2305.03503v1 [cs.CL] 2 May 2023

.
.

arxiv

Think Rationally about What You See: Continuous Rationale
Extraction for Relation Extraction

Xuming Hu
Tsinghua University
hxm19@mails.tsinghua.edu.cn

Irwin King

The Chinese University of Hong Kong

king@cse.cuhk.edu.hk
ABSTRACT

Relation extraction (RE) aims to extract potential relations accord-
ing to the context of two entities, thus, deriving rational contexts
from sentences plays an important role. Previous works either focus
on how to leverage the entity information (e.g., entity types, entity
verbalization) to inference relations, but ignore context-focused
content, or use counterfactual thinking to remove the model’s bias
of potential relations in entities, but the relation reasoning pro-
cess will still be hindered by irrelevant content. Therefore, how to
preserve relevant content and remove noisy segments from sen-
tences is a crucial task. In addition, retained content needs to be
fluent enough to maintain semantic coherence and interpretability.
In this work, we propose a novel rationale extraction framework
named RE?, which leverages two continuity and sparsity factors to
obtain relevant and coherent rationales from sentences. To solve
the problem that the gold rationales are not labeled, RE? applies an
optimizable binary mask to each token in the sentence, and adjust
the rationales that need to be selected according to the relation label.
Experiments on four datasets show that RE? surpasses baselines.
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1 INTRODUCTION

Relation extraction (RE) is a crucial part of many information re-
trieval (IR) systems, which could extract relations between enti-
ties from sentences. These structured triplets such as (Ryan, Yaz,
per/per/alumni) (Figure 1) from heterogeneous sources could benefit
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Ryan and Yaz realising they knew each other from school
was so wholesome and they are similar to me and my friend.
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Figure 1: Different models “see” different content in sen-
tences by thinking differently. Rational thinking predicts
the correct relation label per/per/alumni between two enti-
ties Ryan and Yaz by seeing the relevant and correct content.

multiple downstream applications like question answering [19, 20]
and natural language understanding [14, 21, 22]. To obtain struc-
tured triples, we need to exploit relevant and noise-free sentences
from the entity context, so that the correct relation can be extracted
between the two available entities. Entity Thinking methods such
as Hu et al. [15, 16, 17] inject reserved special tokens <e> and </e>
before and after the entity, and focus on the contextualized features
of the entity through these special tokens. However, the semantic
information of entities cannot be specified in special tokens. There-
fore, Zhou and Chen [37] and Lu et al. [24] respectively introduce
entity type and entity verbalization to better reveal the contextual
semantic representation of entities and infer the relations between
entities. Although Entity Thinking methods can better capture the
context semantics of the entity, but cannot automatically remove
noisy and irrelevant contents. Such noisy content tends to destroy
correct relational inference. Taking Figure 1 as an example, the
Entity Thinking method has no idea in judging the relevance of the
content such as “they knew each other from school” and “me and
my friend” for predicting the relation between entities. Therefore,
the model may be misled by the word “friend”, and mispredicts
the relation as Per/per/peer. To remove the potential impact of
the content on the relation extraction between entities, Counter-
factual Thinking methods [25, 33] remove the model’s bias against
different words and entities. However, these methods do not focus
on explicitly removing noisy contextual content, thus, the model’s
prediction can still be misled as Per/per/siblings.

To remove irrelevant and noisy content in sentences, we first
propose rational thinking methods which could extract relevant
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Figure 2: Architecture: The rationale extractor obtains the
rationales from the input using a binary mask consists of
continuity and sparsity factors.

and noise-free rationales in RE task. Although the methods of ratio-
nal thinking have been verified in the various downstream tasks of
information retrieval such as question answering [34], we still face
two crucial challenges to leverage the rational thinking methods
for the RE task: (1) Gold rationales which are relevant to the rela-
tion label in the sentences are not available, therefore, we cannot
train a rationale extractor in a supervised learning manner, (2) Ex-
tracted rationales are encouraged to be continuous, which can not
only improve the interpretability of the rationales, but also express
coherent semantics to predict the relation labels between entities.

In addressing the two main challenges, we present two new con-
tinuity and sparsity factors in this study to manage the coherence
and quantity of chosen rationale tokens. Sparsity imposition aids
in striking a balance between eliminating irrelevant material and
preserving relevant content. Promoting continuity is advantageous
for obtaining continuous rationales, leading to a more coherent
semantic representation. Furthermore, we employ an adjustable
binary mask for rationale selection and modify the rationale to-
kens necessary for the relation extraction task using relation labels.
As a result, the unavailability of gold rationales can be addressed
through end-to-end training. Our primary contributions include: (1)
Introducing a novel end-to-end training system, RE2, which treats
rationale extraction as an adjustable binary mask for the relation
extraction task and retains relevant, noise-free rationales via conti-
nuity and sparsity factors. (2) Experiments on four commonly used
datasets demonstrate that RE? significantly improves best-reported
baselines in both full data and low-resource settings.

2 PROPOSED MODEL

2.1 Continuous Rationale Extractor

In the continuous rationale extractor module of the model, we mask
the tokens that are irrelevant to the relation extraction task, and
keep the continuous tokens to improve extraction performance.

2.1.1 Sentence Representation and Importance Matrix. We can ob-
tain semantic embedding of each token through its contextualized
sentence representation. In practice, we adopt the BERT [8] to
encode the token representations as: Xsent € RDPXL where D is
the dimension of the embedding and L is the number of tokens
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in the sentence. To select the tokens most relevant to the entities
in the sentence for relation extraction task, we first calculate the
importance matrix: s = Xsent | (xe1 + xez) with the token embed-
dings of the two entities x¢, and x,, extracted from xsens. We
denote s = (s1,...,sr) | and obtain the importance score s; which
represents the importance of the ith token towards RE task.

2.1.2  Factor Graph. We represent the token selection using a bi-
nary vector m = (my, my,..,mg) ", where m; € {0,1}. The value
0 or 1 is used to indicate whether the i" token is selected. In this
way, we could transform the structured prediction problem of ratio-
nal sequence generation into the assignment of values to multiple
variables. To maintain semantic coherence in token selection, it’s
important to consider the continuity in token choice. Additionally,
to emphasize the importance and relevance of tokens to entities,
we need to limit the number of tokens with sparsity. Therefore, we
introduce the factor graph ¥ and decompose these requirements
into multiple local factors for optimal token selection. More specif-
ically, we adopt the pairwise factor CONTINUITY and L-ary factor
SPARSITY. In the following sections, we will formulate these two
factors and provide their score functions.

CONTINUITY (CON):Toimprove the continuity of tokens selected
for RE task, we adopt the CONTINUITY (CON) factor, which could
examine whether each pair of consecutive tokens are both selected.
We adopt the factor CON (m;, m;+1; r; j4+1) to represent the constraint
on the continuous selection of the i*” and (i + 1)!* tokens. As
shown in Figure 2, if both tokens are selected, we encourage this
continuous selection by adding the edge score r; ;41 > 0 in the
score function. Formally, the score function for CON factor can be
denoted as:

scorecon (M, Mi+1;Tii+1) = MiMis17ii+1- (1

As illustrated in Section 2.1.1, we adopt the importance matrix s

to measure the tokens that are relevant to the entities, which is a
critical metrics to token selection. We add the scores of the selected

h and (i + 1) tokens in the score function and finalize the score
function as:

scorecon (M, Mi+1; Fiji+1) = MiMit17ii+1 + MiS; + Mir1Siv1. (2)

We can impose continuity constraints on the token selection for
the original sentence by leveraging the combination of the pairwise
factors. Formally, the factor graph can be formulated as:

F = {CON(m, mjyq;riiy1) : 1 < i< L}. 3

SPARSITY (SPA): To control the sparsity in token selection for
RE task, we adopt the L-ary factor SPARSITY (SPA) by imposing a
limit K on the maximum number of selected tokens as a restriction.
In practice, K can also be the proportion of all tokens in a sentence.
The SPA factor is a hard constraint by definition. We can formulate
the SPA factor with the following score function:

scorespp(my, mp, - -+ ,mr,K) = {0’ zmi <K, (4)
—oo, Y.m;>K.

Overall, to consider continuity and sparsity together, we obtain
the factor graph # by instantiating with the L binary variables and
combining the CON and SPA factors:

F = {SPA(my, ... mp; K)} U {CON(m;, mis1;7iie1)- Q)
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To utilize the both continuity and sparsity constraints and find
an optimal solution for token selection, the score functions of factor
graph ¥ need to sum the local sub-problems {CON(m;, mj1;7ii41) :
1 <i<L}and{SPA(m1,...,mp;K)} as:

L L-1

2 misi+ Y mimipirige, 2 mi <K,
score(m;s) = 1 j=1 i=1 6)

—00, >, m; > K.

The hard constraint of # is inherited from the SPA factor, which
specify that the total number of selected tokens should not exceed
K. The soft constraint is inherited from the CON factors, encouraging
to select consecutive tokens that are relevant to the RE task. To
find a solution that satisfies these constraints well, we approach
the problem of solving the variables as a Maximum A Posteriori
(MAP) inference problem that maximizes the score function: score
(m;s). We can represent this problem as maximization of the score
function under the constraint that |m|; < K:

L-1
P T
= arg max (s"m+ Z mimisiriga) . (7)
|m| <K,me{0,1}F i=1
score(m;s)

In fact, maximizing the score function is essentially a complex
structured problem involving sub-problems with interrelated global
agreement constraints, making it difficult to find an accurate max-
imization algorithm [26]. To solve this problem, we consider the
Marginal Inference with Lagrange Multiplier.

2.1.3  Marginal Inference with Lagrange Multiplier. We can solve
the maximization problem with the Gibbs distribution and get
an approximate solution. We construct a Gibbs distribution so
that p(m;s) « exp(score(m;s)). In this way, we can sample from
m ~ p(m;s) and obtain an approximate optimal solution. However,
obtaining unbiased samples is challenging. To address this issue,
we use Perturb-and-MAP [27], an approximate sampling strategy.

Another problem is that the score function in Eq. 6 is a piecewise
function, making the Gibbs distribution p(m;s) oc exp(score(m;s))
discontinuous. As marginal inference in discontinuous Markov Ran-
dom Fields is hard to solve, we reformulate the hard constraint: SPA
in Eq. 6 with Lagrange multiplier, which express hard constraints
in the form of continuous functions. Specifically, we use a Lagrange
Multiplier A > 0, and add A(K — |m|;) to the objective function in
Eq. 7. We finalize the Eq. 7 as:

L-1
m = arg max sTm+ Z mimiy1rii+1 + AK — [ml1) |,
|m|; <K,me[0,1]F =

®)

where the Gibbs distribution should be reformulated as p(m;s) o
exp(score(m;s) + A(K — |m|1)). Therefore, the reformulated Gibbs
distribution becomes continuous, enabling us to calculate the opti-
mal m that maximizes the score function, and obtain the rationales
which are relevant to the relation extraction task.

2.2 Relation Classifier

Finally, the classifier makes relation predictions conditioned on the
selected rationales and the entities e: §§ = pred(m © x || e) to obtain
the relation label distributions. © and || denote the element-wise
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product and concatenation, respectively. The relation classification
loss could be calculated as: £ = — Zﬁl y; log;, where N is the
number of training sentences in an epoch, and y; is the ground-
truth tag vector of the sentence x;. The relation classification loss
could jointly train the Continuous Rationale Extractor module and
Relation Classifier module in an end-to-end manner.

3 EXPERIMENTS AND ANALYSES

3.1 Experimental Setup and Baselines

Setup: We evaluate the model on four widely-used RE datasets:
SemEval [13], which contains 6,507/1,493/2,717 samples in train/de-
v/test sets and 19 relation types. TACRED [36] and TACRED-Revisit
[1], which contain 68,124/22,631/15,509 samples and 42 relation
types. Re-TACRED [32], which contains 58,465/19,584/13,418 sam-
ples and 42 relation types. Following prior effort [33], we adopt
Micro F1 as the evaluation metric. Under the low-resource setting,
we randomly sample 10%, 25%, and 50% of the training set as the
small-scale training sets for evaluation, and evaluate our model
on the test set. We use the BERT-Base default tokenizer with a
max-length of 128 to preprocess data. We set K as 60% of all to-
kens in the sentence. For the classifier, we set the layer dimensions
as 768-384-labels. We use BertAdam [18] with 3e-5 learning rate,
warm up with 0.06 to optimize the loss and set the batch size as 16.
Baselines: We first introduce SOTA models as base model on the RE
task, and then adopt various baselines. We adopt SURE [24] as the
base model. We compare RE? with the following baselines: Entity
thinking baselines: (1) MTB [31], (2) Entity Mask [36], (3) Typed
Entity Marker [37]. Counterfactual thinking baselines adopt causal
inference to remove bias in RE tasks: (4) CFIE [25], (5) CORSAIR
[29] (6) CORE [33]. Rationale thinking baselines could predict sparse
binary masks over input tokens for RE tasks: (7) HardKuma [2],
(8) IB objective [28], (9) UNIREX [3]. Note that the entity thinking
method is also used in the SURE, all baselines of entity thinking
are used to replace the methods in SURE.

3.2 Results and Analysis

Overall Performance. Table 1 shows the mean and standard de-
viation results with 5 runs of training and testing on four datasets.
We observe that using the entity information verbalization (SURE
[24]) can achieve an average 0.6% improvement in F1 across all
datasets compared to other entity thinking methods. Therefore, we
adopt SURE as the base model. For counterfactual and rationale
thinkings, we find that they both bring a 0.3% improvement in
the F1 performance across all datasets. Our proposed method of
rational thinking addresses two major challenges: (1) end-to-end
training of both the rationale extraction and relation classifier, and
(2) extraction of continuous rationales. As a result, RE? achieves a
significant 0.9% improvement in F1 across all RE datasets, includ-
ing low-resource RE settings. Compared with the previous SOTA:
UNIREX, RE? has an additional 0.4% increase in F1 performance.
An interesting finding is that for low-resource settings (e.g., only
10% of the training set), REZ can achieve more performance im-
provements than the full data setting: 1.1% vs. 0.9%, which shows
that RE? is robust enough in the case of limited training data. The
low-noise and relevant rationales obtained by using RE? can help
the F1 performance of the base model more significantly.
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Table 1: Average micro F1 results in four RE datasets. “re” means that we will replace the entity information verbalization in
SURE with the corresponding entity thinking baselines. We mark the (standard deviation) of the results.

SemEval TACRED TACRED-Revisit Re-TACRED
Methods/Datasets
10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%
SURE 77.2 815 83.9 86.3 67.9 704 719 73.3 72.3 75.1 77.4 79.2 78.5 82.6 84.7 88.2
re. MTB [31] 76.3 80.8 82.9 85.4 67.2 69.8 71.1 72.3 71.4 74.3 76.6 78.4 77.6 81.8 83.8 87.2
re. Entity Mask [36] 76.7 80.9 833 86.0 67.3 70.0 714 725 718 747 76.9 785 77.8 82.2 843 87.6
re. Typed Marker [37] 77.0 81.3 83.7 86.3 67.8 70.4 71.8 73.2 72.1 75.0 77.2 79.0 78.2 82.4 84.5 88.1
+CFIE [25] 77.3 81.7 84.1 86.6 68.2 70.5 72.2 73.5 72.5 75.2 77.6 79.4 78.6 82.8 85 88.4
+CORSAIR [29] 774 81.8 84.1 86.7 68.3 70.7 724 73.7 72.7 75.4 77.7 79.6 78.9 83.1 85.1 88.6
+CORE [33] 77.5 82.0 84.2 86.7 68.3 70.8 72.3 73.7 72.8 75.6 77.8 79.6 78.9 83.2 85.3 88.7
+HardKuma [2] 77.4 81.4 84.0 86.5 68.0 70.6 72.2 735 725 753 77.6 79.4 78.7 82.7 85.0 88.3
+IB Objective [28] 775 817 843 86.6 683 70.7 723 73.6 726 753 77.8 79.5 79.0 83.0 85.1 88.6
+UNIREX [3] 77.8 81.9 84.4 86.7 68.5 70.9 72.5 73.8 72.8 75.7 78.0 79.7 79.2 83.1 85.4 88.8
+REZ 782(02) 82.3(0.1) 84.8(0.1) 87.202) 68.9(0.3) 713(0.2) 73.003) 74.20.1) 73.3(0.2) 76.002) 78.4(0.1) 80.10.1) 79.6(03) 83.60.2) 85.7(0.1) 89.1(0.2)
w/o Continuity 77803) 81904) 84202) 86.8(0.4) 68503) 70702 72503) 73802) 72804) 75503) 77.903) 79702 79104) 83.203) 85302 88803)
w/o Sparsity 77.6(02) 81.802) 84.3(0.1) 86.6(03) 68.4(0.1) 70.5(0.2) 72.403) 73.6(0.1) 72.7(02) 75.503) 77.8(0.3) 79.8(0.2) 79.00.2) 83.1(0.3) 85.1(0.1) 88.6(0.1)
w/o Adding Entities 78.002)  82.20.1)  84.602) 87102 68803 71102 72802 7400.) 73102 75902 782(0.1) 80.001) 79303) 83.4(02) 85.6(02) 89.0(0.1)
" F1 = F1wlo Continuity ¥ Selection Ratio M Selection Ratio wio C Table 2: Perplexity of the extracted rationales. Original
100.0% . . . .
87.25 means the original sentences. Lower perplexity is better.
87.00 TS0% Methods / Datasets SemEval TACRED TACRED-Revisit Re-TACRED
w675 s0.0% HardKuma [2] 1137 1335 12.21 11.93
IB Objective [28] 10.37 12.23 1156 10.74
UNIREX [3] 13.42 12.64 14.22 13.87
86.50 25.0% 2
RE 5.13 5.68 6.02 5.75
8625 Original Sentences 3.75 4.02 3.83 3.68
BT+ o
10 20 40 60 80 100 10 20 40 60 80 100

K K
Figure 3: Effect of Two Factors (Continuity and Sparsity). K
is the hyper-parameter to control the sparsity of the token
selection. Continuity is imposed to improve contiguity.

Ablation Study. We perform an ablation study to demonstrate the
effectiveness of our model’s various modules on the test set. RE2
without Continuity and RE? without Sparsity eliminate the continu-
ity and sparsity elements in the factor graphs in rationale extraction,
respectively. RE? without Adding Entities removes the entities added
in the relation classifier module, using only the rationales for re-
lation classification. Table 1 generally concludes that all modules
positively impact performance. Specifically, the absence of conti-
nuity leads to discontinuous rationales, affecting the coherence of
semantic representations and causing a 0.4% F1 performance drop.
Removing sparsity selects noisier rationales, resulting in a 0.5%
F1 performance reduction. Interestingly, removing added entities
has minimal effect on F1 performance (0.1%). We find that 89% of
rationales contain two entities and 97% contain at least one entity,
indicating that adding entities provides little additional information.
Effect of Two Factors: As shown in Figure 3, we display F1 scores
and token selection rates in relation to varying K values on SemEval.
As K rises, more tokens within sentences are chosen as rationales.
Nonetheless, the F1 score for RE? doesn’t increase consistently
with higher K, due to the incorporation of unrelated rationales.
Optimal performance occurs at K = 60, meaning 60% of tokens are
selected as rationales on average. Eliminating the Sparsity factor
entirely causes the model’s F1 score to decline from 87.2 to 86.6. Ad-
ditionally, the Continuity constraint benefits the model, as RE? with
Continuity constraints consistently produces improved outcomes.
Coherence Analysis of Rationales. RE? utilizes the continuity
factor to control the generation of rationales that are more se-
mantically coherent, which can express more fluent semantics. We
analyze the coherence of the rationales through perplexity based

Table 3: Human evaluation (Micro F1 / Information Suffi-
ciency) of the original sentences and extracted rationales.

Datasets SemEval TACRED TACRED-Revisit Re-TACRED
Extracted Rationales 95.5/4.4 89.3/4.0 93.5/4.2 96.8 / 4.5
Original Sentences 943/4.5 87.6/43 92.3/4.2 96.0 / 4.6

on GPT-3 [30]. From Table 2, RE? could obtain the lowest average
perplexity, approaching that of the original sentences.

Human Evaluation. We conduct human evaluations of rationales
with a 15-member annotation team, involving 5 members in data
validation. Annotators predict relation labels using original sen-
tences and extracted rationales, then rate information sufficiency
(on a 1-5 scale) for both. Higher scores signify greater sufficiency.
To ensure consistency, we perform inter-annotator agreement and
manual validation. Table 3 shows that annotators can provide more
accurate relation labels even with lower information sufficiency
in rationales than original sentences, suggesting that removing
irrelevant details from sentences can decrease noise and enhance
relational prediction accuracy.

4 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel rationale extraction framework
REZ, which adopt two factors, continuity and sparsity, to control the
relevancy of rationales to the RE task and improve the coherence.
We introduce the marginal inference with a Lagrange multiplier
to solve the problem of maximizing the score function with two
factors. Therefore, we could jointly train the rationale extraction
and relation classification tasks in an end-to-end manner where
gold annotations for rationales are not available. Experiments on
four datasets show the effectiveness of RE2. In the future, we can
extend the research on relation extraction to the construction of
knowledge graphs [6, 7, 9, 35], the matching of knowledge graphs
[10-12, 23], and the acceleration of information retrieval [4, 5].
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