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Abstract—What does the space learned by a Convolutional
neural network look like? Can we automatically extract high-
level concepts that concisely summarize this space in a human-
understandable manner? Can we, then, use those concepts for
neural network interpretability? In this work, we define a concept
to be a co-cluster of data instances (e.g., images), raw features
(e.g., pixels), and neuron activations per hidden layer. Such
a co-clusters links human-understandable characteristics like
data instances and raw features with the architectural elements
like neurons of the neural network. In order to extract such
multi dimensional concepts, we propose a framework based on
regularized and constrained coupled matrix factorization, where
the goal of regularization is to force the latent factors to cor-
respond to the sought-after concepts. Our proposed framework
is unsupervised since it only requires unlabeled data instances
and their activations as an input. Through extensive qualitative
and quantitative experimentation on a number of datasets and
architectures we show that our proposed framework is able to
extract coherent and human-understandable concepts. Finally,
we demonstrate the flexibility and versatility of our proposed
framework in its ability to be leveraged as an additional tool
which complements the existing state-of-the-art neural network
interpretability methods.

I. INTRODUCTION

As the field of deep neural network emerged and rose to

being the prominent machine learning paradigm [1] a common

issue that has plagued their widespread adoption is the lack of

interpretability of these models. As the spectrum of domains

where deep learning replaces traditional and orthodox methods

expands, and deep-learning percolate to areas of immediate

applicability to daily life, understanding what networks do

takes on a more central role. Future challenges that machine

learning engineers will face, won’t just be limited to improving

model accuracy, but also debugging [2] and training networks

in order to make them conform to ever evolving regulations

concerning ethics [3] and privacy [4].

Most literature in the area of explainable AI focuses on

providing explanations for pre-trained networks [5], [6], [7],

[8], [9], [10], [11], [12], [13], [14]. While some methods focus

on constructing models which are inherently interpretable

[15], [16], [17], [18], [19], [20]. Our work belongs to the

former category and focuses on providing explanation for

already trained models, or what is colloquially called post-

hoc explanation. Within the strata of post-hoc explanations,

there exist multiple evolutionary branches, some focus on

interpreting the features [21], and others like [22] interprets

the network by breaking down an input prediction into se-

mantically interpretable components and works like [23] focus

on interpreting neurons based on their behaviour when they

activate for entities like different textures, colours and images.

We focus on unsupervised discovery of concepts learned by

the network by trying to cluster the neurons, input features

and inputs themselves in the same latent space. The moti-

vation for doing so comes from works like [24] where it

has been conjectured that natural images usually lie on a

manifold and that a neural network embeds this manifold as a

subspace in its feature space. A Coupled Matrix Factorization

Framework is the most natural choice to model such multi-

modal data and provides the most straightforward framework

to learn structures that depend on multi-faceted inputs, which

in this case happen to be pixels, neurons and input data.

The work that is most aligned with ours goals is ACE[6],

though it being a supervised framework, renders it tangential

to our approach, thus justifying the need for existence of an

unsupervised approach like ours. The goal in ACE[6] is to

explain the prediction of neural networks not in terms of

individual neurons, but rather, by focusing on learning the

concepts utilized by the network that are most sensitive for

a successful prediction, and learning of such concepts is a

supervised process. ACE[6] utilizes existing algorithms or

manual annotations to curate a set of concepts, feed it to the

network and measure the sensitivity of the network to those

concepts using TCAV[25], whereas we try to simultaneously

learn meaningful and coherent concepts[6] already present

in the activation space of the network. ACEs[6] solution,

though elegant relies heavily on domain expert annotators or

additional pre-trained tools. ACE[6] relies upon TCAVs[25]

ability to back-propagate through the network for each input

concept prototype, while we learn our concepts from analyzing

forward propagated internal activations for each input and

don’t assume access to other aspects of the black-box network

nor to other pre-existing tools, unlike ACE. Another line of

work in TCAV[25] focuses on learning vectors which when

measured for their effects on class prediction, align with high-

sensitivity directions in the latent space of the network. We

also utilize TCAV[25] as a means to validate our approach

in section VII and make our case as a viable unsupervised

alternative for network interpretation in domains which lack

access to rich labeled data and in cases where the only



computation available on the network is a forward propagation

through the layers, i.e. evaluation or inference phase.

Our approach aims to find a latent representation for neu-

rons, input features and examples in a common subspace,

where co-clustering them aims to elicit meaningful insights

about the network. Using such a tri-factor clustering, we can

analyze intersections between groups of neurons which fire for

different classes, focus on which input features provide a basic

structure upon which the model discerns its inputs and analyze

an individual example based on their similarity and differences

to other examples. We model our problem as a coupled matrix

factorization, where the model is constrained to appropriate

constraints like non negativity, which aid in interpretability

[26] and the possibility of adding regularizations like group

sparsity, orthogonality etc. to encode meaningful priors into

the model. Given the uniqueness of our approach and a lack

of any framework that can be compared head-to-head, We

compose a demonstrative case-study in section VII where

we analyze the behaviour of a network on a set of images

previously unseen, for this, we train with CIFAR-10 and

evaluate its characteristics by testing it on CIFAR-100. As

there are no established metrics for this problem and a lack

of an analogous work to facilitate a comparison, we use

TCAV [25], LIME[5], GradCAM[7] and GradCAM++[10] to

demonstrate the coherence and validity of our framework. Our

raison d’etre is to approach the problem of concept discovery

in an unsupervised manner, in order to bridge a gap unfulfilled

by [6] and [23]. In doing so develop an unsupervised method-

ology which can seed or supplement other interpretability

methods.

II. RELATED WORK

In our work we aim to interpret a learned model using a set

of images which may or may not have been a part of the set

of training classes of the network. Our work comes in stark

contrast with most existing literature, since the goal in our

work is not to evaluate the network on just a feature or sample

basis as in works like [27], [28], [29], [30], [7], [8], [9], [10].

Works such as [27] visualize a network based on images that

maximize the activation of hidden units and works like [31]

use back-propagation to generate salient features of an image.

Works like [15], [16], [18] focus on explaining a network

by proposing a new framework where the network is forced

to learn concepts and demonstrate their relevance towards

a prediction. This framework relies on prior constraints and

encoding for what is thought to be a concept. In [22], [9] the

focus is on explaining each prediction made by the network

by decomposing the activations of a layer in the network into

a basis of pre-defined concepts, where each explanation a

weighted sum of these concepts, where the weights determine

the impact each concept has towards prediction. Our work has

similarities in philosophy with the previous works, but unlike

SeNN[15] we don’t focus on learning an interpretable model,

instead we focus on unsupervised explanation of an already

trained network. And unlike [23] we do not have a pre-made

notion of concepts, instead we let the model learn underlying

concepts based on the set of examples fed in the analysis. Our

work is orthogonal to both in different aspects and this way

our approach is application agnostic.

Recent work on Network Dissection [32] tries to provide a

framework where they can tie up a neuron in the network

to a particular concept for which the neuron activates. These

concepts can be elements like colour, texture. They accom-

plish this through a range of curated and labeled semantic

concepts whereas our work is unsupervised. Another work

which relies on interpreting the network through the lens of

abstract concepts is TCAV[33]. This work tries to provide

an interpretation into network’s workings in terms of human

interpretable concepts. Like our work, they too rely on the

internal representation of the network to determine the net-

work’s behaviour, but unlike us they utilize manual/pre-defined

concepts and test the network’s sensitivity towards it. The

work presented in SVCCA[34] uses a variant of canonical

co-relational analysis and focuses on learning the complexity

of the representations learned by the network to determine

the dynamics of learning, our work differs as we use the

structure of the learned representation as a guideline for our

factorization framework and don’t comment on the inherent

complexity.

In ACE[6] the authors seek to automatically discover concepts

learned by the network which are of high predictive value, as

measured by their TCAV score [33]. As described earlier the

approach relies on pre-trained tools to process inputs and on

being able to forward and back-propagate over inputs given to

the network.

In Figure 1 we contextualize our work to other works in the

area, most of which are tangential to our approach. While the

axioms of interpretable machine learning are an ever evolving

set of principles, we do so on a few features that help us

highlight the differences between our work and its closest

Neighbours in this space. Our work is the only unsupervised

method in this space of model interpretability which helps

us discover concepts learned by the network in terms of the

examples clustered by the network. ACE[6], SeNN[15] learn

concepts but either by utilizing explicit supervision or by em-

ploying pre-existing trained models, whereas works like [23]

require detailed human labeling of neurons and image pixels

and patches, thus making the process slow and sluggish for

adaptation to a new domain. LIME[5] on the other hand tries to

visualize a linear decision boundary across an input, which we

also approximate by the input’s K-Nearest Neighbours, refer

to Section IV-A3, but unlike our work LIME cannot discover

abstract concepts learned by the network without significant

modifications.

III. PROPOSED METHOD

In this section we begin by outlining the motivation for our

methodology, we then proceed to outline the implementation

schema and optimization problem for our model. Subsequently

we present the model details and lay down the groundwork for

evaluation protocols suited for this method.



Fig. 1: Relevant Work Comparison

Model Features ACE[6] [7],[5],[10] [15],[20] [23],[25] Our work

Post-Hoc Interpretability 3 3 7 3 3

Unsupervised 7 7 Partial 7 3

Multi-Aspect Analysis 7 7 7 7 3

Analysis of Representation Space 7 Inputs Only 7 Inputs Only 3

A. Motivation

Our goal is to visualize the latent representation space

learned by a Neural Network by comparing and contrasting

the behaviour of the network on different types of inputs.

We want to accomplish this in a framework where we can

explain the learned concepts in terms of the inputs that are

used to probe the network. In doing so we can assess the

generalization ability of the network, both to familiar and

unseen datasets, thus providing insights to human evaluators

about the health of the trained network and its suitability

to a particular domain. This is possible because there are

no restrictions on what qualifies as a legitimate dataset for

evaluating network behaviour, thus in theory, we can evaluate

a network on a dataset which is different from its training

dataset and assess the suitability of the architecture to learn

atomic concepts (which may be valid across domains) from

the training data instead of learning its idiosyncrasies.

B. Proposed Model

Given these goals in mind, we lay down the model prin-

ciples behind our objectives. Our approach is a method that

relies on a coupled factorization framework where we compute

embeddings of features like pixels,test examples and individual

neurons in a shared latent space. Our method relies on only

having access to activations of internal layers of a network for

a given input. Additionally, for ease of modeling, we assume

that these activations are non-negative in nature. In case

these assumptions don’t hold for the network, we can relax

the Non-Negativity Constraints on some Factor matrices of

each factorization with the use of semi-NMF[35]. With these

principles as its building block, our model does not introduce

any external learning constraints while training the network,

thus lending it universality. We probe various layers of a

network with a set of test examples, and for each test example,

we store the network’s response across all observed layers. We

do so with an aim to breakdown the process of interpretability

into a process of finding common local structures across

various evaluation examples, where each dimension in the

latent representation is constrained to capture a latent semantic

concept. Thus, through the lens of our model we can hopefully

view individual concepts as a ranked over evaluation examples.

In the following subsections we describe model construction

and provide mathematical details of implementation.

1) Model Construction: For our analysis we need construct

a set of matrices where each matrix Aj in the set is a matrix

∈ R
a j×N
+

, where aj is the number of neurons in layer j of

the network, and N is the number of examples on which

our analysis is conducted. Each column k of matrix Aj , is a

vectorized activation of layer j of the network for a given test

sample k, denoted using NumPy notation by Aj[:, k]. Along

similar lines we construct another set of matrices where each

Matrix Di ∈ R
Si×N
+

where Si is number of pixels in the ith

channel of input images. On the same lines as before, each

column k of matrix Di , is the k th test sample’s ith channel

vectorized.

2) Model: The objective function for our proposed method

is as follows:

L =

C−1∑

i=0

‖Di − PiF‖
2

F +

L−1∑

j=0

‖Aj −O jF‖
2

F +

C−1∑

i=0

λP ‖Pi ‖
2

p+

L−1∑

j=0

λO ‖O j ‖
2

p + λF ‖F‖
2

p s.t . Pi,O j, F, ∈ R
Si×d
+
,R

a j×d
+
,R

d×N
+

optional constraints − ||P[:, i]| |2
2
= 1, | |O[:, i]| |2

2
= 1 ∀i, j

(1)

In Equation 1, C is the number of channels in input data, L is

the number of layers of the network being analyzed - as we

can select the non-negative layers we want to analyze and are

not obligated to include all the layers of any architecture. p is

usually 2 for 2−Norm regularization although for the purposes

of some experiments we instead normalize the column norms

of the Pixel and Neural Factor matrices to unity. We do so

by normalizing the respective matrices to unit column norm

after obtaining the new iterates based on the update steps in

Equation 2.

For each matrix Di in Equation 1, its k th column is the input

data’s channel i vectorized as input. Thus for instance, for a

3-channel image, with image number j of the test set, D0[:, j]

is the vectorized 0
th channel of the j th image and so on.

Each Pi in the first term of the summation in equation 1 is a

latent representation matrix for each pixel in channel i. That is,

Each row of Pi , for instance Pi[k, :] is the latent representation

of channel i’s k th pixel in the latent space.

For each matrix Aj in Equation 1, its k th column is the

activation of layer j of the network for k th test input. Thus

for instance, image number j of the test set, A0[:, j] is the

activation of layer 0 of the network for image j. Please note

that the higher index of the layer, the deeper we are in the

network, though index j doesn’t necessarily correspond one-

to-one with layers in the network.

As each matrix Aj encodes the activity of neurons of layer j

for test inputs. Therefore, each O j in the factorization encodes

the latent representation of neurons of layer j in its rows. That

is, O j[k, :] is the latent representation of k th neuron of layer

j. Similarly, the matrix F encodes in its columns, the latent



representation of each test example fed to the network. That is,

F[:, k] is a d-dimensional latent representation of test sample

k. Each factor matrix in the objective function obeys non-

negativity constraints, and we use multiplicative update rules

as described in [36] to solve for the factor matrices.

Update Steps for solving the factor matrices in Equation 1

are as presented in the following Equation 2 :-

F ← F ∗

∑
i

PT
i

Di +
∑
j

OT
j

Aj

∑
i

PT
i

PiF +
∑
j

OT
j

O jF + λFF

Pi ← Pi ∗
DiF

T

PiFFT
+ λPPi

O j ← O j ∗
AjF

T

O jFFT
+ λOO j

(2)

After each iteration of multiplicative updates for Pi and O j ,

if need be, we normalize their columns to unit squared norm.

3) Model Intuition: We now provide some intuition for our

modeling choices. Our goal is to identify hidden patterns or

concepts that the network learns. To achieve this our model

clusters the test examples, neurons and pixels in the same inner

product space. We achieve this clustering by incorporating a

coupled non-negative matrix factorization framework. In our

learned representation of these 3 types of objects, a high

value along a latent dimension indicates that a particular

latent concept participates in explaining the behaviour of the

object. By constraining the model to adhere to a non negative

framework, we encourage an interpretable sum-of-concepts

based representation[26].

Further elaborating on the learned factor matrices, Each

column j of Matrix Pi ∈ R
Si×d
+

is the activation of the pixels

of channel i for the concept discovered in latent factor j. Col-

lecting such information over all input channels i for a given

j in the respective factor matrices we can uncover the average

activation of pixels across channels for a given concept. This

representation can be thought of as a channel-wise mask over

features in the input, analogous to [5], [12], [37], [38], among

others, but instead we discover a latent concept level mask

as opposed to an input level mask. Matrix F ∈ Rd×N
+

is the

input representation matrix where each column k of F is a

vector in Rd
+

representing the k th example in the same latent

space as Pixels and Neurons. For any input k, A high value

along any component j of its d-dimensional representation

indicates a high affinity of this input towards the latent concept

encoded in the dimension j. P0[: j]-P2[: j] together help us

visualize the pixel activation mask for this latent concept j

as discussed earlier. Collecting all the highest affinity inputs

for each latent factor, we obtain a visual approximation of

the concept learned in this latent dimension. Exploiting the

ability of a Multi-Aspect Factorization framework to rank

inputs to form concepts is how we propose to solve the

problem of concept discovery. Given the unsupervised nature

of this model, it extremely well suited for concept discovery

for neural networks, akin to a similar role played by ACE

[6] for TCAV [25]. Matrices O j’s embed neurons of a layer

j in the same latent space as inputs and features and help us

visualize which neurons in a layer activate for which concept,

we do this by demonstrating the similarity of latent concepts

when measured w.r.t. neurons of a layer. We can also look

at the behaviour of neurons across layers by observing the

cohesiveness of latent space as the neurons go deeper in the

network.

IV. EXPERIMENTAL EVALUATION

In the following subsections we will present the analysis of

the latent space learned by a ResNet-18 [39] when trained on

CIFAR-100 images [40], The Accuracy of the trained network

is around 74% on top-1 classification. Our analysis touches all

the modalities captured by our model, i.e. Analysis of Pixels,

Analysis of Neurons and Analysis of Examples. We present

this analysis in 3 subsections for a given network. We also

released the code1 for verification.

A. Analysis of A ResNet-18 on CIFAR-100 Dataset:

In the following subsections we analyze the behaviour

of a ResNet-182 trained and analyzed on CIFAR-100. Each

subsection represents a modality of analysis, namely, inputs,

Neurons, and input features or pixels themselves.

1) Analysis of Input representations: In this section we

present the analysis of representations learned in the input

representation Matrix F in Table I. We begin by considering

each latent dimension i, which we will represent as a row

in Table I. We compute the total class-wise activation score

of inputs in the row F[i, :] and present the top activated

classes along that latent dimension in the first column of the

corresponding row, top -20 images which had the highest

affinity in this latent dimension and most activated super-

classes in column 2 and 3 respectively. The Images in column

2 of a row are presented in descending order of their affinity

for a particular latent dimensions. The motivation behind ana-

lyzing super class labels is to validate our assertion that each

latent factor captures an abstract concept that is predominantly

present in the member images. We reiterate that these super

class labels were not used in training of the network but only

used as a means to assign a pseudonym to each concept or

latent factor, the validity of which can be verified by looking

at the topmost activated images and the group of top most

activate classes and super classes in Table I. The total number

of Latent Dimensions or Latent concepts for this experiments

was 20, but some latent factors are omitted from Table I for

brevity.

2) Layer-wise Analysis of Neuron representations: In this

section we try to quantify the behaviour of neurons as a cluster

and across layers. We utilize the neuron embedding matrix for

a given layer j, as denoted by O j ∈ R
N j×d
+

, where Nj is the

number of neurons in layer j, whereas d is the number of

latent factors in the factorization. Next we compute pairwise

cosine similarity between the columns of a matrix O j and we

1Code and Data: Link to Code and Data
2 A Pytorch Code Repository for ResNets



TABLE I: Matrix-F Latent Factor Analysis For ResNet-18: Each row of the table corresponds to a row in F and visualizes a latent dimension
of the factorization. The first column shows a few of classes whose images have the highest alignment in this latent direction. The second
column shows top 20 images that have the highest affinity in descending order. The third column shows the top most superclass membership
of images activated along this direction. Such a superclass label helps us assign a pseudonym to the concept collectively represented by
highest affinity images along each latent direction.

Factor: Top Classes Top Images Top 1-2 Super Class

1: kangaroo,beaver,bear large omnivores and herbivores

2: mountain,castle,bridge large man made outdoor things

3: willow, maple, pine, oak trees

4: shark,dolphin,whale fish and aquatic mammals

5: bee,beetle,spider insects

6: tulip,rose,poppy flowers

10: boy,woman,girl,baby people

11: aquarium fish,trout fish

14: sea,plain,could,mountain large natural outdoor scenes

16: apple,orange,pear fruit and vegetables

(a) Cosine Similarity: Layer 0 (b) Cosine Similarity: Layer 1 (c) Cosine Similarity: Layer 2

Fig. 2: Plots of Cosine Similarity of Latent Factors in Layers 0,1,2 of ResNet-18. This highlights the layerwise learning dynamics of the
network and helps us visualize with concepts and classes occupy similar neural regions in a given layer of a network and how they evolve as
we go deeper into the network. In fact, we observe that as we go deeper into the network, the similarity becomes diagonal, showing higher
separation of the latent concepts

do this ∀ j as shown in Figure 2a - Figure 2c. Here Layer

0,1,2 refer to 3 layers analyzed in the ResNet-18 in increasing

order of depth and are not necessarily the first,second and

third layers of the network. In these plots a high value at any

entry (i, j) indicates a higher overlap between the number of

neurons which fire for inputs belonging in the 2 super classes

best approximated by latent factor i and latent factor j. As

indicated in Figures 2a - 2c the activations tend to be more

intra-superclass, a result similar in nature to one observed by

SVCCA[34] , i.e. more concentrated along the diagonal of the

Similarity Matrix as we go deeper down the layers. This is also

borne out by the eigen values of these Similarity Matrices, as

the matrices tend to get closer to Identity, the lower the mean

of first-K eigen-values as shown in 3a.

3) Co-Analysis of Pixels and Inputs: In this section we

analyze the pixel space along with inputs. The Matrices Pi’s

∈ R
Si×d
+

hold the input representation of pixels in the input

channel i where Si is the number of Pixels in Input Channel-

i, or the vectorized size of the channel. Each column of a

matrix Pi represents a feature activation score of all the pixels

in channel i for the given latent factor. Therefore for e.g.,

by collecting information from column 2 of P0,P1 and P2

and resizing them appropriately we get an average pattern of

activation across the pixel space for all the images that belong

to Latent Factor 2, as shown in Figure 4a, and for Latent-

Factor-6 in Figure 5a. This functionality is very similar to

LIME [5], GradCAM[7] and GradCAM++[10] but instead of

individual images we operate on pixel representations which

represent learned concepts. We then take these Latent-Images,

and create a mask where we assign a value of 1 at a pixel

location if it’s activation value is above the median activation

value for the Latent Image and 0 otherwise and overlay it

with the topmost images of the Latent Factor as found in

our analysis of Matrix-F in Table I. To continue the analysis

further we also take around 30 Nearest Neighbours of the input

image as determined by the Latent Space of Matrix-F and give

a distribution over the Latent Concepts of those Neighbouring

images, thereby helping us achieve interpretability on an input-

by-input basis by being able to say that a given image is

close to another, in terms of their concept distribution. Next,

via 2 examples we present a per example case study of

interpretability analysis possible by the use of this model.









TABLE III: Latent Factor Analysis Group Sparsity - Abridged

Factor: Classes Top Images Latent Image

2: dolphin,whale,plain

4: pickup truck,lawn mower, telephone

8: girl,lion,boy

11: plain,mountain,sea

any, in CIFAR-100, thereby demonstrating its ability to truly

generalize. We do this with both regularization schemes, and

in-order to validate and attest the results for generalization, we

take the latent concepts learned by the model over CIFAR-100

and evaluate their TCAV[25] scores 4 for each combination of

latent concept and input class of CIFAR-10. This experiment

also serves to accomplish in principle the ability of our method

to synergize with existing interpretability methods like TCAV

by providing them with seed concepts and help provide a

solution to the issue of cold starts and generalization to

domains with limited labeled data. We present the results of

this experiment, first for the coupled factorization model with

Group Sparsity Regularization in Table III, and its correspond-

ing TCAV scores in Figure 12a. Just as in IV-A1, We display

some latent factors out of 20 for brevity. We provide additional

implementation details and data on Group Sparsity analysis

in Table IV, Total Variation Analysis in Table V and their

corresponding TCAV analysis in Figure 13a and Figure 13b

respectively. All included in section A to ensure verifiability

and encourage reproducibility.

In Table III, Upon gleaning the latent-factors for CIFAR-

100 classes deemed similar by the pre-trained ResNet-18,

we observe that the network clusters CIFAR-100 classes like

dolphin, whale and plain - as seen in latent factor 2. Looking

further into the CIFAR-10 classes that had the highest TCAV

scores for images in latent factor 2, we observe that CIFAR-

10 classes like ship, airplane and bird had a high influence

in the network’s output for images in latent factor 2. Such a

correspondence does fall in line with intuition as images of

ships, airplanes and birds tend to be against a blue backdrop.

Such a feature is common in images of dolphins and whales

as they live in the ocean and also to images of outdoor empty

plains which are normally set against the backdrop of the

sky. Pursuing this investigation further we come across latent

factor 4 in Table III where the network clusters CIFAR-100

classes like Pickup truck, Lawn mower as similar.The highest

activated Classes in CIFAR-10 for latent factor 4 happen to

be Automobile and Truck, which further lends credence to the

belief that the network tries to activate its pathways that learn

features present in vehicles. Next we perform an analogous

but brief analysis on the concepts learned via the factorization

model involving TV Regularization with orthogonality, the

Results of which are in Table V and the corresponding TCAV

scores in Figure 13b. Having a look at the first row in Table V

, i.e. Latent Factor 2, we learn that the network deems CIFAR-

4PyTorch Implementation of TCAV

100 classes Train, Bridge and Castle to be similar in nature and

the most prominent CIFAR-10 classes that have the highest

TCAV for Latent Factor 2 happen to be Truck, Airplane

and Ship. All Vehicular classes in CIFAR-10. Latent Factor

9 displays similar behaviour. Next we look at Latent Factor

5, where the networks clusters CIFAR-100 classes of large

animals like Cattle, Elephant and Camel together. A look at the

maximally scored TCAV classes from CIFAR-10 demonstrates

that network pathways related to CIFAR-10 animal classes like

Cat, Deer and Horse have their highest Activations for Latent

Factor 5.

VIII. CONCLUSIONS

In this paper, we introduced an unsupervised framework

based on coupled matrix factorization for exploration of the

representations learned by a CNN. Our proposed method is

the first such framework to allow for joint exploration of the

representations that a CNN has learned across features (pixels),

activations, and data instances. This is in stark contrast to

existing state-of-the-art works, which are typically restricted

to one of those three modalities, as shown in Fig. 1. As a

result, our proposed framework offers maximum flexibility

and bridges the gap between existing works. Case in point,

in this paper, we demonstrate a number of applications of our

framework drawing parallels to what existing work can offer

compared to our results, including the extraction of instance-

based interpretable concepts (Sec. IV-A1), and based on those

concepts we provide insights on the the behavior of neurons

in different layers (Sec. IV-A2), and instance-level pixel-based

insights (Sec. IV-A3). In future work, we will investigate the

adaptation to our framework to different architectures.
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TABLE IV: Latent Factor Analysis Group Sparsity

Factor: Classes Top Images Latent Image

0: leopard,kangaroo,shrew,tiger

1: woman,man,camel,girl

2: dolphin,whale,plain

3: chair,wardrobe,streetcar

4: pickup truck,lawn mower, telephone

5: lamp,telephone,apple

6: apple,cockroach,orange

7:mountain,oak,pine

8: girl,lion,boy

9: oak,tank,tractor

10: orange,flatfish,shark

11: plain,mountain,sea

12: lion,plate,hamster

13: dolphin,cockroach,otter

14: elephant,cattle,palm tree

15: snail,leopard,porcupine

16: chair,telephone,pickup truck

17: sunflower,tulip,poppy,rose

18: wardrobe,streetcar,bus

19: squirrel,shrew,rabbit

TABLE V: Latent Factor Analysis Total Variation Norm - Inputs Included

Factor: Classes Top Images Latent Image

0: streetcar, bus,wardrobe

1: apple,chair,lamp

2: train,bridge,castle

3: hamster,wolf,baby

4: cloud,shark,trout

5: cattle,elephant,camel

6: cockroach,chair,plain

7: caterpillar,lizard,shrew

8: oak,maple,beetle,pine

9: sea,mountain,cloud,rocket

10: chair,telephone,wardrobe

11: cockroach,whale,dolphin

12: kangaroo,fox,rabbit

13: rose,tulip,sweet pepper

14: bus,house, pickup truck

15: chimpanzee,girl,lion

16: apple,pear,bottle,orange

17: hamster,beaver,lion,leopard

18: wolf,lion,girl

19: crab,beaver,porcupine


