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Adaptive granularity in tensors: A
quest for interpretable structure

Ravdeep S. Pasricha*, Ekta Gujral and Evangelos E. Papalexakis

Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA,
United States

Data collected at very frequent intervals is usually extremely sparse and has
no structure that is exploitable by modern tensor decomposition algorithms.
Thus, the utility of such tensors is low, in terms of the amount of interpretable
and exploitable structure that one can extract from them. In this paper, we
introduce the problem of finding a tensor of adaptive aggregated granularity
that can be decomposed to reveal meaningful latent concepts (structures)
from datasets that, in their original form, are not amenable to tensor analysis.
Such datasets fall under the broad category of sparse point processes that
evolve over space and/or time. To the best of our knowledge, this is the first
work that explores adaptive granularity aggregation in tensors. Furthermore,
we formally define the problem and discuss different definitions of “good
structure” that are in practice and show that the optimal solution is of
prohibitive combinatorial complexity. Subsequently, we propose an efficient
and effective greedy algorithm called IceBreaker, which follows a number of
intuitive decision criteria that locally maximize the "goodness of structure,”
resulting in high-quality tensors. We evaluate our method on synthetic, semi-
synthetic, and real datasets. In all the cases, our proposed method constructs
tensors that have a very high structure quality.

KEYWORDS

tensor, unsupervised learning, temporal granularity, tensor decomposition, multi-
aspect data

1. Introduction

In the age of big data, applications deal with data collected at very fine-grained
time intervals. In many real-world applications, the data collected spans a long
duration and can be extremely sparse. For instance, a time-evolving social network
that records interactions of users every second results in a very sparse adjacency
matrix per second if observed at that granularity. Similarly, in spatio-temporal data,
if one considers GPS data over time, discretizing GPS coordinates based on the
observed granularity can lead to very sparse data which may not contain any visible
and useful structure. How can we find meaningful and actionable structures in these
types of data? Plenty of such datasets are multi-aspect in nature and hence can
be modeled using tensors. For instance, a three-mode tensor can represent a time-
evolving graph capturing user-user interactions over a period of time, measuring
crime incidents in a city community area over a period of time (Smith et al., 2017),
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FIGURE 1

structure discovers different resolutions in the data.

Starting from raw CSV files, IceBreaxer++ discovers a tensor that has a good structure (under various measures of quality, including interpretability
and predictive quality), outperforming traditional fixed aggregation heuristics. Furthermore, IceBreaker++ using various notions of locally optimal

-t 1 (61020)

Absolute Change

L) vl 242554)

Pined wearve 14000641 = 20 viea veervu 2y 20

Finnd weervnl 7 20004) Fined weervn 140 M4)

ses Fined terval BAAXE) Fined Wnterval- T20084)

Obentiny 0 Fined weervw S4400) 0
1 2.3 4 5 6 01 2 3 4 5

Iterations Iterations

or measuring traffic patterns (Zheng et al., 2014). Tensor
decomposition has been used in order to extract hidden
patterns from such multi-aspect data (Kolda and Bader, 2009;
Papalexakis et al., 2016; Sidiropoulos et al., 2017). However,
the degree of sparsity in the tensor, which is a function of the
granularity in which the tensor is formed, significantly affects the
ability of the decomposition to discover a “meaningful” structure
in the data.

Consider a dataset that can be modeled as a three-mode
tensor, where the third mode is temporal as shown in Figure 1. If
the granularity of the temporal mode is too fine (in milliseconds
or seconds), one might end up with a tensor that is extremely
long on the time mode and where each instance of time has
a very small number of entries. This results in an extremely
sparse tensor, which typically is of very high rank, and usually
has no underlying exploitable structure for widely popular
and successful tensor decomposition algorithms (Kolda and
Bader, 2009; Papalexakis et al., 2016; Sidiropoulos et al., 2017).
However, as we aggregate data points over time, the exploitable
structure starts to appear (where-by “exploitable” means the
kind of low-rank structure that a tensor decomposition can
successfully model and extract). In this paper, we set out to
identify what is the best such data-driven aggregation of a tensor
which leads to better, exploitable, and interpretable structure,
and how this fares against the traditional alternative of selecting
a fixed interval for aggregation.

As far as tackling the problem above, there is a considerable
amount of work that focuses on a special case, that of aggregating
edges of a time evolving graph into “mature” adjacency matrices
based on certain graph properties (Sun et al, 2007; Sulo
et al., 2010; Soundarajan et al., 2016). In our work, however,
we address the problem in more general terms, where the
underlying data can be any point process that is observed over
time and/or space, and where the aggregation/discretization
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of the corresponding dimensions directly affects our ability
to extract interpretable patterns via tensor decomposition.
Effectively, as shown in Figure 1, we work toward automating
the data aggregation starting from raw data into a well-
structured tensor. This paper is based on the preliminary work
which has appeared in arxiv (earlier version arXiv:1912.09009v1;
Pasricha et al., 2019) and non-archival workshop (Pasricha et al.,
2020).
Our contributions to this work are as follows:

e Novel problem formulation: We formally define the
problem of optimally aggregating a tensor, which is formed
from raw sparse data in their original level of aggregation,
into a tensor with exploitable and interpretable structure.
We further show that solving this problem optimally is
computationally intractable. To the best of our knowledge,
this paper is the first to tackle this problem in its general
form, and we view our formulation as the first step
toward automating the process of creating well-behaved
tensor datasets.

e Practical algorithm: We propose a practical, efficient, and
effective algorithm that is able to produce high-quality
tensors from raw data without incurring the combinatorial
cost of the optimal solution. Our proposed method
follows a greedy approach, where at each step, we decide
whether different “slices” of the tensor are aggregated based
on a variety of intuitive functions that characterize the
“goodness of structure” locally.

e Experimental evaluation: We extensively evaluate our
proposed method on synthetic, semi-synthetic, and
real data where we use popular heuristic measures of
structure goodness to measure success. Furthermore,
we conduct a data mining case study on a large real
dataset of crime over time in Chicago, where we
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identify
time resolutions.

interpretable hidden patterns in multiple

We make our implementation publicly available® in order to
encourage reproducibility of our results.

2. Problem formulation

2.1. Tensor definition and notations

Tensors are multi-dimensional extensions of matrices, and
tensor decompositions are a class of methods that extract
latent structure from tensor datasets by extending techniques
such as principal component analysis and singular value
decomposition. The different “dimensions” of a tensor are
usually referred to as “modes.” In this paper, we focus on the
CANDECOMP/PARAFAC (henceforth referred to as CP for
brevity) decomposition (Carroll and Chang, 1970; Harshman,
1970), which is the “rank decomposition” of a tensor, i.e., the
decomposition of an arbitrary tensor into a sum of R rank-

one tensors. Mathematically, for a three-mode tensor X, the
R
ZA(:, r) o B(:,r) o C(:, ), where
r=1
o is the generalized outer product. Matrices A,B, and C are

CP decomposition is X ~

called “factor matrices,” and each column corresponds to a latent
pattern, directly relating an entity of the corresponding mode
to a value that can be roughly construed as a soft clustering
coefficient (Papalexakis et al., 2012). CP has arguably been the
most popular tensor decomposition model in applications where
the interest is to extract interpretable patterns for exploratory
analysis, and thus, we adopt this decomposition model as our
standard in this work. In the interest of space, we refer the
reader to a number of available surveys (Kolda and Bader,
2009; Papalexakis et al., 2016; Sidiropoulos et al., 2017). We
denote tensors as X and matrices as X, and we adopt Matlab-like
notation for indexing.

2.2. Tensor decomposition quality

Unsupervised tensor decomposition, albeit very popular,
poses a significant challenge: how can we state whether a
computed decomposition is of “high quality,” and how can we
go about defining “quality” in a meaningful way? Unfortunately,
this happens to be a very hard problem to solve (Papalexakis,
2016) and defining a new measure of quality is beyond the scope
of this paper. However, there has been a significant amount of
work in that direction, which basically boils down to (1) model-
based measures, where the quality is measured by how well a
given decomposition represents the intrinsic hidden structure

1 https://github.com/ravdeep003/adaptive-granularity-tensors
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of the data and (2) extrinsic measures, where the quality is
measured by how well the computed decomposition factors
perform in a predictive task. However, extrinsic measures do
not generalize, as they specialize to a particular labeled task, and
in general, we cannot assume that labels will be available for
the data at hand. Thus, in this study, we focus on model-based
measures, which can provide a general solution.

In model-based measures, the most straightforward one
is the fit, i.e., how well does the decomposition approximate
the data under the chosen loss function, in a low rank. Low
rank is key because the number of components (rank) has
to be as small and compact as possible in order to lend
itself to human evaluation and exploratory analysis. However,
the fit is unstable and prone to errors especially in real and
noisy data, thus the community has collectively turned its
attention to more robust measures such as the Core Consistency
Diagnostic (CORCONDIA for short) (Bro and Kiers, 2003),
which measures how well the computed factors obey the
CP model.

Both types of quality measure capture different elements of
what an end-user would deem good in a set of decomposition
factors. In this paper, we are going to use such popular measures
of quality in order to characterize the quality of a given tensor
dataset X. In order to do so, we assume that we have a function
Q (X), which optimizes the quality measure g () for a given
tensor over all possible decomposition ranks R?, i.e.,

Q2 (X) =ml§xq(x,A,B,C) (1)

where A, B, and C are the R-column factor matrices for X.
Finally, a useful operation is the n-mode product, where a matrix
W is multiplied by the n-th mode of a tensor (predicated on
matching dimensions in the #n-th mode of the tensor and the
rows of the matrix), denoted as X x, W. For instance, in an
I x ] x K tensor where n = 3 and W of size K x K*, the product
X x5, W multiplies all third mode slices of X with W and results
inanl x J x K* tensor.

2.3. The Trapped Under Ice problem

To give the reader an intuition of the problem, consider an
example of a time-evolving graph that captures social activity
over the span of some time. This example can be modeled
as a three-mode tensor X of dimensions I x J x K where
“sender” and “receiver” are the first two modes, “time” being
the third mode, and non-zero entry in the tensor represents
communications between users at a particular time. If the time
granularity is extremely fine-grained (milliseconds or seconds),

2 In practice, this is done over a small number of low ranks, since

low-rank structure is desirable.
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there might be only a handful of interactions/edges between
nodes at a particular timestamp, resulting in an extremely
sparse adjacency matrix for that timestamp, which, in turn,
results in an extremely sparse tensor overall and to have a high
tensor-rank as a result. In that case, X might not have any
interpretable low-rank structure that can be exploited by CP.
In this example, we assume that the third mode (time mode)
is too fine-grained but in reality, any mode (one or more)
can be extremely fine-grained. For example, in spatio-temporal
data, where the first two modes are latitude and longitude and
the third mode is time, all three modes can suffer from the
same problem.

Given tensor X which is created using the “raw”
granularities, how does one find a tensor (say Y) which
has a better exploitable structure and hence can be decomposed
into a meaningful latent structure. This is informally the
Trapped Under Ice problem that we define here (which
draws an analogy between the good structure that may
exist within the data as being trapped under the ice
and not visible by mere inspection). Trapped Under Ice
has an inherent assumption that the mode in which we
aggregate is ordered (e.g., representing time or space), thus
permuting the third mode will lead to a different instance of
the problem.

More formally we define our problem as follows:

Given a tensor X of dimensions I x J x K Find:
A tensor Y of dimensions I x J x K* with K* < K such
that

m‘%xQ(X X3 W)

where Q is a measure of goodness and W(3, j) = 1 if slice i
in tensor X is aggregated into slice j in the resulting tensor,
otherwise W(i,j) = 0.

At first glance, Trapped Under Ice might look like a problem
amenable to dynamic programming, since it exhibits the
optimal substructure property. However, it lacks the overlapping
subproblems property, which is across the set of different W
matrices (e.g., two different matrices may have overlapping
subproblems) but not within any single W. Thus, we still have
to iterate over 2K—1 W', refer Section 2.4 for more details.

Structure of W: The matrix W has a special structure. For
example, consider a three-mode tensor X of dimensions 10 x
10 x 10, with the third mode being the time mode. Suppose that
the optimal level of aggregation for Y is K* = 3.

In this case, W is of size 3 x 10 and an example of such a
matrix is

1110000000
0001110000
0000001111

W =

Frontiersin Big Data

04

10.3389/fdata.2022.929511

This W aggregates the first three slices of X to form the first
slice of Y, then next three to form the second slice, and last four
to form the third slice. No two W matrices will produce the
same aggregation. They can have the same K* but the order of
aggregation of slices will be different.

2.4. Solving Trapped Under Ice optimally
is hard

Solving Trapped Under Ice optimally poses a number of
hurdles. First and foremost, the hardness of the problem
depends on the definition of the function Q, and most
reasonable and intuitive definitions are very hard to optimize
since they are non-differentiable, non-continuous, and not
concave. So far, in the literature, to the best of our knowledge,
there are only heuristics for this quality function. Even so, those
heuristic functions can only be evaluated on a single already
fully-aggregated tensor, not a partially aggregated version
thereof. Thus, Trapped Under Ice can only be solved optimally
via enumerating all admissible solutions and choosing the best.
In order to conduct this enumeration, we need to calculate
the cardinality of the set of all W for a given instance of the
problem.

Lemma 1. For an instance of a problem with K initial slices, the
cardinality of the set of all W is 2K—1

Proof. To get K* aggregated slices, there are (15111) ways
to choose each of them leading to a different W. There are
a number of ways that K — 1 partition slots can be filled,
partitioned by K* — 1 blocks. In order to get the final number,
we need to sum up over all potential K*:

K1 o
2 (e ) =2

K*=0

O

The direct corollary of the above lemma is that

solving optimally Trapped Under Ice requires calling
the function Q O(2K) times, which is computationally
intractable. There may be a small room for improvement
by the of all

W, however, discontinuities in objective

exploiting  special structure in set

given
this is

our
not a feasible alternative either.
define
themselves

function Q,
In this paper,
Q that lend
partially aggregated solution, thus allowing for efficient
Thus, in the
approach  that

we proxy quality functions

to partial evaluation on a

algorithms next section, we propose

a greedy locally optimizes different

criteria quality.
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3. Proposed methods

In this section, we propose our efficient and effective
greedy algorithm called IceBreaker which takes a tensor X
as an input, which has been created directly from raw data,
and has no exploitable structure and returns a tensor Y,
which maximizes the interpretable and exploitable structure.
The basic idea behind ICEBREakER is to make a linear pass
on the mode for which the granularity is suboptimal and
using a number of intuitive and locally optimal criteria for
the goodness of structure (henceforth referred to as utility
functions), we greedily decide whether a particular slice across
that mode needs to be aggregated® into an existing slice
or contains good-enough structure to stand on its own.
ICEBREAKER can choose from a number of intuitive utility
functions which are based on different definitions of good
quality in matrices.

3.1. The IceBreaker algorithm

Algorithm 1 gives a high-level overview of ICEBREAKER.
More specifically, the algorithm takes a three-mode tensor
X of dimension I x J x K as an input and loops
over all the K slices of tensor X. Two slices next to
each other get aggregated into a single slice if a certain
utility function has stabilized, i.e., if aggregating the two
slices does not offer any additional utility (larger than a
particular threshold), then the second slice should not be
aggregated with the first and should mark the beginning of a
new slice.

Consider a three-mode tensor X with time as the third
mode of dimension I x J x K is run through ICEBREAKER with
a particular utility function. Our algorithm iterates over the
time mode (K slices) and aggregates slices as decided by the
utility function. ICEBREAKER is agnostic to the utility function
used. Let us consider a slice that has been aggregated into a
single slice from indices i to j — 1 called the previous slice and
another aggregated slice from indices i to j called a candidate
slice. Both previous and candidate slices are passed to the utility
function separately to obtain a value each called previous and
current values, respectively. These values are compared (line 5
in Algorithm 1) to decide whether jth slice is absorbed(line 6 in
Algorithm 1) into previous slice or previous slice has stabilized
and entry is added in W to indicate which indices of tensor X
are aggregated together(line 8 — 9 in Algorithm 1). Now jth slice
becomes the previous slice and aggregated slice of j and j + 1

3 For the purposes of our work, we use matrix addition as aggregation
of slice but this might not be the case and would depend on the problem
domain. Other aggregation functions that can be used are OR, min, max,

depending on the application domain (e.g., binary data).
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Input: Tensor X of dimension Ix]xK
Output: Tensor Y of dimension I x ] x Kjand matrix W
of size Kj xK
1:i=1j=
2: previousValue = UtilityFunction(X(:, 1, 1))
3: while j<K do
4 currentValue = UtilityFunction(sum(X(:,:,1:5),3)
if previousValue g currentValue then
j = j+1 {Aggregate Slice}
else
{Create a New Slice}
Add a row in W with value as 1 for indices i
to j—1.
{Update indices for next candidate slice}
9: i=jj=j+1L
10: previousValue = UtilityFunction(X(:,:,1));
11: end if
12: end while
13: Y=Xx3W
14: return Y and W

Algorithm 1. IceBREAKER.

become the candidate slice, the whole process is repeated until
all the slices are exhausted.

Note that ICEBREAKER’S complexity is linear in terms of the
slices K of the original tensor, and its overall complexity depends
on the specific utility function used (which is called O(K) times).

3.1.1. Utility functions

In this subsection, we summarize a number of intuitive
utility functions that we are using in this paper. This list is
by no means exhaustive and can be augmented by different
functions (or function combinations) that capture different
elements of what is good structure and can be informed by
domain-specific insights.

1. Norm: We use multiple norm types to find the adaptive
granularity of a tensor. For a given threshold, if the rate of
change of norm between the previous and candidate slice is
less than the threshold, the candidate slice is not selected.
Our assumption, in this case, is that no significant amount
of information is being added to the previous slice and is
considered to have been stabilized. Matrix W is updated
accordingly with indices of the previous slice (aggregated
slices in the previous slice). Otherwise, the candidate slice
is selected and the process continues until all the slices are
exhausted. Different norms demonstrated in this work are
Frobenius, 2-norm, and Infinity norm.

frontiersin.org
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Input: Tensor Y of dimension Ix]xK
Output: One Tensor for each iteration

1: while K <1 do

2 for all Uitlity Functions do
3: [Z, W] = IceBreaker (Y)
4 end for

w

Select Z with the best Realtive fit

{Third mode dimension}

6: K, = size(X, 3)

7 if K; ==K then
8: break;

9: else

10: K =K1

11: Y=2

12: end if

13: end while

14: return one Tensor for each iteration

Algorithm 2. ICEBREAKER++.

2. Matrix rank: In the case of matrix rank, we focus on the 95%
reconstruction rank, which is typically much lower than the
full rank of the data, but captures the essence of the number
of components within the slice. In this case, we consider
the previous slice to be stabilized if the matrix-rank of the
previous slice decreases by the addition of a new slice, no
more slices are added and an entry in matrix W is added.
We keep aggregating slices if the matrix-rank of the slice is
increasing or remains constant.

3. Missing value prediction: If a piece of data has a good
structure, when we hide a small random subset of the
data, the remaining data can successfully reconstruct
the hidden values, under a particular model that we
have chosen. To this end, we employ a variant of matrix
factorization-based collaborative filtering (Koren, 2009)
as a utility function to see how good is the aggregated
matrix in predicting a certain percent of missing values.
This utility function takes the percent of missing values as
a parameter and hides those percent of non zeros values
in the matrix. Our implementation of matrix factorization
with Stochastic Gradient Descent tries to minimize the
loss function: mingy Zi,jesz RMSE (Aij — Ui, ~V;,j)
where A is a given slice, U and V are factor matrices
for a given rank (typically chosen using the same
criterion as the matrix rank above), and € is the set of
observed (i.e., non-missing) values. In order to create
a balanced problem, since we are dealing with very
sparse slices, we conduct negative sampling where we
randomly sample as many zero entries as there are non-
zeros in the slice, and this ends up being the Q set of
observed values.
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3.2. The IceBreaker++ algorithm

IcEBREAKER algorithm returns a tensor Y as an output that is
considered to have an exploitable and better structure than the
input tensor X. The idea behind IcEBREAKER++ is to recursively
feed the output back to ICEBreaker until the third mode is
reduced to a single slice (matrix) or the dimension of the
third mode does not change. ICEBREAKER algorithm returns a
tensor associated with each utility function. Hence, if we used
five utility functions, we would get 5 tensors associated with
each of them. Now we select the tensor with the highest CP
Fit (see Section 4.1), use that as input for ICEBREAKER, and
we repeat this process until the stopping condition is met.
The output of each iteration is a candidate tensor. In the
end, we have multiple tensors (one for each iteration) which
have different temporal resolutions, which can help us get a
tensor with the optimal resolution based on the evaluation
measures used. Algorithm 2 describes the process discussed in
this section.

4. Experimental evaluation

In this section, we present a thorough evaluation of
ICEBREAKER++ using variety of data, including synthetic,
semi-synthetic, and real data. We empirically evaluate
analysis using a of criteria described
detail We method
Matlab using the tensor toolbox library (Bader et al,

2015).

our number

in below. implement  our in

4.1. Evaluation measures

When formulating the problem, we neither specify a quality
function O to be maximized nor did we use such a function
in our proposed method. The reason for that is that we reserve
the use of different quality functions as a form of evaluation. In
particular, we use the two following notions of quality:

e CP Fit: To evaluate the effectiveness of our method, we
compute the CP fit of the computed tensor for a particular
rank with respect to the input tensor.

||§Input - XcomputedHF) @)

Relative Fit =1 — <
||§Input||F

e CORCONDIA: We employ AutoTen (Papalexakis, 2016),
which essentially searches for the maximal number of
components which attains a high CORCONDIA (Bro and
Kiers, 2003) score, within a user-defined search space.
AutoTen returns that number of components (i.e., the low

frontiersin.org
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rank) and the corresponding CORCONDIA score, which
we use as our quality metric.

We should note at this point that the two quality measures
above are far from continuous and monotonic functions, thus
we do not expect that our method progressing the quality will
monotonically increase. Thus, we calculate the quality for the
final solution of ICEBREAKER++, and we reserve investigating
whether monotonic and well-behaved quality functions exist for
future work.

In our experiments, we used five utility functions (see
Section 3.1.1) namely Frobenius norm, 2-norm, Infinity norm,
Matrix Rank, and Missing Value Prediction. In the case of
synthetic datasets, we ran all the utility functions once except for
Missing Value Prediction which we ran 10 times. In case of both
semi-synthetic and real datasets, in the interest of computational
efficiency, we ran all the utility functions once.

4.2. Baseline methods

A naive way to find tensor Y can be by aggregating time
mode based on some fixed intervals. If time granularity was
in milliseconds, then combining one thousand slices to form
slices of seconds granularity reduces the third dimension of
tensor X from K to K/1,000. This can be applied incrementally
from seconds to minutes and so on to find a tensor that has
some exploitable structure. We compare the resulting tensor Y
determined by ICEBREAKER against tensors constructed with fixed
aggregations. For fixed aggregation, we aggregate the temporal
with a window size of 10, 100, and 1,000 for synthetic data.
For semi-synthetic and real datasets, we use appropriate time
windows accordingly.

4.3. Performance for synthetic data

4.3.1. Creating synthetic data
In order to create a synthetic dataset, we follow a
two-step process:

1. We create a random sparse tensor of specific sparsity.

2. Subsequently, we randomly distribute (drawn from a uniform
distribution) non zero entries in each slice over some fixed
number of slice as explained in below example.

Example: Consider a three-mode tensor X of dimension I x J x
K, for purpose of this example, consider K = 4 as shown in
Figure 2. Now for each slice of size I x ], distribute randomly
(drawn from Uniform distribution) all the non-zeros entries
across W slices preserving the I and J indices, creating a tensor
of the size I x ] x W. Now append all the tensors in the same
order as they appeared in the original tensor, we get a resulting
tensor of size I x J x 4W, which is used as an input for [CEBREAKER.
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Thus, if the original tensor is of size I x J x K and bucket size
W, the resulting tensor is of the size I x ] x KW approximately*.
Table 1 shows the synthetic data used for experiments.

4.3.2. Results for synthetic data

In order to evaluate the performance of ICEBREAKER++, we
measure CORCONDIA and fit it on 10 synthetic datasets for
both types of datasets as mentioned in Table 1. In interest of
conserving space, we only show one set of results for both
synthetic datasets. The leftmost part of Figures 3, 4 show the
best fit at end of each iteration. The number on top of the dots
represents the dimension of the third mode after each iteration.
The dotted line in the plot shows the fit of the input tensor
and fixed intervals tensor®. The rightmost part of Figures 3, 4
show the CORCONDIA computed at the end of each iteration
and the absolute change of CORCONDIA. Absolute change of
CORCONDIA is computed as shown below:

abs(corcondia(j + 1) — corcondia(j))

The dotted line in the plot represents CORCONDIA value
for the fixed intervals tensor. When there is a sudden drop in
the value of CORCONDIA, we consider the iteration before as
a suitable candidate for tensor analysis. In the case of SD1 that
would be iteration number 2 and the resulting tensor of size
100 x 100 x 8. In the case of SD2 that would also be iteration
number 2 and the resulting tensor of size 100 x 100 x 57.

4.4. Performance for semi-synthetic data

4.4.1. Creating semi-synthetic data

In this study, we used the Enron dataset (Priebe et al,
2006; Bader et al., 2007), which is a dataset of the number of
email exchanges between employees spread over 44 months.
Each month is represented by a matrix. To create the semi-
synthetic data, we use step 2 as described in the generation of
synthetic case. We take the non-zero elements and randomly
distribute non zero entries in each slice over some fixed number
of the slice. For this dataset, we converted the monthly data into
weekly, daily, and hourly data. Non-zero entries in each slice
were distributed over four different candidate slices for creating
the weekly dataset (roughly approximating 4 weeks as a month).
In the case of daily, each slice of monthly data was distributed
over 30 different slices as mentioned in Table 2 and finally in

4 The number of slice can be less than KW, since slice for each non-
zero value is selected randomly, there can be a case where a slice is not
selected.

5 The number in the parenthesis represents the dimension of the third

mode for that tensor.
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FIGURE 2

Creating synthetic data.
TABLE 1 Table of synthetic datasets analyzed.
Dataset Original dimension Window size (W) Approximate final dimension Number of datasets
SD1 100 x 100 x 10 50 100 x 100 x 500 10
SD2 100 x 100 x 100 50 100 x 100 x 5,000 10

the case of hourly, each non zero entry in the monthly slice was
distributed over 720 slices (24 x 30).

4.4.2. Results for semi-synthetic data

The leftmost parts of Figures 5-7 show the fit of different
iterations and the rightmost part of the Figures 5-7 show the
CORCONDIA computed at different iterations. In the case of
Enron Weekly, we see a sudden drop in CORCONDIA after
iteration 1 as shown in Figure 5 and the corresponding tensor is
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of size 184 x 184 x 17. In the case of Enron Daily, we do not see a
significant change in CORCONDIA values in two iterations and
corresponding tensors are of size 184 x 184 x 78 and 184 x 184 x5
giving us tensors of different granularity.

In the case of Enron Hourly, we see a drop in CORCONDIA
after iterations 1 and 2 as shown in Figure 7. In this case,
practitioner can make choice between a tensor of resolution
184 x 184 x 469 or 184 x 184 x 34 depending on what evaluation
metric they value more, fit, CORCONDIA, or both. Tensor after
iteration 2 (184 x 184 x 34) seems to have a good score for both
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CP fit and CORCONDIA of best fit tensor and its absolute change at each iteration for SD2.
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TABLE 2 Table of semi-synthetic datasets analyzed.

Dataset  Original dimension Window  Approximate
size (W) final
dimension
Enron weekly 184 x 184 x 44 4 184 x 184 x 176
Enron daily 184 x 184 x 44 30 184 x 184 x 1,320
Enron hourly 184 x 184 x 44 720 184 x 184 x 31,680

fit and CORCONDIA whereas the Tensor after iteration 1 has a
good CORCONDIA score but not a good CP fit.

4.5. Data mining case study

4.5.1. Chicago crime dataset

For our case study, we use a dataset provided by the city
of Chicago® that records different types of crime committed
in different areas of the city over a period of time (Smith
et al., 2017). The tensor we create has modes (area, crime,
and timestamp), where “community area” and “crime” are
discretized by the city of Chicago, and “timestamp” is the
coarsely aggregated (hourly) timestamp. The dates that we
focused was on a span of 7 years, from 13 December 2010 to
11 December 2017.

We ran IceBreaker++ on this dataset which is of size
77 x 32 x 61,321, and in the right most part of Figure 8,
we show its CORCONDIA for each iteration and we observe
that iterations 3, 4, and 5 have high values of CORCONDIA,
which would suggest they offer a resolution with an exploitable
structure. Iterations 1 and 2 also have decent CORCONDIA
values. Given these two ranges of CORCONDIA values,
we decided to drill down and look into the actual tensor
components that can be extracted from those different
tensors. In the interest of space, we took the tensor returned
by iteration 2 as X;, the tensor X, and tensor Xj are
returned by iterations 3 and 4, respectively. Tensor X;
contains three high-quality components, whereas X, and X;
contain two.

Figures 9-11 shows sets of patterns’ for X, X5, and Xj,
respectively: interestingly, factor 1 of X; and factor 1 of X,
pertain to similar spatial and criminal pattern. As shown in
Figures 10, 11, we observed that both factors of tensors X, and
X pertain to similar spatial and criminal patterns. In summary,

6 https://data.cityofchicago.org/Public- Safety/Crimes-2001-to-
Present/ijzp-g8t2

7 We omit plotting the temporal mode since we lack external
information that we can potentially correlate it with, however, an analyst
with such side information can find the different time resolutions of X,

X,. and X; useful.
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tensors X;, X,, and X3 capture similar interpretable patterns
over different temporal resolutions.

4.5.2. Comparison against fixed aggregation

A natural question is whether the results are qualitatively
“better” than the ones by a fixed aggregation. Answering
this question heavily depends on the application at hand,
however, here we attempt to quantify this in the following
way: intuitively, a good set of components offers more diversity
in much of the data it covers. For instance, a practitioner
would prefer a set of results for the Chicago crime dataset
where the components span most of the regions of the
city and uncover diverse patterns of crime, over a set of
components that seem to uncover a particular type of crime.
Even though there may be a number of confounding factors,
aggregating on a regular time interval may be very good in
capturing periodic activity (in this example, crime that exhibits
normal periodicity happens to coincide with the aggregation
resolution we have chosen), whereas aggregating adaptively
may help discover the structure that is more erratic and more
surprising. In order to capture this and test this hypothesis,
we compute the coverage of entities for the first and second
mode of the tensor (i.e., areas of Chicago and crime types
in this example) in all the discovered components: for each
component, we measure the top-k entities, and through that,
we compute the empirical probability distribution of all entities
in the results. A more preferable set of results will have
higher coverage, resulting in distribution with higher entropy.
In Table 3, we show the entropy for both modes 1 and
2 for IceBreaker++ and for the different fixed aggregations
(averaged over 10 different runs), where ICEBREAKER++ overall
offers more diverse patterns in both space and criminal
activity.

5. Related work

To the best of our knowledge, this is the first attempt
at formalizing and solving this problem, especially as
it pertains to the tensor and multi-aspect data mining
domain. Nevertheless, there has been significant amount
of work on temporal aggregations in graphs (Sun et al,
2007; Sulo et al., 2010; Soundarajan et al, 2016) and in
finding communities in temporal graphs (Gorovits et al,
2018). In the graph literature, the closest work to ours is
Soundarajan et al. (2016), in which the authors look at
aggregating stream of temporal edges to produce a sequence
of structurally mature graphs based on a variety of network
properties.

In the tensor literature, Almutairi et al. (2021) solved the
inverse of this problem, where the goal is to disaggregate
a tensor. Concurrently to our work, Kwon et al. (2021)
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developed a streaming CP decomposition that works on the We reserve a full investigation of connections between our

original granularity of the data, instead of preprocessing the problem formulation and Kwon et al. (2021)’s study for future

tensor in order to identify one or more optimal aggregations. work.
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Analyzing the Chicago data from iteration-2 (X;). Chicago heatmap value ranges from 0.0 to 1.0.
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Analyzing the Chicago data from iteration-4 (X3). Chicago heatmap value ranges from 0.0 to 1.0.
TABLE 3 The entropy of top-3 components in factors for the area and crime type.

Iteration Iteration Iteration Iteration Iteration Fixed Fixed Fixed Fixed
1 2 3 4 5 Interval-24 Interval-168 Interval-720 Interval-8640

Area 2.8554 2.6810 2.5850 2.5850 2.5850 2.7255 2.5850 2.5850 2.5850
Crime 2.8783 2.7255 2.2516 2.2516 2.0850 2.4362 2.2516 2.2516 2.1183

Black color is best icebreaker entropy and red color is best fixed interval entropy.

6. Conclusions

In this study, we are, to the best of our knowledge,
the first to define and formalize the Trapped Under Ice
problem in constructing a tensor from raw sparse data.
We demonstrate that an optimal solution is intractable
and subsequently proposed ICEBREAKER and ICEBREAKER++,
a practical solution that is able to identify good tensor
structure from raw data and construct tensors from the same
dataset that pertain to multiple resolutions. Our experiments
demonstrate the merit of ICEBREAKER++ in discovering useful
and high-quality structures and providing tools to data
analysts in automatically extracting multi-resolution patterns
from raw multi-aspect data. In the future, we will work
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toward extending ICEBREAKER in cases where more than
one mode is Trapped Under Ice (naively one can apply
IceBREAKER to each mode sequentially, but this disregards joint
variation across modes) and extend IceBreaker for higher-
order tensors.
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