datasets are simply regarded as implicit

interactions. As has mentioned before, in order to split an interac-

tion sequence into sessions, on each dataset we will investigate the

distribution of the time gaps between any two successive interac-

tions, and choose as the threshold the time gap that accounts for

the most part of the distribution. On each dataset, we randomly

select 70%of the data as training set, 10% as validation set, and the

remaining 20% as testing set, and repeat such procedure 10 times

and report the average results.

• Amazon Book Amazon Book is a dataset collected from

Amazon, which contains 517,556 ratings to 170,474 books

given by 4,621 users. By investigating the distribution of

the time gaps between any two successive interactions, we

find that most time gaps are less than 2 days. Therefore, in

Amazon Book, we split a historical interaction sequence into

sessions whenever the time interval between two successive

interactions is more than 2 days.

• Amazon Video Amazon Video is another dataset collected

from Amazon, which contains 64,298 ratings to 12,434 videos

given by 1,709 users. In Amazon Video, the sessions are

extracted using the same time gap threshold as in Amazon

Book.

• MovieLens-1M MovieLens-1M is a user-movie dataset col-

lected from MovieLens website, which contains 970,346 rat-

ings to 3,692 movies given by 5,492 users. For MovieLens-1M,

the time gap threshold is set to 2 hours with the samemethod

as for the Amazon datasets.

• Lastfm Lastfm is a freely-available collection of audio fea-

tures and metadata for a million contemporary popular mu-

sic tracks [3], consisting of tuples of user, timestamp, artist,

and song listened to. As Lastfm contains an overwhelming

amount of songs, which causes an expensive requirement of

huge amount of memory, we treat the artists instead of the

songs as items, with the same approach as taken by [25], and

we obtain 16,641,736 interactions of 953 users with 22,372

artists. Finally, we split an interaction sequence into ses-

sions for Lastfm using the same time gap threshold as for

MovieLens-1M.

4.1.2 Baseline Methods. We compare TLSRec with ten state-of-the-

art methods for sequential recommendation, including two RNN

based models (DREAM and II-RNN), six attention based models

(NARM, ANAM, SHAN, SASRec, BERT4Rec, and TiSASRec), and

two GNN based models (SURGE and RetaGNN).

• DREAM [35] DREAM is an RNN based model for next bas-

ket recommendation, which not only learns a dynamic rep-

resentation for a user but also captures global sequential

features among baskets (sessions) to gain a comprehensive

understanding of users’ purchase interests and consequently

recommend items that each user most probably purchase in

the next visit.

• II-RNN [25] II-RNN is a hierarchical RNN model for se-

quential recommendation, which not only models a user’s

short-term preference by an intra-session RNN layer, but

introduces an inter-session RNN layer to capture the depen-

dency between sessions as well.

• NARM [17] NARM is an attention based model for session-

based recommendation, which uses a hybrid encoder with an

attention mechanism to model the user’s sequential behavior

and capture users’ intent in the current session.

• ANAM [2] ANAM is an attribute-aware model for next bas-

ket (session) recommendation, which adopts an attention

mechanism to explicitly model user’s evolving preference for

items, and utilizes a hierarchical architecture to incorporate

the attribute information of items.

• SHAN [34] SHAN is a sequential recommendation model

based on a two-layer hierarchical attention network, where

the first attention layer learns user long-term preferences

based on the historical purchased items, while the second

one generates user’s final representation by fusing the user’s

long-term preference and short-term preference.

• SASRec [15] SASRec uses a self-attention mechanism com-

bined with position embeddings to capture the semantics

of user’s long-term preference, which can identify relevant

items by adaptively assigning weights to previous items at

each time step.

• BERT4Rec [27] BERT4Rec employs a deep bidirectional

self-attention mechanism to model user behavior sequences,

with the optimization objective to predicting the random

masked items in the sequence by jointly conditioning on

their left and right context.

• TiSASRec [18]: TiSASRec is a time interval aware model for

sequential recommendation, which incorporates the infor-

mation of the relative time interval between any two items

into a self-attention mechanism to weight the different items

during the learning of user preference.

• SURGE [4]: SURGE is a GNN-based model which integrates

implicit feedbacks with explicit ones in long-term user be-

haviors into clusters in the graph by re-constructing loose
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Table 2: Hit@k comparison with baselines

Methods Amazon Book Amazon Video Movielens-1M Lastfm

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
DREAM 0.0440 0.0609 0.0553 0.0644 0.3837 0.4713 0.7323 0.7861
II-RNN 0.0668 0.0907 0.0821 0.0966 0.4902 0.5854 0.6311 0.6864

NARM 0.0634 0.0838 0.0339 0.0449 0.4208 0.5066 0.7097 0.7585
ANAM 0.0651 0.0971 0.0819 0.1019 0.3381 0.4123 0.7287 0.7991
SHAN 0.0480 0.0632 0.0627 0.0899 0.3337 0.4237 0.5556 0.6100
SASRec 0.1209 0.1663 0.1884 0.2458 0.4476 0.5413 0.8065 0.8260
BERT4Rec 0.0902 0.1335 0.1744 0.2167 0.3917 0.4922 0.6515 0.7748
TiSASRec 0.1842 0.2356 0.2133 0.2680 0.5025 0.5850 0.7630 0.8253

SURGE 0.2219 0.3103 0.1961 0.2048 0.5077 0.5110 0.7915 0.8060
DHCN 0.1991 0.2736 0.2308 0.2780 0.5301 0.5922 0.7551 0.8180

TLSRec 0.3438 0.4161 0.2423 0.2884 0.5640 0.6522 0.8086 0.8439

item sequences into tight item-item interest graphs based

on metric learning.

• DHCN [32]: DHCN models session-based data as a hyper-

graph and captures the high-order relations among items

and the cross-session information with a dual channel hy-

pergraph convolutional network.

4.1.3 Evaluation Metrics. We choose the widely used Hit rate and

MAP (Mean Absolute Precision) to evaluate the performance of

TLSRec. Let Su and Ŝu be the ground truth session and the set of

the predicted top-k ranked items, and then the Hit rate and MAP

can be defined as follows:

Hit@k =
1

|U|
∑

u ∈U
I
(
|Su ∩ Ŝu | > 0

)
, (19)

MAP@k =
1

|U|

( ∑

u ∈U

∑

i ∈Su∩Ŝu

∑
j ∈Su∩Ŝu

I(γuj < γui ) + 1
γui

)
,

(20)

where |Ŝu | = k , I(x) = 1 if x is true, otherwise I(x) = 0, and γui is

the predicted rank of item i for user u.

4.1.4 Hyper-parameter Setting. To divide interactions into sessions,

we set the time gap threshold ϵ to 48 hours for Amazon Book and

Amazon Video, and 2 hours for MovieLens-1M and Lastfm. To build

the training and testing instances, we set the number T of sessions

in an instance to 10, 8, 6, and 4 for Amazon Book, Amazon Video,

Movielens-1M, and Lastfm, respectively. The embedding dimen-

sionality d is set to 64 for Amazon Book, Movielens-1M, and Lastfm,

and 32 for Amazon Video. At last, the number of heads in multi-

head self-attention network in long-term preference learning layer

is set to 8 for all datasets. On all datasets, the learning rate, batch

size, and the dropout rate are set to 0.001, 128, and 0.5, respectively.

At the same time, the optimal hyper-parameters of baselines are

fine-tuned on validation sets.

4.2 Performance Comparison with Baselines

The results of the comparison with baseline methods are shown

in Tables 2 and 3. It can be seen that TLSRec outperforms the two

RNN based models, DREAM, and II-RNN, in terms of Hit@k and

MAP@k . The RNN based models often suffer from the problem

of long-term dependency, which causes they prefer to memorize

the preference more reflected by recent sessions than by distant

Table 3: MAP@k comparison with baselines

Methods Amazon Book Amazon Video Movielens-1M Lastfm

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
DREAM 0.0020 0.0021 0.0027 0.0028 0.0214 0.0230 0.0661 0.0769
II-RNN 0.0025 0.0035 0.0031 0.0038 0.0271 0.0311 0.0899 0.0928

NARM 0.0031 0.0033 0.0023 0.0028 0.0185 0.0214 0.0731 0.0784
ANAM 0.0021 0.0031 0.0038 0.0047 0.0184 0.0214 0.0674 0.0713
SHAN 0.0018 0.0019 0.0061 0.0066 0.0188 0.0214 0.0690 0.0700
SASRec 0.0055 0.0062 0.0145 0.0163 0.0352 0.0436 0.0892 0.0966
BERT4Rec 0.0033 0.0047 0.0092 0.0166 0.0279 0.0402 0.0755 0.0834
TiSASRec 0.0062 0.0073 0.0155 0.0172 0.0372 0.0437 0.0981 0.1046

SURGE 0.0091 0.0104 0.0096 0.0138 0.0366 0.0411 0.0905 0.1006
DHCN 0.0075 0.0776 0.0082 0.0170 0.0233 0.0392 0.0808 0.0984

TLSRec 0.0130 0.0144 0.0167 0.0175 0.0381 0.0438 0.1044 0.1097

sessions. As the recent sessions dominate the learning of user pref-

erence, the RNN based models are more susceptible to the fluctuates

of users’ short-term preference and cannot sufficiently capture the

long-term preference that is more stable. In contrast to the RNN

based models, TLSRec learns an embedding for long-term prefer-

ence by pooling local preference embeddings of sessions with a

hierarchical self-attention network, which enables TLSRec to per-

ceive the long-term dependency between sessions and smooth out

the preference fluctuates, and consequently better understand the

stable long-term preference of a user.

We also observe that TLSRec outperforms the six attention based

models. Essentially, NARM, ANAM, SASRec, and TiSASRec only

learn the short-term preference of a user by fusing the embeddings

of the recent interactions with an attention network, which lack the

knowledge about the user’s long-term preference and consequently

tend to be hindered by the fluctuates of the user’s preference. In con-

trast, TLSRec can learn not only the short-term preference but the

long-term preference as well, particularly with a hierarchical self-

attention network which makes it able to capture the dependency

between sessions. Although SHAN and BERT4Rec consider both

long-term preference and short-term preference, however it learns

the current preference by fusing them with scalar coefficients pro-

duced by an attention mechanism, which makes it unable to weight

the contributions of the two preferences at a finer granularity level

like TLSRec does.

It can be also observed that GNN based models are inferior to TL-

SRec. Although the GNN based models can capture the high-order

interactions between items among sessions, they often essentially

focus on the learning of the current session without differentiating

the impacts of the long-term and short-term preferences

Unlike the baseline methods, TLSRec uses a gate vector pro-

duced by a neural time gate based on the time distance to fuse

the long-term preference and short-term preference embeddings,

which benefits the learning of the current preference from two

perspectives. First, the contributions of the long-term preference

and short-term preference are reasonably regulated by the distance

to current time, and the shorter it is, the more proportion the short-

term preference accounts for. Second, the dimensions of the gate

vector play the role weighting the dimensions of the preference

embeddings during their fusion, which offers a finer-grained fusion.
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Table 4: Hit@k comparison with the variants

Methods Amazon Book Amazon Video Movielens-1M Lastfm

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
TLSRec-S 0.2741 0.3530 0.1567 0.2073 0.5111 0.6057 0.7604 0.8064
TLSRec-L 0.3034 0.3692 0.1789 0.2221 0.5466 0.6319 0.7679 0.8160
TLSRec-M 0.3039 0.3736 0.1875 0.2344 0.5611 0.6495 0.8060 0.8435
TLSRec-G+A 0.2989 0.3677 0.1702 0.2134 0.5317 0.6263 0.8053 0.8427
TLSRec-G+S 0.3070 0.3712 0.1770 0.2315 0.5534 0.6476 0.8035 0.8427
TLSRec-G+M 0.3213 0.3894 0.1965 0.2448 0.5634 0.6514 0.8065 0.8436
TLSRec 0.3438 0.4161 0.2423 0.2884 0.5640 0.6522 0.8086 0.8439

Table 5: MAP@k comparison with the variants

Methods Amazon Book Amazon Video Movielens-1M Lastfm

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
TLSRec-S 0.0077 0.0087 0.0119 0.0127 0.0245 0.0300 0.0928 0.0975
TLSRec-L 0.0113 0.0130 0.0130 0.0139 0.0367 0.0421 0.0822 0.0866
TLSRec-M 0.0117 0.0131 0.0159 0.0169 0.0372 0.0428 0.0962 0.1018
TLSRec-G+A 0.0110 0.0121 0.0149 0.0157 0.0360 0.0416 0.1016 0.1078
TLSRec-G+S 0.0110 0.0121 0.0159 0.0166 0.0362 0.0418 0.1016 0.1077
TLSRec-G+M 0.0119 0.0133 0.0163 0.0171 0.0376 0.0430 0.1028 0.1094
TLSRec 0.0130 0.0144 0.0167 0.0175 0.0381 0.0438 0.1044 0.1097

4.3 Ablation Experiments

Nowwe investigate the effectiveness of the hierarchical self-attention

network, the neural time gate, and the multi-head self-attention

mechanism in the long-term preference learning. For this purpose,

we will compare TLSRec with its variants as follows:

• TLSRec-S Compared with TLSRec, TLSRec-S removes the

self-attention network before the average pooling function

for the generation of session embeddings in short-term pref-

erence learning layer.

• TLSRec-L Symmetrically, TLSRec-L removes self-attention

network before the vanilla attention network for the genera-

tion of the long-term preference embedding.

• TLSRec-M Compared with TLSRec, TLSRec-M replaces the

multi-head self-attention network with a single-head self-

attention network in the long-term preference learning layer.

• TLSRec-G+A TLSRec-G+A is a variant of TLSRec where

the neural time gate is replaced with a pooling function

which generates the current preference embedding zu by

averaging the long-term preference embedding and the short-

term preference embedding.

• TLSRec-G+S TLSRec-G+S is a variant of TLSRec where the

neural time gate is replaced with a self-attention mechanism.

TLSRec-G+S first generates the attentional long-term em-

bedding and short-term embedding with attention to each

other, and then generates the current preference embedding

zu with the sum of them.

• TLSRec-G+M TLSRec-G+M is a variant of TLSRec where

the neural time gate is replaced with a multi-head attention

mechanism. TLSRec-G+M generates the current preference

embedding similarly to TLSRec-G+S, with the exception of

using the multi-head attention to generate the attentional

long-term and short-term embeddings. In TLSRec-G+M, the

number of attention heads is set to the same value in TLSRec.
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Figure 2: Visualization of the self-attention coefficients be-

tween sessions.

The results are shown in Tables 4 and 5. We can see that com-

pared with TLSRec, the performance of each variant significantly

declines, which verifies the effectiveness of different components

of TLSRec. Particularly, the comparison between TLSRec, TLSRec-S

and TLSRec-L shows the performance gain incurred by the pro-

posed hierarchical self-attention network, which verifies its ability

to better capture the dependency between items for the short-term

preference learning and the dependency between sessions for the

long-term preference learning. At the same time, we can also note

that TLSRec performs much better than TLSRec-M, which is due to

the ability of the multiple attention heads to enhance the long-term

preference learning by perceiving the finer-grained interactions

between dimensions of session preference embeddings. At last, we

see that compared with TLSRec-G+A, TLSRec-G+S and TLSRec-

G+M, the performance of TLSRec is remarkably improved because

of the advantages of the proposed neural time gate. First, the re-

sults demonstrate the effectiveness of using the time lag aware

gate vector to adaptively regulate the contributions of the long-

term preference and short-term preference for the learning of the

current preference. Second, the results also show that the fine-

grained fusion of the long-term and short-term embeddings with

dimension-wise weights offered by the neural time gate is superior

to the coarse fusion with manually predefined vector-wise weights.

4.4 Case Study

Now we further illustrate TLSRec’s ability to capture the interac-

tions between sessions and its ability to regulate the contributions

of long-term preference and short-term preference. For this pur-

pose, we randomly sample two users with IDs ’237’ and ’1492’

from Movielens-1M and visualize their self-attention coefficients

between sessions and their gate vectors over different time lags in

Figures 2 and 3, respectively.

In Figures 2(a) and 2(b), one cell (Si , Sj ) at the row Si and column

Sj (i ≤ j) represents the attention given by Si to Sj that is generated

by Equation (5), and the darker the color, the greater the attention.

From Figure 2 we can see that there does exist influence between

sessions, and to reveal the real preference for a session, TLSRec

assigns different attentionweights to its previous sessions, bywhich

even the influence of early sessions can be captured.

In Figures 3(a) and 3(b), a row of the matrices is a time gate

vectors corresponding to a specific time lag, along with the average

over its dimensions that is shown as the corresponding component

in the average column. At first, we can see that the colors of the

dimensions of the same time gate vector are different from each
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Figure 3: Visualization of the time gate vectors.

other, and again the darker the color, the larger the value. This ob-

servation shows that by the time gate vector TLSRec can evaluate

the contributions of the short-term preference and long-term pref-

erence at the fine-grained dimension granularity for the learning

of the current preference, since the ith dimension д(i) of the time

gate vector and 1 − д(i) are the weights of the ith dimension of

the short-term preference embedding and the long-term preference

embedding, respectively, during the fusion in Equation (16). From

Figures 3(a) and 3(b), we can also note that the average weight over

the dimensions of a time gate vector decays with the increase of

the time lag. This result confirms our intuition that the longer the

distance between the time of the last behavior and the time when

a recommendation is made, the less the impact of the short-term

preference of a user on her/his current preference.

5 CONCLUSION

In this paper, we propose a novel model called Time Lag aware

Sequential Recommendation (TLSRec). To capture the global sta-

bility and local fluctuation of a user’s preference, TLSRec is able

to model a user’s long-term preference and short-term preference

with a hierarchical self-attention network. Meanwhile, due to the

neural time gate, TLSRec can fulfill a fusion of the long-term and

short-term preferences with a time lag sensitive regulation at the

aspect level for the learning of a user’s current preference. At last,

the extensive experiments conducted on real datasets demonstrate

the effectiveness of TLSRec.
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