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Abstract—Natural Language Inference (NLI) is a growingly
essential task in natural language understanding, which requires
inferring the relationship between the sentence pairs (premise and
hypothesis). Recently, low-resource natural language inference has
gained increasing attention, due to significant savings in manual
annotation costs and a better fit with real-world scenarios. Existing
works fail to characterize discriminative representations between
different classes with limited training data, which may cause faults
in label prediction. Here we propose a multi-level supervised con-
trastive learning framework named MultiSCL for low-resource
natural language inference. MultiSCL leverages a sentence-level
and pair-level contrastive learning objective to discriminate be-
tween different classes of sentence pairs by bringing those in one
class together and pushing away those in different classes. Multi-
SCL adopts a data augmentation module that generates different
views for input samples to better learn the latent representation.
The pair-level representation is obtained from a cross attention
module. We conduct extensive experiments on two public NLI
datasets in low-resource settings, and the accuracy of MultiSCL
exceeds other models by 1.8%, 3.1% and 4.1% on SNLI, MNLI and
Sick with 5 instances per label respectively. Moreover, our method
outperforms the previous state-of-the-art method on cross-domain
tasks of text classification.

Index Terms—Natural language inference, contrastive learning,
low-resource, multi-level.

I. INTRODUCTION

N
ATURAL Language Inference (NLI), also known as Rec-

ognizing Textual Entailment (RTE), is a key topic in

the research field of natural language understanding [1], [2],

and could support tasks such as question answering, reading

comprehension, document summarization and relation extrac-

tion [3], [4], [5], [6]. In NLI scenarios, the model is given a
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TABLE I
EXAMPLES OF THE RELATIONSHIP BETWEEN PREMISE AND HYPOTHESIS:

ENTAILMENT, CONTRADICTION, AND NEUTRAL

pair of sentences, namely premise and hypothesis, and asked to

infer the relationship between them from a set of relationships,

including entailment, contradiction and neutral.

Several concrete examples are illustrated in Table I.

Large annotated datasets, such as SNLI [7] and MultiNLI

datasets [8] have been available in recent years, making it

possible to apply sophisticated deep learning models. These

neural network models require a large number of training pa-

rameters to achieve good results in NLI [9], [10]. However,

large-scale datasets are obtained from a large number of manual

annotations and have a high annotation cost. Therefore, natural

language inference for low-resource scenarios has gained more

widespread attention in recent years. Compared with traditional

task scenarios, NLI in low-resource scenarios focuses on using

a small amount of manually annotated data to achieve similar

results as the full amount of data. This can save a large number

of manual annotation costs and is more in line with realistic

application scenarios, thus with high research value and practical

application value [11].

Recent work has shown advantages of generative classifiers

in term of low-resource and robustness. Ding et al. [12] propose

a generative classifier that defines the conditional probabilities

assumed given the premises and labels and has better perfor-

mance in very few labeled data settings. Liu et al. [13] propose a

multi-task deep neural network for learning semantic represen-

tations across multiple natural language understanding tasks to

enhance the semantic representation in low-resource scenarios.

The network not only utilizes a large amount of cross-task data

but also benefits from regularization effects to learn more general

representations that can be adapted to NLI in fewer sample

scenarios. However, these methods only use the feature of the

sentence pair itself to predict the class, without considering

the comparison between the sentence pairs in different classes.

When the training instances per class are small, it is difficult for

these methods to distinguish the true class of similar sentences.
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Because these methods can’t well characterize discriminative

representations between different classes with limited training

data, which may cause faults in label prediction.

Many recent works explored using contrastive learning to

tackle this problem. Contrastive learning is a popular technique

in computer vision area [14], [15], [16] and the core idea is

to learn a function that maps positive pairs closer together in

the embedding space, while pushing apart negative pairs. A

contrastive objective is used by [17] to fine-tune pre-trained lan-

guage models to obtain sentence embeddings with the relation-

ship of sentences in NLI. The model achieved state-of-the-art

performance in sentence similarity tasks. Yan et al. [18] propose

a simple but effective training objective based on contrastive

learning. It mitigates the collapse of BERT-derived representa-

tions and transfers them to downstream tasks. However, these

approaches can’t distinguish well between the representation of

sentence pairs in different classes.

In our previous work [19], we propose a pair-level super-

vised contrastive learning approach (PairSCL), which obtains

new state-of-the-art performance in NLI. However, this method

cannot be adapted to low-resource settings for the reason of

limited discriminative ability of sentence pairs in very few

sample scenarios. Therefore, in this paper, we comprehensively

investigate the potential of contrastive learning in low-resource

NLI. Based on our analysis of PairSCL that contrastive learning

can help discriminate the class of sentence pairs, we propose

a multi-level supervised contrastive learning framework named

MultiSCL for low-resource NLI. In addition to pair-level con-

trastive learning, MultiSCL leverages the sentence-level con-

trastive learning objective to characterize the latent embeddings

of sentences in semantic space. Furthermore, to better learn the

semantic representation, we adopt a data augmentation module

that generates different views for input sentences with sentence-

level supervised contrastive learning by regarding the contra-

diction pairs as negatives, and entailment pairs as positives. The

pair-level representation can perceive the class information of

sentence pairs and is obtained from the Cross Attention module

which captures the relevance and characterizes the relationship

between the sentence pair. Then we adopt contrastive learning

to differentiate the pair-level representation by capturing the

similarity between pairs in one class and contrasting them with

pairs in other classes.

For example, the entailment pair (P1, H1) and contradiction

pair (P2, H2) are from Table I (P1: Two men on bicycles

competing in a race. H1: People are riding bikes. P2: Two men

on bicycles competing in a race. H2: Men are riding bicycles on

the streets.). For sentence-level contrastive learning, we take

advantage of the fact that entailment pairs can be naturally

used as positives and the contradiction pairs can be regarded

as negatives. We consider H1 as the positive set for P1 and H2

as the negative set for P2. In this way, the encoder can capture

the semantic representation of the sentences more accurately.

For pair-level contrastive learning, our model regards the pair

(P2, H2) as the negative set for the pair (P1, H1) with the

representation obtained from Cross Attention module to dis-

tinguish the pairs from different classes.

Our contributions can be summarized as follows:
� We propose a novel multi-level supervised contrastive

learning framework named MultiSCL for low-resource

NLI. It applies the sentence-level and pair-level contrastive

learning to learn the discriminative representation with

limited labeled training data.
� We adopt a data augmentation module to generate the dif-

ferent views for input samples. We explore various effective

text augmentation strategies for contrastive learning and

analyze their effects on low-resource NLI.
� We conduct extensive experiments on two public NLI

datasets in low-resource settings, and the accuracy of

MultiSCL exceeds other models by 1.8%, 3.1% and 4.1%

on SNLI, MultiNLI and Sick with 5 instances per label

respectively. Moreover, our method outperforms the previ-

ous state-of-the-art method on cross-domain tasks of text

classification.

This paper is substantially an extended version of our previous

paper [19] that is published at ICASSP 2022. Compared to the

previous version, we make heavy extensions as follows: (1)

By adding the sentence-level contrastive learning objective, we

propose a new multi-level supervised contrastive learning frame-

work called MultiSCL for low-resource NLI. (2) We adopt a data

augmentation module to generate the views for input sentences

and explore various effective text augmentation strategies. (3)

We conduct extensive experiments on NLI datasets in low-

resource scenarios. We conduct experiments on cross-domain

datasets to validate the transfer capability of our model.

The structure of this paper is as follows. In Section II, we

review the related work to natural language inference and con-

trastive learning. Section III introduces the architecture of our

framework. Section IV presents experimental design details and

Section V reports our experimental results and analysis. Finally,

in Section VI, we conclude this paper and present some future

work.

II. RELATED WORKS

A. Natural Language Inference

Early methods for NLI mainly relied on conventional, feature-

based methods trained from small-scale datasets [3], [20]. The

release of large datasets, such as SNLI [7] and MultiNLI [8],

made neural network methods feasible. Such methods can be

roughly categorized into two classes: sentence embedding bot-

tleneck methods which first encode the two sentences as vectors

and then feed them into a classifier for classification [21],

[22], [23], and more general methods which usually involve

interactions while encoding the two sentences in the pair [10],

[24], [25]. [26] enables the use of various kinds of external

knowledge bases to retrieve information related to premise

and hypothesis. Wang et al. [27] propose a novel Knowledge

Graph-enhanced NLI (KGNLI) model to leverage the usage of

background knowledge stored in knowledge graphs in the field

of NLI.

Recently, large-scale pre-trained language representation

models such as BERT [28], GPT [29], BART [30], etc., have
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achieved dominating performance in NLI. These neural network

models have a large number of training parameters to achieve

good results in NLI. However, large-scale datasets are obtained

from a large number of manual annotations and have a high

annotation cost. Therefore, NLI for low-resource scenarios has

gained more widespread attention in recent years.

Ding et al. [12] propose GenNLI, a generative classifier for

NLI tasks. The model defines conditional probabilities assumed

given premises and labels, parameterizing the distribution us-

ing a sequence-to-sequence model with attention [31] and a

replication mechanism [32]. They explore training objectives

for discriminative fine-tuning of the generative classifier, com-

paring several classical discriminative criteria. Liu et al. [13]

propose a multi-task deep neural network (MT-DNN) for learn-

ing semantic representations across multiple natural language

understanding tasks. MT-DNN not only utilizes a large amount

of cross-task data but also benefits from regularization effects

to learn more general representations that can be adapted to

natural language reasoning in very few sample scenarios. Schick

et al. [33] introduce Pattern Exploiting Training concerning

a partially pre-trained language model using task descriptions

in natural language [34]. They reformulate a small amount of

labeled data into fill-in-the-blank phrases to help the language

model understand the given task.

The above methods only use the feature of the sentence

pair itself to predict the class, without considering the com-

parison between the sentence pairs in different classes. In our

work, we propose a multi-level contrastive learning framework

named MultiSCL for low-resource NLI. MultiSCL leverages a

sentence-level and pair-level contrastive learning objective to

learn discriminative representations between different classes.

B. Contrastive Learning

Contrastive learning has shown promising results in computer

vision area in an unsupervised/self-supervised way [14], [15].

The key idea of contrastive learning is: first create augmentations

of original examples, then learn representations by predicting

whether two augmented examples are from the same original

data example or not. Dating back to [35], these approaches learn

representations by contrasting positive pairs against negative

pairs. Along these lines, Dosovitskiy et al. [36] propose to treat

each instance as a class represented by a feature vector (in a

parametric form). Wu et al. [37] propose to use a memory bank

to store the instance class representation vector, which was an ap-

proach adopted and extended in several recent papers [38], [39].

He et al. [14] propose Momentum Contrast (MoCo) by building

a dynamic dictionary with a queue and a moving-averaged

encoder and showed state-of-the-art results. Chen et al. [15]

propose a simple framework for contrastive learning to learn

visual representations without specialized architectures or a

memory bank.

Some works use contrastive learning to solve Natural Lan-

guage Processing (NLP) tasks. Qin et al. [40] propose a novel

contrastive learning framework in the pre-training phase to

obtain a deeper understanding of the entities and their relations

in text. Giorgi et al. [41] propose a self-supervised method

for minimizing sentence embeddings of textual segments ran-

domly sampled from nearby in the same document and obtained

state-of-the-art performance on SentEval [42]. Gunel et al. [43]

propose a supervised contrastive learning (SCL) objective which

uses SCL loss combined with cross-entropy loss for the fine-

tuning stage. The proposed model shows improved performance

on multiple datasets of the GLUE benchmark [44] in both

the high-data and low-data regimes. Yan et al. [18] explore

a simple but effective sentence-level training objective with

various effective text augmentation strategies to generate views

for contrastive learning. Suresh et al. [45] incorporate inter-class

relationships into a supervised contrastive loss by differentiating

the weights between different negative samples for fine-grained

text classification. Li et al. [46] adopt supervised contrastive

pre-training to capture both implicit and explicit sentiment

orientation towards aspects by aligning the representation of

implicit sentiment expressions to those with the same label for

aspect-based sentiment analysis. Wu et al. [47] propose a new

framework, combining word-level masked language modeling

objectives with sentence-level contrastive learning objective to

pre-train a language model. Zhang et al. [48] propose an in-

stance discrimination-based approach aiming to bridge semantic

entailment and contradiction understanding with high-level cat-

egorical concept encoding. Wang et al. [49] propose Contrastive

Learning with semantIc Negative Examples (CLINE), which

constructs semantic negative examples unsupervised to improve

the robustness under semantically adversarial attacking. By

comparing with similar and opposite semantic examples, the

model can effectively perceive the semantic changes caused by

small perturbations. Li et al. [19] propose a pair-level supervised

contrastive learning approach. The pair-level representation is

obtained by Cross Attention module which can capture the

relevance and well characterize the relationship between the

sentence pair.

However, the above methods can’t learn effective semantic

representations in low-resource scenarios. In our work, we will

focus on the use of multi-level contrastive learning for low-

resource NLI.

III. APPROACH

In this section, we describe our approach MultiSCL. The

overall architecture of the model is illustrated in the left part

of Fig. 1. MultiSCL comprises the following four major compo-

nents: a data augmentation module that generates different views

for input samples; an encoder that computes sentence-level

representations of premise and hypothesis; a cross attention

module to obtain the pair-level representation of the sentence

pair and a joint-training layer including the sentence-level and

pair-level contrastive learning term and the cross-entropy term.

A. Data Augmentation Module

In low-resource NLI scenarios, it’s a challenge for a model

to learn discriminative representations and infer the relationship

between sentences. Therefore, we adopt a data augmentation

module to generate different views of sentences to enhance the

semantic understanding and inference capability of the model.
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Fig. 1. The overall view of MultiSCL. The left part is the main framework of our model. The right part is the detailed structure of Cross Attention module.

We explore and test six data augmentation strategies to generate

views, including synonym replacement [50], reordering [47],

word insertion, word deletion, dropout [17], and back transla-

tion [51].

Synonym Replacement randomly chooses n words from

the sentence that are not stop words. Replace each of these

words with one of its synonyms chosen at random, so that the

augmented data fit the original semantics as closely as possible.

Reordering is another widely-studied augmentation method

that can keep the original sentence’s features. We randomly se-

lect n pairs of spans and switch them to construct the reordering

augmentation in our implementation.

Word Insertion finds the random synonym ofn random word

in the sentence that is not a stop word. Insert that synonym into

a random position in the sentence.

Word Deletion randomly selects n tokens in the sentence and

replaces them with a special token [DEL], which is similar to

the token [MASK] in BERT [28].

Dropout has been proven an effective augmentation strategy

for contrastive learning [17], [18]. For this setting, we randomly

drop elements in the token embedding layer by a specific number

n and set their values to zero.

Back Translation first translates the sentence into another

language and translates it back to the original language. Then

the new sentence is regarded as an augmented sentence of the

original.

In our model, we select two augmentation strategies to gen-

erate two different views of input texts. We will explore and

test the effect of different combinations in our experiment. The

number of changed words or tokens for augmentation methodsn

is based on the length of the sentence l with the formula n = ηl,

where η is a hyper-parameter that indicates the percent of the

changed words in a sentence.

B. Text Encoder

After we get the different views of the sentence, we need

to get the context-based semantic information. We give the

formal definition of NLI as follows. Each instance in a

NLI dataset consists of two sentences and a label indicat-

ing the relation between them. Formally, we denote premise

as X(p) = {x
(p)
1 , x

(p)
2 , . . . , x

(p)
m } and hypothesis as X(h) =

{x
(h)
1 , x

(h)
2 , . . . , x

(h)
n }, where m and n are length of the sen-

tences respectively. The instance in the batch I is denoted

as (X(p), X(h), y)i, where i = {1, . . . ,K} is the indices of

the samples and K is the batch-size. After passing the input

samples to data augmentation module, we construct the new

batch Ĩ with size 2K by randomly augmenting twice for

all the sentences. The encoder (e.g., BERT) takes X(p), X(h)

as inputs and computes the semantic representations, de-

noted as S
(p) = {s

(p)
i |s

(p)
i ∈ R

k, i = 1, 2, . . . ,m} and S
(h) =

{s
(h)
j |s

(h)
j ∈ R

k, j = 1, 2, . . . , n}, where k is the dimension of

the encoder’s hidden state.

C. Cross Attention Module

Different from single sentence classification, we need a proper

interaction module to better clarify the relationship of sentences

pair for NLI task. In practice, we need to compute token-level

weights between words in premise and hypothesis to obtain

information about their interaction. Therefore, we introduce

Cross Attention module to calculate the co-attention matrix

C ∈ R
m×n of the token level. If the value of attention weight

is relatively large, the correlation between the words is stronger.

Each element Ci,j ∈ R indicates the relevance between the i-th
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word of premise and the j-th word of hypothesis:

Ci,j = P
T tanh(W(s

(p)
i ⊙ s

(h)
j )), (1)

where W ∈ R
d×k, P ∈ R

d, and ⊙ denotes the element-wise

production operation. W and P are trainable parameters to map

the feature in the semantic space, where k is the dimension of

the encoder’s hidden state and d is the dimension for nonlinear

mapping to a latent representation. Then the attentive matrix

could be formalized as:

c
(p)
i = softmax(Ci,:), c

(h)
j = softmax(C:,j), (2)

s
(p)′

i = S
(h) · c

(p)
i , s

(h)′

i = S
(p) · c

(h)
j . (3)

We further enhance the collected local semantic information:

s
(p)′′

i = [s
(p)
i ; s

(p)′

i ; s
(p)
i − s

(p)′

i ; s
(p)
i ⊙ s

(p)′

i ], (4)

s̃
(p)
i = ReLU(W

(p)
i s

(p)′′

i + b
(p)
i ), (5)

where [·; ·; ·; ·] refers to the concatenation operation. s
(p)
i − s

(p)′

i

indicates the difference between the original representation

and the hypothesis-information enhanced representation of

premise, and s
(p)
i ⊙ s

(p)′

i represents their semantic similarity.

Both values are designed to measure the degree of semantic

relevance between the sentence pair. The smaller the difference

and the larger the semantic similarity, the sentences pair are

more likely to be classified into the Entailment category. The

difference and element-wise product are then concatenated with

the original vectors (S(p),S(p)′ ). We expect that such operations

could help enhance the pair-level information and capture the

inference relationships of premise and hypothesis. We get

the new representation containing hypothesis-guided inferential

information for premise:

S̃
(p) = (s̃

(p)
1 , s̃

(p)
2 , . . . , s̃(p)m ), (6)

Ŝ
(p) = LayerNorm(S̃(p)), (7)

where LayerNorm(.) is a layer normalization. The result Ŝ(p)

is a 2D-tensor that has the same shape asS(p). The representation

of hypothesis Ŝ(h) is calculated in the same way.

Then we convert these representations obtained above to a

fixed-length vector with pooling. More specifically, we com-

pute max pooling and mean pooling for Ŝ(p) and Ŝ
(h). where

Ŝ
(p) = {ŝ

(p)
1 , ŝ

(p)
2 , . . ., ŝ

(p)
m } and Ŝ

(h) = {ŝ
(h)
1 , ŝ

(h)
2 , . . ., ŝ

(h)
n }.

Formally:

Ŝ
(p)
mean =

m∑

i=1

ŝ
(p)
i

m
, Ŝ

(p)
max =

m
max
i=1

ŝ
(p)
i , (8)

Ŝ
(h)
mean =

n∑

j=1

ŝ
(h)
j

n
, Ŝ

(h)
max =

n
max
j=1

ŝ
(h)
j . (9)

We aggregate these representations and the pair-level repre-

sentation Z for the sentence pair is obtained as follows:

Z = [Ŝ(p)
mean; Ŝ

(p)
max; Ŝ

(h)
mean; Ŝ

(h)
max]. (10)

As described, Cross Attention module can capture the rele-

vance of the sentence pair and well characterize the relationship.

Therefore, the pair-level representation can perceive the class

information of sentence pairs.

D. Training Objective

1) Text-Level Supervised Contrastive Loss: The core idea of

contrastive learning is to learn a function that maps positive

pairs closer together in the embedding space while pushing

apart negative pairs. In general, two variants augmented from

the same original sentence form the positive pair, while all other

instances from the same batch are regarded as negative samples

for them. Especially, the NLI datasets consist of high-quality

and crowd-sourced labeled sentence pairs and each can be pre-

sented in the form: (premise, hypothesis, label) as described in

Section I. Given one premise, human annotators are required to

manually write one sentence that is absolutely true (entailment),

one that might be true (neutral), and one that is definitely

false (contradiction). Thus for each premise and its entailment

hypothesis, there is an accompanying contradiction hypothesis

and neutral hypothesis (see Table I for an example). Therefore,

it is natural to take the entailment hypothesis for premise as its

positive set and the contradiction hypothesis as negative set.

In the training stage, we randomly sample a batch I of K ex-

amples (X(p), X(h), y)i∈I={1,...,K} as denoted in Section III-B.

After passing the input samples to data augmentation module,

we construct the new batch Ĩ with size 2K by randomly

augmenting twice for all the sentences. We denote the repre-

sentation obtained from the text encoder of the new batch as

(S(p),S(h))i∈Ĩ={1,...,2K}. For the premiseS
(p)
i in the augmented

batch, we denote the set of positives as S
(p)+
i , including the aug-

mented views of the entailment hypothesis and the augmented

views of the same original premise. The negative set is denoted

as S
(p)−
i , including the augmented views of the contradiction

hypothesis. The sentence-level supervised contrastive loss on

the batch Ĩ is defined as:

ℓi =
esim(S

(p)
i

,S
(p)+
i

)/τ

∑2K
k=1 1[k �=i](e

sim(S
(p)
i

,S
(p)+
k

)/τ + esim(S
(p)
i

,S
(p)−
k

)/τ )
,

(11)

where sim(·) indicates the cosine similarity function, τ controls

the temperature.

Finally, we average all 2K in-batch losses ℓi to obtain the

final sentence-level contrastive loss LSCL(sent):

LSCL(sent) =
∑

i∈Ĩ

− log ℓi, (12)

In this way, we can map the representations from the en-

coder of the semantically similar sentences closer together in

the embedding space, while pushing apart irrelevant sentences.

Thus, the pair-level representations based on the output of the

encoder can better capture the relationships between premise

and hypothesis.

2) Pair-Level Supervised Contrastive Loss: In [16], the au-

thors extended the above loss to a supervised contrastive loss by

regarding the samples belonging to the same class as the positive

set. Inspired by this, we adopt a supervised contrastive learning

objective to align the pair-level representation obtained from
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Cross Attention module to distinguish sentence pairs from dif-

ferent classes. The pair-level supervised contrastive loss brings

the latent representations of pairs belonging to the same class

closer together.

In the training stage, we take the augmented batch Ĩ of 2K ex-

amples (X(p), X(h), y)i={1,...,2K} as denoted in Section III-D1.

For the pair (X(p), X(h), y)i, we denote the set of positives as

G = {g : g ∈ I, yg = yi ∧ g �= i}, with size |G|. The supervised

contrastive loss on the batch Ĩ is defined as:

ℓi,g =
esim(Zi·Zg/τ)

∑
k∈Ĩ/i e

sim(Zi·Zk/τ)
, (13)

LSCL(pair) =
∑

i∈Ĩ

− log
1

|G|

∑

g∈G

ℓi,g, (14)

where ℓi,g indicates the likelihood that pair i is most similar

to pair g and τ is the temperature hyper-parameter. Larger

values of τ scale down the dot-products, creating more dif-

ficult comparisons. Zi is the pair-level representation of pair

(X(p), X(h))i from Cross Attention module. Supervised con-

trastive loss LSCL(pair) is calculated for every sentence pair

among the batch I. To minimize contrastive loss LSCL(pair),

the similarity of pairs in the same class should be as large as

possible, and the similarity of negative examples should be as

small as possible.

3) Cross-Entropy Loss: Supervised contrastive loss mainly

focuses on separating each pair apart from the others of different

classes, whereas there is no explicit force in discriminating

contradiction, neutral, and entailment. Therefore, we adopt the

softmax-based cross-entropy to form the classification objective:

LCE = CrossEntropy(WZ+ b, y), (15)

where W and b are trainable parameters. Z is the pair-level

representation from Cross Attention module and y is the corre-

sponding label of the pair.

4) Overall Loss: The overall loss is a weighted average of

CE and the multi-level SCL loss, denoted as:

L = LCE + αLSCL(sent) + βLSCL(pair), (16)

where α, β is a hyper-parameter to balance the objectives.

IV. EXPERIMENTAL SETUP

A. Benchmark Dataset

We evaluate our model on four popular datasets: the Stan-

ford Natural Language Inference (SNLI), the MultiGenre NLI

Corpus (MultiNLI), Sick and SciTail. We also conduct cross-

domain experiment while trained with all source domain data

of one dataset and zero-shot transferred to the target domain of

another dataset to evaluate the domain adaptation capability of

the model. Detailed statistical information of these datasets is

shown in Table II. Len(P) and Len(H) refer to the average length

of premise and hypothesis respectively. MultiNLI(m) and

MultiNLI(mm) indicate the matched and mismatched datasets

respectively. We use classification accuracy as the evaluation

metric.

TABLE II
STATISTICS OF DATASETS

SNLI The Stanford Natural Language Inference (SNLI)

dataset contains 570 k human-annotated sentence pairs, in which

the premises are drawn from the captions of the Flickr30 corpus

and hypotheses are manually annotated [7]. This is the most

widely used entailment dataset for NLI.

MultiNLI The corpus [8] is a new dataset for NLI, which

contains 433 k sentence pairs. Similar to SNLI, each pair is

labeled with one of the following relationships: entailment,

contradiction, or neutral. We use the matched dev set and mis-

matched dev set as our validation and test sets, respectively.

Sick This is a large data set on compositional meaning, anno-

tated with subject ratings for both relatedness and entailment

relation between sentences [20]. The SICK data set consists

of around 10000 English sentence pairs, each annotated for

relatedness in meaning.

SciTail This is a textual entailment dataset derived from a sci-

ence question answering (SciQ) dataset [52]. The task involves

assessing whether a given premise entails a given hypothesis.

In contrast to other entailment datasets mentioned previously,

the hypotheses in SciTail are created from science questions

while the corresponding answer candidates and premises come

from relevant web sentences retrieved from a large corpus. The

dataset is only used for domain adaptation.

B. Implementation Details

We start from pre-trained checkpoints of BERT [28] (un-

cased). We implement MultiSCL based on Huggingface’s

transformers package [53]. All experiments are conducted

on 1 Nvidia GTX 3090 GPU.

We train our models for 10 epochs with a batch size of 512

and temperature τ = 0.08 using an Adam optimizer [54]. The

hyper-parameter α and β are set as 1 for combining objectives.

The learning rate is set as 5e-5 for base models. Weight decay is

used with a coefficient of 1e-5. The maximum sequence length

is set to 128. All the experiments are conducted 5 times with

different random seeds and we report the average scores. The

hyperparameter η is set to 0.1, which indicates the percent of

the changed words in a sentence during the data augmentation

module. We select Reordering and Dropout as augmentation

strategies in the main experiments.

C. Baseline Models

To analyze the effectiveness of our model, we evaluate several

approaches for traditional NLI scenarios and state-of-the-art

methods for low-resource NLI scenarios as baselines as follows

on the above datasets.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 13,2023 at 15:49:11 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: MULTI-LEVEL SUPERVISED CONTRASTIVE LEARNING FRAMEWORK FOR LOW-RESOURCE NATURAL LANGUAGE INFERENCE 1777

TABLE III
PERFORMANCE ON TEST DATASETS WITH VARIOUS AMOUNTS OF TRAINING

DATA
∗

1) Traditional NLI baselines:
� InferSent [21] uses a BiLSTM network with max-

pooling to learn generic sentence embeddings that per-

form well on several NLI tasks.
� ESIM [24] is a previous state-of-the-art model for the

natural language inference (NLI) task. It is a sequential

model that incorporates the chain LSTM and the tree

LSTM to infer local information between two sen-

tences.
� BERT [28] is the naturally bidirectional masked lan-

guage model, configured with ‘bert-base-uncased’.
� PairSCL [19] is a pair-level supervised contrastive

learning approach with BERT as encoder. It adopts a

Cross Attention module to learn the joint representa-

tions of the sentence pairs.

2) Low-resource NLI baselines:
� Gen-NLI [12] is a generative classifier for NLI tasks.

The model defines conditional probabilities assumed

given premises and labels, parameterizing the distribu-

tion using a sequence-to-sequence model with attention

and a replication mechanism.
� MT-DNN [13] is a multi-task deep neural network

for learning semantic representations across multiple

natural language understanding tasks.

V. EXPERIMENT RESULTS

A. Main Results

We first empirically compare MultiSCL with baselines for

three NLI datasets in low-resource scenarios. We construct

smaller training sets by randomly selecting 5, 20, 100, 500, and

1000 instances per class, and then train separate models across

these different-sized training sets. Table III shows the average

performance and standard deviation of the three runs of our

model in comparison with the baselines on SNLI, MNLI, and

TABLE IV
ABLATION STUDY ON SNLI

SICK.1 The results of Gen-NLI and MT-DNN are obtained from

the original papers, and the results of other baselines are obtained

from our re-running of source code released by the authors. The

best result for each dataset and data amount is shown in bold.

We also conduct the students paired t-test and the p-value of the

significance test between the results of MultiSCL and GenNLI

is less than 0.05 and 0.01, respectively. The results show that

MultiSCL outperforms baselines on all data volume settings

for all three datasets. When using training sets with 5/20/100

instances per class on three datasets, MultiSCL outperforms

the state-of-the-art model by 3%, 2.5%, and 3.8% respectively,

which proves that MultiSCL can better capture the latent se-

mantic representations by multi-level contrastive learning in

low-resource scenarios. We can observe that transformer-based

models such as BERT and PairSCL have poor performance

results when the training data is less than 100 instances, even

lower than LSTM-based models such as ESIM and InferSent.

This shows that large-scale pre-trained models require a large

amount of supervised data to be finetuned.

When the training set gets larger, the performance gap be-

tween MultiSCL and baselines does shrink. When trained with

500/1000/all instances per label, the accuracy exceeds the state-

of-the-art model by 1.6%, 1.1%, and 0.6%, which shows that

MultiSCL has a more significant advantage compared with other

models when trained with a smaller amount of training data. Fur-

thermore, MultiSCL outperforms our previous work PairSCL

by 10.9% on average with trained less than 100 instances per

class. The performance gains are due to the data augmentation

module and the stronger ability to learn sentence-level latent

embeddings in semantic space. The encoder of MultiSCL can

capture sentence-level semantics effectively by the specifically-

designed contrastive signal – regarding the entailment pairs as

positives and the contradiction pairs as negatives with limited

training data. When trained with full training data, MultiSCL

exceeds PairSCL by 0.6%. We will further analyze the role of

each module of MultiSCL in more detail in Section V-B.

B. Ablation Study

We run extensive ablations to better understand the contribu-

tion of each key component of MultiSCL. We conduct experi-

ments with the training set of 5/20/100/500 instances per class

on SNLI and select Reordering and Dropout as augmentation

strategies. The results are shown in Table IV.

1SICK does not have results in the 1000 column because the ’contradiction’
label has only 665 instances.
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Fig. 2. Visualization of the SNLI representations using t-SNE for MultiSCL
(left) and MultiSCL w/o Cross Attention Module (right).

After removing Data Augmentation module, the performance

of MultiSCL is reduced by an average of 2.94%. Moreover,

we can observe that the importance of Data Augmentation

module gradually decreases as the number of training instances

increases. When training with 5 instances per class, the accuracy

decreases by 5.8% on the test set. This indicates that when

the training data is small, augmenting the sentences can bring

larger enhancements to the model. The reason is that Data

Augmentation module can create challenging views which allow

the encoder to learn the semantic representation better with

multi-level contrastive learning. After removing Cross Attention

mechanism, the model simply concatenates the representation of

two sentences to obtain the representation of the sentence pair.

The performance decreases by 3.0%, 2.2%, 2.6%, and 3.2%

respectively with different sizes of training data, which shows

the joint representation obtained by cross attention can well

characterize the relationship between the sentence pair. Without

the sentence-level supervised contrastive learning loss, the accu-

racy of our model is decreased by 4.3%, 3.1%, 3.7%, and 2.5%

with 5/20/100/500 training data per class. This demonstrates that

by regarding entailment sentence pairs as positive samples and

contradiction pairs as negative samples allows the encoder to

discriminate the semantic difference between sentences. After

removing pair-level supervised contrastive learning loss, the

performance decreases by 2.5% on average. The reason is that

the contrastive learning objective can learn the discrepancy

between the sentence pairs of different classes by pulling the

sentence pairs from the same class together and pushing the pairs

of different classes further apart. The test accuracy decreases by

0.7% on average without the cross-entropy loss.

VI. QUALITATIVE ANALYSIS

In this section, we further conduct extensive experiments to

understand the inner workings of MultiSCL.

A. Analysis of Cross Attention Module

To further investigate the effect of Cross Attention mod-

ule, we conduct the t-SNE visualization experiments of the

representations Z for the sentence pairs on SNLI test set.

Fig. 2 illustrates that the contrastive loss can map the pairs of

the same category closer together in the embedding space while

Fig. 3. The performance visualization with different combinations of data
augmentation strategies. The row indicates the 1st data augmentation strategy
while the column indicates the 2nd data augmentation strategy.

pushing apart negative pairs in different classes. The right part of

Fig. 2 shows the results after removing Cross Attention module.

We observe that there is very little overlap between different

classes in left part and the distance of the representations of

different classes are distant. In contrast, the representations

without Cross Attention module in different classes are closer

and overlap with each other. The representations of the same

category with Cross Attention module in left part of Fig. 2 are

better grouped together compared to the representations in right

part of Fig. 2. That indicates Cross Attention module can learn

the joint representation between premise and hypothesis very

well. The representations of the positive pairs obtained from

Cross Attention module can be mapped together in the semantic

space by contrastive learning. This could well explain why

removing Cross Attention module would give a high accuracy

drop.

B. Analysis of Data Augmentation Module

In this section, we first analyze the effect of different combina-

tions of data augmentation strategies on SNLI with 500 training

instances per class. As described in Section III-A, we consider

six options for each augmentation, including Synonym Replace-

ment, Reordering, Word Insertion, Word Deletion, Dropout, and

Back Translation, resulting in 6× 6 combinations.

The results are shown in Fig. 3. When using Word Deletion,

MultiSCL has poorer performance than other strategies on aver-

age. The performance decreases to the lowest with an accuracy of

69.2% with Word Deletion and Back Translation. We argue that

Word Deletion and Back Translation may change the meaning

compared with the original sentences, resulting in an unexpected

change in the relationship between premise and hypothesis. In

this situation, MultiSCL may learn to misunderstand semantic

representation with multi-level contrastive learning by incor-

rectly setting the positive and negative set. Compared to Word

Deletion and Back Translation, Word Insertion and Synonym

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 13,2023 at 15:49:11 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: MULTI-LEVEL SUPERVISED CONTRASTIVE LEARNING FRAMEWORK FOR LOW-RESOURCE NATURAL LANGUAGE INFERENCE 1779

TABLE V
INFLUENCE OF η IN DATA AGUMENTATION MODULE

Replacement improves the performance but does not achieve

the best result. These two strategies can create views that have

the same meaning as the original sentence but don’t introduce

meaningful changes. Therefore, the model cannot construct

effective positive/negative sets with these augmented views in

contrastive learning.

We can observe that Reordering and Dropout are the two

most effective strategies with an accuracy of 73.7% (where

Reordering is slightly better than Dropout). We argue that Re-

ordering and Dropout can create challenging sentence pairs for

contrastive learning without changing the semantic information.

The augmented views are useful for contrastive learning without

confusing the model, and thus improve the model robustness in

low-resource scenarios. We adopt Reordering and Dropout as

augmentation strategies in most experiments.

Furthermore, we explore the effect of hyperparameter η on

SNLI with 500 training instances per class. η is a hyperparameter

that indicates the percent of the changed words in a sentence.

The number of words changed n is calculated with the formula

n= ηl, where l is the length of the sentence. Table V shows that

the accuracy first increases then decreases dramatically when the

value of η becomes larger. The performance is highest when η is

set to 10%. The accuracy decreases 3.6% when η is set to 20%.

When the value of η is 80% in the extreme case, the accuracy

of MultiSCL drops to a minimum of 41.8%. The results are not

surprising. When η’s value increases, the number of changed

words increases which makes the augmented sentence and the

original sentence more likely to have different meanings. In this

situation, Data Augmentation module can introduce very serious

noise to the model, so that the positive/negative pairs that we

regard in multi-level contrastive learning do not work actually.

C. Influence of Temperature

The temperature in sentence-level (11) and pair-level (12)

contrastive loss is used to control the smoothness of the distri-

bution normalized by softmax operation and thus influences the

gradients when backpropagation. A higher temperature smooths

the distribution while a low temperature scales up the dot-

products and sharpens the distribution. In our experiments, we

explore the influence of temperature τ on SNLI dataset with 500

training instances per class. The result is illustrated in Fig. 4.

As shown in the figure, we can observe that the performance

of MultiSCL is very sensitive to the value of temperature τ . As

the temperature becomes higher, the performance of the model

first improves and then decreases. Either too low or too high

temperature will make our model perform badly. The optimal

temperature value is 0.08 when MultiSCL has the highest ac-

curacy of 73.7%. This phenomenon again demonstrates that the

temperature determines how much attention is paid to difficult

negative samples in contrastive loss. The higher the temperature,

Fig. 4. The influence of different temperatures τ in MultiSCL. The best
performance is achieved when the temperature is set to 0.08.

TABLE VI
INFLUENCE OF α AND β IN TRAINING OBJECTIVE

the less attention is paid to difficult negative samples, while

the lower the temperature, the model focuses more on negative

samples that are very different from the anchor. We select 0.08

as the temperature in most of our experiments.

D. Influence of Hyper-Parameters in Training Objective

To investigate the effect of hyper-parametersα andβ in 15, we

conduct the experiments with 500 instances per class on SNLI

by setting different values. The results are illustrated in Table VI

and we underline the setting used for all our experiments. The

hyper-parameters α and β are used to balance sentence-level

contrastive loss and pair-level contrastive loss in the training

objective. MultiSCL focuses more on semantic similarity dis-

crimination of sentences with a larger value of α, while the

model is paying more attention to learning the discrepancy of

sentence pairs in different categories with a larger value of β.

Table VI indicates a trade-off between the sentence-level

semantic encoding capability and the pair-level reasoning ca-

pability of MultiSCL. When the values of both α and β are

0.2, MultiSCL almost removes contrastive learning and uses

only cross-entropy loss, and the accuracy decreases by 4.2%.

The performance of MultiSCL keeps improving as the value

of α and β increases until the highest accuracy of 73.7% with

α = β = 1.0. However, as the values of α and β continue to

increase, the accuracy begins to decrease. This result is not

surprising, especially considering that the joint representation of

a contradiction pair in pair-level contrastive learning is obtained

from two sentences that are regarded as negative sets in the

sentence-level contrastive learning. Focusing too much on the

pair-level classification objective, i.e., using larger β values,

can hurt the embeddings of the sentence from the encoder.
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TABLE VII
SELECTED EXAMPLES FROM SNLI

On the other hand, focusing overly on separating semantically

dissimilar sentences also affects the discrimination of sentence

pairs in different categories. We set α and β as 1.0 for all our

experiments with effective multi-level supervised contrastive

learning.

E. Case Study

To illustrate the advantages of our model in more detail, we

conduct a case study. Table VII includes some examples from the

SNLI test set, where MultiSCL successfully predicts the relation

and GenNLI fails. In examples A and B, both sentences contain

phrases that are either identical or highly lexically related (e.g.

“Two kids”, “ocean/beach”, and “fountain”), which confuses

GenNLI’s judgment as entailment category. MultiSCL can infer

the correct relationship of Neutral by capturing the difference

between words in premise and hypothesis with Cross Attention

module. For examples C and D, GenNLI regarded their relation-

ships as Neutral but the gold labels are Entailment. The reason

may be that the two sentences do not have some identical words,

so GenNLI cannot easily recognize their semantic similarity.

However, MultiSCL can correctly capture the semantics of the

sentences through multi-level contrastive learning. For example

E, GenNLI predicts the relationship as Entailment while Multi-

SCL can infer the correct relationship as Contradiction from

“cluttered” and “neat and clean”. For example F, MultiSCL

can predict the relationship as Contradiction from “sits” and

“going fast” while GenNLI considers their relationship to be

Neutral. These results show that MultiSCL can understand the

semantic information by capturing the interaction of words in

premise and hypothesis. Furthermore, MultiSCL can better

infer the relationship of the challenging pairs with the multi-level

contrastive learning.

F. Error Analysis

To analyze the limitation of MultiSCL, we select some very

challenging cases in which both GenNLI and MultiSCL cannot

infer the relationships correctly in low-resourse scenarios. For

example, MultiSCL predicts the relationship as entailment for

the contradiction pair (premise: A person wearing a straw

hat, standing outside working a steel apparatus. hypothesis: A

person is burning a straw hat.). The most likely reason is that

all the words in hypothesis except “burning” are included in

premise. In this situation, MultiSCL ignores the different words

(”wearing” and “burning”) and simply assumes that premise and

hypothesis are nearly identical. Therefore, the model predicts

the relationship as entailment. Another example of model mis-

classification is the pair (premise: Two women having drinks

and smoking cigarettes at the bar. hypothesis: Three women are

at a bar.). The gold label is contradiction but MultiSCL believes

their relationship is entailment. We can observe that the two

sentences describe basically the same scenario, only the number

of people mentioned is different. This indicates that our model

ignores differences in count words when the semantics of the

sentences are similar.

VII. DOMAIN ADAPTATION RESULTS

To investigate the performance of the model in low-resource

scenarios more deeply, we conduct the domain adaptation ex-

periments. We evaluate MultiSCL with BERT, GenNLI, and

MT-DNN by domain adaptation between SNLI, MNLI, and Sc-

itail. The models are trained to convergence using all the source

domain data and zero-shot transferred to the target domain,

which can evaluate the ability for domain-independent reason-

ing. The domain adaptation results are illustrated in Table VIII.

MultiSCL outperforms all baselines by 8.5% on average for all

six domain adaptation settings. Furthermore, we can find that

all models perform the best for domain adaptation of SNLI and

MNLI in various combinations of source and target datasets.

The reason is that MNLI is modeled on SNLI but differs in that

it covers a range of genres including transcribed speech, fic-

tion, and government reports. Therefore, the domain similarity

between SNLI and MNLI is higher and the models are more

likely to transfer semantic knowledge. Moreover, the model is

easier to transfer from MNLI to SNLI, compared with SNLI to

MNLI.

For the domain adaptation results between SNLI/MNLI and

SciTail, the accuracy is lower compared to other cases. The

reason is that SciTail is a textual entailment dataset from the sci-

ence domain and domain information differs significantly from

other datasets. In addition, SciTail is a smaller dataset that only

contains 23.5 k training data as introduced in IV-A. Therefore,

it is a challenge to transfer between dissimilar domains such

as SciTail to SNLI/MNLI. Our model, Multi-SCL, outperforms

the state-of-the-art model by 8.8% on average in six domain

adaptation scenarios. We can observe that MulitSCL achieves

an outstanding performance of 49.2% and 51.4% adapted from

SciTail to SNLI/MNL, exceeding the state-of-the-art model

by 10.1% and 10.4%, respectively. These results indicate that

MultiSCL has a stronger ability to learn domain invariant la-

tent representations through multi-level contrastive learning.
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TABLE VIII
DOMAIN ADAPTATION PERFORMANCE

MultiSCL can accurately characterize the sentence pairs in the

semantic space by the specifically-designed contrastive signal

and zero-shot transferred to different domains.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-level supervised contrastive

learning approach (MultiSCL) for low-resource NLI. We adopt a

data augmentation module to create different views for input sen-

tences. MultiSCL leverages sentence-level contrastive learning

to enhance the capability of semantic modeling by naturally tak-

ing the entailment hypothesis as the corresponding premise’s

positive set and the contradiction hypothesis as the negative

set. The cross attention module is designed to learn the joint

representations of the sentence pairs. The pair-level contrastive

learning objective is aimed to distinguish the varied classes of

sentence pairs by pulling those in one class together and pushing

apart the pairs in other classes. We evaluate MultiSCL on three

popular NLI datasets in low-resource settings. The experiment

results show that MultiSCL outperforms the previous state-of-

the-art method performance by 1.8%, 3.1% and 4.1% on SNLI,

MNLI and Sick with 5 instances per label respectively. For the

domain adaptation tasks, the accuracy of MultiSCL exceeds

existing models by 8.5% on average. We carefully study the

components of MutliSCL and show the effects of different parts.

We also compare multiple combinations of data augmentation

strategies and provide fine-grained analysis of several hyper-

parameters to interpret how our approach works.

In future work, we intend to exploit using contrastive learning

to obtain representations that can more accurately express the

relationship between sentences in low-resource settings. Fur-

thermore, we will investigate more effective data augmentation

methods for texts. Other future work will be to measure the per-

formance of MultiSCL on adversarial and similarly challenging

NLI datasets. We hope our work will provide a new perspective

for future research on contrastive learning.
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