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Abstract

he effectiveness of obstacle avoidance response safety

systems such as ADAS, has demonstrated the necessity

to optimally integrate and enhance these systems in
vehicles in the interest of increasing the road safety of vehicle
occupants and pedestrians. Vehicle-pedestrian clearance can
be achieved with a model safety envelope based on distance
sensors designed to keep a threshold between the ego-vehicle
and pedestrians or objects in the traffic environment. More
accurate, reliable and robust distance measurements are
possible by the implementation of multi-sensor fusion. This
work presents the structure of a machine learning based
sensor fusion algorithm that can accurately detect a vehicle
safety envelope with the use of a HC-SR04 ultrasonic sensor,
SF11/C microLiDAR sensor, and a 2D RPLiDAR A3MI1 sensor.

Introduction

elying on human response to unexpected events on
the road presents challenges as this response varies as
a function of driver age, experience, fatigue and
driving scenario conditions (weather, traffic). In fact, a
National Highway Traffic Safety Administration (NHTSA)
study showed that 94% of crashes are caused by drivers’
mistakes caused by factors such as recognition error (driver’s
inattention, interior and exterior distractions, inadequate
surveillance), decision error (driving too fast, taking curves
fast, incorrect assumption of other drivers’ behavior), perfor-
mance error (poor directional control, overcompensation),
and non-performance error such as driver drowsiness [1]. For
this reason, integrating ADAS systems, which enhance the
safety in vehicles, is a helpful area of research. Optimized
ADAS technologies create a safer driving environment since
the reaction time of such safety systems is faster and present
a more constant behavior compared to the variable reaction
time of humans under different pre-crash and
crashing scenarios.
To help mitigate vehicle accidents, novel safety and auton-
omous technologies have been developed to enhance the safety
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Sensors for the vehicle safety envelope and ADAS were cali-
brated for optimal performance and integration with versatile
vehicle-sensor platforms. Results for this work include a robust
distance sensor fusion algorithm that can correctly sense
obstacles from 0.05m to 0.5m on average by 94.33% when
trained as individual networks per distance. When the algo-
rithm is trained as a common network of all distances, it can
correctly sense obstacles at the same distances on average by
96.95%. Results were measured based on the precision and
accuracy of the sensors’ outputs by the time of activation of
the safety response once a potential collision was detected.
From the results of this work the platform has the potential
to identify collision scenarios, warning the driver, and taking
corrective action based on the coordinate at which the risk
has been identified.

of drivers and pedestrians worldwide. The adequate integra-
tion of distance sensors is fundamental in enhancing safety
on the road to further effectively executed autonomous
maneuvers. Aside from reducing driving-related fatalities and
injuries, autonomous vehicle features have the potential to
increase fuel efficiency, reduce traffic congestion and increase
traveling speeds [2, 3]. Figure 1 shows red and blue vehicles
with integrated distance sensors that have an improper ADAS
reaction since they are relying in one sensor signal resulting

TABLE 1 Estimated Distribution of Critical Crash Reasons for
Driver Mistakes (Based on 94% of the NMVCCS crashes 2005-
2007) 1]

Critical Reason Number Percentage
Recognition Error 845,000 4% +2.2%
Decision Error 684,000 33% + 3.7%
Performance Error 210,000 N% *2.7%
Non-Performance Error 145,000 7% *1.0%
Other 162,000 8% +1.9%
Total 2,046,000 100%
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in breaking the safety vehicle envelope. The purple vehicle
stays in the vehicle envelope due to integration of multiple
signals of sensors making the vehicle safer based on the
distance recorded from the target.

At the time of developing ADAS featured vehicles, the
selection of integrated sensors and controlling modules
substantially affect the production cost. When optimizing an
AV research platform with camera, LiDAR, radar, GNSS, and
IMU sensors with respect to cost effectiveness and energy
efficiency, the total sensor supply costs alone are above
$30,000. [4]. Aside from the costs of sensors, there are also
substantial costs associated with the integration of an ADAS
sensing system. For example, the development of sensor fusion
algorithms like the Kalman filter and the subsequent improve-
ments in increased measurement accuracy, reduced measure-
ment noise, and larger measurable ranges are beneficial, but
are difficult to develop and are less versatile in practice.
However, machine learning alternatives for the Kalman filters
improves the versatility and are more easy developed, leading
to lower costs.

Vehicle Safety Envelope

When ADAS systems are employed, a safe driving envelope
is defined within the vehicle’s computer system. This envelope
describes a set of boundaries within which the vehicle can
be safely operated without losing traction or exceeding the
steering, braking, or suspension capabilities [5]. The limits of
this envelope is directly related to the maximum capabilities
of the tires of the vehicle; these limits are set by the yaw rate
and the sideslip [6]. Within this boundary, there always exists
a steering input to keep the state of the vehicle within the
envelope; however, the vehicle may leave the envelope and still
be stable, because the bounds of this envelope are set by steady
state assumptions. Empirical testing has shown that the
vehicle can leave the envelope and still be stable, and also
return to a state within the envelope successfully [7].

Sensors Functioning Principles

The sensors used in this research are HC-SR04 ultrasonic
sensor, 2D RPLiDAR sensor and a solid state microLiDAR.
All sensors operate on the time-of-flight (ToF) principle. This
principle uses the time elapsed after an infrared light is
emitted and returns to the receiver to calculate the distance
between the emitter and an object. The mathematical
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relationship between the wave’s velocity v (m/s), time t (s) and
distance d (m) to the measured obstacle can be seen below in

Eq. 1.

a=" (1)

The ToF principle used to acquire distance with time and
velocity is further visualized in Figure 2. Shown is an emitter
pulse signal and a receiver pulse signal after time t. In order
to find the distance from an object and emitter, one must
consider t being the time needed for an emitted wave to travel
to the obstacle then back to the receiver. This is already consid-
ered in Eq. 1 as the product of velocity and time is divided by
two to find the distance from the sensor to the obstacle.

Ultrasonic Sensors The HC-SR04 sensor emits and
receives 40kHz sound wave pulses to determine the ToF with
which it can find the distance of an object. This sensor is a
widely available and affordable distance sensor used mostly
in robotics projects. Similarly functioning but more reliable
ultrasonic are used in nearly all parking assisted vehicles.
Ultrasonic sensors can generally measure up to 4-5m and
therefore be useful in sensor fusion at these relatively
short distances.

LiDAR Sensors Light detection and ranging is a tech-
nology developed to measure distances and for mapping the
environment based on the time of flight principle by using
infrared laser pulses. This technology is used because of its
accuracy and range. The signal output of this sensor includes
X,Y and Z coordinates and intensity values of the point cloud
recorded. ToF applied in LiDAR sensors calculates the time
it takes for the infrared pulse to travel from the sensor and
come back as a reflection of an obstacle in the environment.
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The vacuum speed of light, c0, is equal to 299,794,458 m/s,
therefore, the ToF equation for LIDAR sensors is as follows [8]:

1
d=—cAT 2
ZCO ()

Sensor Fusion & Machine
Learning

The development of individual sensors involves maximizing
measurable ranges and minimizing noise or other constraints.
Despite this, sensors will inherently have ideal measurement
ranges and physical restrictions. For example, ultrasonic
sensors have a shorter accurate measurement range than
LiDAR sensors, as the dissipation of ultrasonic sound waves
occurs over large distances, whereas infrared light waves used
in LiDAR do not dissipate over the same distances. On the
other hand, while measuring very short distances, ultrasonic
sensors typically outperform LiDAR sensors.

Machine learning based sensor fusion algorithms, such
as the one evaluated in this research, are highly compatible
with similarly set up systems given similar input data and
optimized training parameters as needed. LSTM (Long-Short-
Term-Memory) recurrent neural networks (RNN) have shown
promising results in similar sensor fusion applications [9], as
they have advantages in classifying rapidly updating, and
noisy data. In general, sensor fusion is known to increase
measurement accuracy and decrease noise while traditional
methods involve manually inputted assumptions, and confi-
dence weights that vary over environmental conditions. Given
conditional advantages for different sensors in a system and
random sensor noise over time, recurrent neural network
based fusion algorithms are reasonable to assume as viable to
be applied.

Environmental Impact on
Sensors

Furthermore, environmental conditions play an impact on
the performance of the sensors. For instance, speed of the
sound wave released to the environment is variably based on
the relative humidity and temperature conditions present in
the medium as well as the concentration of CO, [10].

LiDAR sensors operation is impacted due to inclement
weather such as rain, fog and snow [12]. One of the reasons of
why sensors are impacted by weather conditions is due to Mie

TABLE 2 Performance summary ADAS sensors [11]

Feature LiDAR Radar Ultrasonic
Technology Laser beam Radio wave  Sound
Wave
Range (m) 200 250 5
Resolution Good Average Poor
Weather impact Yes Yes Yes
Detects speed Good Very Good Poor
Detects distance Good Very Good Good

Scattering. Since the transmission wavelength of the sensors
(LiDAR for instance) is close to or smaller to 6mm, the sensor
signal is subjected to Mie scattering which produces the back-
scattered signal to be disturbed or produce false signals.
Another impact from the environment in LiDAR performance
is the dependency of the signal based on the color of the targets
in the environment. Due to the nature of the visible electro-
magnetic spectrum, darker colors absorb more infrared
energy than bright colors, reducing environmental recogni-
tion on targets with darker colors [13]. The effect of Mie
Scattering on radar signals decreases the maximum range
that a radar sensor can provide under raining conditions. The
effect of precipitation in cameras produces degradation and,
in quality of the images taken reducing the object recognition
of the environment increasing the danger of a potential crash
scenario [11].

For this reason, sensor fusion provides a more robust
system by allowing the vehicle to not rely on a single sensor
reading but on a variety of them. This allows the system to
adapt based on the environment following a correct measure-
ment of the environment avoiding out-of-range measurements
and noise. More accurately and efficiently interpreting high-
speed data from an array of sensors not only can improve the
judgment of existing autonomous control systems but also
allow the development of new safety features. Currently, the
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performance of sensor fusion systems is not limited by sensing
range or computational power, but rather by the quality and
efficiency of their harmony. By varying crucial conditions
based on predicted drawbacks of their components, complex
sensor fusion systems can be optimized and the nature of their
effects analyzed.

Previous Research and
Applications

Fusion of thermal and visible light detection sensors using
neural networks was studied in [2]. A new Adaptive Soft-Gated
Light Perception Fusion (ASG-LPF) as a model for fusion was
proposed. The ASG-LPF framework begins with image acqui-
sition using a data-set from KAIST (set of paired visible color
and thermal color images). Images are then passed through
the pedestrian detection and light perception modules which
predict the position of pedestrians and the light illumination
of a scene. The main detecting sensor was determined by
prediction of driving illumination. During sensor fusion the
main detector was chosen utilizing fusion filters and weight
fine tuning to adjust confidence scores and then remove
redundant and low-scoring results. Authors in [14] created a
framework for the integration of simulation and sensor fusion
data for the improvement of learning data sets. Data fusion
occurs at different levels. The most basic method occurs where
raw data from separate sources is combined. At the next level
features from each source are combined into a single delinea-
tion. This is known as ‘feature-level fusion’. It allows for the
characterization of patterns by different observed features.
Another level above is ‘decision level’. In this level of fusion
models trained on varied sources make a decision based on
the presented data.

To improve object detection by way of data fusion of
stereo images and ultrasonic sensors, [15] proposed an algo-
rithm where the ultrasonic sensors were used to locate the
nearest object layer of the modified local stereo algorithm.
This decreased amount of search layers led to the generation
of incorrect responses that were reduced by use of the
reduced cross-check method. A median filter was also used
to improve accuracy. The authors then demonstrated
improved time of detection by use of ‘synthesis’ images
produced in Blender. Detection times were improved by 316
times. To demonstrate improved environmental perception,
[16] used a Nomad 200 robot equipped with ultrasonic and
laser rangefinders modeled with fuzzy logic. Readings were
used by the robot to build a model of its environment then
using a reliability test determined if readings were incorrect,
getting rid of bad data. This was done by comparing the
differences in readings from each sensor within the plane
area of the sonar sensors. Significant improvement of envi-
ronmental modeling was shown with errors present in single
sensor type use cases being corrected by use of fusion of the
two sensor types.

To classify tree trunks and to help localizing a robotic
platform for use in orchards, [17] used cameras and ultrasonic

sensors. Trunks were classified by a recognition and classifier
algorithm (SVM) which discerned trunks by color recogni-
tion. The ultrasonic sensors were used in order to minimize
the detection of meaningless data beyond the range of tree
trunks in the semi-structured orchard. This helped to decrease
measurement error when localizing tree trunks. An average
was also applied to minimize detection error. Ultrasonic
sensors improved localization as compared to laser detection
sensors used in past studies.

ADAS with Sensor Fusion
Integration

ADAS systems are based on sensor fusion algorithms where
sensors complement each other reducing their limitations and
expanding their field of view for an enhanced environment
perception. This principle is accomplished by using data
synchronization where data originated from different sensor
sources is fused and then, is synchronized and applied in
ADAS systems. This increments the precision of data as well
as the certainty of it. Furthermore, this data is used in different
applications within the vehicle (AEB, blind spot detection,
ACC, LDW) since these technologies rely on the data from
the same sensors but it is processed independently based on
the ADAS feature specified.

A sensor fusion architecture process in safety vehicle
technologies contains different sets of sensors feeding the
system with data. Once this data is compiled, it is processed
and synchronized ready to take action in the ADAS features
integrated in the vehicle. It is important to process this data
in the same order it has been acquired to obtain a time-consis-
tent sensor fusion model as researched in [18].

Active driving assistance systems can be understood as
semiautonomous vehicles. However, these type of technologies
support the drivers to relieve stress and fatigue for driving
long hours or for driving under high traffic conditions. For
instance, [19] describes multiple technologies for ADAS
systems that include sensor fusion. One of them is Cadillac’s
Super Cruise, where different highways around the country
have been scanned with LiDAR data creating a map of the
surroundings for highway recognition and positioning.
Furthermore, ACC and LKA is enabled for this feature,
allowing hands free driving. The feature works as long as the
driver is focused on the road which is monitored with a
camera scanning the driver. In this ADAS feature, sensor
fusion is integrated by using data coming from different
sources of sensors. LIDAR, Radar and camera data is combined
together and processed to create a safe hands free driving
technology [20]. Pseudo inverse based on point alignment
method was used in [21] to calibrate and match the output of
radar sensors with cameras to enhance object recognition in
autonomous vehicles. Another method for vehicle recognition
based on sensor fusion is demonstrated in [22], where the field
of view of the radar sensor is coordinated with a camera,
achieving vehicle localization based on the rear corner recog-
nition of vehicles on the road.
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Methodology

Proposed Vehicle Safety
Envelope Principle

The model vehicle safety envelope proposed in this work shows
the definition of two zones around the ego vehicle (dense and
critical zone), each named to indicate the importance of
measurement precision. Each zone was divided into equal
intervals (0.05m each) to enhance the precision of obstacles
detected within each of the zones in the enclosed area of the
envelope. An LSTM machine learning prediction model was
trained in order to fuse the signal of the three sensors selected
to enhance precision of the vehicle envelope. Furthermore,
the data acquired from the sensors in the envelope are
displayed in a live data simulation graph, allowing the user to
see the data that sensors are acquiring from the environment
in a radar schematic. Each zone classification was displayed
on these graphs to represent both the critical and non-critical
risk of collision regions. The proper distance measurements
within such a vehicle safety envelope would allow better envi-
ronmental awareness for imminent collisions and
their avoidance.

m ADAS Sensors Instrumented in Vehicle Platform.

The methodology presented for this experiment includes
assembly of ego vehicle, implementation of sensors used in
the safety vehicle envelope system, controlled environment
with mobile target configuration, vehicle safety sensors data
acquisition and LSTM sensor fusion training.

Implementation of Sensors

A set of three different sensors were used to instrument the
ego-vehicle. These sensors include: Ultrasonic sensors
(HC-SR04),a 2-D LiDAR (RPLiDAR) and a laser rangefinder
(SF11-C). These sensors were installed on top of the ego vehicle
and distributed in a 360° field of view to cover the cardinal
directions. The criteria used to choose the sensors for this
project is based on the advantages and disadvantages of each
sensor, aiming for a sensor fusion structure that would
complement each sensor’s performance while also enhancing
environmental recognition. For example, the HC-SR04
perform best at a short-range distance. For this reason, this
sensor’s fundamental purpose is to detect obstacles at a range
of 0.05 m to 0.25 m. Alternatively, both the RPLIDAR and
SF11-C have higher precision and recording range that allows
the recognition of objects at much longer ranges, making these
sensors the best fit for detecting objects within the Dense
Zone. This combination of sensors creates a fusion of sensor
signals with precise obstacle recognition for both short and
long range targets.

Controlled Environment using
Mobile Target Configuration

The set up used for this work consisted of two controlled
environment stations, each with a total area of 0.70 m x
0.535 m. Within each station, a test range was created from
0.00m to 0.50m, divided into intervals of 0.05 m. A flat steady
environmental condition chamber was built. Within this
chamber, a target was moved to each distance increment and
the data coming from each sensor was collected for five hours.
Each station was equipped with a set of the three sensors
used for the sensor fusion located at the origin position and
directed towards the target. Two of these controlled environ-
ment stations were created in order to record the data neces-
sary twice for methodology validation purposes and evalu-
ation of the interchangeability of proposed sensor
fusion models.

Data Acquisition for Vehicle
Sensors

A data acquisition algorithm was created to record extensive
amounts of data to feed the machine learning model for
LSTM prediction training. Each distance was measured
until 378,000 data points were taken. Each sensor was
directed at the target object with an equal distance from the
origin. This data was taken a total of 10 times, one at each
0.05 m interval, in order to acquire data from all distances
necessary for the LSTM training. With each data set having
378,000 data points, a total of 3,780,000 points recorded of
all distances.
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m Controlled Environment Used for Sensor
Data Acquisition
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The HC-SR04 required an interface with Arduino in order
to record data to MATLAB. The RPLiDAR and SF11-C sensors
were connected straight to the serial ports of the computer used
for data acquisition. Due to the 360° field of view of the RPLIDAR
sensor, it was determined that a region of interest was required
to reduce recorded data that did not include the target data points.
This ROI was defined to record data points enclosed in a +5° and
-5° field of view with respect to the x-z plane shown in Figure 4.

With this reduction of points performed in the ROI, the
number of data points was reduced substantially resulting in
11782 data points. These data points were then fed into the
LSTM prediction model. Each one of the sensor data matrices
fed into the LSTM machine learning model contained
RPLiDAR data, ultrasonic sensor, laser rangefinder and time
between recorded ROI points.
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Pre-Training Feature
Evaluation

Before developing a machine learning algorithm, the ROI data
sets were analyzed to find features of input data relevant to
the true distance measured. Given the scope of the project,
three inputs are required, the distance measurements of
LiDAR, ultrasonic and microlidar sensors. Figure 6 below
shows the raw distance measurement distributions of
each sensor.

As seen in Figure 6, all sensors have considerable noise
which can be mitigated in the fusion process if the network
is properly trained. To account for noise, it is essential to train
to train the LSTM model with an accurate sense of time for
each data point. As seen in Figure 7, the time response between
ROI datapoints varies greatly over time. To account for noise
and accommodate the inconsistent detection of the ROI by
the 2D LiDAR, the time between data points were added as
an input for each measurement.

m Time Response Between Data Points 0.45m ROI

«10% ROI Time Response (10h)

2
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Unlike the ultrasonic and microLiDAR sensor, the 2D
LiDAR sensor measures distances in more than one direction.
While the ROI was defined in pre-processing as a small region
between -5 and 5 degrees (x-z plane) and the distances
measured at each ROI angle are insignificant, this is not the
case when this model is used in a dynamic setting with all
angles measured meaning the angle must be considered
in training.

Prediction Model - LSTM

With the ROI data separated, they were respectively split in
half: the first half was used for LSTM training and the second
half was used to evaluate the trained neural network. This was
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done for a fair evaluation of the neural network’s performance
by testing with data not used in the training process. The
sequence-to-sequence regression neural network designed to
perform sensor fusion is a double-LSTM deep neural network
as seen in Figure 8 below.

m Diagram of LSTM Network Layers
[
= n I:tt:]]Layer
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fullyConnected regressionLayer dropoutLayer

The network consisted of seven layers: an input layer
(sequence input), two LSTM layers, two dropout layers, a fully
connected layer (fc 1), and a regression layer. The first layer
was an input layer of four units, one for each data point
recorded from the sensor fusion: the ultrasonic measurement,
the microLiDAR measurement, the 2D LiDAR measurement
and the time, in milliseconds, since the last measurement.
Directly following the input layer, is the first LSTM layer with
125 hidden units. Next is the first dropout layer with a prob-
ability of 0.3. After the first dropout layer is the second LSTM
layer, again with 125 hidden numbers, followed by the second
dropout layer, this time with a probability of 0.2. Finally, there
is a fully connected layer with one unit. This final output
represents the LSTM Fusion distance.

TABLE 3 Sample Fusion Input Column of Sensor and

Time Data
LiDAR Angle (deg) 1
LiDAR Distance (m) 0.5
Ultrasonic Distance (m) 0.5
microLiDAR Distance (m) 0.5

Time Difference From Last ROl (ms) 1300

For both training and testing, the sequence input of the
evaluated LSTM sensor fusion algorithm consists of a matrix
of x columns (data points measured), and five rows (sensor
data). The first row was the angle in degrees at which the
LiDAR was facing when the given ROI data point was taken.
The second row was the distance in meters of the LIDAR’s
distance measurement when the ROI was measured. The third
row was the distance in meters of the ultrasonic sensor’s
measurement. The fourth row was the distance in meters of
the microLiDAR. For training, the first half of the distance’s
data point columns of five rows were sequentially fed with a
separate row of the repeating true distance measured. To test
the trained sensor fusion model, the second half of the data
points were each given as an input to the trained network, and
for each data column given, an output of a fusion distance
was provided.

Results

Machine Learning Based
Safety Vehicle Envelope

All machine learning sensor fusion results presented were
found using the second half of each distance’s data set. This
was done as the first half was used for training and the fusion
algorithm must be evaluated with data it has not used to
perform learning. The results are structured according to the
algorithm’s evolution: first showing the fusion performance
when each distance had a dedicated fusion algorithm and
lastly showing the fusion performance when all measured
distances had only one fusion algorithm. For the first phase,
the dedicated testing data of each measured distance was fed
into a corresponding LSTM network, trained for fusion only
at the measured distance. For the second phase, all of the same
dedicated testing data of all distances were fed into one LSTM
neural network able to do fusion at all distances measured.

The critical zone of the vehicle safety envelope was defined
at a distance of 0.05 m to 0.25 m. This zone was then divided
into five separate intervals each 0.05 m apart. The performance
of the LSTM machine learning algorithm resulted in a high
precision fusion of signals of the three sensors used in
this work.

Figure 10 shows the LSTM performance for the 0.05m
distance. The graph shows the performance of fusing the
signal of the three sensors up to a point in which the predic-
tion is close to the ground truth distance of 0.05m. At the
beginning of the data set, the model takes some time to fuse
the signals precisely to the ground truth. Nevertheless, once
the tester algorithm is close to 800 data points, the predicted
data starts oscillating on the ground truth distance.

As shown in the Figure 9, LSTM performance is shown
with the intervals from 0.05m up to 0.50m. Average values of
resultant prediction distance for each one of the intervals was
calculated. As shown in table 5, standard deviation between
the ground truth value and the average LSTM calculated was

m Individual and compilation LSTM performance.
a) shows the performance comparison of the individual based
LSTM machine learning model. b) shows the performance
comparison of the compiled LSTM machine learning model
including all distances for training.

a) Performance comparison individual LSTM b) LSTM Performance Comparison with Compiled Training
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m Individual LSTM performance 0.05m

Performance LSTM fusion 0.05 m
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9.34
41
5.65
1.07
1.62

TABLE 5 Statistical Analysis of Compiled Trained Fusion

Algorithms Performance

Ground

Truth (m)

0.05
0.10

0.15

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Average Fusion

(m)
0.0547
0.1034
0.1591
0.2034
0.2424
0.2970
0.3507
0.3920
0.4408
0.4914

Std. Deviation

(m)
0.0081
0.0086
0.0091
0.0083
0.0080
0.0010
0.0010
0.0115
0.0117
0.0114

% Error

9.4
3.36
6.05
1.69
3.03
1.00
0.21
2.00
2.04
171

considerably low, resulting in high precision of obstacle
distance estimation.

The percentage error calculated for the critical zone had
arange between 3.99% and 10.67%. This resultant percentage
error represents low error in the study and suggests validation
of the use and integration of this LSTM distance estimation
model for the vehicle safety envelope.

The dense zone of the vehicle safety envelope was defined
at a distance of 0.30 m to 0.50 m. Much like the critical zone,
the dense zone was divided into five separate intervals of
0.05 m.

The dense zone performance shows a constant behavior
of the LSTM model where the error percentage ranges between
1.07% and 9.34%. The average distances recorded from the
LSTM model with respect to the ground truth distances are
close to the ground truth reference value. This is reflected on
the standard deviation values calculated as well as the
percentage error. Data precision is demonstrated on the graphs
and shows a successful data fusion model.

IGITETEREN ADAS Sensors Instrumented in Vehicle Platform

Error Comparison of Raw Data Relative to Fusion Models
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Live Data Simulation

The live data simulation integrated in the ego-vehicle fuses
the signal of the three sensors and displays it in a single graph
for live environment visualization. This allows the user of the
vehicle to be aware of all readings from the sensors in a graphic
interface for constant monitoring. Eight different ultrasonic
sensors were integrated in the test platform for each cardinal
direction, one RPLiDAR was centered in the middle of the
vehicle for a 360° view and finally two microLiDARs were
assembled for the North East and North West directions.
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m Visual Representation of Safety Zone Distances

SE
Critical zone
s Dense zone

Figure 13 shows the sensor data fused in a radar graph.
This data visualization is important to show the performance
of the recording of the sensors while validating the data
recorded complementing each other. For short ranges, signal
acquired from the ultrasonic sensor was more precise and
reliable than the LiDAR sensor. For this reason, it was possible
to see some discrepancies of data recorded in a close range.

Meanwhile, the LiDAR sensor is very precise for long
distance measurements. This is shown on how sensors

m Visual APl used to Represent Live

Data - Simulated

Live Data Simulation
N

—— Ultrasonic
— UDAR
—— Laser Range Finder
= Critical Zone

—— Dense Zone

compensate each other in the LSTM model, where with the
combination of the sensor signals, distance recorded is
more precise.

The importance of this visualization is to rely not just on
the readings of the sensors graphically but also being able to
visualize this data from a spatial perspective. This graph
displays the ego vehicle as the origin of the radar simulation.
Then all data displayed from all the cardinal directions where
the sensors were instrumented in the ego-vehicle.

Conclusion

The LSTM machine learning model used in this project
allowed for the fusion of the signals of three different distance
sensors (ultrasonic sensors, RPLiIDAR and microLiDAR)
based on two different physical principles (sound and light)
with the aim to enhance the precision of distance recorded
for the vehicle safety envelope. The vehicle safety envelope was
designed enclosing a max recording distance range of 0.50 m.
Within this maximum distance of the envelope, two zones
were defined, dense and critical zones, with ranges of 0.25m -
0.50m and 0.05m - 0.25m respectively.

Dense and critical zones were trained using an LSTM
model combining the signals of the sensors aiming for high
distance estimation precision for enhancing safety in the ego-
vehicle. The structure used for training and testing was a
sequence input of the LSTM sensor fusion that consisted on
a matrix of number of points and five rows of sensor data. The
sensor data selected included angles recorded from LiDAR
ROI, distance in meters from ROI recorded from LiDAR,
distance recorded from ultrasonic sensor, distance recorded
from the microLiDAR.

Meanwhile, distance recorded from every sensor was
displayed in a radar graph. The output of the machine learning
based sensor fusion created a high precision vehicle safety
envelope recognizing obstacles moving within the range of
the envelope. The results given from the LSTM model were
successful, the percentage error for individual and compiled
training set up was 5.67% and 3.05% respectively demon-
strating a high precision sensor fusion prediction model. On
the other hand, standard deviation on individual and compiled
LSTM models was 0.0054% and 0.0015%. The lowest
percentage error for compiled LSTM model was 0.21%
showing a precise distance measurement using the three
signals from the distance sensors.

Future Work

With the introduction of the 360° vehicle safety envelope with
possible collision risk classification, the static study has been
performed with high precision sensor fusion data recording.
Precision for recording of distance of obstacles within the
range determined is ready for implementation in dynamic
scenarios where the ego-vehicle has interaction with targets
in motion for tracking and environment monitoring. Further
work will include performing corrective steering for crash
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avoidance based on the obstacles detected within the safety
vehicle envelope and their established safety zones.
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Definitions, Acronymes,
Abbreviations

ADAS - Advanced Driver Assistance Systems

AV - Autonomous Vehicles

LiDAR - Light Detection and Ranging

NHTSA - National Highway Traffic Safety Administration
NMVCCS - National Motor Vehicle Crash Causation Survey
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GNSS - Global Navigation Satellite System AEB - Automatic Emergency Braking
IMU - Inertial Measurement Unit ACC - Adaptive Cruise Control

ToF - Time of Flight LDW - Lane Departure Warning
LSTM - Long Short-Term Memory LKA - Lane Keeping Assist

RNN - Recurrent Neural Networks LDW - Lane Departure Warning
ASG-LPF - Adaptive Soft-Gated Light Perception Fusion ROI - Region of Interest

SVM - Support Vector Machine GT - Ground Truth
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