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ABSTRACT

Relation extraction (RE) aims to extract potential relations accord-

ing to the context of two entities, thus, deriving rational contexts

from sentences plays an important role. Previous works either focus

on how to leverage the entity information (e.g., entity types, entity

verbalization) to inference relations, but ignore context-focused

content, or use counterfactual thinking to remove the model’s bias

of potential relations in entities, but the relation reasoning pro-

cess will still be hindered by irrelevant content. Therefore, how to

preserve relevant content and remove noisy segments from sen-

tences is a crucial task. In addition, retained content needs to be

fluent enough to maintain semantic coherence and interpretability.

In this work, we propose a novel rationale extraction framework

named RE
2, which leverages two continuity and sparsity factors to

obtain relevant and coherent rationales from sentences. To solve

the problem that the gold rationales are not labeled, RE2 applies an

optimizable binary mask to each token in the sentence, and adjust

the rationales that need to be selected according to the relation label.

Experiments on four datasets show that RE2 surpasses baselines.
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1 INTRODUCTION

Relation extraction (RE) is a crucial part of many information re-

trieval (IR) systems, which could extract relations between enti-

ties from sentences. These structured triplets such as (Ryan, Yaz,

per/per/alumni) (Figure 1) from heterogeneous sources could benefit
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[E1] Ryan [/E1] and [E2] Yaz 
[/E2] realising they knew each 

other from school 

[E1] Ryan [/E1] and [E2] Yaz [/E2] 
realising they knew each other from 

school was so wholesome and they are 
similar to me and my friend.

Counterfactual  
Thinking

Entity Thinking

Per/per/siblings

Per/per/alumni

Per/per/peer

Rational Thinking

[E1] Ryan [/E1] and [E2] Yaz [/E2] 
realising they knew each other from 

school was so wholesome and they are 
similar to me and my friend.

Ryan and Yaz realising they knew each other from school 
was so wholesome and they are similar to me and my friend.

Figure 1: Different models łseež different content in sen-

tences by thinking differently. Rational thinking predicts

the correct relation label per/per/alumni between two enti-

ties Ryan and Yaz by seeing the relevant and correct content.

multiple downstream applications like question answering [19, 20]

and natural language understanding [14, 21, 22]. To obtain struc-

tured triples, we need to exploit relevant and noise-free sentences

from the entity context, so that the correct relation can be extracted

between the two available entities. Entity Thinking methods such

as Hu et al. [15, 16, 17] inject reserved special tokens <e> and </e>

before and after the entity, and focus on the contextualized features

of the entity through these special tokens. However, the semantic

information of entities cannot be specified in special tokens. There-

fore, Zhou and Chen [37] and Lu et al. [24] respectively introduce

entity type and entity verbalization to better reveal the contextual

semantic representation of entities and infer the relations between

entities. Although Entity Thinking methods can better capture the

context semantics of the entity, but cannot automatically remove

noisy and irrelevant contents. Such noisy content tends to destroy

correct relational inference. Taking Figure 1 as an example, the

Entity Thinking method has no idea in judging the relevance of the

content such as łthey knew each other from schoolž and łme and

my friendž for predicting the relation between entities. Therefore,

the model may be misled by the word łfriendž, and mispredicts

the relation as Per/per/peer. To remove the potential impact of

the content on the relation extraction between entities, Counter-

factual Thinking methods [25, 33] remove the model’s bias against

different words and entities. However, these methods do not focus

on explicitly removing noisy contextual content, thus, the model’s

prediction can still be misled as Per/per/siblings.

To remove irrelevant and noisy content in sentences, we first

propose rational thinking methods which could extract relevant
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Ryan and Yaz realising they knew each other from school 
was so wholesome and they are similar to me and my friend.

SPARSITY

CONTINUITY

……

……

0.2 0.2 0.2 0.60.6 0.80.8 0.4 0.5

……

……

0.8 0.8 0.8 0.80.4 0.4 0.20.2 0.2

×

Ryan and Yaz realising they 
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Figure 2: Architecture: The rationale extractor obtains the

rationales from the input using a binary mask consists of

continuity and sparsity factors.

and noise-free rationales in RE task. Although the methods of ratio-

nal thinking have been verified in the various downstream tasks of

information retrieval such as question answering [34], we still face

two crucial challenges to leverage the rational thinking methods

for the RE task: (1) Gold rationales which are relevant to the rela-

tion label in the sentences are not available, therefore, we cannot

train a rationale extractor in a supervised learning manner, (2) Ex-

tracted rationales are encouraged to be continuous, which can not

only improve the interpretability of the rationales, but also express

coherent semantics to predict the relation labels between entities.

In addressing the two main challenges, we present two new con-

tinuity and sparsity factors in this study to manage the coherence

and quantity of chosen rationale tokens. Sparsity imposition aids

in striking a balance between eliminating irrelevant material and

preserving relevant content. Promoting continuity is advantageous

for obtaining continuous rationales, leading to a more coherent

semantic representation. Furthermore, we employ an adjustable

binary mask for rationale selection and modify the rationale to-

kens necessary for the relation extraction task using relation labels.

As a result, the unavailability of gold rationales can be addressed

through end-to-end training. Our primary contributions include: (1)

Introducing a novel end-to-end training system, RE2, which treats

rationale extraction as an adjustable binary mask for the relation

extraction task and retains relevant, noise-free rationales via conti-

nuity and sparsity factors. (2) Experiments on four commonly used

datasets demonstrate that RE2 significantly improves best-reported

baselines in both full data and low-resource settings.

2 PROPOSED MODEL

2.1 Continuous Rationale Extractor

In the continuous rationale extractor module of the model, we mask

the tokens that are irrelevant to the relation extraction task, and

keep the continuous tokens to improve extraction performance.

2.1.1 Sentence Representation and Importance Matrix. We can ob-

tain semantic embedding of each token through its contextualized

sentence representation. In practice, we adopt the BERT [8] to

encode the token representations as: 𝒙𝒔𝒆𝒏𝒕 ∈ R𝐷×𝐿 , where 𝐷 is

the dimension of the embedding and 𝐿 is the number of tokens

in the sentence. To select the tokens most relevant to the entities

in the sentence for relation extraction task, we first calculate the

importance matrix: 𝒔 = 𝒙𝒔𝒆𝒏𝒕
⊤

(
𝒙𝒆1 + 𝒙𝒆2

)
with the token embed-

dings of the two entities 𝒙𝒆1 and 𝒙𝒆2 extracted from 𝒙𝒔𝒆𝒏𝒕 . We

denote 𝒔 = (𝑠1, ..., 𝑠𝐿)
⊤ and obtain the importance score 𝑠𝑖 which

represents the importance of the 𝑖𝑡ℎ token towards RE task.

2.1.2 Factor Graph. We represent the token selection using a bi-

nary vector 𝒎 = (𝑚1,𝑚2, ...,𝑚𝐿)
⊤, where𝑚𝑖 ∈ {0, 1}. The value

0 or 1 is used to indicate whether the 𝑖𝑡ℎ token is selected. In this

way, we could transform the structured prediction problem of ratio-

nal sequence generation into the assignment of values to multiple

variables. To maintain semantic coherence in token selection, it’s

important to consider the continuity in token choice. Additionally,

to emphasize the importance and relevance of tokens to entities,

we need to limit the number of tokens with sparsity. Therefore, we

introduce the factor graph F and decompose these requirements

into multiple local factors for optimal token selection. More specif-

ically, we adopt the pairwise factor CONTINUITY and L-ary factor

SPARSITY. In the following sections, we will formulate these two

factors and provide their score functions.

CONTINUITY (CON): To improve the continuity of tokens selected

for RE task, we adopt the CONTINUITY (CON) factor, which could

examine whether each pair of consecutive tokens are both selected.

We adopt the factor CON (𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) to represent the constraint

on the continuous selection of the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ tokens. As

shown in Figure 2, if both tokens are selected, we encourage this

continuous selection by adding the edge score 𝑟𝑖,𝑖+1 ≥ 0 in the

score function. Formally, the score function for CON factor can be

denoted as:

scoreCON (𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) =𝑚𝑖𝑚𝑖+1𝑟𝑖,𝑖+1 . (1)

As illustrated in Section 2.1.1, we adopt the importance matrix 𝒔

to measure the tokens that are relevant to the entities, which is a

critical metrics to token selection. We add the scores of the selected

𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ tokens in the score function and finalize the score

function as:

scoreCON (𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) =𝑚𝑖𝑚𝑖+1𝑟𝑖,𝑖+1 +𝑚𝑖𝑠𝑖 +𝑚𝑖+1𝑠𝑖+1 . (2)

We can impose continuity constraints on the token selection for

the original sentence by leveraging the combination of the pairwise

factors. Formally, the factor graph can be formulated as:

F = {CON(𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) : 1 ≤ 𝑖 < 𝐿}. (3)

SPARSITY (SPA): To control the sparsity in token selection for

RE task, we adopt the L-ary factor SPARSITY (SPA) by imposing a

limit 𝐾 on the maximum number of selected tokens as a restriction.

In practice, 𝐾 can also be the proportion of all tokens in a sentence.

The SPA factor is a hard constraint by definition. We can formulate

the SPA factor with the following score function:

scoreSPA (𝑚1,𝑚2, · · · ,𝑚𝐿, 𝐾) =

{
0,

∑
𝑚𝑖 ≤ 𝐾,

−∞,
∑
𝑚𝑖 > 𝐾.

(4)

Overall, to consider continuity and sparsity together, we obtain

the factor graph F by instantiating with the 𝐿 binary variables and

combining the CON and SPA factors:

F = {SPA(𝑚1, ...,𝑚𝐿 ;𝐾)} ∪ {CON(𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) . (5)
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To utilize the both continuity and sparsity constraints and find

an optimal solution for token selection, the score functions of factor

graph F need to sum the local sub-problems {CON(𝑚𝑖 ,𝑚𝑖+1; 𝑟𝑖,𝑖+1) :

1 ≤ 𝑖 < 𝐿} and {SPA(𝑚1, ...,𝑚𝐿 ;𝐾)} as:

score(𝑚; 𝑠) =




𝐿∑

𝑖=1
𝑚𝑖𝑠𝑖 +

𝐿−1∑

𝑖=1
𝑚𝑖𝑚𝑖+1𝑟𝑖,𝑖+1,

∑
𝑚𝑖 ≤ 𝐾,

−∞,
∑
𝑚𝑖 > 𝐾.

(6)

The hard constraint of F is inherited from the SPA factor, which

specify that the total number of selected tokens should not exceed

𝐾 . The soft constraint is inherited from the CON factors, encouraging

to select consecutive tokens that are relevant to the RE task. To

find a solution that satisfies these constraints well, we approach

the problem of solving the variables as a Maximum A Posteriori

(MAP) inference problem that maximizes the score function: score

(𝒎; 𝒔). We can represent this problem as maximization of the score

function under the constraint that |𝒎 |1 ≤ 𝐾 :

𝒎̂ = arg max
|𝒎 |1≤𝐾,𝒎∈{0,1}𝐿

(
𝒔
⊤
𝒎 +

𝐿−1∑︁

𝑖=1

𝑚𝑖𝑚𝑖+1𝑟𝑖,𝑖+1
)

︸                           ︷︷                           ︸
score(𝒎;𝒔)

. (7)

In fact, maximizing the score function is essentially a complex

structured problem involving sub-problems with interrelated global

agreement constraints, making it difficult to find an accurate max-

imization algorithm [26]. To solve this problem, we consider the

Marginal Inference with Lagrange Multiplier.

2.1.3 Marginal Inference with Lagrange Multiplier. We can solve

the maximization problem with the Gibbs distribution and get

an approximate solution. We construct a Gibbs distribution so

that 𝑝 (𝒎; 𝒔) ∝ 𝑒𝑥𝑝 (score(𝒎; 𝒔)). In this way, we can sample from

𝒎̂ ∼ 𝑝 (𝒎; 𝒔) and obtain an approximate optimal solution. However,

obtaining unbiased samples is challenging. To address this issue,

we use Perturb-and-MAP [27], an approximate sampling strategy.

Another problem is that the score function in Eq. 6 is a piecewise

function, making the Gibbs distribution 𝑝 (𝒎; 𝒔) ∝ 𝑒𝑥𝑝 (score(𝒎; 𝒔))

discontinuous. As marginal inference in discontinuous Markov Ran-

dom Fields is hard to solve, we reformulate the hard constraint: SPA

in Eq. 6 with Lagrange multiplier, which express hard constraints

in the form of continuous functions. Specifically, we use a Lagrange

Multiplier 𝜆 > 0, and add 𝜆(𝐾 − |𝒎 |1) to the objective function in

Eq. 7. We finalize the Eq. 7 as:

𝒎̂ = arg max
|𝒎 |1≤𝐾,𝒎∈[0,1]𝐿

(

𝒔
⊤
𝒎 +

𝐿−1∑︁

𝑖=1

𝑚𝑖𝑚𝑖+1𝑟𝑖,𝑖+1 + 𝜆(𝐾 − |𝒎 |1)

)

,

(8)

where the Gibbs distribution should be reformulated as 𝑝 (𝒎; 𝒔) ∝

𝑒𝑥𝑝 (score(𝒎; 𝒔) + 𝜆(𝐾 − |𝒎 |1)). Therefore, the reformulated Gibbs

distribution becomes continuous, enabling us to calculate the opti-

mal 𝒎 that maximizes the score function, and obtain the rationales

which are relevant to the relation extraction task.

2.2 Relation Classifier

Finally, the classifier makes relation predictions conditioned on the

selected rationales and the entities 𝒆: 𝒚̂ = pred(𝒎 ⊙ 𝒙 ∥ 𝒆) to obtain

the relation label distributions. ⊙ and ∥ denote the element-wise

product and concatenation, respectively. The relation classification

loss could be calculated as: L = −
∑𝑁
𝑖=1𝒚𝑖 log 𝒚̂𝑖 , where 𝑁 is the

number of training sentences in an epoch, and 𝒚𝑖 is the ground-

truth tag vector of the sentence 𝑥𝑖 . The relation classification loss

could jointly train the Continuous Rationale Extractor module and

Relation Classifier module in an end-to-end manner.

3 EXPERIMENTS AND ANALYSES

3.1 Experimental Setup and Baselines

Setup: We evaluate the model on four widely-used RE datasets:

SemEval [13], which contains 6,507/1,493/2,717 samples in train/de-

v/test sets and 19 relation types. TACRED [36] and TACRED-Revisit

[1], which contain 68,124/22,631/15,509 samples and 42 relation

types. Re-TACRED [32], which contains 58,465/19,584/13,418 sam-

ples and 42 relation types. Following prior effort [33], we adopt

Micro F1 as the evaluation metric. Under the low-resource setting,

we randomly sample 10%, 25%, and 50% of the training set as the

small-scale training sets for evaluation, and evaluate our model

on the test set. We use the BERT-Base default tokenizer with a

max-length of 128 to preprocess data. We set K as 60% of all to-

kens in the sentence. For the classifier, we set the layer dimensions

as 768-384-labels. We use BertAdam [18] with 3e-5 learning rate,

warm up with 0.06 to optimize the loss and set the batch size as 16.

Baselines:Wefirst introduce SOTAmodels as basemodel on the RE

task, and then adopt various baselines. We adopt SURE [24] as the

base model. We compare RE2 with the following baselines: Entity

thinking baselines: (1) MTB [31], (2) Entity Mask [36], (3) Typed

Entity Marker [37]. Counterfactual thinking baselines adopt causal

inference to remove bias in RE tasks: (4) CFIE [25], (5) CORSAIR

[29] (6) CORE [33]. Rationale thinking baselines could predict sparse

binary masks over input tokens for RE tasks: (7) HardKuma [2],

(8) IB objective [28], (9) UNIREX [3]. Note that the entity thinking

method is also used in the SURE, all baselines of entity thinking

are used to replace the methods in SURE.

3.2 Results and Analysis

Overall Performance. Table 1 shows the mean and standard de-

viation results with 5 runs of training and testing on four datasets.

We observe that using the entity information verbalization (SURE

[24]) can achieve an average 0.6% improvement in F1 across all

datasets compared to other entity thinking methods. Therefore, we

adopt SURE as the base model. For counterfactual and rationale

thinkings, we find that they both bring a 0.3% improvement in

the F1 performance across all datasets. Our proposed method of

rational thinking addresses two major challenges: (1) end-to-end

training of both the rationale extraction and relation classifier, and

(2) extraction of continuous rationales. As a result, RE2 achieves a

significant 0.9% improvement in F1 across all RE datasets, includ-

ing low-resource RE settings. Compared with the previous SOTA:

UNIREX, RE2 has an additional 0.4% increase in F1 performance.

An interesting finding is that for low-resource settings (e.g., only

10% of the training set), RE2 can achieve more performance im-

provements than the full data setting: 1.1% vs. 0.9%, which shows

that RE2 is robust enough in the case of limited training data. The

low-noise and relevant rationales obtained by using RE2 can help

the F1 performance of the base model more significantly.
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Table 1: Average micro F1 results in four RE datasets. łre.ž means that we will replace the entity information verbalization in

SURE with the corresponding entity thinking baselines. We mark the (standard deviation) of the results.

Methods/Datasets
SemEval TACRED TACRED-Revisit Re-TACRED

10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%

SURE 77.2 81.5 83.9 86.3 67.9 70.4 71.9 73.3 72.3 75.1 77.4 79.2 78.5 82.6 84.7 88.2

re. MTB [31] 76.3 80.8 82.9 85.4 67.2 69.8 71.1 72.3 71.4 74.3 76.6 78.4 77.6 81.8 83.8 87.2

re. Entity Mask [36] 76.7 80.9 83.3 86.0 67.3 70.0 71.4 72.5 71.8 74.7 76.9 78.5 77.8 82.2 84.3 87.6

re. Typed Marker [37] 77.0 81.3 83.7 86.3 67.8 70.4 71.8 73.2 72.1 75.0 77.2 79.0 78.2 82.4 84.5 88.1

+CFIE [25] 77.3 81.7 84.1 86.6 68.2 70.5 72.2 73.5 72.5 75.2 77.6 79.4 78.6 82.8 85 88.4

+CORSAIR [29] 77.4 81.8 84.1 86.7 68.3 70.7 72.4 73.7 72.7 75.4 77.7 79.6 78.9 83.1 85.1 88.6

+CORE [33] 77.5 82.0 84.2 86.7 68.3 70.8 72.3 73.7 72.8 75.6 77.8 79.6 78.9 83.2 85.3 88.7

+HardKuma [2] 77.4 81.4 84.0 86.5 68.0 70.6 72.2 73.5 72.5 75.3 77.6 79.4 78.7 82.7 85.0 88.3

+IB Objective [28] 77.5 81.7 84.3 86.6 68.3 70.7 72.3 73.6 72.6 75.3 77.8 79.5 79.0 83.0 85.1 88.6

+UNIREX [3] 77.8 81.9 84.4 86.7 68.5 70.9 72.5 73.8 72.8 75.7 78.0 79.7 79.2 83.1 85.4 88.8

+RE2 78.2(0.2) 82.3(0.1) 84.8(0.1) 87.2(0.2) 68.9(0.3) 71.3(0.2) 73.0(0.3) 74.2(0.1) 73.3(0.2) 76.0(0.2) 78.4(0.1) 80.1(0.1) 79.6(0.3) 83.6(0.2) 85.7(0.1) 89.1(0.2)

w/o Continuity 77.8(0.3) 81.9(0.4) 84.2(0.2) 86.8(0.4) 68.5(0.3) 70.7(0.2) 72.5(0.3) 73.8(0.2) 72.8(0.4) 75.5(0.3) 77.9(0.3) 79.7(0.2) 79.1(0.4) 83.2(0.3) 85.3(0.2) 88.8(0.3)

w/o Sparsity 77.6(0.2) 81.8(0.2) 84.3(0.1) 86.6(0.3) 68.4(0.1) 70.5(0.2) 72.4(0.3) 73.6(0.1) 72.7(0.2) 75.5(0.3) 77.8(0.3) 79.8(0.2) 79.0(0.2) 83.1(0.3) 85.1(0.1) 88.6(0.1)

w/o Adding Entities 78.0(0.2) 82.2(0.1) 84.6(0.2) 87.1(0.2) 68.8(0.3) 71.1(0.2) 72.8(0.2) 74.0(0.1) 73.1(0.2) 75.9(0.2) 78.2(0.1) 80.0(0.1) 79.3(0.3) 83.4(0.2) 85.6(0.2) 89.0(0.1)

Figure 3: Effect of Two Factors (Continuity and Sparsity). 𝐾

is the hyper-parameter to control the sparsity of the token

selection. Continuity is imposed to improve contiguity.

Ablation Study.We perform an ablation study to demonstrate the

effectiveness of our model’s various modules on the test set. RE2

without Continuity and RE
2 without Sparsity eliminate the continu-

ity and sparsity elements in the factor graphs in rationale extraction,

respectively. RE2 without Adding Entities removes the entities added

in the relation classifier module, using only the rationales for re-

lation classification. Table 1 generally concludes that all modules

positively impact performance. Specifically, the absence of conti-

nuity leads to discontinuous rationales, affecting the coherence of

semantic representations and causing a 0.4% F1 performance drop.

Removing sparsity selects noisier rationales, resulting in a 0.5%

F1 performance reduction. Interestingly, removing added entities

has minimal effect on F1 performance (0.1%). We find that 89% of

rationales contain two entities and 97% contain at least one entity,

indicating that adding entities provides little additional information.

Effect of Two Factors: As shown in Figure 3, we display F1 scores

and token selection rates in relation to varying𝐾 values on SemEval.

As 𝐾 rises, more tokens within sentences are chosen as rationales.

Nonetheless, the F1 score for RE2 doesn’t increase consistently

with higher 𝐾 , due to the incorporation of unrelated rationales.

Optimal performance occurs at 𝐾 = 60, meaning 60% of tokens are

selected as rationales on average. Eliminating the Sparsity factor

entirely causes the model’s F1 score to decline from 87.2 to 86.6. Ad-

ditionally, the Continuity constraint benefits the model, as RE2 with

Continuity constraints consistently produces improved outcomes.

Coherence Analysis of Rationales. RE2 utilizes the continuity

factor to control the generation of rationales that are more se-

mantically coherent, which can express more fluent semantics. We

analyze the coherence of the rationales through perplexity based

Table 2: Perplexity of the extracted rationales. Original

means the original sentences. Lower perplexity is better.

Methods / Datasets SemEval TACRED TACRED-Revisit Re-TACRED

HardKuma [2] 11.37 13.35 12.21 11.93

IB Objective [28] 10.37 12.23 11.56 10.74

UNIREX [3] 13.42 12.64 14.22 13.87

RE
2 5.13 5.68 6.02 5.75

Original Sentences 3.75 4.02 3.83 3.68

Table 3: Human evaluation (Micro F1 / Information Suffi-

ciency) of the original sentences and extracted rationales.

Datasets SemEval TACRED TACRED-Revisit Re-TACRED

Extracted Rationales 95.5 / 4.4 89.3 / 4.0 93.5 / 4.2 96.8 / 4.5

Original Sentences 94.3 / 4.5 87.6 / 4.3 92.3 / 4.2 96.0 / 4.6

on GPT-3 [30]. From Table 2, RE2 could obtain the lowest average

perplexity, approaching that of the original sentences.

Human Evaluation.We conduct human evaluations of rationales

with a 15-member annotation team, involving 5 members in data

validation. Annotators predict relation labels using original sen-

tences and extracted rationales, then rate information sufficiency

(on a 1-5 scale) for both. Higher scores signify greater sufficiency.

To ensure consistency, we perform inter-annotator agreement and

manual validation. Table 3 shows that annotators can provide more

accurate relation labels even with lower information sufficiency

in rationales than original sentences, suggesting that removing

irrelevant details from sentences can decrease noise and enhance

relational prediction accuracy.

4 CONCLUSION AND FUTUREWORK

In this paper, we propose a novel rationale extraction framework

RE
2, which adopt two factors, continuity and sparsity, to control the

relevancy of rationales to the RE task and improve the coherence.

We introduce the marginal inference with a Lagrange multiplier

to solve the problem of maximizing the score function with two

factors. Therefore, we could jointly train the rationale extraction

and relation classification tasks in an end-to-end manner where

gold annotations for rationales are not available. Experiments on

four datasets show the effectiveness of RE2. In the future, we can

extend the research on relation extraction to the construction of

knowledge graphs [6, 7, 9, 35], the matching of knowledge graphs

[10ś12, 23], and the acceleration of information retrieval [4, 5].
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