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Adaptive granularity in tensors: A
quest for interpretable structure

Ravdeep S. Pasricha*, Ekta Gujral and Evangelos E. Papalexakis

Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA,

United States

Data collected at very frequent intervals is usually extremely sparse and has

no structure that is exploitable by modern tensor decomposition algorithms.

Thus, the utility of such tensors is low, in terms of the amount of interpretable

and exploitable structure that one can extract from them. In this paper, we

introduce the problem of finding a tensor of adaptive aggregated granularity

that can be decomposed to reveal meaningful latent concepts (structures)

from datasets that, in their original form, are not amenable to tensor analysis.

Such datasets fall under the broad category of sparse point processes that

evolve over space and/or time. To the best of our knowledge, this is the first

work that explores adaptive granularity aggregation in tensors. Furthermore,

we formally define the problem and discuss di�erent definitions of “good

structure” that are in practice and show that the optimal solution is of

prohibitive combinatorial complexity. Subsequently, we propose an e�cient

and e�ective greedy algorithm called ICEBREAKER, which follows a number of

intuitive decision criteria that locally maximize the “goodness of structure,”

resulting in high-quality tensors. We evaluate our method on synthetic, semi-

synthetic, and real datasets. In all the cases, our proposed method constructs

tensors that have a very high structure quality.

KEYWORDS

tensor, unsupervised learning, temporal granularity, tensor decomposition, multi-

aspect data

1. Introduction

In the age of big data, applications deal with data collected at very fine-grained

time intervals. In many real-world applications, the data collected spans a long

duration and can be extremely sparse. For instance, a time-evolving social network

that records interactions of users every second results in a very sparse adjacency

matrix per second if observed at that granularity. Similarly, in spatio-temporal data,

if one considers GPS data over time, discretizing GPS coordinates based on the

observed granularity can lead to very sparse data which may not contain any visible

and useful structure. How can we find meaningful and actionable structures in these

types of data? Plenty of such datasets are multi-aspect in nature and hence can

be modeled using tensors. For instance, a three-mode tensor can represent a time-

evolving graph capturing user-user interactions over a period of time, measuring

crime incidents in a city community area over a period of time (Smith et al., 2017),
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FIGURE 1

Starting from raw CSV files, ICEBREAKER++ discovers a tensor that has a good structure (under various measures of quality, including interpretability

and predictive quality), outperforming traditional fixed aggregation heuristics. Furthermore, ICEBREAKER++ using various notions of locally optimal

structure discovers di�erent resolutions in the data.

or measuring traffic patterns (Zheng et al., 2014). Tensor

decomposition has been used in order to extract hidden

patterns from such multi-aspect data (Kolda and Bader, 2009;

Papalexakis et al., 2016; Sidiropoulos et al., 2017). However,

the degree of sparsity in the tensor, which is a function of the

granularity in which the tensor is formed, significantly affects the

ability of the decomposition to discover a “meaningful” structure

in the data.

Consider a dataset that can be modeled as a three-mode

tensor, where the third mode is temporal as shown in Figure 1. If

the granularity of the temporal mode is too fine (in milliseconds

or seconds), one might end up with a tensor that is extremely

long on the time mode and where each instance of time has

a very small number of entries. This results in an extremely

sparse tensor, which typically is of very high rank, and usually

has no underlying exploitable structure for widely popular

and successful tensor decomposition algorithms (Kolda and

Bader, 2009; Papalexakis et al., 2016; Sidiropoulos et al., 2017).

However, as we aggregate data points over time, the exploitable

structure starts to appear (where-by “exploitable” means the

kind of low-rank structure that a tensor decomposition can

successfully model and extract). In this paper, we set out to

identify what is the best such data-driven aggregation of a tensor

which leads to better, exploitable, and interpretable structure,

and how this fares against the traditional alternative of selecting

a fixed interval for aggregation.

As far as tackling the problem above, there is a considerable

amount of work that focuses on a special case, that of aggregating

edges of a time evolving graph into “mature” adjacency matrices

based on certain graph properties (Sun et al., 2007; Sulo

et al., 2010; Soundarajan et al., 2016). In our work, however,

we address the problem in more general terms, where the

underlying data can be any point process that is observed over

time and/or space, and where the aggregation/discretization

of the corresponding dimensions directly affects our ability

to extract interpretable patterns via tensor decomposition.

Effectively, as shown in Figure 1, we work toward automating

the data aggregation starting from raw data into a well-

structured tensor. This paper is based on the preliminary work

which has appeared in arxiv (earlier version arXiv:1912.09009v1;

Pasricha et al., 2019) and non-archival workshop (Pasricha et al.,

2020).

Our contributions to this work are as follows:

• Novel problem formulation: We formally define the

problem of optimally aggregating a tensor, which is formed

from raw sparse data in their original level of aggregation,

into a tensor with exploitable and interpretable structure.

We further show that solving this problem optimally is

computationally intractable. To the best of our knowledge,

this paper is the first to tackle this problem in its general

form, and we view our formulation as the first step

toward automating the process of creating well-behaved

tensor datasets.

• Practical algorithm: We propose a practical, efficient, and

effective algorithm that is able to produce high-quality

tensors from raw data without incurring the combinatorial

cost of the optimal solution. Our proposed method

follows a greedy approach, where at each step, we decide

whether different “slices” of the tensor are aggregated based

on a variety of intuitive functions that characterize the

“goodness of structure” locally.

• Experimental evaluation: We extensively evaluate our

proposed method on synthetic, semi-synthetic, and

real data where we use popular heuristic measures of

structure goodness to measure success. Furthermore,

we conduct a data mining case study on a large real

dataset of crime over time in Chicago, where we
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identify interpretable hidden patterns in multiple

time resolutions.

We make our implementation publicly available1 in order to

encourage reproducibility of our results.

2. Problem formulation

2.1. Tensor definition and notations

Tensors are multi-dimensional extensions of matrices, and

tensor decompositions are a class of methods that extract

latent structure from tensor datasets by extending techniques

such as principal component analysis and singular value

decomposition. The different “dimensions” of a tensor are

usually referred to as “modes.” In this paper, we focus on the

CANDECOMP/PARAFAC (henceforth referred to as CP for

brevity) decomposition (Carroll and Chang, 1970; Harshman,

1970), which is the “rank decomposition” of a tensor, i.e., the

decomposition of an arbitrary tensor into a sum of R rank-

one tensors. Mathematically, for a three-mode tensor X, the

CP decomposition is X ≈

R
∑

r=1

A(:, r) ◦ B(:, r) ◦ C(:, r), where

◦ is the generalized outer product. Matrices A,B, and C are

called “factor matrices,” and each column corresponds to a latent

pattern, directly relating an entity of the corresponding mode

to a value that can be roughly construed as a soft clustering

coefficient (Papalexakis et al., 2012). CP has arguably been the

most popular tensor decompositionmodel in applications where

the interest is to extract interpretable patterns for exploratory

analysis, and thus, we adopt this decomposition model as our

standard in this work. In the interest of space, we refer the

reader to a number of available surveys (Kolda and Bader,

2009; Papalexakis et al., 2016; Sidiropoulos et al., 2017). We

denote tensors as X and matrices as X, and we adopt Matlab-like

notation for indexing.

2.2. Tensor decomposition quality

Unsupervised tensor decomposition, albeit very popular,

poses a significant challenge: how can we state whether a

computed decomposition is of “high quality,” and how can we

go about defining “quality” in a meaningful way? Unfortunately,

this happens to be a very hard problem to solve (Papalexakis,

2016) and defining a new measure of quality is beyond the scope

of this paper. However, there has been a significant amount of

work in that direction, which basically boils down to (1) model-

based measures, where the quality is measured by how well a

given decomposition represents the intrinsic hidden structure

1 https://github.com/ravdeep003/adaptive-granularity-tensors

of the data and (2) extrinsic measures, where the quality is

measured by how well the computed decomposition factors

perform in a predictive task. However, extrinsic measures do

not generalize, as they specialize to a particular labeled task, and

in general, we cannot assume that labels will be available for

the data at hand. Thus, in this study, we focus on model-based

measures, which can provide a general solution.

In model-based measures, the most straightforward one

is the fit, i.e., how well does the decomposition approximate

the data under the chosen loss function, in a low rank. Low

rank is key because the number of components (rank) has

to be as small and compact as possible in order to lend

itself to human evaluation and exploratory analysis. However,

the fit is unstable and prone to errors especially in real and

noisy data, thus the community has collectively turned its

attention to more robust measures such as the Core Consistency

Diagnostic (CORCONDIA for short) (Bro and Kiers, 2003),

which measures how well the computed factors obey the

CP model.

Both types of quality measure capture different elements of

what an end-user would deem good in a set of decomposition

factors. In this paper, we are going to use such popular measures

of quality in order to characterize the quality of a given tensor

dataset X. In order to do so, we assume that we have a function

Q
(

X
)

, which optimizes the quality measure q () for a given

tensor over all possible decomposition ranks R2, i.e.,

Q
(

X
)

= max
R

q
(

X,A,B,C
)

(1)

where A,B, and C are the R-column factor matrices for X.

Finally, a useful operation is the n-mode product, where amatrix

W is multiplied by the n-th mode of a tensor (predicated on

matching dimensions in the n-th mode of the tensor and the

rows of the matrix), denoted as X ×n W. For instance, in an

I× J×K tensor where n = 3 andW of size K × K∗, the product

X×n Wmultiplies all third mode slices of X withW and results

in an I × J × K∗ tensor.

2.3. The Trapped Under Ice problem

To give the reader an intuition of the problem, consider an

example of a time-evolving graph that captures social activity

over the span of some time. This example can be modeled

as a three-mode tensor X of dimensions I × J × K where

“sender” and “receiver” are the first two modes, “time” being

the third mode, and non-zero entry in the tensor represents

communications between users at a particular time. If the time

granularity is extremely fine-grained (milliseconds or seconds),

2 In practice, this is done over a small number of low ranks, since

low-rank structure is desirable.
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there might be only a handful of interactions/edges between

nodes at a particular timestamp, resulting in an extremely

sparse adjacency matrix for that timestamp, which, in turn,

results in an extremely sparse tensor overall and to have a high

tensor-rank as a result. In that case, X might not have any

interpretable low-rank structure that can be exploited by CP.

In this example, we assume that the third mode (time mode)

is too fine-grained but in reality, any mode (one or more)

can be extremely fine-grained. For example, in spatio-temporal

data, where the first two modes are latitude and longitude and

the third mode is time, all three modes can suffer from the

same problem.

Given tensor X which is created using the “raw”

granularities, how does one find a tensor (say Y) which

has a better exploitable structure and hence can be decomposed

into a meaningful latent structure. This is informally the

Trapped Under Ice problem that we define here (which

draws an analogy between the good structure that may

exist within the data as being trapped under the ice

and not visible by mere inspection). Trapped Under Ice

has an inherent assumption that the mode in which we

aggregate is ordered (e.g., representing time or space), thus

permuting the third mode will lead to a different instance of

the problem.

More formally we define our problem as follows:

Given a tensor X of dimensions I × J × K Find:

A tensor Y of dimensions I × J × K∗ with K∗ ≤ K such

that

max
W

Q
(

X×3 W
)

whereQ is a measure of goodness andW(i, j) = 1 if slice i

in tensor X is aggregated into slice j in the resulting tensor,

otherwiseW(i, j) = 0.

At first glance, Trapped Under Icemight look like a problem

amenable to dynamic programming, since it exhibits the

optimal substructure property. However, it lacks the overlapping

subproblems property, which is across the set of different W

matrices (e.g., two different matrices may have overlapping

subproblems) but not within any single W. Thus, we still have

to iterate over 2K−1 W’s, refer Section 2.4 for more details.

Structure of W: The matrix W has a special structure. For

example, consider a three-mode tensor X of dimensions 10 ×

10× 10, with the third mode being the time mode. Suppose that

the optimal level of aggregation for Y is K∗ = 3.

In this case, W is of size 3 × 10 and an example of such a

matrix is

W =







1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1







ThisW aggregates the first three slices of X to form the first

slice of Y, then next three to form the second slice, and last four

to form the third slice. No two W matrices will produce the

same aggregation. They can have the same K∗ but the order of

aggregation of slices will be different.

2.4. Solving Trapped Under Ice optimally
is hard

Solving Trapped Under Ice optimally poses a number of

hurdles. First and foremost, the hardness of the problem

depends on the definition of the function Q, and most

reasonable and intuitive definitions are very hard to optimize

since they are non-differentiable, non-continuous, and not

concave. So far, in the literature, to the best of our knowledge,

there are only heuristics for this quality function. Even so, those

heuristic functions can only be evaluated on a single already

fully-aggregated tensor, not a partially aggregated version

thereof. Thus, Trapped Under Ice can only be solved optimally

via enumerating all admissible solutions and choosing the best.

In order to conduct this enumeration, we need to calculate

the cardinality of the set of all W for a given instance of the

problem.

Lemma 1. For an instance of a problem with K initial slices, the

cardinality of the set of allW is 2K−1

Proof. To get K∗ aggregated slices, there are
( K−1
K∗−1

)

ways

to choose each of them leading to a different W. There are

a number of ways that K − 1 partition slots can be filled,

partitioned by K∗ − 1 blocks. In order to get the final number,

we need to sum up over all potential K∗:

K−1
∑

K∗=0

(

K − 1

K∗

)

= 2K−1

The direct corollary of the above lemma is that

solving optimally Trapped Under Ice requires calling

the function Q O
(

2K
)

times, which is computationally

intractable. There may be a small room for improvement

by exploiting special structure in the set of all

W, however, given discontinuities in our objective

function Q, this is not a feasible alternative either.

In this paper, we define proxy quality functions

Q that lend themselves to partial evaluation on a

partially aggregated solution, thus allowing for efficient

algorithms Thus, in the next section, we propose

a greedy approach that locally optimizes different

criteria quality.
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3. Proposed methods

In this section, we propose our efficient and effective

greedy algorithm called ICEBREAKER which takes a tensor X

as an input, which has been created directly from raw data,

and has no exploitable structure and returns a tensor Y,

which maximizes the interpretable and exploitable structure.

The basic idea behind ICEBREAKER is to make a linear pass

on the mode for which the granularity is suboptimal and

using a number of intuitive and locally optimal criteria for

the goodness of structure (henceforth referred to as utility

functions), we greedily decide whether a particular slice across

that mode needs to be aggregated3 into an existing slice

or contains good-enough structure to stand on its own.

ICEBREAKER can choose from a number of intuitive utility

functions which are based on different definitions of good

quality in matrices.

3.1. The ICEBREAKER algorithm

Algorithm 1 gives a high-level overview of ICEBREAKER.

More specifically, the algorithm takes a three-mode tensor

X of dimension I × J × K as an input and loops

over all the K slices of tensor X. Two slices next to

each other get aggregated into a single slice if a certain

utility function has stabilized, i.e., if aggregating the two

slices does not offer any additional utility (larger than a

particular threshold), then the second slice should not be

aggregated with the first and should mark the beginning of a

new slice.

Consider a three-mode tensor X with time as the third

mode of dimension I × J × K is run through ICEBREAKER with

a particular utility function. Our algorithm iterates over the

time mode (K slices) and aggregates slices as decided by the

utility function. ICEBREAKER is agnostic to the utility function

used. Let us consider a slice that has been aggregated into a

single slice from indices i to j − 1 called the previous slice and

another aggregated slice from indices i to j called a candidate

slice. Both previous and candidate slices are passed to the utility

function separately to obtain a value each called previous and

current values, respectively. These values are compared (line 5

in Algorithm 1) to decide whether jth slice is absorbed(line 6 in

Algorithm 1) into previous slice or previous slice has stabilized

and entry is added in W to indicate which indices of tensor X

are aggregated together(line 8− 9 in Algorithm 1). Now jth slice

becomes the previous slice and aggregated slice of j and j + 1

3 For the purposes of our work, we use matrix addition as aggregation

of slice but this might not be the case and would depend on the problem

domain. Other aggregation functions that can be used are OR, min, max,

depending on the application domain (e.g., binary data).

Input: Tensor X of dimension I × J × K

Output: Tensor Y of dimension I × J × K1and matrix W

of size K1 × K

1: i = 1; j = 2

2: previousValue = UtilityFunction(X(:, :, i))

3: while j ≤ K do

4: currentValue = UtilityFunction(sum(X(:, :, i : j), 3)

5: if previousValue S currentValue then

6: j = j+1 {Aggregate Slice}

7: else

8: {Create a New Slice}

Add a row in W with value as 1 for indices i

to j− 1.

{Update indices for next candidate slice}

9: i = j; j = j+ 1;

10: previousValue = UtilityFunction(X(:,:,i));

11: end if

12: end while

13: Y = X×3 W

14: return Y and W

Algorithm 1. ICEBREAKER.

become the candidate slice, the whole process is repeated until

all the slices are exhausted.

Note that ICEBREAKER’s complexity is linear in terms of the

slicesK of the original tensor, and its overall complexity depends

on the specific utility function used (which is calledO(K) times).

3.1.1. Utility functions

In this subsection, we summarize a number of intuitive

utility functions that we are using in this paper. This list is

by no means exhaustive and can be augmented by different

functions (or function combinations) that capture different

elements of what is good structure and can be informed by

domain-specific insights.

1. Norm: We use multiple norm types to find the adaptive

granularity of a tensor. For a given threshold, if the rate of

change of norm between the previous and candidate slice is

less than the threshold, the candidate slice is not selected.

Our assumption, in this case, is that no significant amount

of information is being added to the previous slice and is

considered to have been stabilized. Matrix W is updated

accordingly with indices of the previous slice (aggregated

slices in the previous slice). Otherwise, the candidate slice

is selected and the process continues until all the slices are

exhausted. Different norms demonstrated in this work are

Frobenius, 2-norm, and Infinity norm.

Frontiers in BigData 05 frontiersin.org
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Input: Tensor Y of dimension I × J × K

Output: One Tensor for each iteration

1: while K ≤ 1 do

2: for all Uitlity Functions do

3: [Z, W] = ICEBREAKER (Y)

4: end for

5: Select Z with the best Realtive fit

{Third mode dimension}

6: K1 = size(X, 3)

7: if K1 == K then

8: break;

9: else

10: K = K1

11: Y = Z

12: end if

13: end while

14: return one Tensor for each iteration

Algorithm 2. ICEBREAKER++.

2. Matrix rank: In the case of matrix rank, we focus on the 95%

reconstruction rank, which is typically much lower than the

full rank of the data, but captures the essence of the number

of components within the slice. In this case, we consider

the previous slice to be stabilized if the matrix-rank of the

previous slice decreases by the addition of a new slice, no

more slices are added and an entry in matrix W is added.

We keep aggregating slices if the matrix-rank of the slice is

increasing or remains constant.

3. Missing value prediction: If a piece of data has a good

structure, when we hide a small random subset of the

data, the remaining data can successfully reconstruct

the hidden values, under a particular model that we

have chosen. To this end, we employ a variant of matrix

factorization-based collaborative filtering (Koren, 2009)

as a utility function to see how good is the aggregated

matrix in predicting a certain percent of missing values.

This utility function takes the percent of missing values as

a parameter and hides those percent of non zeros values

in the matrix. Our implementation of matrix factorization

with Stochastic Gradient Descent tries to minimize the

loss function: minU,V
∑

i,j∈� RMSE
(

Aij − Ui,: · V:,j
)

where A is a given slice, U and V are factor matrices

for a given rank (typically chosen using the same

criterion as the matrix rank above), and � is the set of

observed (i.e., non-missing) values. In order to create

a balanced problem, since we are dealing with very

sparse slices, we conduct negative sampling where we

randomly sample as many zero entries as there are non-

zeros in the slice, and this ends up being the � set of

observed values.

3.2. The ICEBREAKER++ algorithm

ICEBREAKER algorithm returns a tensor Y as an output that is

considered to have an exploitable and better structure than the

input tensor X. The idea behind ICEBREAKER++ is to recursively

feed the output back to ICEBREAKER until the third mode is

reduced to a single slice (matrix) or the dimension of the

third mode does not change. ICEBREAKER algorithm returns a

tensor associated with each utility function. Hence, if we used

five utility functions, we would get 5 tensors associated with

each of them. Now we select the tensor with the highest CP

Fit (see Section 4.1), use that as input for ICEBREAKER, and

we repeat this process until the stopping condition is met.

The output of each iteration is a candidate tensor. In the

end, we have multiple tensors (one for each iteration) which

have different temporal resolutions, which can help us get a

tensor with the optimal resolution based on the evaluation

measures used. Algorithm 2 describes the process discussed in

this section.

4. Experimental evaluation

In this section, we present a thorough evaluation of

ICEBREAKER++ using variety of data, including synthetic,

semi-synthetic, and real data. We empirically evaluate

our analysis using a number of criteria described

in detail below. We implement our method in

Matlab using the tensor toolbox library (Bader et al.,

2015).

4.1. Evaluation measures

When formulating the problem, we neither specify a quality

function Q to be maximized nor did we use such a function

in our proposed method. The reason for that is that we reserve

the use of different quality functions as a form of evaluation. In

particular, we use the two following notions of quality:

• CP Fit: To evaluate the effectiveness of our method, we

compute the CP fit of the computed tensor for a particular

rank with respect to the input tensor.

Relative Fit = 1−
( ||XInput − Xcomputed||F

||XInput||F

)

(2)

• CORCONDIA: We employ AutoTen (Papalexakis, 2016),

which essentially searches for the maximal number of

components which attains a high CORCONDIA (Bro and

Kiers, 2003) score, within a user-defined search space.

AutoTen returns that number of components (i.e., the low
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rank) and the corresponding CORCONDIA score, which

we use as our quality metric.

We should note at this point that the two quality measures

above are far from continuous and monotonic functions, thus

we do not expect that our method progressing the quality will

monotonically increase. Thus, we calculate the quality for the

final solution of ICEBREAKER++, and we reserve investigating

whether monotonic and well-behaved quality functions exist for

future work.

In our experiments, we used five utility functions (see

Section 3.1.1) namely Frobenius norm, 2-norm, Infinity norm,

Matrix Rank, and Missing Value Prediction. In the case of

synthetic datasets, we ran all the utility functions once except for

Missing Value Prediction which we ran 10 times. In case of both

semi-synthetic and real datasets, in the interest of computational

efficiency, we ran all the utility functions once.

4.2. Baseline methods

A naive way to find tensor Y can be by aggregating time

mode based on some fixed intervals. If time granularity was

in milliseconds, then combining one thousand slices to form

slices of seconds granularity reduces the third dimension of

tensor X from K to K/1, 000. This can be applied incrementally

from seconds to minutes and so on to find a tensor that has

some exploitable structure. We compare the resulting tensor Y

determined by ICEBREAKER against tensors constructed with fixed

aggregations. For fixed aggregation, we aggregate the temporal

with a window size of 10, 100, and 1, 000 for synthetic data.

For semi-synthetic and real datasets, we use appropriate time

windows accordingly.

4.3. Performance for synthetic data

4.3.1. Creating synthetic data

In order to create a synthetic dataset, we follow a

two-step process:

1. We create a random sparse tensor of specific sparsity.

2. Subsequently, we randomly distribute (drawn from a uniform

distribution) non zero entries in each slice over some fixed

number of slice as explained in below example.

Example: Consider a three-mode tensor X of dimension I× J×

K, for purpose of this example, consider K = 4 as shown in

Figure 2. Now for each slice of size I × J, distribute randomly

(drawn from Uniform distribution) all the non-zeros entries

across W slices preserving the I and J indices, creating a tensor

of the size I × J × W. Now append all the tensors in the same

order as they appeared in the original tensor, we get a resulting

tensor of size I×J×4W, which is used as an input for ICEBREAKER.

Thus, if the original tensor is of size I × J × K and bucket size

W, the resulting tensor is of the size I× J×KW approximately4.

Table 1 shows the synthetic data used for experiments.

4.3.2. Results for synthetic data

In order to evaluate the performance of ICEBREAKER++, we

measure CORCONDIA and fit it on 10 synthetic datasets for

both types of datasets as mentioned in Table 1. In interest of

conserving space, we only show one set of results for both

synthetic datasets. The leftmost part of Figures 3, 4 show the

best fit at end of each iteration. The number on top of the dots

represents the dimension of the third mode after each iteration.

The dotted line in the plot shows the fit of the input tensor

and fixed intervals tensor5. The rightmost part of Figures 3, 4

show the CORCONDIA computed at the end of each iteration

and the absolute change of CORCONDIA. Absolute change of

CORCONDIA is computed as shown below:

abs(corcondia(j+ 1)− corcondia(j))

The dotted line in the plot represents CORCONDIA value

for the fixed intervals tensor. When there is a sudden drop in

the value of CORCONDIA, we consider the iteration before as

a suitable candidate for tensor analysis. In the case of SD1 that

would be iteration number 2 and the resulting tensor of size

100 × 100 × 8. In the case of SD2 that would also be iteration

number 2 and the resulting tensor of size 100× 100× 57.

4.4. Performance for semi-synthetic data

4.4.1. Creating semi-synthetic data

In this study, we used the Enron dataset (Priebe et al.,

2006; Bader et al., 2007), which is a dataset of the number of

email exchanges between employees spread over 44 months.

Each month is represented by a matrix. To create the semi-

synthetic data, we use step 2 as described in the generation of

synthetic case. We take the non-zero elements and randomly

distribute non zero entries in each slice over some fixed number

of the slice. For this dataset, we converted the monthly data into

weekly, daily, and hourly data. Non-zero entries in each slice

were distributed over four different candidate slices for creating

the weekly dataset (roughly approximating 4 weeks as a month).

In the case of daily, each slice of monthly data was distributed

over 30 different slices as mentioned in Table 2 and finally in

4 The number of slice can be less than KW, since slice for each non-

zero value is selected randomly, there can be a case where a slice is not

selected.

5 The number in the parenthesis represents the dimension of the third

mode for that tensor.
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FIGURE 2

Creating synthetic data.

TABLE 1 Table of synthetic datasets analyzed.

Dataset Original dimension Window size (W) Approximate final dimension Number of datasets

SD1 100× 100× 10 50 100× 100× 500 10

SD2 100× 100× 100 50 100× 100× 5, 000 10

the case of hourly, each non zero entry in the monthly slice was

distributed over 720 slices (24× 30).

4.4.2. Results for semi-synthetic data

The leftmost parts of Figures 5–7 show the fit of different

iterations and the rightmost part of the Figures 5–7 show the

CORCONDIA computed at different iterations. In the case of

Enron Weekly, we see a sudden drop in CORCONDIA after

iteration 1 as shown in Figure 5 and the corresponding tensor is

of size 184×184×17. In the case of Enron Daily, we do not see a

significant change in CORCONDIA values in two iterations and

corresponding tensors are of size 184×184×78 and 184×184×5

giving us tensors of different granularity.

In the case of Enron Hourly, we see a drop in CORCONDIA

after iterations 1 and 2 as shown in Figure 7. In this case,

practitioner can make choice between a tensor of resolution

184×184×469 or 184×184×34 depending on what evaluation

metric they value more, fit, CORCONDIA, or both. Tensor after

iteration 2 (184× 184× 34) seems to have a good score for both
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FIGURE 3

CANDECOMP/PARAFAC (CP) fit and Core Consistency Diagnostic (CORCONDIA) of best fit tensor and its absolute change at each iteration for

SD1.

FIGURE 4

CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for SD2.
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TABLE 2 Table of semi-synthetic datasets analyzed.

Dataset Original dimension Window

size (W)

Approximate

final

dimension

Enron weekly 184× 184× 44 4 184× 184× 176

Enron daily 184× 184× 44 30 184× 184× 1, 320

Enron hourly 184× 184× 44 720 184× 184× 31, 680

fit and CORCONDIA whereas the Tensor after iteration 1 has a

good CORCONDIA score but not a good CP fit.

4.5. Data mining case study

4.5.1. Chicago crime dataset

For our case study, we use a dataset provided by the city

of Chicago6 that records different types of crime committed

in different areas of the city over a period of time (Smith

et al., 2017). The tensor we create has modes (area, crime,

and timestamp), where “community area” and “crime” are

discretized by the city of Chicago, and “timestamp” is the

coarsely aggregated (hourly) timestamp. The dates that we

focused was on a span of 7 years, from 13 December 2010 to

11 December 2017.

We ran ICEBREAKER++ on this dataset which is of size

77 × 32 × 61, 321, and in the right most part of Figure 8,

we show its CORCONDIA for each iteration and we observe

that iterations 3, 4, and 5 have high values of CORCONDIA,

which would suggest they offer a resolution with an exploitable

structure. Iterations 1 and 2 also have decent CORCONDIA

values. Given these two ranges of CORCONDIA values,

we decided to drill down and look into the actual tensor

components that can be extracted from those different

tensors. In the interest of space, we took the tensor returned

by iteration 2 as X1, the tensor X2 and tensor X3 are

returned by iterations 3 and 4, respectively. Tensor X1

contains three high-quality components, whereas X2 and X3

contain two.

Figures 9–11 shows sets of patterns7 for X1, X2, and X3,

respectively: interestingly, factor 1 of X1 and factor 1 of X2

pertain to similar spatial and criminal pattern. As shown in

Figures 10, 11, we observed that both factors of tensors X2 and

X3 pertain to similar spatial and criminal patterns. In summary,

6 https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-

Present/ijzp-q8t2

7 We omit plotting the temporal mode since we lack external

information that we can potentially correlate it with, however, an analyst

with such side information can find the di�erent time resolutions of X1,

X2, and X3 useful.

tensors X1, X2, and X3 capture similar interpretable patterns

over different temporal resolutions.

4.5.2. Comparison against fixed aggregation

A natural question is whether the results are qualitatively

“better” than the ones by a fixed aggregation. Answering

this question heavily depends on the application at hand,

however, here we attempt to quantify this in the following

way: intuitively, a good set of components offers more diversity

in much of the data it covers. For instance, a practitioner

would prefer a set of results for the Chicago crime dataset

where the components span most of the regions of the

city and uncover diverse patterns of crime, over a set of

components that seem to uncover a particular type of crime.

Even though there may be a number of confounding factors,

aggregating on a regular time interval may be very good in

capturing periodic activity (in this example, crime that exhibits

normal periodicity happens to coincide with the aggregation

resolution we have chosen), whereas aggregating adaptively

may help discover the structure that is more erratic and more

surprising. In order to capture this and test this hypothesis,

we compute the coverage of entities for the first and second

mode of the tensor (i.e., areas of Chicago and crime types

in this example) in all the discovered components: for each

component, we measure the top-k entities, and through that,

we compute the empirical probability distribution of all entities

in the results. A more preferable set of results will have

higher coverage, resulting in distribution with higher entropy.

In Table 3, we show the entropy for both modes 1 and

2 for ICEBREAKER++ and for the different fixed aggregations

(averaged over 10 different runs), where ICEBREAKER++ overall

offers more diverse patterns in both space and criminal

activity.

5. Related work

To the best of our knowledge, this is the first attempt

at formalizing and solving this problem, especially as

it pertains to the tensor and multi-aspect data mining

domain. Nevertheless, there has been significant amount

of work on temporal aggregations in graphs (Sun et al.,

2007; Sulo et al., 2010; Soundarajan et al., 2016) and in

finding communities in temporal graphs (Gorovits et al.,

2018). In the graph literature, the closest work to ours is

Soundarajan et al. (2016), in which the authors look at

aggregating stream of temporal edges to produce a sequence

of structurally mature graphs based on a variety of network

properties.

In the tensor literature, Almutairi et al. (2021) solved the

inverse of this problem, where the goal is to disaggregate

a tensor. Concurrently to our work, Kwon et al. (2021)
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FIGURE 5

CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for Enron Weekly.

FIGURE 6

CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for Enron Daily.

developed a streaming CP decomposition that works on the

original granularity of the data, instead of preprocessing the

tensor in order to identify one or more optimal aggregations.

We reserve a full investigation of connections between our

problem formulation and Kwon et al. (2021)’s study for future

work.
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FIGURE 7

CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for Enron Hourly.

FIGURE 8

CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for Chicago Crime Dataset.
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FIGURE 9

Analyzing the Chicago data from iteration-2 (X1). Chicago heatmap value ranges from 0.0 to 1.0.

FIGURE 10

Analyzing the Chicago data from iteration-3 (X2). Chicago heatmap value ranges from 0.0 to 1.0.
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FIGURE 11

Analyzing the Chicago data from iteration-4 (X3). Chicago heatmap value ranges from 0.0 to 1.0.

TABLE 3 The entropy of top-3 components in factors for the area and crime type.

Iteration Iteration Iteration Iteration Iteration Fixed Fixed Fixed Fixed

1 2 3 4 5 Interval-24 Interval-168 Interval-720 Interval-8640

Area 2.8554 2.6810 2.5850 2.5850 2.5850 2.7255 2.5850 2.5850 2.5850

Crime 2.8783 2.7255 2.2516 2.2516 2.0850 2.4362 2.2516 2.2516 2.1183

Black color is best icebreaker entropy and red color is best fixed interval entropy.

6. Conclusions

In this study, we are, to the best of our knowledge,

the first to define and formalize the Trapped Under Ice

problem in constructing a tensor from raw sparse data.

We demonstrate that an optimal solution is intractable

and subsequently proposed ICEBREAKER and ICEBREAKER++,

a practical solution that is able to identify good tensor

structure from raw data and construct tensors from the same

dataset that pertain to multiple resolutions. Our experiments

demonstrate the merit of ICEBREAKER++ in discovering useful

and high-quality structures and providing tools to data

analysts in automatically extracting multi-resolution patterns

from raw multi-aspect data. In the future, we will work

toward extending ICEBREAKER in cases where more than

one mode is Trapped Under Ice (naively one can apply

ICEBREAKER to each mode sequentially, but this disregards joint

variation across modes) and extend ICEBREAKER for higher-

order tensors.
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