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A Multi-Level Supervised Contrastive Learning
Framework for Low-Resource Natural
Language Inference

Shu’ang Li"¥, Xuming Hu

Abstract—Natural Language Inference (NLI) is a growingly
essential task in natural language understanding, which requires
inferring the relationship between the sentence pairs (premise and
hypothesis). Recently, low-resource natural language inference has
gained increasing attention, due to significant savings in manual
annotation costs and a better fit with real-world scenarios. Existing
works fail to characterize discriminative representations between
different classes with limited training data, which may cause faults
in label prediction. Here we propose a multi-level supervised con-
trastive learning framework named MultiSCL for low-resource
natural language inference. MultiSCL leverages a sentence-level
and pair-level contrastive learning objective to discriminate be-
tween different classes of sentence pairs by bringing those in one
class together and pushing away those in different classes. Multi-
SCL adopts a data augmentation module that generates different
views for input samples to better learn the latent representation.
The pair-level representation is obtained from a cross attention
module. We conduct extensive experiments on two public NLI
datasets in low-resource settings, and the accuracy of MultiSCL
exceeds other models by 1.8 %, 3.1% and 4.1 % on SNLI, MNLI and
Sick with 5 instances per label respectively. Moreover, our method
outperforms the previous state-of-the-art method on cross-domain
tasks of text classification.

Index Terms—Natural language inference, contrastive learning,
low-resource, multi-level.

1. INTRODUCTION

ATURAL Language Inference (NLI), also known as Rec-
Nognizing Textual Entailment (RTE), is a key topic in
the research field of natural language understanding [1], [2],
and could support tasks such as question answering, reading
comprehension, document summarization and relation extrac-
tion [3], [4], [5], [6]. In NLI scenarios, the model is given a
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TABLE I
EXAMPLES OF THE RELATIONSHIP BETWEEN PREMISE AND HYPOTHESIS:
ENTAILMENT, CONTRADICTION, AND NEUTRAL

Premise Two men on bicycles competing in a race.
People are riding bikes. E

Hypothesis  Men are riding bicycles on the streets. C
A few people are catching fish. N

pair of sentences, namely premise and hypothesis, and asked to
infer the relationship between them from a set of relationships,
including entailment, contradiction and neutral.
Several concrete examples are illustrated in Table I.

Large annotated datasets, such as SNLI [7] and MultiNLI
datasets [8] have been available in recent years, making it
possible to apply sophisticated deep learning models. These
neural network models require a large number of training pa-
rameters to achieve good results in NLI [9], [10]. However,
large-scale datasets are obtained from a large number of manual
annotations and have a high annotation cost. Therefore, natural
language inference for low-resource scenarios has gained more
widespread attention in recent years. Compared with traditional
task scenarios, NLI in low-resource scenarios focuses on using
a small amount of manually annotated data to achieve similar
results as the full amount of data. This can save a large number
of manual annotation costs and is more in line with realistic
application scenarios, thus with high research value and practical
application value [11].

Recent work has shown advantages of generative classifiers
in term of low-resource and robustness. Ding et al. [12] propose
a generative classifier that defines the conditional probabilities
assumed given the premises and labels and has better perfor-
mance in very few labeled data settings. Liu et al. [13] propose a
multi-task deep neural network for learning semantic represen-
tations across multiple natural language understanding tasks to
enhance the semantic representation in low-resource scenarios.
The network not only utilizes a large amount of cross-task data
but also benefits from regularization effects to learn more general
representations that can be adapted to NLI in fewer sample
scenarios. However, these methods only use the feature of the
sentence pair itself to predict the class, without considering
the comparison between the sentence pairs in different classes.
When the training instances per class are small, it is difficult for
these methods to distinguish the true class of similar sentences.
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Because these methods can’t well characterize discriminative
representations between different classes with limited training
data, which may cause faults in label prediction.

Many recent works explored using contrastive learning to
tackle this problem. Contrastive learning is a popular technique
in computer vision area [14], [15], [16] and the core idea is
to learn a function that maps positive pairs closer together in
the embedding space, while pushing apart negative pairs. A
contrastive objective is used by [17] to fine-tune pre-trained lan-
guage models to obtain sentence embeddings with the relation-
ship of sentences in NLI. The model achieved state-of-the-art
performance in sentence similarity tasks. Yan et al. [18] propose
a simple but effective training objective based on contrastive
learning. It mitigates the collapse of BERT-derived representa-
tions and transfers them to downstream tasks. However, these
approaches can’t distinguish well between the representation of
sentence pairs in different classes.

In our previous work [19], we propose a pair-level super-
vised contrastive learning approach (PairSCL), which obtains
new state-of-the-art performance in NLI. However, this method
cannot be adapted to low-resource settings for the reason of
limited discriminative ability of sentence pairs in very few
sample scenarios. Therefore, in this paper, we comprehensively
investigate the potential of contrastive learning in low-resource
NLI. Based on our analysis of PairSCL that contrastive learning
can help discriminate the class of sentence pairs, we propose
a multi-level supervised contrastive learning framework named
MultiSCL for low-resource NLI. In addition to pair-level con-
trastive learning, MultiSCL leverages the sentence-level con-
trastive learning objective to characterize the latent embeddings
of sentences in semantic space. Furthermore, to better learn the
semantic representation, we adopt a data augmentation module
that generates different views for input sentences with sentence-
level supervised contrastive learning by regarding the contra-
diction pairs as negatives, and entailment pairs as positives. The
pair-level representation can perceive the class information of
sentence pairs and is obtained from the Cross Attention module
which captures the relevance and characterizes the relationship
between the sentence pair. Then we adopt contrastive learning
to differentiate the pair-level representation by capturing the
similarity between pairs in one class and contrasting them with
pairs in other classes.

For example, the entailment pair (P, H;) and contradiction
pair (P, Hs) are from Table I (P;: Two men on bicycles
competing in a race. H;: People are riding bikes. P,: Two men
on bicycles competing in a race. H5: Men are riding bicycles on
the streets.). For sentence-level contrastive learning, we take
advantage of the fact that entailment pairs can be naturally
used as positives and the contradiction pairs can be regarded
as negatives. We consider H; as the positive set for P, and H,
as the negative set for P». In this way, the encoder can capture
the semantic representation of the sentences more accurately.
For pair-level contrastive learning, our model regards the pair
(P>, Hs) as the negative set for the pair (P, H;) with the
representation obtained from Cross Attention module to dis-
tinguish the pairs from different classes.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

Our contributions can be summarized as follows:

® We propose a novel multi-level supervised contrastive
learning framework named MultiSCL for low-resource
NLI. It applies the sentence-level and pair-level contrastive
learning to learn the discriminative representation with
limited labeled training data.

® We adopt a data augmentation module to generate the dif-

ferent views for input samples. We explore various effective
text augmentation strategies for contrastive learning and
analyze their effects on low-resource NLI.

® We conduct extensive experiments on two public NLI

datasets in low-resource settings, and the accuracy of
MultiSCL exceeds other models by 1.8%, 3.1% and 4.1%
on SNLI, MultiNLI and Sick with 5 instances per label
respectively. Moreover, our method outperforms the previ-
ous state-of-the-art method on cross-domain tasks of text
classification.

This paper is substantially an extended version of our previous
paper [19] that is published at ICASSP 2022. Compared to the
previous version, we make heavy extensions as follows: (1)
By adding the sentence-level contrastive learning objective, we
propose a new multi-level supervised contrastive learning frame-
work called MultiSCL for low-resource NLI. (2) We adopt a data
augmentation module to generate the views for input sentences
and explore various effective text augmentation strategies. (3)
We conduct extensive experiments on NLI datasets in low-
resource scenarios. We conduct experiments on cross-domain
datasets to validate the transfer capability of our model.

The structure of this paper is as follows. In Section II, we
review the related work to natural language inference and con-
trastive learning. Section III introduces the architecture of our
framework. Section I'V presents experimental design details and
Section V reports our experimental results and analysis. Finally,
in Section VI, we conclude this paper and present some future
work.

II. RELATED WORKS
A. Natural Language Inference

Early methods for NLI mainly relied on conventional, feature-
based methods trained from small-scale datasets [3], [20]. The
release of large datasets, such as SNLI [7] and MultiNLI [8],
made neural network methods feasible. Such methods can be
roughly categorized into two classes: sentence embedding bot-
tleneck methods which first encode the two sentences as vectors
and then feed them into a classifier for classification [21],
[22], [23], and more general methods which usually involve
interactions while encoding the two sentences in the pair [10],
[24], [25]. [26] enables the use of various kinds of external
knowledge bases to retrieve information related to premise
and hypothesis. Wang et al. [27] propose a novel Knowledge
Graph-enhanced NLI (KGNLI) model to leverage the usage of
background knowledge stored in knowledge graphs in the field
of NLI.

Recently, large-scale pre-trained language representation
models such as BERT [28], GPT [29], BART [30], etc., have
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achieved dominating performance in NLI. These neural network
models have a large number of training parameters to achieve
good results in NLI. However, large-scale datasets are obtained
from a large number of manual annotations and have a high
annotation cost. Therefore, NLI for low-resource scenarios has
gained more widespread attention in recent years.

Ding et al. [12] propose GenNLI, a generative classifier for
NLI tasks. The model defines conditional probabilities assumed
given premises and labels, parameterizing the distribution us-
ing a sequence-to-sequence model with attention [31] and a
replication mechanism [32]. They explore training objectives
for discriminative fine-tuning of the generative classifier, com-
paring several classical discriminative criteria. Liu et al. [13]
propose a multi-task deep neural network (MT-DNN) for learn-
ing semantic representations across multiple natural language
understanding tasks. MT-DNN not only utilizes a large amount
of cross-task data but also benefits from regularization effects
to learn more general representations that can be adapted to
natural language reasoning in very few sample scenarios. Schick
et al. [33] introduce Pattern Exploiting Training concerning
a partially pre-trained language model using task descriptions
in natural language [34]. They reformulate a small amount of
labeled data into fill-in-the-blank phrases to help the language
model understand the given task.

The above methods only use the feature of the sentence
pair itself to predict the class, without considering the com-
parison between the sentence pairs in different classes. In our
work, we propose a multi-level contrastive learning framework
named MultiSCL for low-resource NLI. MultiSCL leverages a
sentence-level and pair-level contrastive learning objective to
learn discriminative representations between different classes.

B. Contrastive Learning

Contrastive learning has shown promising results in computer
vision area in an unsupervised/self-supervised way [14], [15].
The key idea of contrastive learning is: first create augmentations
of original examples, then learn representations by predicting
whether two augmented examples are from the same original
data example or not. Dating back to [35], these approaches learn
representations by contrasting positive pairs against negative
pairs. Along these lines, Dosovitskiy et al. [36] propose to treat
each instance as a class represented by a feature vector (in a
parametric form). Wu et al. [37] propose to use a memory bank
to store the instance class representation vector, which was an ap-
proach adopted and extended in several recent papers [38], [39].
He et al. [14] propose Momentum Contrast (MoCo) by building
a dynamic dictionary with a queue and a moving-averaged
encoder and showed state-of-the-art results. Chen et al. [15]
propose a simple framework for contrastive learning to learn
visual representations without specialized architectures or a
memory bank.

Some works use contrastive learning to solve Natural Lan-
guage Processing (NLP) tasks. Qin et al. [40] propose a novel
contrastive learning framework in the pre-training phase to
obtain a deeper understanding of the entities and their relations
in text. Giorgi et al. [41] propose a self-supervised method
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for minimizing sentence embeddings of textual segments ran-
domly sampled from nearby in the same document and obtained
state-of-the-art performance on SentEval [42]. Gunel et al. [43]
propose a supervised contrastive learning (SCL) objective which
uses SCL loss combined with cross-entropy loss for the fine-
tuning stage. The proposed model shows improved performance
on multiple datasets of the GLUE benchmark [44] in both
the high-data and low-data regimes. Yan et al. [18] explore
a simple but effective sentence-level training objective with
various effective text augmentation strategies to generate views
for contrastive learning. Suresh et al. [45] incorporate inter-class
relationships into a supervised contrastive loss by differentiating
the weights between different negative samples for fine-grained
text classification. Li et al. [46] adopt supervised contrastive
pre-training to capture both implicit and explicit sentiment
orientation towards aspects by aligning the representation of
implicit sentiment expressions to those with the same label for
aspect-based sentiment analysis. Wu et al. [47] propose a new
framework, combining word-level masked language modeling
objectives with sentence-level contrastive learning objective to
pre-train a language model. Zhang et al. [48] propose an in-
stance discrimination-based approach aiming to bridge semantic
entailment and contradiction understanding with high-level cat-
egorical concept encoding. Wang et al. [49] propose Contrastive
Learning with semantlc Negative Examples (CLINE), which
constructs semantic negative examples unsupervised to improve
the robustness under semantically adversarial attacking. By
comparing with similar and opposite semantic examples, the
model can effectively perceive the semantic changes caused by
small perturbations. Li et al. [ 19] propose a pair-level supervised
contrastive learning approach. The pair-level representation is
obtained by Cross Attention module which can capture the
relevance and well characterize the relationship between the
sentence pair.

However, the above methods can’t learn effective semantic
representations in low-resource scenarios. In our work, we will
focus on the use of multi-level contrastive learning for low-
resource NLI.

III. APPROACH

In this section, we describe our approach MultiSCL. The
overall architecture of the model is illustrated in the left part
of Fig. 1. MultiSCL comprises the following four major compo-
nents: a data augmentation module that generates different views
for input samples; an encoder that computes sentence-level
representations of premise and hypothesis; a cross attention
module to obtain the pair-level representation of the sentence
pair and a joint-training layer including the sentence-level and
pair-level contrastive learning term and the cross-entropy term.

A. Data Augmentation Module

In low-resource NLI scenarios, it’s a challenge for a model
to learn discriminative representations and infer the relationship
between sentences. Therefore, we adopt a data augmentation
module to generate different views of sentences to enhance the
semantic understanding and inference capability of the model.
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We explore and test six data augmentation strategies to generate
views, including synonym replacement [50], reordering [47],
word insertion, word deletion, dropout [17], and back transla-
tion [51].

Synonym Replacement randomly chooses n words from
the sentence that are not stop words. Replace each of these
words with one of its synonyms chosen at random, so that the
augmented data fit the original semantics as closely as possible.

Reordering is another widely-studied augmentation method
that can keep the original sentence’s features. We randomly se-
lect n pairs of spans and switch them to construct the reordering
augmentation in our implementation.

Word Insertion finds the random synonym of n random word
in the sentence that is not a stop word. Insert that synonym into
a random position in the sentence.

Word Deletion randomly selects n tokens in the sentence and
replaces them with a special token [DEL], which is similar to
the token [MASK] in BERT [28].

Dropout has been proven an effective augmentation strategy
for contrastive learning [17], [18]. For this setting, we randomly
drop elements in the token embedding layer by a specific number
n and set their values to zero.

Back Translation first translates the sentence into another
language and translates it back to the original language. Then
the new sentence is regarded as an augmented sentence of the
original.

In our model, we select two augmentation strategies to gen-
erate two different views of input texts. We will explore and
test the effect of different combinations in our experiment. The
number of changed words or tokens for augmentation methods n
is based on the length of the sentence [ with the formula n = nl,
where 7) is a hyper-parameter that indicates the percent of the
changed words in a sentence.

Augmented views )

of P.and H
Representation
of a sentence pair J

Maximize agreement
Keep distant

Representations
O . of Pand H ®

Neutral

The overall view of MultiSCL. The left part is the main framework of our model. The right part is the detailed structure of Cross Attention module.

B. Text Encoder

After we get the different views of the sentence, we need
to get the context-based semantic information. We give the
formal definition of NLI as follows. Each instance in a
NLI dataset consists of two sentences and a label indicat-
ing the relation between them. Formally, we denote premise
as X = {xgp),xép),...,xs;‘{)} and hypothesis as X (") =
{:cgh)7 xéh), .. ,x%h)}, where m and n are length of the sen-
tences respectively. The instance in the batch Z is denoted
as (X®) X" 4);, where i = {1,..., K} is the indices of
the samples and K is the batch-size. After passing the input
samples to data augmentation module, we construct the new
batch Z with size 2 K by randomly augmenting twice for
all the sentences. The encoder (e.g., BERT) takes X @) X ()
as inputs and computes the semantic representations, de-
noted as S®) = {sgp)|sz(»p) €RFi=1,2,...,m} and S =
{S§IL)|s§-h) € R* j=1,2,...,n}, where k is the dimension of
the encoder’s hidden state.

C. Cross Attention Module

Different from single sentence classification, we need a proper
interaction module to better clarify the relationship of sentences
pair for NLI task. In practice, we need to compute token-level
weights between words in premise and hypothesis to obtain
information about their interaction. Therefore, we introduce
Cross Attention module to calculate the co-attention matrix
C € R"™ ™ of the token level. If the value of attention weight
is relatively large, the correlation between the words is stronger.
Each element C; ; € R indicates the relevance between the i-th
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word of premise and the j-th word of hypothesis:
Ci; = PTtanh(W(s® o s{")), (1)

where W € Rk P € R4, and ® denotes the element-wise
production operation. W and P are trainable parameters to map
the feature in the semantic space, where k is the dimension of
the encoder’s hidden state and d is the dimension for nonlinear
mapping to a latent representation. Then the attentive matrix
could be formalized as:

C(P) — Softmax(ci,:)v

( cgh) = softmaz(C.;), (2)
o

sgp)/ =sh. cl(p) = s® ~c§-h). 3)

We further enhance the collected local semantic information:

Sz(‘p)” _ [Sgp); SEP)’; Sz(p) _ Sl(p)’; Sz('p) o SEP)/], (4)
= ReLU(WP's" 1 b)), )
where [-; -; -; -] refers to the concatenation operation. s( P) sgp )

indicates the difference between the original representation
and the hypothesis-information enhanced representation of
premise, and s(p ) (-p )y represents their semantic similarity.
Both values are desagned to measure the degree of semantic
relevance between the sentence pair. The smaller the difference
and the larger the semantic similarity, the sentences pair are
more likely to be classified into the Entailment category. The
difference and element-wise product are then concatenated with
the original vectors (S, S(P)"). We expect that such operations
could help enhance the pair-level information and capture the
inference relationships of premise and hypothesis. We get
the new representation containing hypothesis-guided inferential
information for premise:

g _ (égp)7 §;p), L g%{;)), (6)
S — LayerNOTm(S(p)), (7

where Layer Norm(.) is a layer normalization. The result S(®)
is a 2D-tensor that has the same shape as S(P). The representation
of hypothesis S is calculated in the same way.

Then we convert these representations obtained above to a
fixed-length vector with pooling. More specifically, we com-

pute max pooling and mean pooling for S®) and S, where
P — (') 8P . 8%)) and §™ = (s &M . s}
Formally:
s — Em: il S®) = maxs?) (8)
mean P m ) max i=1 7 b
st — En: i S — miax s, 9
mean ‘_ n max j:1 J

We aggregate these representations and the pair-level repre-
sentation Z for the sentence pair is obtained as follows:

=[S, .8 .St .S

mean?’ max ’ mean ’ l’l'ldx]

(10)

As described, Cross Attention module can capture the rele-
vance of the sentence pair and well characterize the relationship.
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Therefore, the pair-level representation can perceive the class
information of sentence pairs.

D. Training Objective

1) Text-Level Supervised Contrastive Loss: The core idea of
contrastive learning is to learn a function that maps positive
pairs closer together in the embedding space while pushing
apart negative pairs. In general, two variants augmented from
the same original sentence form the positive pair, while all other
instances from the same batch are regarded as negative samples
for them. Especially, the NLI datasets consist of high-quality
and crowd-sourced labeled sentence pairs and each can be pre-
sented in the form: (premise, hypothesis, label) as described in
Section I. Given one premise, human annotators are required to
manually write one sentence that is absolutely true (entailment),
one that might be true (neutral), and one that is definitely
false (contradiction). Thus for each premise and its entailment
hypothesis, there is an accompanying contradiction hypothesis
and neutral hypothesis (see Table I for an example). Therefore,
it is natural to take the entailment hypothesis for premise as its
positive set and the contradiction hypothesis as negative set.

In the training stage, we randomly sample a batch Z of K ex-
amples (X ), X (7, Y)iez—{1,...,} as denoted in Section III-B.
After passing the input samples to data augmentation module,
we construct the new batch Z with size 2 K by randomly
augmenting twice for all the sentences. We denote the repre-
sentation obtained from the text encoder of the new batch as
(s, S(h))ieiz{L...,zK}' For the premise sgp) in the augmented

batch, we denote the set of positives as Sgp )+, including the aug-
mented views of the entailment hypothesis and the augmented
views of the same original premise. The negative set is denoted
as Sgp )_, including the augmented views of the contradiction
hypothesis. The sentence-level supervised contrastive loss on
the batch 7 is defined as:

esim(SEp) ,Sgp)+)/7

LR Mg (ST ST/

esim(sgm ,Sgcp)f)/T) ’
(1D
where sim(-) indicates the cosine similarity function, 7 controls
the temperature.
Finally, we average all 2 K in-batch losses ¢; to obtain the
final sentence-level contrastive 10ss Lscr(sent):

ESCL(sent) = Z - IOg i,
i€l

12)

In this way, we can map the representations from the en-
coder of the semantically similar sentences closer together in
the embedding space, while pushing apart irrelevant sentences.
Thus, the pair-level representations based on the output of the
encoder can better capture the relationships between premise
and hypothesis.

2) Pair-Level Supervised Contrastive Loss: In [16], the au-
thors extended the above loss to a supervised contrastive loss by
regarding the samples belonging to the same class as the positive
set. Inspired by this, we adopt a supervised contrastive learning
objective to align the pair-level representation obtained from
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Cross Attention module to distinguish sentence pairs from dif-
ferent classes. The pair-level supervised contrastive loss brings
the latent representations of pairs belonging to the same class
closer together.

In the training stage, we take the augmented batch 7 of 2 K ex-
amples (X (®), X (1) Y)i={1,...,2k} as denoted in Section ITI-D1.
For the pair (X (), X (") 4/);, we denote the set of positives as
G={9:9€T,y,=uy; Ng# i}, withsize|G|. The supervised
contrastive loss on the batch 7 is defined as:

esim(Z,v;Zg/T)

Zkei/- esim(Zi-Zy /7))’
1

1
= Z—log@Z&ﬂ,

i€l EY

13)

él}g -

LSCL(pair) (14)

where ¢; , indicates the likelihood that pair ¢ is most similar
to pair g and 7 is the temperature hyper-parameter. Larger
values of 7 scale down the dot-products, creating more dif-
ficult comparisons. Z; is the pair-level representation of pair
(X®), X(")); from Cross Attention module. Supervised con-
trastive 1oss Lgcr(pair) 18 calculated for every sentence pair
among the batch Z. To minimize contrastive 1oss Lscr,(pair)
the similarity of pairs in the same class should be as large as
possible, and the similarity of negative examples should be as
small as possible.

3) Cross-Entropy Loss: Supervised contrastive loss mainly
focuses on separating each pair apart from the others of different
classes, whereas there is no explicit force in discriminating
contradiction, neutral, and entailment. Therefore, we adopt the
softmax-based cross-entropy to form the classification objective:

Log = CrossEntropy(WZ + b, y), (15)

where W and b are trainable parameters. Z is the pair-level
representation from Cross Attention module and y is the corre-
sponding label of the pair.

4) Overall Loss: The overall loss is a weighted average of
CE and the multi-level SCL loss, denoted as:

L= ECE + a‘CSCL(se'm‘,) + BESCL(paiT)a (16)

where «, [ is a hyper-parameter to balance the objectives.

IV. EXPERIMENTAL SETUP
A. Benchmark Dataset

We evaluate our model on four popular datasets: the Stan-
ford Natural Language Inference (SNLI), the MultiGenre NLI
Corpus (MultiNLI), Sick and SciTail. We also conduct cross-
domain experiment while trained with all source domain data
of one dataset and zero-shot transferred to the target domain of
another dataset to evaluate the domain adaptation capability of
the model. Detailed statistical information of these datasets is
shown in Table II. Len(P) and Len(H) refer to the average length
of premise and hypothesis respectively. MultiNLI(m) and
MultiNLI(mm) indicate the matched and mismatched datasets
respectively. We use classification accuracy as the evaluation
metric.
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TABLE II
STATISTICS OF DATASETS

Dataset Train Dev Test Len(P) Len(H)
SNLI 549k 9.8k 9.8k 14 8
MultiNLI(m) 3092k 9.8k 9.8k 22 11
MultiNLI(mm) 9.8k 9.8k 22 11
Sick 45k 0.5k 4.9k 12 10
SciTail 23,5k 1.3k 2.1k 20 12

SNLI The Stanford Natural Language Inference (SNLI)
dataset contains 570 k human-annotated sentence pairs, in which
the premises are drawn from the captions of the Flickr30 corpus
and hypotheses are manually annotated [7]. This is the most
widely used entailment dataset for NLI.

MultiNLI The corpus [8] is a new dataset for NLI, which
contains 433 k sentence pairs. Similar to SNLI, each pair is
labeled with one of the following relationships: entailment,
contradiction, or neutral. We use the matched dev set and mis-
matched dev set as our validation and test sets, respectively.

Sick This is a large data set on compositional meaning, anno-
tated with subject ratings for both relatedness and entailment
relation between sentences [20]. The SICK data set consists
of around 10000 English sentence pairs, each annotated for
relatedness in meaning.

SciTail This is a textual entailment dataset derived from a sci-
ence question answering (SciQ) dataset [52]. The task involves
assessing whether a given premise entails a given hypothesis.
In contrast to other entailment datasets mentioned previously,
the hypotheses in SciTail are created from science questions
while the corresponding answer candidates and premises come
from relevant web sentences retrieved from a large corpus. The
dataset is only used for domain adaptation.

B. Implementation Details

We start from pre-trained checkpoints of BERT [28] (un-
cased). We implement MultiSCL based on Huggingface’s
transformers package [53]. All experiments are conducted
on 1 Nvidia GTX 3090 GPU.

We train our models for 10 epochs with a batch size of 512
and temperature 7 = 0.08 using an Adam optimizer [54]. The
hyper-parameter « and 3 are set as 1 for combining objectives.
The learning rate is set as Se-5 for base models. Weight decay is
used with a coefficient of le-5. The maximum sequence length
is set to 128. All the experiments are conducted 5 times with
different random seeds and we report the average scores. The
hyperparameter 7 is set to 0.1, which indicates the percent of
the changed words in a sentence during the data augmentation
module. We select Reordering and Dropout as augmentation
strategies in the main experiments.

C. Baseline Models

To analyze the effectiveness of our model, we evaluate several
approaches for traditional NLI scenarios and state-of-the-art
methods for low-resource NLI scenarios as baselines as follows
on the above datasets.
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TABLE III
PERFORMANCE ON TEST DATASETS WITH VARIOUS AMOUNTS OF TRAINING
DATA*

Dataset | Model 5 20 100 500 1000 all
InferSent 375 39.6 441 560 639 845
ESIM 384 38.6 4677 582 654 876
BERT 334 373 474 70.1 78.7  90.6

SNLI PairSCL 357 384 483 71.0 794 919
GenNLI 435 456 506 60.6 642 822
MT-DNN 402 414 475 724 773 910
MultiSCL 453 482 554 737 80.1 922
InferSent 341 337 352 449 479 704
ESIM 369 354 405 498 542 767
BERT 33.0 349 416 636 685 833

MNLI PairSCL 32.1 344 408 64.1 689 84.6
GenNLI 441 471 490 60.6 634 675
MT-DNN 398 425 456 652 69.1 814
MultiSCL 472 493 527 664 70.6 854
InferSent 355 463 602 732 - 83.6
ESIM 345 484 629 754 - 84.6
BERT 36.7 5677 63.6 78.6 - 86.0

SICK PairSCL 358 552 63.1 792 - 86.5
GenNLI 506 647 687 752 - 80.4
MT-DNN 464 619 642 783 - 85.8
MultiSCL 547 675 71.7 814 - 87.1

1) Traditional NLI baselines:

e InferSent [21] uses a BiLSTM network with max-
pooling to learn generic sentence embeddings that per-
form well on several NLI tasks.

e ESIM [24] is a previous state-of-the-art model for the
natural language inference (NLI) task. It is a sequential
model that incorporates the chain LSTM and the tree
LSTM to infer local information between two sen-
tences.

e BERT [28] is the naturally bidirectional masked lan-
guage model, configured with ‘bert-base-uncased’.

e PairSCL [19] is a pair-level supervised contrastive
learning approach with BERT as encoder. It adopts a
Cross Attention module to learn the joint representa-
tions of the sentence pairs.

2) Low-resource NLI baselines:

e Gen-NLI [12] is a generative classifier for NLI tasks.
The model defines conditional probabilities assumed
given premises and labels, parameterizing the distribu-
tion using a sequence-to-sequence model with attention
and a replication mechanism.

e MT-DNN [13] is a multi-task deep neural network
for learning semantic representations across multiple
natural language understanding tasks.

V. EXPERIMENT RESULTS
A. Main Results

We first empirically compare MultiSCL with baselines for
three NLI datasets in low-resource scenarios. We construct
smaller training sets by randomly selecting 5, 20, 100, 500, and
1000 instances per class, and then train separate models across
these different-sized training sets. Table III shows the average
performance and standard deviation of the three runs of our
model in comparison with the baselines on SNLI, MNLI, and
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TABLE IV
ABLATION STUDY ON SNLI
Model 5 20 100 500
MultiSCL (-Data Augmentation) 39.5 44.8 52.1 715
MultiSCL (-Cross Attention) 423 460 528 69.5
MultiSCL (-SCL(sent) loss) 41.0 451 517 712
MultiSCL (-SCL(pair) loss) 4277 443 525 70.6
MultiSCL (-CE loss) 442 470 548 737
MultiSCL 453 482 554 737

SICK.! The results of Gen-NLI and MT-DNN are obtained from
the original papers, and the results of other baselines are obtained
from our re-running of source code released by the authors. The
best result for each dataset and data amount is shown in bold.
We also conduct the students paired t-test and the p-value of the
significance test between the results of MultiSCL and GenNLI
is less than 0.05 and 0.01, respectively. The results show that
MultiSCL outperforms baselines on all data volume settings
for all three datasets. When using training sets with 5/20/100
instances per class on three datasets, MultiSCL outperforms
the state-of-the-art model by 3%, 2.5%, and 3.8% respectively,
which proves that MultiSCL can better capture the latent se-
mantic representations by multi-level contrastive learning in
low-resource scenarios. We can observe that transformer-based
models such as BERT and PairSCL have poor performance
results when the training data is less than 100 instances, even
lower than LSTM-based models such as ESIM and InferSent.
This shows that large-scale pre-trained models require a large
amount of supervised data to be finetuned.

When the training set gets larger, the performance gap be-
tween MultiSCL and baselines does shrink. When trained with
500/1000/all instances per label, the accuracy exceeds the state-
of-the-art model by 1.6%, 1.1%, and 0.6%, which shows that
MultiSCL has a more significant advantage compared with other
models when trained with a smaller amount of training data. Fur-
thermore, MultiSCL outperforms our previous work PairSCL
by 10.9% on average with trained less than 100 instances per
class. The performance gains are due to the data augmentation
module and the stronger ability to learn sentence-level latent
embeddings in semantic space. The encoder of MultiSCL can
capture sentence-level semantics effectively by the specifically-
designed contrastive signal — regarding the entailment pairs as
positives and the contradiction pairs as negatives with limited
training data. When trained with full training data, MultiSCL
exceeds PairSCL by 0.6%. We will further analyze the role of
each module of MultiSCL in more detail in Section V-B.

B. Ablation Study

We run extensive ablations to better understand the contribu-
tion of each key component of MultiSCL. We conduct experi-
ments with the training set of 5/20/100/500 instances per class
on SNLI and select Reordering and Dropout as augmentation
strategies. The results are shown in Table I'V.

ISICK does not have results in the 1000 column because the ’contradiction’
label has only 665 instances.
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Fig. 2. Visualization of the SNLI representations using t-SNE for MultiSCL
(left) and MultiSCL w/o Cross Attention Module (right).

After removing Data Augmentation module, the performance
of MultiSCL is reduced by an average of 2.94%. Moreover,
we can observe that the importance of Data Augmentation
module gradually decreases as the number of training instances
increases. When training with 5 instances per class, the accuracy
decreases by 5.8% on the test set. This indicates that when
the training data is small, augmenting the sentences can bring
larger enhancements to the model. The reason is that Data
Augmentation module can create challenging views which allow
the encoder to learn the semantic representation better with
multi-level contrastive learning. After removing Cross Attention
mechanism, the model simply concatenates the representation of
two sentences to obtain the representation of the sentence pair.
The performance decreases by 3.0%, 2.2%, 2.6%, and 3.2%
respectively with different sizes of training data, which shows
the joint representation obtained by cross attention can well
characterize the relationship between the sentence pair. Without
the sentence-level supervised contrastive learning loss, the accu-
racy of our model is decreased by 4.3%, 3.1%, 3.7%, and 2.5%
with 5/20/100/500 training data per class. This demonstrates that
by regarding entailment sentence pairs as positive samples and
contradiction pairs as negative samples allows the encoder to
discriminate the semantic difference between sentences. After
removing pair-level supervised contrastive learning loss, the
performance decreases by 2.5% on average. The reason is that
the contrastive learning objective can learn the discrepancy
between the sentence pairs of different classes by pulling the
sentence pairs from the same class together and pushing the pairs
of different classes further apart. The test accuracy decreases by
0.7% on average without the cross-entropy loss.

VI. QUALITATIVE ANALYSIS

In this section, we further conduct extensive experiments to
understand the inner workings of MultiSCL.

A. Analysis of Cross Attention Module

To further investigate the effect of Cross Attention mod-
ule, we conduct the t-SNE visualization experiments of the
representations Z for the sentence pairs on SNLI test set.
Fig. 2 illustrates that the contrastive loss can map the pairs of
the same category closer together in the embedding space while
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Fig. 3. The performance visualization with different combinations of data

augmentation strategies. The row indicates the Ist data augmentation strategy
while the column indicates the 2nd data augmentation strategy.

pushing apart negative pairs in different classes. The right part of
Fig. 2 shows the results after removing Cross Attention module.
We observe that there is very little overlap between different
classes in left part and the distance of the representations of
different classes are distant. In contrast, the representations
without Cross Attention module in different classes are closer
and overlap with each other. The representations of the same
category with Cross Attention module in left part of Fig. 2 are
better grouped together compared to the representations in right
part of Fig. 2. That indicates Cross Attention module can learn
the joint representation between premise and hypothesis very
well. The representations of the positive pairs obtained from
Cross Attention module can be mapped together in the semantic
space by contrastive learning. This could well explain why
removing Cross Attention module would give a high accuracy
drop.

B. Analysis of Data Augmentation Module

In this section, we first analyze the effect of different combina-
tions of data augmentation strategies on SNLI with 500 training
instances per class. As described in Section III-A, we consider
six options for each augmentation, including Synonym Replace-
ment, Reordering, Word Insertion, Word Deletion, Dropout, and
Back Translation, resulting in 6 x 6 combinations.

The results are shown in Fig. 3. When using Word Deletion,
MultiSCL has poorer performance than other strategies on aver-
age. The performance decreases to the lowest with an accuracy of
69.2% with Word Deletion and Back Translation. We argue that
Word Deletion and Back Translation may change the meaning
compared with the original sentences, resulting in an unexpected
change in the relationship between premise and hypothesis. In
this situation, MultiSCL may learn to misunderstand semantic
representation with multi-level contrastive learning by incor-
rectly setting the positive and negative set. Compared to Word
Deletion and Back Translation, Word Insertion and Synonym
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TABLE V
INFLUENCE OF 7) IN DATA AGUMENTATION MODULE

7 6% 7% 8% 9% 10% 20% 40% 60%  80%
MultiSCL  71.8  72.1 728 734 737 70.1 634 546 418

Replacement improves the performance but does not achieve
the best result. These two strategies can create views that have
the same meaning as the original sentence but don’t introduce
meaningful changes. Therefore, the model cannot construct
effective positive/negative sets with these augmented views in
contrastive learning.

We can observe that Reordering and Dropout are the two
most effective strategies with an accuracy of 73.7% (where
Reordering is slightly better than Dropout). We argue that Re-
ordering and Dropout can create challenging sentence pairs for
contrastive learning without changing the semantic information.
The augmented views are useful for contrastive learning without
confusing the model, and thus improve the model robustness in
low-resource scenarios. We adopt Reordering and Dropout as
augmentation strategies in most experiments.

Furthermore, we explore the effect of hyperparameter 7 on
SNLI with 500 training instances per class. 77 is a hyperparameter
that indicates the percent of the changed words in a sentence.
The number of words changed n is calculated with the formula
n = nl, where [ is the length of the sentence. Table V shows that
the accuracy first increases then decreases dramatically when the
value of n becomes larger. The performance is highest when 7 is
set to 10%. The accuracy decreases 3.6% when 7 is set to 20%.
When the value of 7 is 80% in the extreme case, the accuracy
of MultiSCL drops to a minimum of 41.8%. The results are not
surprising. When 7’s value increases, the number of changed
words increases which makes the augmented sentence and the
original sentence more likely to have different meanings. In this
situation, Data Augmentation module can introduce very serious
noise to the model, so that the positive/negative pairs that we
regard in multi-level contrastive learning do not work actually.

C. Influence of Temperature

The temperature in sentence-level (11) and pair-level (12)
contrastive loss is used to control the smoothness of the distri-
bution normalized by softmax operation and thus influences the
gradients when backpropagation. A higher temperature smooths
the distribution while a low temperature scales up the dot-
products and sharpens the distribution. In our experiments, we
explore the influence of temperature 7 on SNLI dataset with 500
training instances per class. The result is illustrated in Fig. 4.

As shown in the figure, we can observe that the performance
of MultiSCL is very sensitive to the value of temperature 7. As
the temperature becomes higher, the performance of the model
first improves and then decreases. Either too low or too high
temperature will make our model perform badly. The optimal
temperature value is 0.08 when MultiSCL has the highest ac-
curacy of 73.7%. This phenomenon again demonstrates that the
temperature determines how much attention is paid to difficult
negative samples in contrastive loss. The higher the temperature,
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performance is achieved when the temperature is set to 0.08.

TABLE VI
INFLUENCE OF o AND 3 IN TRAINING OBJECTIVE

02 695 702 70.6 1716
05 704 713

1.0 714

20 [ 712 715

the less attention is paid to difficult negative samples, while
the lower the temperature, the model focuses more on negative
samples that are very different from the anchor. We select 0.08
as the temperature in most of our experiments.

D. Influence of Hyper-Parameters in Training Objective

To investigate the effect of hyper-parameters avand S in 15, we
conduct the experiments with 500 instances per class on SNLI
by setting different values. The results are illustrated in Table VI
and we underline the setting used for all our experiments. The
hyper-parameters « and 3 are used to balance sentence-level
contrastive loss and pair-level contrastive loss in the training
objective. MultiSCL focuses more on semantic similarity dis-
crimination of sentences with a larger value of «, while the
model is paying more attention to learning the discrepancy of
sentence pairs in different categories with a larger value of 3.

Table VI indicates a trade-off between the sentence-level
semantic encoding capability and the pair-level reasoning ca-
pability of MultiSCL. When the values of both « and 3 are
0.2, MultiSCL almost removes contrastive learning and uses
only cross-entropy loss, and the accuracy decreases by 4.2%.
The performance of MultiSCL keeps improving as the value
of o and [ increases until the highest accuracy of 73.7% with
a = 8 = 1.0. However, as the values of « and S continue to
increase, the accuracy begins to decrease. This result is not
surprising, especially considering that the joint representation of
a contradiction pair in pair-level contrastive learning is obtained
from two sentences that are regarded as negative sets in the
sentence-level contrastive learning. Focusing too much on the
pair-level classification objective, i.e., using larger S values,
can hurt the embeddings of the sentence from the encoder.
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TABLE VII
SELECTED EXAMPLES FROM SNLI

ID  Premise Hypothesis GenNLI ~ MultiSCL  Gold
A Two kids are standing in the ocean hugging each other. Two kids enjoy their day at the beach. E N N
B They are sitting on the edge of a fountain. The fountain is splashing the persons seated. E N N
C  An old man with a package poses in front of an advertisement. A man poses in front of an ad. N E E
D A young family enjoys feeling ocean waves lap at their feet. A family is at the beach. N E E
E A man and woman sit at a cluttered table. The table is neat and clean. E C C
F A race car sits in the pits. The car is going fast. N C C

On the other hand, focusing overly on separating semantically
dissimilar sentences also affects the discrimination of sentence
pairs in different categories. We set « and (3 as 1.0 for all our
experiments with effective multi-level supervised contrastive
learning.

E. Case Study

To illustrate the advantages of our model in more detail, we
conduct a case study. Table VIl includes some examples from the
SNLI test set, where MultiSCL successfully predicts the relation
and GenNLI fails. In examples A and B, both sentences contain
phrases that are either identical or highly lexically related (e.g.
“Two kids”, “ocean/beach”, and “fountain”), which confuses
GenNLI’s judgment as entailment category. MultiSCL can infer
the correct relationship of Neutral by capturing the difference
between words in premise and hypothesis with Cross Attention
module. For examples C and D, GenNLI regarded their relation-
ships as Neutral but the gold labels are Entailment. The reason
may be that the two sentences do not have some identical words,
so GenNLI cannot easily recognize their semantic similarity.
However, MultiSCL can correctly capture the semantics of the
sentences through multi-level contrastive learning. For example
E, GenNLI predicts the relationship as Entailment while Multi-
SCL can infer the correct relationship as Contradiction from
“cluttered” and “neat and clean”. For example F, MultiSCL
can predict the relationship as Contradiction from “sits” and
“going fast” while GenNLI considers their relationship to be
Neutral. These results show that MultiSCL can understand the
semantic information by capturing the interaction of words in
premise and hypothesis. Furthermore, MultiSCL can better
infer the relationship of the challenging pairs with the multi-level
contrastive learning.

FE. Error Analysis

To analyze the limitation of MultiSCL, we select some very
challenging cases in which both GenNLI and MultiSCL cannot
infer the relationships correctly in low-resourse scenarios. For
example, MultiSCL predicts the relationship as entailment for
the contradiction pair (premise: A person wearing a straw
hat, standing outside working a steel apparatus. hypothesis: A
person is burning a straw hat.). The most likely reason is that
all the words in hypothesis except “burning” are included in
premise. In this situation, MultiSCL ignores the different words
("wearing” and “burning”) and simply assumes that premise and
hypothesis are nearly identical. Therefore, the model predicts

the relationship as entailment. Another example of model mis-
classification is the pair (premise: Two women having drinks
and smoking cigarettes at the bar. hypothesis: Three women are
at a bar.). The gold label is contradiction but MultiSCL believes
their relationship is entailment. We can observe that the two
sentences describe basically the same scenario, only the number
of people mentioned is different. This indicates that our model
ignores differences in count words when the semantics of the
sentences are similar.

VII. DOMAIN ADAPTATION RESULTS

To investigate the performance of the model in low-resource
scenarios more deeply, we conduct the domain adaptation ex-
periments. We evaluate MultiSCL with BERT, GenNLI, and
MT-DNN by domain adaptation between SNLI, MNLI, and Sc-
itail. The models are trained to convergence using all the source
domain data and zero-shot transferred to the target domain,
which can evaluate the ability for domain-independent reason-
ing. The domain adaptation results are illustrated in Table VIII.
MultiSCL outperforms all baselines by 8.5% on average for all
six domain adaptation settings. Furthermore, we can find that
all models perform the best for domain adaptation of SNLI and
MNLI in various combinations of source and target datasets.
The reason is that MNLI is modeled on SNLI but differs in that
it covers a range of genres including transcribed speech, fic-
tion, and government reports. Therefore, the domain similarity
between SNLI and MNLI is higher and the models are more
likely to transfer semantic knowledge. Moreover, the model is
easier to transfer from MNLI to SNLI, compared with SNLI to
MNLIL

For the domain adaptation results between SNLI/MNLI and
SciTail, the accuracy is lower compared to other cases. The
reason is that SciTail is a textual entailment dataset from the sci-
ence domain and domain information differs significantly from
other datasets. In addition, SciTail is a smaller dataset that only
contains 23.5 k training data as introduced in IV-A. Therefore,
it is a challenge to transfer between dissimilar domains such
as SciTail to SNLI/MNLI. Our model, Multi-SCL, outperforms
the state-of-the-art model by 8.8% on average in six domain
adaptation scenarios. We can observe that MulitSCL achieves
an outstanding performance of 49.2% and 51.4% adapted from
SciTail to SNLI/MNL, exceeding the state-of-the-art model
by 10.1% and 10.4%, respectively. These results indicate that
MultiSCL has a stronger ability to learn domain invariant la-
tent representations through multi-level contrastive learning.
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TABLE VIII
DOMAIN ADAPTATION PERFORMANCE

Source Dataset ~ Target Dataset ~ Model Accuracy
BERT 67.0
GenNLI 61.4
SNLI MNLI MT-DNN 69.3
Multi-SCL 71.5
BERT 49.0
GenNLI 42.7
SNLI SciTail MT-DNN 493
Multi-SCL 60.2
BERT 77.4
GenNLI 71.8
MNLI SNLI MT-DNN 78.5
Multi-SCL 85.0
BERT 49.8
GenNLI 47.6
MNLI SciTail MT-DNN 50.3
Multi-SCL 58.2
BERT 39.1
GenNLI 359
SciTail SNLI MT-DNN 40.1
Multi-SCL 49.2
BERT 41.0
GenNLI 37.8
SciTail MNLI MT-DNN 425
Multi-SCL 514

MultiSCL can accurately characterize the sentence pairs in the
semantic space by the specifically-designed contrastive signal
and zero-shot transferred to different domains.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-level supervised contrastive
learning approach (MultiSCL) for low-resource NLI. We adopt a
data augmentation module to create different views for input sen-
tences. MultiSCL leverages sentence-level contrastive learning
to enhance the capability of semantic modeling by naturally tak-
ing the entailment hypothesis as the corresponding premise’s
positive set and the contradiction hypothesis as the negative
set. The cross attention module is designed to learn the joint
representations of the sentence pairs. The pair-level contrastive
learning objective is aimed to distinguish the varied classes of
sentence pairs by pulling those in one class together and pushing
apart the pairs in other classes. We evaluate MultiSCL on three
popular NLI datasets in low-resource settings. The experiment
results show that MultiSCL outperforms the previous state-of-
the-art method performance by 1.8%, 3.1% and 4.1% on SNLI,
MNLI and Sick with 5 instances per label respectively. For the
domain adaptation tasks, the accuracy of MultiSCL exceeds
existing models by 8.5% on average. We carefully study the
components of MutliSCL and show the effects of different parts.
We also compare multiple combinations of data augmentation
strategies and provide fine-grained analysis of several hyper-
parameters to interpret how our approach works.
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In future work, we intend to exploit using contrastive learning
to obtain representations that can more accurately express the
relationship between sentences in low-resource settings. Fur-
thermore, we will investigate more effective data augmentation
methods for texts. Other future work will be to measure the per-
formance of MultiSCL on adversarial and similarly challenging
NLI datasets. We hope our work will provide a new perspective
for future research on contrastive learning.
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