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Abstract: DNA damage is induced by exogenous and endogenous sources, creating a variety of 7 

lesions. However, the cellular repair machinery that addresses and corrects this damage must con- 8 

tend with the fact that genomic DNA is sequestered in the nucleoprotein complex of chromatin. As 9 

the minimal unit of DNA compaction, the nucleosome core particle (NCP) is a major determinant 10 

of repair and poses unique barriers to DNA accessibility. This Review outlines how the base excision 11 

repair (BER) pathway is modulated by the NCP and describes the structural and dynamic factors 12 

that influence the ability of BER enzymes to find and repair damage. Structural characteristics of the 13 

NCP such as nucleobase positioning and occupancy will be explored along with factors that impact 14 

the dynamic nature of NCPs to increase mobilization of nucleosomal DNA. We will discuss how 15 

altering the dynamics of NCPs initiates a domino effect that results in the regulation of BER en- 16 

zymes. 17 
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 20 

1. Introduction 21 

Genomic integrity is continuously threatened by a variety of DNA damaging events. 22 

Damaging agents can be generated within the cell, such as the reactive oxygen species 23 

that are byproducts of metabolic processes or can be from environmental sources such as 24 

ultraviolet light, cigarette smoke, and industrial chemicals [1-3]. These agents account for 25 

a variety of damage types including single- and double-strand breaks, inter- and intra- 26 

strand crosslinks, mismatched nucleobases, and modification of the nucleobases. 27 

When considering modification of the nucleobases, oxidation, alkylation, deamina- 28 

tion, and hydrolysis reactions are the most common. In this Review, modified nucleobases 29 

will be referred to as lesions. Approximately 100 lesions have been identified in vitro and 30 

many of these have been detected in cellular DNA [2]. Replication of lesions can have 31 

serious consequences for an organism [3]. Lesions can be mutagenic, meaning they are 32 

mispaired by a DNA polymerase during replication. They can also be cytotoxic, meaning 33 

that they cause a DNA polymerase to stall replication, leading to apoptosis. Genetic sta- 34 

bility is essential for cell viability and the mutagenicity and cytotoxicity derived from nu- 35 

cleobase lesions can impact human health with outcomes ranging from neurodegenera- 36 

tive diseases, immune disorders, cancer, and aging [4-10]. 37 

Fortunately, organisms have robust DNA repair processes to assure the quality of 38 

further genetic advancement including direct reversal repair (DRR), mismatch repair 39 

(MMR), homologous recombination (HR), non-homologous end joining (NHEJ), single- 40 

strand break repair (SSBR), nucleotide excision repair (NER), and base excision repair 41 

(BER). Each of these processes plays an important role in maintaining genomic stability. 42 

In this Review, we focus on the BER pathway, which functions to correct non-bulky nu- 43 

cleobase lesions that generally do not significantly distort the helical structure of DNA.  44 
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2. Base Excision Repair  45 

BER is accomplished by a series of enzymes and can be considered to occur in two 46 

parts: excision of the lesion from the sugar-phosphate backbone and filling the resulting 47 

“hole” with the appropriate canonical nucleobase [11-14]. Initiation of BER is determined 48 

by recognition of a lesion by a DNA glycosylase enzyme. There are 11 known human 49 

DNA glycosylases each with a specific target lesion(s) [15]. For an in-depth description of 50 

the substrate specificity of DNA glycosylases, we refer the reader to a comprehensive re- 51 

view article from the Eichman group [15]. DNA glycosylases use similar catalytic mecha- 52 

nisms for lesion excision [16], however, details of the methods used to search the genome 53 

and differentiate lesions from canonical nucleobases are not fully understood. Current 54 

data supports that DNA glycosylases utilize a combination of short-range sliding and 55 

hopping techniques. Through these motions, DNA glycosylases are able to survey ~70,000 56 

base pairs (bp) of DNA [17] in search for the rare instance of a lesion – a needle in a hay- 57 

stack. Recent work has shown that UV-damaged DNA binding protein (UV-DDB), which 58 

serves as a damage sensor in global genomic nucleotide excision repair (NER), stimulates 59 

DNA glycosylase activity in vitro raising the intriguing possibility that it may contribute 60 

to the searching process [18,19]. 61 

DNA glycosylases have been described to interrogate a region of DNA and some 62 

have been shown use exosite pockets in the enzyme to inspect each nucleobase [17]. Struc- 63 

tural and dynamic properties of base pairs are used to differentiate between canonical and 64 

damaged bases, collapsing canonical bases back into place in the DNA helix and shifting 65 

target lesions into the active site for excision. The nonspecific interactions that control 66 

these transfers allow the DNA glycosylase to quickly differentiate damaged from undam- 67 

aged nucleobases, preventing competitive inhibition of the enzyme by canonical bases 68 

which can exist in 30,000-fold excess over the target lesion(s) [17]. 69 

When a lesion enters the active site, a DNA glycosylase catalyzes its excision by cleav- 70 

ing the glycosidic bond that attaches the lesion to the sugar-phosphate backbone 71 

[11,16,20]. A DNA glycosylase may fall in one of two classifications: monofunctional or 72 

bifunctional (Figure 1). A monofunctional DNA glycosylase catalyzes glycosidic bond 73 

cleavage through a substitution reaction using an activated water molecule as the nucle- 74 

ophile (Step 1). The resulting abasic (AP) site is further acted upon by apurinic/apyrim- 75 

idinic endonuclease 1 (APE1) to form a nick in the backbone with 3′-OH and 5′-deoxyri- 76 

bose phosphate (5′-dRP) termini (Step 2). The subsequent enzyme in the pathway, DNA 77 

polymerase  (Pol ), has two roles. It catalyzes removal of the 5′-dRP group (Step 3a) and 78 

incorporates a canonical deoxynucleotide at the 3′-OH (Step 3b). A DNA ligase seals the 79 

resulting nick to complete the repair event (Step 4). 80 
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Figure 1. Schematic illustration of the BER pathway initiated by a monofunctional (left) and bifunc- 82 
tional (right) DNA glycosylase. Image created on BioRender.com. 83 

A bifunctional DNA glycosylase initiates glycosidic bond cleavage using an amino 84 

group in the enzyme active site as the nucleophile. In addition to glycosidic bond cleav- 85 

age, bifunctional DNA glycosylases can catalyze -elimination of the DNA backbone by 86 

formation of a Schiff base, leading to a break in the backbone with 3′-,-unsaturated al- 87 

dehyde (PUA) and 5′-phosphate termini (Step 1). Some bifunctional glycosylases also cat- 88 

alyze δ-elimination to yield a 3′-phosphate. APE1 can act on the elimination product to 89 

form a 3′-OH terminus (Step 2) used by Pol  for deoxynucleotide incorporation (Step 3), 90 
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and DNA ligase seals the nick and completes the repair (Step 4). In some instances, the - 91 

elimination activity of a bifunctional DNA glycosylase may be bypassed with APE1 acting 92 

directly on the abasic site [21,22]. Interestingly, it was recently demonstrated that a small- 93 

molecule activator of 8-oxo-7,8-dihydroguanine glycosylase 1 (OGG1), a bifunctional 94 

DNA glycosylase, alters the repair process in cells to no longer require APE1 but rather 95 

depend on polynucleotide kinase phosphatase activity [23]. XRCC1 is a scaffold protein 96 

which plays a role in BER by interacting with Pol  and DNA ligase [24]. 97 

The above-described process of recognition, removal, and replacement of a lesion is 98 

known as short-patch BER (SP-BER) and is the predominant form of BER. In an instance 99 

when chemical modification of the 5′-dRP blocks the dRP lyase activity of Pol , for exam- 100 

ple under conditions of oxidative or alkylative stress, a process known as long-patch BER 101 

(LP-BER) is used [25,26]. The polymerase performs strand-displacement synthesis incor- 102 

porating multiple (between two and six) deoxynucleotides at the nick. Flap endonuclease 103 

1 (FEN1) removes the displaced single-stranded flap of DNA, which contains the modi- 104 

fied dRP at the 5′-terminus, and the resulting nick is sealed by DNA ligase. 105 

While working to maintain the integrity of the three billion base pairs in the human 106 

genome, the above described BER enzymes function to complete highly complex and vital 107 

roles. It is known that these BER enzymes are clinically important, and that deficiencies 108 

or inactivity can have detrimental consequences for human health [27-32]. However, suc- 109 

cessful completion of the repair process requires that the repair enzymes can physically 110 

access the site of DNA damage, which is not always the case.  111 

3. The Nucleosome Core Particle  112 

To manage the vast amount of genetic material, eukaryotic systems utilize dense 113 

packaging known as chromatin, which is organized into arrays of nucleosomes. Nucleo- 114 

somes were first observed via electron microscopy (EM) and were described as “linear 115 

arrays of spherical chromatin particles” [33]. Each of the spherical particles is now known 116 

to represent the simplest unit of packaged DNA, the nucleosome core particle (NCP). The 117 

first crystallographic analysis of an NCP revealed the An NCP revealed the wrapping of 118 

DNA around a protein core [34]. Subsequent and higher-resolution crystallography struc- 119 

tures provided near atomic-level detail of how DNA is bound to and organized by the 120 

protein core [35]. In an NCP, 145-147 bp of DNA wrap tightly in a left-handed orientation 121 

making 1.65 rotations around a protein core comprised of the four histones H2A, H2B, 122 

H3, and H4 (Figure 2). Each histone has a central folded domain, called the histone fold, 123 

flanked by disordered N- and C-terminal tail regions. The histone core is organized and 124 

formed by two H2A/H2B dimers and an H3/H4 tetramer. A two-fold axis of symmetry 125 

runs through the histone core and is referred to as the dyad axis [35]. 126 
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Figure 2. Representation of a NCP showing the histone core (light gray) and DNA (dark gray). The 128 
dyad axis, entry/exit regions, and seven SHLs (circles numbered 1-7) are labeled. For simplicity, the 129 
NCP is divided into four quadrants to depict factors that will be discussed in this Review: post 130 
translational modifications (region I), rotational and translational nucleobase positioning (region II, 131 
blue arrows), unstructured N-terminal histone tails (region III), and DNA sequence dependent fac- 132 
tors (region IV). Image created on BioRender.com. 133 

Throughout the nucleoprotein complex of an NCP are various energetically im- 134 

portant points of contact. Seven locations of major groove-histone contacts known as su- 135 

per-helical locations (SHLs) are located between each end of histone-bound DNA, referred 136 

to as the entry/exit regions, and the dyad axis [35]. These contacts represent landmarks 137 

which are used as references to translationally label base pairs throughout the NCP. Sim- 138 

ilarly, the histone core serves as a reference to rotationally label each DNA nucleobase 139 

depending on whether it faces inward towards the histones, outward towards solution, 140 

or somewhere in between (Figure 2, II, blue arrows). These translational and rotational 141 

positions are commonly identified using chemical and enzymatic footprinting techniques. 142 

Defining these geometric and positional relationships provides key information to under- 143 

stand how BER at specific lesion locations may be impacted by structural limitations such 144 

as steric hindrance by the histone core and solvent accessibility.  145 

Moving from the NCP to a higher level of packaging, in a nucleosome array, a string 146 

of NCPs are spaced at intervals of 200 ± 40 bp and are stabilized by the linker histone H1. 147 

Electron cryo-microscopy (cryo-EM) and crystal structures of a 197 bp nucleosome with 148 

two linker DNA arms, revealed that H1 binds both linkers, draws the two arms together, 149 

and induces a more compact and rigid conformation [36]. Cryo-EM analysis of arrays of 150 

multiple nucleosomes have provided mechanistic details of how nucleosomes assemble 151 

into even higher-order chromatin structures [37-44].  152 

The ubiquitous sequestration of DNA presents a conundrum for BER enzymes, 153 

which must interact intimately with DNA. Therefore, understanding the physicochemical 154 

properties of packaged DNA may unlock information relevant to the methods cells use to 155 

regulate DNA access and provide insight on the biological limitations of repair in a ge- 156 

nomic context. The next sections of this Review will describe the structural and dynamics 157 

of NCPs and how these factors may initiate a domino effect to modulate and influence 158 

BER. 159 

4. Structural Characteristics Dictate Accessibility of Nucleosomal DNA 160 
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Incorporation of DNA into nucleosomes can be described in terms of nucleosome 161 

positioning and occupancy. While positioning refers to the location of NCPs on genomic 162 

DNA, occupancy reflects how likely a region of genomic DNA is to be bound in an NCP 163 

(i.e., density). Neither positioning nor occupancy are random but rather sequences are 164 

deliberately included or excluded from nucleosomes [45-47].  165 

Chemical footprinting and crystallographic analyses of NCPs have revealed that the 166 

wrapping of DNA around the histone core distorts the DNA structure. For example, the 167 

periodicity of DNA in an NCP averages 10.2 bp/turn compared to 10.5 bp/turn in unpack- 168 

aged duplex [35,43,48], causing an energetic strain which is compensated for by electro- 169 

static interactions between the positively charged histones and the negatively charged 170 

DNA [49]. In turn, the flexibility of a DNA sequence has been identified as a major deter- 171 

minant of its ability to incorporate into a nucleosome (Figure 2, IV) [40,45-47,49,50].  172 

The Widom 601 DNA sequence provides an example of how sequence determines 173 

positioning [50]. This sequence was selected from a library of 5 × 1012 chemically synthetic 174 

random DNA molecules as having the highest affinity for the histone octamer [50]. Fur- 175 

ther analysis revealed that the 601 DNA also has strong positioning ability. The presence 176 

of a TA/TT/AA dinucleotide every ~10 bp allows the DNA to be compressed and bend 177 

into the minor groove [50]. This periodic distribution of dinucleotides was also observed 178 

in nucleosomes isolated from biological sources and is now known to be hallmark of nu- 179 

cleosome positioning. An experimental advantage of using a strong positioning sequence 180 

such as 601 DNA is that it has specific, predictable binding to histones and provides a 181 

homogeneous population of structurally well-defined NCPs [51,52]. However, data ob- 182 

tained using a strong positioning sequence is likely not broadly reflective of the behavior 183 

of all regions of the genome which includes strongly-positioning sequences, sequences 184 

that excluded NCPs, and everything in between.   185 

In contrast to strong positioning sequences, weak positioning sequences with low 186 

flexibility have been observed in arrays with low nucleosome occupancy, in regions of 187 

nucleosome depletion, and in regions important for promotor accessibility, transcriptional 188 

activity, and other genomic processes. Some polymeric sequences, in particular poly(A:T) 189 

tracts, disfavor interaction with the histone core due to their limited flexibility [53] and 190 

prevent formation of nucleosomes in the promoter regions of eukaryotic genomes [47,54]. 191 

Notably, however, computational analysis was correct in predicting nucleosome position- 192 

ing only half of the time based on sequence alone, reflecting the complexity of positioning 193 

[45]. Though these weaker positioning sequences do not create defined nucleosome pop- 194 

ulations like 601 DNA, which can complicate interpretation of the results, their biologi- 195 

cally-relevant sequence patterns are vital for understanding how sequence alone may in- 196 

fluence native systems. 197 

Analysis of genome-wide mutational spectra revealed that nucleosome positioning 198 

and occupancy influence mutational patterns [55]. Some mutation types are biased to- 199 

wards nucleotides that are bound in a nucleosome compared to those in linker DNA 200 

[55,56]. In turn, these reinforced lesion patterns vary across the genome to modulate DNA 201 

accessibility, forming a dependent relationship between sequence and accessibility. This 202 

relationship has also been seen to directly impact both the formation and repair of DNA 203 

lesions [55,56].  204 

5. Structural Components of the Nucleosome Core Particle Impact BER 205 

Using a number of biochemical strategies and model systems, a variety of research 206 

groups have reported that the physical location of a lesion in an NCP impacts how well it 207 

can be repaired by BER [13,57-62]. These experiments typically exploit the fact that BER 208 

enzymes break (or the product can be chemically converted to a break) or make bonds in 209 

the sugar-phosphate backbone. Therefore, enzyme activity can be monitored by changes 210 

in the size of DNA fragments using sequencing gel electrophoresis. Many of these bio- 211 

chemical experiments were made possible by the use of strong positioning sequences such 212 

as Widom 601 DNA. Other positioning sequences such as 5s rDNA sequence, a naturally 213 
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occurring sequence derived from the 5s ribosomal RNA gene, and α-satellite DNA found 214 

at centromeres, have also been used [35]. The use of a positioning sequence allows for the 215 

creation of a homogenous population of NCPs with lesions in well-defined rotational and 216 

translational positions [50].  217 

The initiation of BER on NCPs by DNA glycosylases has been extensively studied in 218 

reconstituted mononucleosomes and it is generally accepted that lesions that face outward 219 

from the histone core are more readily excised than those that are sterically occluded by 220 

facing inward towards histones [13,24,57-62]. An exception is near the dyad axis where 221 

several DNA glycosylases have been shown to have suppressed activity regardless of the 222 

rotational positioning of the lesion, which may arise from the underwinding of DNA near 223 

SHL 0. Due to transient unwrapping, DNA in the entry-exit regions can, at times, be re- 224 

paired similarly to unpackaged DNA. Notably, these biochemical observations are con- 225 

sistent with genome-wide patterns of DNA damage accumulation and mutational den- 226 

sity; lesions and mutations accumulate near the dyad axis of positioned nucleosomes and 227 

at regions of the DNA facing the histone core [63-65].  228 

Histone variants are proteins that can substitute for the core histones and have dis- 229 

tinct amino acid sequences [66]. These variants confer different structural properties on 230 

nucleosomes, influence positioning, and affect gene expression, DNA repair, and contrib- 231 

ute to disease [66]. Several histone variants have been shown to facilitate DNA glycosylase 232 

activity by increasing access to otherwise occluded lesion sites [67-69]. 233 

Notably, histone N-terminal tails can participate in DNA damage repair by reacting 234 

with the AP site product formed by DNA glycosylases. AP sites are known to be chemi- 235 

cally labile, and they can be further destabilized in NCPs. Lysine residues in the N-termi- 236 

nal tail regions can form DNA-protein crosslinks with AP sites, which are susceptible to 237 

strand cleavage via an elimination reaction [70-73]. Furthermore, in a process enhanced 238 

by histones, the bifunctional DNA glycosylase OGG1 was found to crosslink the 3′-PUA 239 

product and hinder the subsequent steps of BER. But in the presence of APE1 the for- 240 

mation of these crosslinks is suppressed [62].  241 

Enzymes acting downstream of DNA glycosylases can also be impacted by the pack- 242 

aging of DNA into nucleosomes. The ability of APE1 to incise DNA is dependent on the 243 

rotational positioning of the AP site [74-77]. A cryo-EM structure of APE1 bound to an 244 

NCP revealed that the enzyme uses a “sculpting mechanism” to bend the nucleosomal 245 

DNA and catalyze incision at a solution-accessible AP site [74]. Reports of BER on twelve- 246 

nucleosome arrays demonstrated that DNA glycosylase and APE1 activity are inhibited 247 

or accelerated in this higher-order packaging depending on the rotational and transla- 248 

tional position of the lesion [78,79].  249 

The nucleotide incorporation activity of Pol β on NCPs and nucleosome arrays is 250 

decreased on an NCP relative to unpackaged DNA, with the amount of suppression de- 251 

pending on the solution-accessibility of the gap [58,78,80-83]. In contrast, the dRP lyase 252 

activity of Pol β is comparable in unpackaged DNA and an NCP and is not hindered by 253 

the presence of the histone core [81]. Interestingly, even the absence of modification of the 254 

5'-dRP, LP-BER can occur on the linker DNA between nucleosomes but was not observed 255 

for DNA bound to the histone octamer [84]. The two activities of Pol β are catalyzed by 256 

separate domains and the observation that one is hindered in an NCP while the other is 257 

not may derive from distinct binding modes and/or interactions with nucleosomes. 258 

The BER enzymes have been shown to work cooperatively and, in some cases, stim- 259 

ulate each other. Indeed, Pol β nucleotide incorporation activity is enhanced on NCPs in 260 

the presence of DNA Ligase IIIα-XRCC1 (LigIIIα-XRCC1) [85]. Similarly, Pol β nucleotide 261 

incorporation activity is enhanced by the chromatin remodeler SWI/SNF [67,78] and the 262 

architectural factor HMGB1 [83]. For the final step of BER, LigIIIα-XRCC1 [85] may re- 263 

quire transient unwrapping from the histones to seal a nick [85] whereas DNA ligase I 264 

may not [86-88]. 265 

BER enzymes may also use other unique physical characteristics or be modulated by 266 

interactions with proteins from other pathways. Single-strand selective monofunctional 267 
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uracil DNA glycosylase 1 (SMUG1) uses a helical wedge to distort DNA to recognize and 268 

access lesion sites [89]. Alkyladenine DNA glycosylase (AAG) has been shown to interact 269 

with transcription machinery such as transcriptional receptors, estrogen receptor , the 270 

transcription elongation complex, and RNA polymerase II. These relationships have been 271 

seen to stimulate DNA glycosylase activity, promoting both repair and transcription and 272 

developing a dependent relationship between BER and transcription [90-97]. More re- 273 

search is needed regarding the interplay between BER and related processes to under- 274 

stand how DNA glycosylases as well as downstream BER enzymes may be capable of 275 

overcoming nucleosomal obstacles. 276 

6. Dynamics of Nucleosome Core Particles 277 

Of the ~146 bp of nucleosomal DNA, ~120 bp are in direct contact with the histone 278 

fold domains while the other ~13 bp at each entry/exit region are more loosely bound by 279 

alpha-helices unique to H2 [35]. These loosely bound ends undergo spontaneous and tran- 280 

sient unwrapping and rewrapping from the histones, often referred to as DNA breathing 281 

[98-100]. Much of this breathing is controlled by the disordered N-terminal histone tail 282 

regions which aid in keeping the nucleosome closed via interactions with one another and 283 

with nucleosomal DNA (Figure 2, III). Indeed, studies on NCPs with and without N-ter- 284 

minal histone tails have shown that the lack of histone tails increases DNA breathing by 285 

influencing nucleosome opening in a largely-sequence dependent manner [98,99]. These 286 

actions enable exposure of regions of DNA that are otherwise inaccessible to protein bind- 287 

ing.  288 

Ensemble and single-molecule fluorescence resonance energy transfer (FRET) exper- 289 

iments have shown that nucleosomes unwrap asymmetrically and exist in a partially un- 290 

wrapped state 2-10% of the time [100]. Spontaneous sliding has also been observed in 291 

which the nucleosome repositions itself by altering the translational position of the DNA. 292 

This mobility is mainly limited to the entry/exit regions and is significantly reduced by 293 

the presence of linker histones [101]. Protein binding to nucleosomal DNA during these 294 

windows of partial destabilization further facilitates increased DNA mobility by shifting 295 

the unwrapping equilibrium. This observation supports that spontaneous site exposure 296 

via DNA breathing may modulate site accessibility for protein binding in locations that 297 

may otherwise be translationally or rotationally hindered [102,103]. 298 

When considering the mechanism of nucleosome sliding, loop and twist defects have 299 

been proposed [101]. The loop method uses a histone core “scooting” technique where an 300 

entry/exit region spontaneously unwraps, and while it most often rewraps in the same 301 

location, occasionally the DNA is pulled in and binds to the histone core forming a DNA 302 

bulge. Through a series of these bulge-intermediate structures, small translational changes 303 

can account for a larger positioning change [101].  304 

Structural changes to a nucleosome can also occur through a twist defect, in which a 305 

bulge is formed by either an additional or missing base pair [101]. This twist defect can 306 

then translate through the nucleosome promoting a series of either over- or under-twisted 307 

intermediate structures. These defects have also been thought to recruit chromatin remod- 308 

elers which may use these stepwise twist or loop defects to displace previously stabilized 309 

nucleosomes [101,104]. Though the loop and twist defects can cause larger changes in nu- 310 

cleosome positioning, they rarely occur across the genome and, more commonly, smaller 311 

spontaneous changes are the cause of slight unwrapping [101,104].  312 

 In addition to DNA unwrapping, the histone protein core is dynamic with histone 313 

exchange and deposition of histone variants [105,106]. Single-molecule FRET experiments 314 

have also demonstrated that nucleosomes experience spontaneous gaping, where the two 315 

gyres of an NCP separating from each other like the hinged motion of a clam shell [107]. 316 

Interestingly, a DNA glycosylase has also been shown to alter inter-nucleosomal interac- 317 

tions by decompacting chromatin fibers and condensing nucleosome arrays, demonstrat- 318 

ing that binding of BER enzymes also impacts chromatin structure [108]. 319 
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7. Energetic Environment Dictates Accessibility of Nucleosomal DNA 320 

One factor that affects the energetic landscape of the NCP is the existence of post- 321 

translational modifications (PTMs) (Figure 2, I) [98]. These modifications occur after pro- 322 

tein biosynthesis by either enzymatic or non-enzymatic additions to amino acids, creating 323 

a diverse population of histones which differ in their chemical makeup. Modification of 324 

histones is extensive and commonly known PTMs include acetylation, methylation, phos- 325 

phorylation, ubiquitylation, ADP-ribosylation, crotonylation, succinylation, and malonyl- 326 

ation [109]. Although PTMs occur commonly on N-terminal histone tails, these modifica- 327 

tions are known to influence internucleosomal interactions in higher order structures, but 328 

do not significantly impact stability at the mononucleosome level. PTMs on the globular 329 

histone core, however, have been seen to affect mononucleosomal structure in a variety 330 

of ways depending on the electrostatic charge and bulkiness of the PTM [109]. A single 331 

PTM can reduce the free energy for nucleosome formation by 2 kcal/mol, increasing the 332 

structure’s stability and increasing the probability of an altered structure by a factor of 25 333 

[109-111]. 334 

Histone PTMs can have a range of structural and dynamic impacts on DNA-histone 335 

and histone-histone interactions. To describe the effects of PTMs, one can broadly consider 336 

the interactions between the histone tails and nucleosomal DNA, DNA-histone interac- 337 

tions in the entry/exit regions and near the dyad axis, and the histone-histone interfaces. 338 

PTMs have been shown to alter these interactions, often reducing DNA-protein affinity, 339 

and destabilizing the nucleosome at large. Electrostatic interactions are very important as 340 

their balance plays a major role in maintaining a stable complex between DNA and the 341 

histone core [109-112]. 342 

Decreased DNA-protein affinity can weaken structural regulation, stabilization, and 343 

compaction [109-112]. Crystallography and biochemical experiments on nucleosomes 344 

containing histones modified with a single acetylation site, which neutralizes the positive 345 

charge on a lysine side chain, have demonstrated increased disassembly specifically in the 346 

dyad region [110]. Acetylation of lysines 115 and 122 of histone H3 enhances the efficiency 347 

of ATP-dependent disassembly of nucleosomes mediated by chromatin remodelers [110]. 348 

These observations have been further supported by FRET studies which captured struc- 349 

tural distortion of the nucleosome resulting in destabilization to expose target binding 350 

sites buried in the nucleosome with key locations at sites of transcription factor binding 351 

located near the dyad axis and entry/exit regions [45,113]. Establishing this dependent 352 

relationship between PTMs and nucleosome unwrapping supported the previous hypoth- 353 

esis that structural factors influence NCP dynamics and reduce DNA-histone association 354 

[98,109-118]. 355 

8. Dynamics of the Nucleosome Core Particle Impact DNA Repair 356 

Structural and energetic effects of PTMs can be thought of as a chemical code: provid- 357 

ing instructions for cellular components in order to stimulate activity and signal interac- 358 

tors to histone binding sites [109]. In addition to the increased mobility caused by DNA 359 

breathing, PTMs that affect the nucleosome’s dynamic environment can further shift the 360 

unwrapping equilibrium as a mean of improving DNA accessibility [62,117,119,120]. 361 

Some ways in which PTMs influence mobility include unwrapping, rewrapping, sliding, 362 

assembly, and disassembly (Figure 3) [109]. Nucleosomes containing histone variants 363 

have also been shown to have similar effects on the nucleosome by increasing mobility 364 

[50,109]. 365 

Many studies utilizing single-site histone modifications have reported that PTMs in- 366 

fluence nucleosome dynamics, and eukaryotic systems may exploit these changes to reg- 367 

ulate access to DNA. For example, an acetylation site located in the dyad region [110,118] 368 

as well as at several locations throughout the nucleosome [117] have been shown to con- 369 

tribute to increased nucleosome disassembly. Increased mobilization affects the binding 370 

properties of chaperones, remodelers, and other proteins known to aid in DNA wrapping 371 
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that impacts nucleosomal processes otherwise thermodynamically and/or physiologically 372 

unfavored (Figure 3) [109].  373 

 374 

Figure 3. Schematic illustrating how a post-translational modification, H3K56Ac, can increase DNA 375 
mobility allowing for altered binding patterns of BER enzymes in regions otherwise hindered 376 
[117,118,121-126,129,130-134]. Impact of H3K56Ac on DNA ligase activity has not been reported. 377 
Image created on BioRender.com. 378 

Experimental results of destabilization and expansion by charged PTMs have sup- 379 

ported a connection between PTMs on the NCP’s histone core and their effects on nucle- 380 

osomal DNA accessibility [110,117,118]. PTMs that influence nucleosome repositioning, 381 

assembly, and disassembly increase site exposure and occur in areas of the nucleosome 382 

where repair in the nucleosome may be otherwise hindered. Examples of these modifica- 383 

tions include the acetylation of lysine 56 on histone H3 (H3K56) [118,121-126], acetylation 384 

of lysine 91 on histone H4 [127], phosphorylation of serine 28 on histone H3 [128], and 385 

others.  386 

Acetylation of H3K56 enhances APE1 activity [129] whereas acetylation of H3K56 387 

and H3K14 has been shown to decrease Pol β nucleotide-incorporation activity near the 388 

dyad region of a mononucleosome [130]. H3K56 is acetylated during S phase by CBP/p300 389 

once the histone is incorporated into an NCP [131]. In the absence of DNA damage, the 390 

deacetylases Hst3 and Hst4 remove the PTM during G2 [132,133]. It is known that defects 391 

in this regulation of H3K56 acetylation render cells sensitive to alkylating agents [125], 392 

which are known to generate lesions that are repaired by BER. At the molecular level, 393 

H3K56 interacts with a phosphate in the DNA backbone [134], and charge neutralization 394 

via acetylation likely causes increased dynamics. While H3 is located near the dyad axis 395 

it has been reported that acetylation of H3K56 influences DNA dynamics throughout the 396 

NCP and its effects are not localized to the dyad axis [117]. The differing impacts of this 397 

PTM on APE1 and Pol β may reflect different bind modes of these enzymes.  398 

In studies on twelve-nucleosome arrays, the combined activity of a DNA glycosylase 399 

and APE1 were examined with acetylation of H3K18 and H3K27 [135]. Modification of 400 

H3K18 resulted in an increase in the incised DNA product while modification of H3K27 401 

had the opposite effect. Given that CBP/p300 is responsible for installing both of these 402 

PTMs, this acetyltransferase may play a direct role in modulating the BER pathway in 403 

chromatin. 404 

9. Future Outlooks 405 

Genetic compaction into chromatin poses a unique barrier for cellular machinery, 406 

including those involved with processes of DNA repair. Understanding the complex dy- 407 

namics of the NCP will provide vital information to elucidate the physical accessibility of 408 
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genomic DNA. Appreciating that PTMs are capable of altering the ways that DNA inter- 409 

acts with histones, it is of interest to examine how PTMs alter overall nucleosome dynam- 410 

ics. Data on this subject is often collected using techniques of structural mapping and 411 

chemical reactivity in vitro. Though these techniques have allowed for the analysis of nu- 412 

cleosomal interactions in a controlled setting, many currently used systems lack global 413 

aspects of native nucleosomes.  414 

To account for these limitations, future studies will benefit from model systems of 415 

increased complexity. For example, in vitro systems involving global damage and PTMs 416 

as well as those consisting of higher-order structures will allow for a deeper interpretation 417 

of processes that occur in nature. In vivo studies will fill major knowledge gaps to identify 418 

on a genome-wide scale how the amount and location of lesions are modulated by PTM.   419 

Exploring the relationships between BER and other processes such as transcription will 420 

also be important to identify any crosstalk or collaboration. These future directions will 421 

bypass limitations of current in vitro approaches aimed at exploring complex nucleosome 422 

relationships involving PTMs to provide further insight on how histone modifications and 423 

other nucleosomal factors, both structural and energetic, may function as teammates to 424 

create a domino effect between nucleosome dynamics and the regulation of BER enzymes. 425 
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