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AbstractÐIn data mining, PARAFAC2 is a powerful and a
multi-layer tensor decomposition method that is ideally suited for
unsupervised modeling of data which forms ºirregularº tensors,
e.g., patient’s diagnostic profiles, where each patient’s recovery
timeline does not necessarily align with other patients. In real-
world applications, where no ground truth is available, how
can we automatically choose how many components to analyze?
Although extremely trivial, finding the number of components
is very hard. So far, under traditional settings, to determine
a reasonable number of components, when using PARAFAC2
data, is to compute decomposition with a different number of
components and then analyze the outcome manually. This is
an inefficient and time-consuming path, first, due to large data
volume and second, the human evaluation makes the selection
biased.

In this paper, we introduce APTERA, a novel automatic
PARAFAC2 tensor mining that is based on locating the L-
curve corner. The automation of the PARAFAC2 model quality
assessment helps both novice and qualified researchers to conduct
detailed and advanced analysis. We extensively evaluate APTERA

’s performance on synthetic data, outperforming existing state-
of-the-art methods on this very hard problem. Finally, we apply
APTERA to a variety of real-world datasets and demonstrate its
robustness, scalability, and estimation reliability.

I. INTRODUCTION

Tensors are the generalization of vectors and matrices.

They are ubiquitous (e.g. images, videos, and social networks)

and ever-increasing in popularity. With the opportunity to

handle large volumes and velocity of data as a result of

recent technical developments, such as mobile connectivity

, digital tools, biomedical technology, and modern medical

testing techniques, we face multi-source and multi-view data

[10] sets. Suppose, for example, that we are given health

care record data, such as Centers for Medicare and Medicaid

(CMS) [6], and we have information about patients who visited

the hospital, or who got what kind of diagnosis in which visit,

and when. Time modeling is difficult for the regular tensor

factorization methods (e.g CP [4] and Tucker [22]), due to

either data irregularity or time-shifted latent factor appearance

of such data. Hence, such data is formulated as a 3-mode

PARAFAC2 tensor [12]. PARAFAC2 decomposition is able to

handle various chromatographic data and choosing the correct

number of components allows it to separate each variability

source by using spectral information. Consider amino acid

data [16] where three compounds tyrosine, tryptophan and

phenylalanine dissolved in phosphate-buffered water. In Figure

(1), PARAFAC2 decomposition with rank-3 resembles the
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Figure. 1: Amino acid data PARAFAC2 decomposition.

pure spectra of tryptophan, tyrosine and phenylalanin. When

PARAFAC2 decomposition with rank-4 is applied to this

data, the fourth component does not resemble any of the

compounds and in fact, it does not seem to reflect any chemical

information. Therefore, it becomes very important to select the

correct number of components to solve real-world problems.

In literature, one popular approach to find the rank of

CP tensor is core consistency diagnostic (CORCONDIA) [3].

The CORCONDIA essentially assesses significant deviations

from a super-diagonal core tensor. This would suggest that

the CP decomposition is not optimal either because the se-

lected rank is not correct, or the CP model cannot describe

the data well enough. This approach is widely studied and

explored among the tensor mining community. AutoTen [19]

is a powerful method that uses CORCONDIA as a building

block to provide unsupervised detection of multi-linear low-

rank structure in tensors. Over the last few years, there has

been various methods [21] proposed to find the number of

component of fixed dimension tensor data. However, only one

method namely Autochrome [15] estimates rank for irregular

data. Unfortunately, this method uses various computation

diagnostics that require the conversion of irregular data to

regular data. This is expensive in terms of memory utilization.

To fill the gap, we propose a novel method APTERA to

estimate the rank of irregular ’PARAFAC2’ data that discover

the number of components (interchangeably rank) through

higher-order singular values decomposition (HOSVD).

II. BACKGROUND

In this section, we provide the necessary background for

notations and tensor operations. Then, we briefly discuss the

related work regarding the PARAFAC2 decomposition for

tensor factorization and rank estimation method available in

the literature. Table (I) contains the symbols used throughout

the paper.IEEE/ACM ASONAM 2022, November 10-13, 2022
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Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar

X
T ,X−1,X† Transpose, Inverse, Pseudo-inverse
diag(X) Extract diagonal of matrix X

X
k

shorthand for X(:, :, k) (k-th frontal slice of X)

X
(n) , X(n) mode-n matricization of X, matrix X at mode-n

∥A∥F , ∥a∥2 Frobenius norm, ℓ2 norm
◦, ⃝∗ , ⊗, ⊙ Outer, Hadmard, Kronecker and Khatri-Rao product

OoM Out of Memory
MTTKRP Matricized tensor times Khatri-Rao product[17]

TABLE I: Table of symbols and their description

A. Brief Introduction to PARAFAC2 Tensor Decomposition

methods

The PARAFAC2 model was first developed by Harshman

[12] to handle the situation where the number of observations

(row dimension) in each Xk may vary e.g study of phonetics.

In his work, Harshman described a way to factorize multiple

matrices simultaneously given that one factor was not exactly

the same in all those matrices. This can be solved by im-

posing orthogonality constraints on a linear transformation

as a coupling relationship between the similar factors to

ensure identifiability. Hence, the PARAFAC2 model for 3-

mode tensor Xk ∈ R
Ik×J is given by:

L =argminU,S,V

1

2
||Xk −UkSkV

T ||F2 ∀k

subject to Uk = Qk ∗H and QkQ
T
k = Ir

(1)

where Uk ∈ R
Ik×R are coupled matrices, H ∈ R

R×R is

coefficients matrix, Qk ∈ R
Ik×R are left-orthogonal coupling

matrices to ensure uniqueness of factors and W = Sk ∈
R

R×R is set of diagonal matrix. The Equ (1) in form of

orthogonal form can be re-written as :

L =argminQ
1

2
||Xk −QkHWVT ||F2 ∀k

subject to QkQ
T
k = Ir

(2)

To solve Eq (2), most common method is Alternating Least

Square (ALS) that updates Qk by fixing other factor matri-

ces i.e H,W, and V. The orthogonal coupling matrix Qk

can be obtained by Singular Value decomposition (SVD) of

(HWVTXT
k ) = [Pn,Σn,Z

T
n ]. With QT

k = PnZ
T
n fixed, the

rest of factors can be obtained as:

L =argminH,W,V

1

2
||QkXk −HWVT ||F2 s.t.QkQ

T
k = Ir

argminH,W,V

1

2
||Y −HWVT ||F2

(3)

The Eq. (2) is equivalent of solving CP decomposition of

Y using ALS method. The author [20] proposed method

namely Scalable PARAFAC2 for large and sparse tensors.

The speed up of the process is obtained by modifying core

computational kernel. We use improved version of PARAFAC2

decomposition [20] for our method.

B. Brief Introduction to Automatic Tensor Mining

As outlined in the introduction, rank detection and low-

rank structure discovery are very hard problems, and there

are currently no general-purpose methods that can achieve

these tasks efficiently. There is very limited work done

for PARAFAC2 data rank estimation. There exists a method

named Autochrome [15] which uses PARAFAC2 decomposi-

tion for estimating the rank of tensor data. The method is based

on a number of model diagnostics (quality criteria) collected

from models with different numbers of factors. They combin-

ing these diagnostics to assess what are the appropriate number

of components of data. However. this method is limited to

gas chromatography±mass spectrometry data and also various

diagnostics computations require regular CP tensor as input

instead of the irregular tensor.

To our best knowledge, there is no work in the literature that

deals with the reveling a number of components of irregular

data with PARAFAC2 decomposition without using expensive

computations of Core Consistency Diagnostics and not limited

to a specific type of data. To fill the gap, we propose a scalable

and efficient method that reveals the number of components

of the PARAFAC2 model.

III. PROPOSED METHOD: APTERA

In data mining applications (e.g. chromatography, health

care), we are given a very large irregular multi-layer data

which is required to analyze by domain researchers, and we are

asked to identify various useful patterns that could potentially

help to grow the business or provide valuable insights about

data. Most of the time, this analysis is done unsupervised as

collecting ground truth is extremely expensive and requires

human intervention. Unfortunately, it is not straightforward to

determine the proper number of components for PARAFAC2

tensors. Since CORCONDIA based methods have instabilities

in the quality estimations[21] and, therefore, we propose a new

method for finding the structure in PARAFAC2 tensor data us-

ing the L-corner approach that reduces the human intervention

and trial-and-error fine-tuning. Our proposed method consists

of three steps as described below.

A. PARAFAC2 decomposition

Here, we solve Rmax-component PARAFAC2 decompo-

sitions as given in Equ. (4) by using random initialization.

For each decomposition, we keep same initial parameters i.e.

number of maximum iterations, tolerance for convergence etc.

L =

K∑

k=1

argmin
Qk

1

2
||Xk −QkHWVT ||2F ∀k ∈ [1,K]

subject to QkQ
T
k = IRmax

(4)

Due to the irregular nature of the first mode of PARAFAC2

data, we use its resultant latent factors to create CP tensors

using the Khatri-Rao product on factors Y = (H⊙V⊙W) ∈
R

Rmax×J×K . This gives us a flexibility to use any existing

method to discover the rank of the reconstructed tensor.

Unfortunately, CORCONDIA based methods like AutoTen

[19], Autochrome [15] get confused because the input, i.e the

CP tensor, is created using outcome of PARAFAC2 decom-

position instead of actual data which could have a different

number of components. For example, consider the PARAFAC2

data has total of 10 components and we factorize this data



with Rmax = 20. When we provide the CP tensor with

Rmax = 20 to CORCONDIA based methods, it is highly

likely possible that Core Consistency diagnostic metric is close

to 100% at Rmax = 20, because it can trivially produce

ªsuper-diagonalº core. To overcome such instabilities, we use

multi-linear orthogonal projections via Higher Order Singular

Value Decomposition (HOSVD) for discovering the number

of component.

B. Formation of L-curve using Pareto Optimal Truncation

The Singular Value Decomposition (SVD) gives the best

low-rank approximation of a matrix. In the sense of multi-

linear rank, a generalization of the SVD is the higher-order

SVD (HOSVD). Nowadays, it is better known with the effort

of de Lathauwer et al. [8], who analyzed the structure of core

tensor and proposed to use multi-linearity to discover the rank

of the tensor. Motivated by this, we compute HOSVD of Y

as given in Equ. (5).

[G,A, σ] = HOSV D(Y) (5)

where G is decomposed core tensor, A is set of matrices

for each dimension and σ is set of n-mode multi-linear

(interchangeably higher-order) non-negative singular values

which appear in decreasing order. We can reconstruct 3-mode

CP tensor using G and A as given below Equ. (6).

Y = G×A1 ×A2 ×A3 (6)

Selecting the appropriate degree of compression is equivalent

to estimating the rank of the tensor. Though the best rank

approximation is NP-hard, a satisfying result can always be

estimated by choosing a proper degree of truncation. Here,

we use Pareto optimal truncation [1], [13] based on the upper

bound on the singular values. For any possible 3-mode tensor

dimensions, the corresponding relative error E can be defined

as

vec(Erjk) =

Rmax
∑

r=1

σ{1}(r) +
J
∑

j=1

σ{2}(j) +
K
∑

k=1

σ{3}(k) (7)

E(n) = Erjk =

√

Erjk

||σ{1}||
(8)

where n ∈ {1, 2, 3, . . . , RmaxJK} is linearized index pairs of

Rmax, J and K e.g. (n = 1) ← [r = 1, j = 1, k = 1]. Next,

we define the points on the 2D plane with possible tensor

dimension d as:

P (n) =
√

(x(n))2 + (y(n))2, x(n) = ||d(n)||; y(n) = E(n)
(9)

where d is a vector of multi-indices and represents as d(1)←
[r = 1, j = 1, k = 1], d(2) ← [r = 2, j = 1, k = 1],
and so on. Finally, using equation 9, P (2) = 0.5534 for

tensor dimension [r = 1, j = 1, k = 2]. Now, we sort the

points P and update residual norm (x) and solution norm (y)

accordingly. By eliminating the P values that do not satisfy

the monotonic condition, we can get a Pareto front end [11].

Having realized the important roles played by the norms of

Dataset Dimension Components

Syn-I 200 × 500 × 1000 5 (Synthetic)
Amino Acid 5 × 201 × 61 3 (See[16])
Wine-GCMS 2700 × 200 × 44 4 (See [16])

EU-Core 986 × 986 × 827 28 (See [23])
CMS 250 × 1K × 98K NA

TABLE II: Details for the datasets.

the solution y and norms of the residual x, it is quite natural

to plot these two quantities versus each other, i.e., a trade-off

curve. This is precisely the L-curve that can be utilized for

estimation of the rank of the tensor. Due to space limitations,

pseudocode of computing Pareto front end will be provided in

supplementary material.

C. Rank Estimation with L-curve Corner

In this step, we use the L-curve corner method [7] to

estimate the number of components of a tensor. To improve the

efficiency of the method, we can adapt a triangle method [5]

that uses geometric properties like the angle and direction of

the triangle to estimate the L-curve curvature. Although, above

process gives estimated rank for each dimension, but note that

PARAFAC2 requires only a single rank value. Therefore, we

report minimum rank predicted across tensor regular modes.

IV. EXPERIMENTAL EVALUATION

We implemented APTERA in Matlab, using the Tensor

Toolbox [2], which supports efficient computations for sparse

and dense tensors. We use the public implementation for

the algorithm of [21], [15], and we make our code publicly

available1.

A. Synthetic Data Description

A first step in evaluating our method is to check its perfor-

mance on simulated data whose rank and factors can be pre-

defined. We create synthetic tensors by generating two-factor

matrices with R columns each, where their elements are drawn

as Gaussian with unit variance. Then, these are normalized

column-wise using the l2 norm. The set of factor matrices

for irregular mode is created in such a way that it retains

the property of orthogonality. By considering these matrices

as the PARAFAC2 factor matrices, therefore, the rank of the

PARAFAC2 tensor will be exactly R. We considered a setup

with 1000 subjects, 500 feature variables, and a maximum

of 200 observations for each subject with rank-5. Also, we

deformed the generated tensor data by an additive noise tensor

that has the rank higher than 5 but has norm 2× less than actual

synthetic data.

B. Real Data Description

We evaluate the performance of the proposed method

APTERA for the real datasets to assess the practicality in

real-world scenarios. For this reason, in our experiments we

includes real data sets as shown in Table (II). Details of

datasets and full paper can be found at [9].

1http://www.cs.ucr.edu/∼egujr001/ucr/madlab/src/aptera.zip
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Figure. 2: Baselines comparison on the synthetic dataset. From left to right represents, (a) our proposed method APTERA, (b) Autochrome,
(c) NSVD based, (d) Iteration based, (e) Tucker ARD based, and (f) BRTF based method. Also, r indicates no of components.

Dataset Dimension Components Noisy Density APTERA Autochrome NSVD

Components (%) Predicted Rank Predicted Rank Predicted Rank

Syn-I 200 × 500 × 1000 5 10 100 5 (0%) 7 (+40%) 7(+40%)
Syn-II 250 × 750 × 1500 10 20 75 9 (-10%) 15 (+50%) 17(+70%)
Syn-III 500 × 1000 × 2000 15 30 50 16(+6%) 27 (+80%) 23 (+53%)
Syn-IV 750 × 1500 × 1000 5 10 100 5 (0%) 7 (+40%) 6 (+40%)
Syn-V 1000 × 2000 × 1500 10 20 75 11(+10%) 18 (+80%) 20 (+100%)
Syn-VI 2000 × 2000 × 2000 15 30 50 14(+10%) 22 (+46%) 7 (-53%)

TABLE III: Experiment results for various synthetic data for multiple feature variations. We report predicted number of components and
its deviation from actual number of components.

C. Baselines

In this experiment, five baselines AutoChrome [15], It-

eration based [14], NSVD based [21],Tucker ARD based

[18] and BRTF Based [24] have been used as to evaluate

the performance. Note that in literature, AutoChrome and

Iteration based method is directly applicable for PARAFAC2

decomposition. To compare with CP/Tucker decomposition

based methods, we converted the tensor data from irregular

to regular format by appending zeros.

D. Rank Structure of synthetic data

For our synthetic dataset, we observe in Figure (2) that

APTERA presents a quite distinct L-curve corner at rank-5 for

all given 2− 10 components which is the correct answer. On

the other hand, even though AutoChrome and NSVD seems

to approximate a region around 7 components, it struggles to

give a definitive answer and leaves open the possibility of up

to 8 or more components. Both, Tucker ARD and BRTF based

methods not able to provide certain solution for synthetic

data. Interestingly, even iteration based baseline seems to be

working better than AutoChrome and NSVD, showing a subtle

indication at 5 components.

Furthermore, to evaluate the robustness of the APTERA,

we alter the tensor data features i.e. level of noise, number

of components, density and size. The experiment results are

provided in the table (III). It is observed that for tensor

data mixed with high level of additive noisy tensor rank,

Autochrome performance is declined as compared to APTERA.

E. Rank Structure of Real Datasets

While APTERA performs reasonable on synthetic tensor

data, indicating a L-curve corner exactly where the predefined

number of components is, in order to evaluate its practicality

in real-world scenarios, it is also important to research its

performance and behavior on real-world data. For this reason,

we analyze a range of real data sets and performance is

provided in Table (IV). Due to space limitations, we explain

results of Centers for Medicare and Medicaid (CMS) data only.

Centers for Medicare and Medicaid (CMS) data files were

created to allow researchers to gain familiarity using Medicare
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Figure. 3: (a) Computation time of rank estimation for synthetic and
real data.(b) Scalability Analysis on synthetic data.

claims data while protecting beneficiary privacy. The CMS

data contains multiple files per year. The file contains syn-

thesized data taken from a 5% random sample of Medicare

beneficiaries in 2008 and their claims from 2008 to 2010.

We decompose PARAFAC2 tensor with rank between R = 2
to R = 50. Our aim is to estimate appropriate rank to

find clinically-meaningful groups of features. For this data,

BRTF based and Autochrome baselines unable to proceed due

to out of memory after computing parafac2 decompositions.

Iteration based baseline and our method APTERA, estimated

11 and 9 components, respectively. NSVD does not provide

any estimation of rank for this data. We observe one of the

the component (or cluster) in which most of the patients has

respiratory disease. These are the patients with high utilization

(> 50%), multiple clinical visits (avg 67) and high severity

(death rate 8-10%). Most of the patients share ICD-9 code

492 (Emphysema), 496 (Chronic airway obstruction) and 511

(Pleurisy). These codes are characterized by obstruction of

airflow that interferes with normal breathing. Phenotype of top

3 components discovered by APTERA based on high factor

values is provided in table (V). The codes are decoded in

readable format and corresponds to diagnosis or examination.

We do not perform any additional post-processing on these

results.

F. Run Time Analysis

Figure (3(a)), shows the time taken by each method for

synthetic and real dataset. We remark that our proposed

method is faster that most baselines except iteration based

method where only PARAFAC2 decomposition is considered

and no further computations are considered to find rank.



Methods Wine Amino EUCore CMS Wine Amino EUCore CMS

Ro → 4 3 28 − Percent Deviation (%)

Autochrome 4 2 26 OoM 0.00 −33.33 −7.15 −
NSVD 7 6 13 and 35 50 75.00 100.00 −53.57 −

Iterations 3 3 25 11 −25.00 0.00 −10.71 −
Tucker ARD 6 3 33 2 50.00 0.00 17.78 −

BRTF 3 2 49 OoM −25.00 −33.33 75.00 −
APTERA 4 3 29 9 0.00 0.00 3.57 −

TABLE IV: Performance of APTERA for rank estimation. Numbers where our proposed method outperforms other baselines are bolded.
The negative sign indicates solution is under-fitted and positive values (> 0 for deviation) indicates over-fitted solution.

C1: Congenital C2: Neurological C3:

Anomalies Disorders Leukemia

Perinatal conditions Epilepsy Infections
Cardiac anomalies Paralysis Anemia

Club foots Developmental Immunity
disorders disorders

Short gestation Tingling Swollen lymph
nodes

Low birth weight Memory loss Nosebleeds

TABLE V: Phenotype of top 3 components discovered by APTERA.

G. Scalability Analysis

We also evaluate the scalability of our algorithm on syn-

thetic dataset in terms of time needed for increasing load of

input users (K). We report run time for single execution for

each method.A PARAFAC2 tensors X ∈ R
100×100×[100−50K]

are decomposed with fixed target rank R = 10. Figure (3(b))

indicated that all methods seem to scale fairly well with the

data size except BRTF method. The time needed by APTERA

increases very linearly with increase in non-zero elements. Our

proposed method APTERA, successfully estimate the rank of

the large PARAFAC2 tensors in reasonable time as shown in

Figure (3(b)) and is up to average 15−20% faster than baseline

methods except iteration based method (APTERA slower 18%)

where only decomposition is performed. We remark the favor-

able scalability properties of APTERA, rendering it practical

to use for large tensors.

V. CONCLUSION

In this paper, we work towards an automatic, PARAFAC2

tensor mining algorithm that minimizes human intervention.

We encourage reproducibility by making our code publicly

available. Our main contributions are:

• Algorithm: We proposed a new scalable method called

APTERA for discovering low-rank structure in irregular

data, which is based on the finding l-curve corner of

higher order singular values.

• Evaluation: We evaluate our method on synthetic data,

showing their robustness compared to the baselines, as

well as a wide variety of real datasets.
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