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Abstract

The effectiveness of obstacle avoidance response safety 
systems such as ADAS, has demonstrated the necessity 
to optimally integrate and enhance these systems in 

vehicles in the interest of increasing the road safety of vehicle 
occupants and pedestrians. Vehicle-pedestrian clearance can 
be achieved with a model safety envelope based on distance 
sensors designed to keep a threshold between the ego-vehicle 
and pedestrians or objects in the traffic environment. More 
accurate, reliable and robust distance measurements are 
possible by the implementation of multi-sensor fusion. This 
work presents the structure of a machine learning based 
sensor fusion algorithm that can accurately detect a vehicle 
safety envelope with the use of a HC-SR04 ultrasonic sensor, 
SF11/C microLiDAR sensor, and a 2D RPLiDAR A3M1 sensor. 

Sensors for the vehicle safety envelope and ADAS were cali-
brated for optimal performance and integration with versatile 
vehicle-sensor platforms. Results for this work include a robust 
distance sensor fusion algorithm that can correctly sense 
obstacles from 0.05m to 0.5m on average by 94.33% when 
trained as individual networks per distance. When the algo-
rithm is trained as a common network of all distances, it can 
correctly sense obstacles at the same distances on average by 
96.95%. Results were measured based on the precision and 
accuracy of the sensors’ outputs by the time of activation of 
the safety response once a potential collision was detected. 
From the results of this work the platform has the potential 
to identify collision scenarios, warning the driver, and taking 
corrective action based on the coordinate at which the risk 
has been identified.

Introduction

Relying on human response to unexpected events on 
the road presents challenges as this response varies as 
a function of driver age, experience, fatigue and 

driving scenario conditions (weather, traffic). In fact, a 
National Highway Traffic Safety Administration (NHTSA) 
study showed that 94% of crashes are caused by drivers’ 
mistakes caused by factors such as recognition error (driver’s 
inattention, interior and exterior distractions, inadequate 
surveillance), decision error (driving too fast, taking curves 
fast, incorrect assumption of other drivers’ behavior), perfor-
mance error (poor directional control, overcompensation), 
and non-performance error such as driver drowsiness [1]. For 
this reason, integrating ADAS systems, which enhance the 
safety in vehicles, is a helpful area of research. Optimized 
ADAS technologies create a safer driving environment since 
the reaction time of such safety systems is faster and present 
a more constant behavior compared to the variable reaction 
t ime of humans under dif ferent pre-crash and 
crashing scenarios.

To help mitigate vehicle accidents, novel safety and auton-
omous technologies have been developed to enhance the safety 

of drivers and pedestrians worldwide. The adequate integra-
tion of distance sensors is fundamental in enhancing safety 
on the road to further effectively executed autonomous 
maneuvers. Aside from reducing driving-related fatalities and 
injuries, autonomous vehicle features have the potential to 
increase fuel efficiency, reduce traffic congestion and increase 
traveling speeds [2, 3]. Figure 1 shows red and blue vehicles 
with integrated distance sensors that have an improper ADAS 
reaction since they are relying in one sensor signal resulting 
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TABLE 1 Estimated Distribution of Critical Crash Reasons for 
Driver Mistakes (Based on 94% of the NMVCCS crashes 2005-
2007) [1]

Critical Reason Number Percentage
Recognition Error 845,000 41% ± 2.2%

Decision Error 684,000 33% ± 3.7%

Performance Error 210,000 11% ± 2.7%

Non-Performance Error 145,000 7% ± 1.0%

Other 162,000 8% ± 1.9%

Total 2,046,000 100%
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in breaking the safety vehicle envelope. The purple vehicle 
stays in the vehicle envelope due to integration of multiple 
signals of sensors making the vehicle safer based on the 
distance recorded from the target.

At the time of developing ADAS featured vehicles, the 
selection of integrated sensors and controlling modules 
substantially affect the production cost. When optimizing an 
AV research platform with camera, LiDAR, radar, GNSS, and 
IMU sensors with respect to cost effectiveness and energy 
efficiency, the total sensor supply costs alone are above 
$30,000. [4]. Aside from the costs of sensors, there are also 
substantial costs associated with the integration of an ADAS 
sensing system. For example, the development of sensor fusion 
algorithms like the Kalman filter and the subsequent improve-
ments in increased measurement accuracy, reduced measure-
ment noise, and larger measurable ranges are beneficial, but 
are difficult to develop and are less versatile in practice. 
However, machine learning alternatives for the Kalman filters 
improves the versatility and are more easy developed, leading 
to lower costs.

Vehicle Safety Envelope
When ADAS systems are employed, a safe driving envelope 
is defined within the vehicle’s computer system. This envelope 
describes a set of boundaries within which the vehicle can 
be safely operated without losing traction or exceeding the 
steering, braking, or suspension capabilities [5]. The limits of 
this envelope is directly related to the maximum capabilities 
of the tires of the vehicle; these limits are set by the yaw rate 
and the sideslip [6]. Within this boundary, there always exists 
a steering input to keep the state of the vehicle within the 
envelope; however, the vehicle may leave the envelope and still 
be stable, because the bounds of this envelope are set by steady 
state assumptions. Empirical testing has shown that the 
vehicle can leave the envelope and still be stable, and also 
return to a state within the envelope successfully [7].

Sensors Functioning Principles
The sensors used in this research are HC-SR04 ultrasonic 
sensor, 2D RPLiDAR sensor and a solid state microLiDAR. 
All sensors operate on the time-of-flight (ToF) principle. This 
principle uses the time elapsed after an infrared light is 
emitted and returns to the receiver to calculate the distance 
between the emitter and an object. The mathematical 

relationship between the wave’s velocity v (m/s), time t (s) and 
distance d (m) to the measured obstacle can be seen below in 
Eq. 1.

	 d
vt=
2

	 (1)

The ToF principle used to acquire distance with time and 
velocity is further visualized in Figure 2. Shown is an emitter 
pulse signal and a receiver pulse signal after time t. In order 
to find the distance from an object and emitter, one must 
consider t being the time needed for an emitted wave to travel 
to the obstacle then back to the receiver. This is already consid-
ered in Eq. 1 as the product of velocity and time is divided by 
two to find the distance from the sensor to the obstacle.

Ultrasonic Sensors The HC-SR04 sensor emits and 
receives 40kHz sound wave pulses to determine the ToF with 
which it can find the distance of an object. This sensor is a 
widely available and affordable distance sensor used mostly 
in robotics projects. Similarly functioning but more reliable 
ultrasonic are used in nearly all parking assisted vehicles. 
Ultrasonic sensors can generally measure up to 4-5m and 
therefore be  useful in sensor fusion at these relatively 
short distances.

LiDAR Sensors Light detection and ranging is a tech-
nology developed to measure distances and for mapping the 
environment based on the time of flight principle by using 
infrared laser pulses. This technology is used because of its 
accuracy and range. The signal output of this sensor includes 
X, Y and Z coordinates and intensity values of the point cloud 
recorded. ToF applied in LiDAR sensors calculates the time 
it takes for the infrared pulse to travel from the sensor and 
come back as a reflection of an obstacle in the environment. 

 FIGURE 1  Vehicle Envelope Integrity through Proper ADAS 
Reactions from Accurate Sensor Fusion.

 FIGURE 2  ToF Sensor Function
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The vacuum speed of light, c0, is equal to 299,794,458 m/s, 
therefore, the ToF equation for LiDAR sensors is as follows [8]:

	 d c T� 1

2
0� 	 (2)

Sensor Fusion & Machine 
Learning
The development of individual sensors involves maximizing 
measurable ranges and minimizing noise or other constraints. 
Despite this, sensors will inherently have ideal measurement 
ranges and physical restrictions. For example, ultrasonic 
sensors have a shorter accurate measurement range than 
LiDAR sensors, as the dissipation of ultrasonic sound waves 
occurs over large distances, whereas infrared light waves used 
in LiDAR do not dissipate over the same distances. On the 
other hand, while measuring very short distances, ultrasonic 
sensors typically outperform LiDAR sensors.

Machine learning based sensor fusion algorithms, such 
as the one evaluated in this research, are highly compatible 
with similarly set up systems given similar input data and 
optimized training parameters as needed. LSTM (Long-Short-
Term-Memory) recurrent neural networks (RNN) have shown 
promising results in similar sensor fusion applications [9], as 
they have advantages in classifying rapidly updating, and 
noisy data. In general, sensor fusion is known to increase 
measurement accuracy and decrease noise while traditional 
methods involve manually inputted assumptions, and confi-
dence weights that vary over environmental conditions. Given 
conditional advantages for different sensors in a system and 
random sensor noise over time, recurrent neural network 
based fusion algorithms are reasonable to assume as viable to 
be applied.

Environmental Impact on 
Sensors
Furthermore, environmental conditions play an impact on 
the performance of the sensors. For instance, speed of the 
sound wave released to the environment is variably based on 
the relative humidity and temperature conditions present in 
the medium as well as the concentration of CO2 [10].

LiDAR sensors operation is impacted due to inclement 
weather such as rain, fog and snow [12]. One of the reasons of 
why sensors are impacted by weather conditions is due to Mie 

Scattering. Since the transmission wavelength of the sensors 
(LiDAR for instance) is close to or smaller to 6mm, the sensor 
signal is subjected to Mie scattering which produces the back-
scattered signal to be  disturbed or produce false signals. 
Another impact from the environment in LiDAR performance 
is the dependency of the signal based on the color of the targets 
in the environment. Due to the nature of the visible electro-
magnetic spectrum, darker colors absorb more infrared 
energy than bright colors, reducing environmental recogni-
tion on targets with darker colors [13]. The effect of Mie 
Scattering on radar signals decreases the maximum range 
that a radar sensor can provide under raining conditions. The 
effect of precipitation in cameras produces degradation and, 
in quality of the images taken reducing the object recognition 
of the environment increasing the danger of a potential crash 
scenario [11].

For this reason, sensor fusion provides a more robust 
system by allowing the vehicle to not rely on a single sensor 
reading but on a variety of them. This allows the system to 
adapt based on the environment following a correct measure-
ment of the environment avoiding out-of-range measurements 
and noise. More accurately and efficiently interpreting high-
speed data from an array of sensors not only can improve the 
judgment of existing autonomous control systems but also 
allow the development of new safety features. Currently, the 

TABLE 2 Performance summary ADAS sensors [11]

Feature LiDAR Radar Ultrasonic
Technology Laser beam Radio wave Sound 

Wave

Range (m) 200 250 5

Resolution Good Average Poor

Weather impact Yes Yes Yes

Detects speed Good Very Good Poor

Detects distance Good Very Good Good

 FIGURE 3  Sensor Fusion Architecture Schematic
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performance of sensor fusion systems is not limited by sensing 
range or computational power, but rather by the quality and 
efficiency of their harmony. By varying crucial conditions 
based on predicted drawbacks of their components, complex 
sensor fusion systems can be optimized and the nature of their 
effects analyzed.

Previous Research and 
Applications
Fusion of thermal and visible light detection sensors using 
neural networks was studied in [2]. A new Adaptive Soft-Gated 
Light Perception Fusion (ASG-LPF) as a model for fusion was 
proposed. The ASG-LPF framework begins with image acqui-
sition using a data-set from KAIST (set of paired visible color 
and thermal color images). Images are then passed through 
the pedestrian detection and light perception modules which 
predict the position of pedestrians and the light illumination 
of a scene. The main detecting sensor was determined by 
prediction of driving illumination. During sensor fusion the 
main detector was chosen utilizing fusion filters and weight 
fine tuning to adjust confidence scores and then remove 
redundant and low-scoring results. Authors in [14] created a 
framework for the integration of simulation and sensor fusion 
data for the improvement of learning data sets. Data fusion 
occurs at different levels. The most basic method occurs where 
raw data from separate sources is combined. At the next level 
features from each source are combined into a single delinea-
tion. This is known as ‘feature-level fusion’. It allows for the 
characterization of patterns by different observed features. 
Another level above is ‘decision level’. In this level of fusion 
models trained on varied sources make a decision based on 
the presented data.

To improve object detection by way of data fusion of 
stereo images and ultrasonic sensors, [15] proposed an algo-
rithm where the ultrasonic sensors were used to locate the 
nearest object layer of the modified local stereo algorithm. 
This decreased amount of search layers led to the generation 
of incorrect responses that were reduced by use of the 
reduced cross-check method. A median filter was also used 
to improve accuracy. The authors then demonstrated 
improved time of detection by use of ‘synthesis’ images 
produced in Blender. Detection times were improved by 316 
times. To demonstrate improved environmental perception, 
[16] used a Nomad 200 robot equipped with ultrasonic and 
laser rangefinders modeled with fuzzy logic. Readings were 
used by the robot to build a model of its environment then 
using a reliability test determined if readings were incorrect, 
getting rid of bad data. This was done by comparing the 
differences in readings from each sensor within the plane 
area of the sonar sensors. Significant improvement of envi-
ronmental modeling was shown with errors present in single 
sensor type use cases being corrected by use of fusion of the 
two sensor types.

To classify tree trunks and to help localizing a robotic 
platform for use in orchards, [17] used cameras and ultrasonic 

sensors. Trunks were classified by a recognition and classifier 
algorithm (SVM) which discerned trunks by color recogni-
tion. The ultrasonic sensors were used in order to minimize 
the detection of meaningless data beyond the range of tree 
trunks in the semi-structured orchard. This helped to decrease 
measurement error when localizing tree trunks. An average 
was also applied to minimize detection error. Ultrasonic 
sensors improved localization as compared to laser detection 
sensors used in past studies.

ADAS with Sensor Fusion 
Integration
ADAS systems are based on sensor fusion algorithms where 
sensors complement each other reducing their limitations and 
expanding their field of view for an enhanced environment 
perception. This principle is accomplished by using data 
synchronization where data originated from different sensor 
sources is fused and then, is synchronized and applied in 
ADAS systems. This increments the precision of data as well 
as the certainty of it. Furthermore, this data is used in different 
applications within the vehicle (AEB, blind spot detection, 
ACC, LDW) since these technologies rely on the data from 
the same sensors but it is processed independently based on 
the ADAS feature specified.

A sensor fusion architecture process in safety vehicle 
technologies contains different sets of sensors feeding the 
system with data. Once this data is compiled, it is processed 
and synchronized ready to take action in the ADAS features 
integrated in the vehicle. It is important to process this data 
in the same order it has been acquired to obtain a time-consis-
tent sensor fusion model as researched in [18].

Active driving assistance systems can be understood as 
semiautonomous vehicles. However, these type of technologies 
support the drivers to relieve stress and fatigue for driving 
long hours or for driving under high traffic conditions. For 
instance, [19] describes multiple technologies for ADAS 
systems that include sensor fusion. One of them is Cadillac’s 
Super Cruise, where different highways around the country 
have been scanned with LiDAR data creating a map of the 
surroundings for highway recognition and positioning. 
Furthermore, ACC and LKA is enabled for this feature, 
allowing hands free driving. The feature works as long as the 
driver is focused on the road which is monitored with a 
camera scanning the driver. In this ADAS feature, sensor 
fusion is integrated by using data coming from different 
sources of sensors. LiDAR, Radar and camera data is combined 
together and processed to create a safe hands free driving 
technology [20]. Pseudo inverse based on point alignment 
method was used in [21] to calibrate and match the output of 
radar sensors with cameras to enhance object recognition in 
autonomous vehicles. Another method for vehicle recognition 
based on sensor fusion is demonstrated in [22], where the field 
of view of the radar sensor is coordinated with a camera, 
achieving vehicle localization based on the rear corner recog-
nition of vehicles on the road.
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Methodology

Proposed Vehicle Safety 
Envelope Principle
The model vehicle safety envelope proposed in this work shows 
the definition of two zones around the ego vehicle (dense and 
critical zone), each named to indicate the importance of 
measurement precision. Each zone was divided into equal 
intervals (0.05m each) to enhance the precision of obstacles 
detected within each of the zones in the enclosed area of the 
envelope. An LSTM machine learning prediction model was 
trained in order to fuse the signal of the three sensors selected 
to enhance precision of the vehicle envelope. Furthermore, 
the data acquired from the sensors in the envelope are 
displayed in a live data simulation graph, allowing the user to 
see the data that sensors are acquiring from the environment 
in a radar schematic. Each zone classification was displayed 
on these graphs to represent both the critical and non-critical 
risk of collision regions. The proper distance measurements 
within such a vehicle safety envelope would allow better envi-
ronmental awareness for imminent collisions and 
their avoidance.

The methodology presented for this experiment includes 
assembly of ego vehicle, implementation of sensors used in 
the safety vehicle envelope system, controlled environment 
with mobile target configuration, vehicle safety sensors data 
acquisition and LSTM sensor fusion training.

Implementation of Sensors
A set of three different sensors were used to instrument the 
ego-vehicle. These sensors include: Ultrasonic sensors 
(HC-SR04), a 2-D LiDAR (RPLiDAR) and a laser rangefinder 
(SF11-C). These sensors were installed on top of the ego vehicle 
and distributed in a 360° field of view to cover the cardinal 
directions. The criteria used to choose the sensors for this 
project is based on the advantages and disadvantages of each 
sensor, aiming for a sensor fusion structure that would 
complement each sensor’s performance while also enhancing 
environmental recognition. For example, the HC-SR04 
perform best at a short-range distance. For this reason, this 
sensor’s fundamental purpose is to detect obstacles at a range 
of 0.05 m to 0.25 m. Alternatively, both the RPLiDAR and 
SF11-C have higher precision and recording range that allows 
the recognition of objects at much longer ranges, making these 
sensors the best fit for detecting objects within the Dense 
Zone. This combination of sensors creates a fusion of sensor 
signals with precise obstacle recognition for both short and 
long range targets.

Controlled Environment using 
Mobile Target Configuration
The set up used for this work consisted of two controlled 
environment stations, each with a total area of 0.70 m × 
0.535 m. Within each station, a test range was created from 
0.00m to 0.50m, divided into intervals of 0.05 m. A flat steady 
environmental condition chamber was built. Within this 
chamber, a target was moved to each distance increment and 
the data coming from each sensor was collected for five hours. 
Each station was equipped with a set of the three sensors 
used for the sensor fusion located at the origin position and 
directed towards the target. Two of these controlled environ-
ment stations were created in order to record the data neces-
sary twice for methodology validation purposes and evalu-
ation of the interchangeability of proposed sensor 
fusion models.

Data Acquisition for Vehicle 
Sensors
A data acquisition algorithm was created to record extensive 
amounts of data to feed the machine learning model for 
LSTM prediction training. Each distance was measured 
until 378,000 data points were taken. Each sensor was 
directed at the target object with an equal distance from the 
origin. This data was taken a total of 10 times, one at each 
0.05 m interval, in order to acquire data from all distances 
necessary for the LSTM training. With each data set having 
378,000 data points, a total of 3,780,000 points recorded of 
all distances.

 FIGURE 4  ADAS Sensors Instrumented in Vehicle Platform.
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The HC-SR04 required an interface with Arduino in order 
to record data to MATLAB. The RPLiDAR and SF11-C sensors 
were connected straight to the serial ports of the computer used 
for data acquisition. Due to the 360° field of view of the RPLIDAR 
sensor, it was determined that a region of interest was required 
to reduce recorded data that did not include the target data points. 
This ROI was defined to record data points enclosed in a +5° and 
-5° field of view with respect to the x-z plane shown in Figure 4.

With this reduction of points performed in the ROI, the 
number of data points was reduced substantially resulting in 
11782 data points. These data points were then fed into the 
LSTM prediction model. Each one of the sensor data matrices 
fed into the LSTM machine learning model contained 
RPLiDAR data, ultrasonic sensor, laser rangefinder and time 
between recorded ROI points.

Pre-Training Feature 
Evaluation
Before developing a machine learning algorithm, the ROI data 
sets were analyzed to find features of input data relevant to 
the true distance measured. Given the scope of the project, 
three inputs are required, the distance measurements of 
LiDAR, ultrasonic and microlidar sensors. Figure 6 below 
shows the raw distance measurement distributions of 
each sensor.

As seen in Figure 6, all sensors have considerable noise 
which can be mitigated in the fusion process if the network 
is properly trained. To account for noise, it is essential to train 
to train the LSTM model with an accurate sense of time for 
each data point. As seen in Figure 7, the time response between 
ROI datapoints varies greatly over time. To account for noise 
and accommodate the inconsistent detection of the ROI by 
the 2D LiDAR, the time between data points were added as 
an input for each measurement.

Unlike the ultrasonic and microLiDAR sensor, the 2D 
LiDAR sensor measures distances in more than one direction. 
While the ROI was defined in pre-processing as a small region 
between -5 and 5 degrees (x-z plane) and the distances 
measured at each ROI angle are insignificant, this is not the 
case when this model is used in a dynamic setting with all 
angles measured meaning the angle must be  considered 
in training.

Prediction Model - LSTM
With the ROI data separated, they were respectively split in 
half: the first half was used for LSTM training and the second 
half was used to evaluate the trained neural network. This was 

 FIGURE 6  Raw Sensor Measurements Data Points 
0.45m ROI

 FIGURE 7  Time Response Between Data Points 0.45m ROI

 FIGURE 5  Controlled Environment Used for Sensor 
Data Acquisition
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done for a fair evaluation of the neural network’s performance 
by testing with data not used in the training process. The 
sequence-to-sequence regression neural network designed to 
perform sensor fusion is a double-LSTM deep neural network 
as seen in Figure 8 below.

The network consisted of seven layers: an input layer 
(sequence input), two LSTM layers, two dropout layers, a fully 
connected layer (fc 1), and a regression layer. The first layer 
was an input layer of four units, one for each data point 
recorded from the sensor fusion: the ultrasonic measurement, 
the microLiDAR measurement, the 2D LiDAR measurement 
and the time, in milliseconds, since the last measurement. 
Directly following the input layer, is the first LSTM layer with 
125 hidden units. Next is the first dropout layer with a prob-
ability of 0.3. After the first dropout layer is the second LSTM 
layer, again with 125 hidden numbers, followed by the second 
dropout layer, this time with a probability of 0.2. Finally, there 
is a fully connected layer with one unit. This final output 
represents the LSTM Fusion distance.

For both training and testing, the sequence input of the 
evaluated LSTM sensor fusion algorithm consists of a matrix 
of x columns (data points measured), and five rows (sensor 
data). The first row was the angle in degrees at which the 
LiDAR was facing when the given ROI data point was taken. 
The second row was the distance in meters of the LiDAR’s 
distance measurement when the ROI was measured. The third 
row was the distance in meters of the ultrasonic sensor’s 
measurement. The fourth row was the distance in meters of 
the microLiDAR. For training, the first half of the distance’s 
data point columns of five rows were sequentially fed with a 
separate row of the repeating true distance measured. To test 
the trained sensor fusion model, the second half of the data 
points were each given as an input to the trained network, and 
for each data column given, an output of a fusion distance 
was provided.

Results

Machine Learning Based 
Safety Vehicle Envelope
All machine learning sensor fusion results presented were 
found using the second half of each distance’s data set. This 
was done as the first half was used for training and the fusion 
algorithm must be evaluated with data it has not used to 
perform learning. The results are structured according to the 
algorithm’s evolution: first showing the fusion performance 
when each distance had a dedicated fusion algorithm and 
lastly showing the fusion performance when all measured 
distances had only one fusion algorithm. For the first phase, 
the dedicated testing data of each measured distance was fed 
into a corresponding LSTM network, trained for fusion only 
at the measured distance. For the second phase, all of the same 
dedicated testing data of all distances were fed into one LSTM 
neural network able to do fusion at all distances measured.

The critical zone of the vehicle safety envelope was defined 
at a distance of 0.05 m to 0.25 m. This zone was then divided 
into five separate intervals each 0.05 m apart. The performance 
of the LSTM machine learning algorithm resulted in a high 
precision fusion of signals of the three sensors used in 
this work.

Figure 10 shows the LSTM performance for the 0.05m 
distance. The graph shows the performance of fusing the 
signal of the three sensors up to a point in which the predic-
tion is close to the ground truth distance of 0.05m. At the 
beginning of the data set, the model takes some time to fuse 
the signals precisely to the ground truth. Nevertheless, once 
the tester algorithm is close to 800 data points, the predicted 
data starts oscillating on the ground truth distance.

As shown in the Figure 9, LSTM performance is shown 
with the intervals from 0.05m up to 0.50m. Average values of 
resultant prediction distance for each one of the intervals was 
calculated. As shown in table 5, standard deviation between 
the ground truth value and the average LSTM calculated was 

 FIGURE 8  Diagram of LSTM Network Layers

TABLE 3 Sample Fusion Input Column of Sensor and 
Time Data

Input Value
LiDAR Angle (deg) 1

LiDAR Distance (m) 0.5

Ultrasonic Distance (m) 0.5

microLiDAR Distance (m) 0.5

Time Difference From Last ROI (ms) 1300
 FIGURE 9  Individual and compilation LSTM performance. 
a) shows the performance comparison of the individual based 
LSTM machine learning model. b) shows the performance 
comparison of the compiled LSTM machine learning model 
including all distances for training.
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considerably low, resulting in high precision of obstacle 
distance estimation.

The percentage error calculated for the critical zone had 
a range between 3.99% and 10.67%. This resultant percentage 
error represents low error in the study and suggests validation 
of the use and integration of this LSTM distance estimation 
model for the vehicle safety envelope.

The dense zone of the vehicle safety envelope was defined 
at a distance of 0.30 m to 0.50 m. Much like the critical zone, 
the dense zone was divided into five separate intervals of 
0.05 m.

The dense zone performance shows a constant behavior 
of the LSTM model where the error percentage ranges between 
1.07% and 9.34%. The average distances recorded from the 
LSTM model with respect to the ground truth distances are 
close to the ground truth reference value. This is reflected on 
the standard deviation values calculated as well as the 
percentage error. Data precision is demonstrated on the graphs 
and shows a successful data fusion model.

Live Data Simulation
The live data simulation integrated in the ego-vehicle fuses 
the signal of the three sensors and displays it in a single graph 
for live environment visualization. This allows the user of the 
vehicle to be aware of all readings from the sensors in a graphic 
interface for constant monitoring. Eight different ultrasonic 
sensors were integrated in the test platform for each cardinal 
direction, one RPLiDAR was centered in the middle of the 
vehicle for a 360° view and finally two microLiDARs were 
assembled for the North East and North West directions.

 FIGURE 10  Individual LSTM performance 0.05m

TABLE 5 Statistical Analysis of Compiled Trained Fusion 
Algorithms Performance

Ground 
Truth (m)

Average Fusion 
(m)

Std. Deviation 
(m) % Error

0.05 0.0547 0.0081 9.4

0.10 0.1034 0.0086 3.36

0.15 0.1591 0.0091 6.05

0.20 0.2034 0.0083 1.69

0.25 0.2424 0.0080 3.03

0.30 0.2970 0.0010 1.00

0.35 0.3507 0.0010 0.21

0.40 0.3920 0.0115 2.00

0.45 0.4408 0.0117 2.04

0.50 0.4914 0.0114 1.71

TABLE 4 Statistical Analysis of Individually Trained Fusion 
Algorithms Performance

Ground Truth 
(m)

Average 
Fusion (m) Std. Deviation (m) % Error

0.05 0.0480 0.0014 3.99

0.10 0.1179 0.0127 9.00

0.15 0.1293 0.0147 5.81

0.20 0.2213 0.0151 10.67

0.25 0.2636 0.0096 5.46

0.30 0.3280 0.0198 9.34

0.35 0.3644 0.0102 4.11

0.40 0.4226 0.0160 5.65

0.45 0.4528 0.0034 1.07

0.50 0.5081 0.0057 1.62

 FIGURE 11  ADAS Sensors Instrumented in Vehicle Platform
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Figure 13 shows the sensor data fused in a radar graph. 
This data visualization is important to show the performance 
of the recording of the sensors while validating the data 
recorded complementing each other. For short ranges, signal 
acquired from the ultrasonic sensor was more precise and 
reliable than the LiDAR sensor. For this reason, it was possible 
to see some discrepancies of data recorded in a close range.

Meanwhile, the LiDAR sensor is very precise for long 
distance measurements. This is shown on how sensors 

compensate each other in the LSTM model, where with the 
combination of the sensor signals, distance recorded is 
more precise.

The importance of this visualization is to rely not just on 
the readings of the sensors graphically but also being able to 
visualize this data from a spatial perspective. This graph 
displays the ego vehicle as the origin of the radar simulation. 
Then all data displayed from all the cardinal directions where 
the sensors were instrumented in the ego-vehicle.

Conclusion
The LSTM machine learning model used in this project 
allowed for the fusion of the signals of three different distance 
sensors (ultrasonic sensors, RPLiDAR and microLiDAR) 
based on two different physical principles (sound and light) 
with the aim to enhance the precision of distance recorded 
for the vehicle safety envelope. The vehicle safety envelope was 
designed enclosing a max recording distance range of 0.50 m. 
Within this maximum distance of the envelope, two zones 
were defined, dense and critical zones, with ranges of 0.25m - 
0.50m and 0.05m - 0.25m respectively.

Dense and critical zones were trained using an LSTM 
model combining the signals of the sensors aiming for high 
distance estimation precision for enhancing safety in the ego-
vehicle. The structure used for training and testing was a 
sequence input of the LSTM sensor fusion that consisted on 
a matrix of number of points and five rows of sensor data. The 
sensor data selected included angles recorded from LiDAR 
ROI, distance in meters from ROI recorded from LiDAR, 
distance recorded from ultrasonic sensor, distance recorded 
from the microLiDAR.

Meanwhile, distance recorded from every sensor was 
displayed in a radar graph. The output of the machine learning 
based sensor fusion created a high precision vehicle safety 
envelope recognizing obstacles moving within the range of 
the envelope. The results given from the LSTM model were 
successful, the percentage error for individual and compiled 
training set up was 5.67% and 3.05% respectively demon-
strating a high precision sensor fusion prediction model. On 
the other hand, standard deviation on individual and compiled 
LSTM models was 0.0054% and 0.0015%. The lowest 
percentage error for compiled LSTM model was 0.21% 
showing a precise distance measurement using the three 
signals from the distance sensors.

Future Work
With the introduction of the 360° vehicle safety envelope with 
possible collision risk classification, the static study has been 
performed with high precision sensor fusion data recording. 
Precision for recording of distance of obstacles within the 
range determined is ready for implementation in dynamic 
scenarios where the ego-vehicle has interaction with targets 
in motion for tracking and environment monitoring. Further 
work will include performing corrective steering for crash 

 FIGURE 12  Visual Representation of Safety Zone Distances

 FIGURE 13  Visual API used to Represent Live 
Data - Simulated
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avoidance based on the obstacles detected within the safety 
vehicle envelope and their established safety zones.
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Definitions, Acronyms, 
Abbreviations
ADAS - Advanced Driver Assistance Systems
AV - Autonomous Vehicles
LiDAR - Light Detection and Ranging
NHTSA - National Highway Traffic Safety Administration
NMVCCS - National Motor Vehicle Crash Causation Survey
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GNSS - Global Navigation Satellite System
IMU - Inertial Measurement Unit
ToF - Time of Flight
LSTM - Long Short-Term Memory
RNN - Recurrent Neural Networks
ASG-LPF - Adaptive Soft-Gated Light Perception Fusion
SVM - Support Vector Machine

AEB - Automatic Emergency Braking
ACC - Adaptive Cruise Control
LDW - Lane Departure Warning
LKA - Lane Keeping Assist
LDW - Lane Departure Warning
ROI - Region of Interest
GT - Ground Truth
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