


problem, where the two datasets of interest are graphs and

the alignment pertains to the nodes across those graphs [15],

[16], [17], [18], [19], [20], [21], [22]. In general, the existing

state-of-the-art graph matching frameworks take two separate

steps: (1) learning entity embeddings, and (2) searching for

the entity matching between two sets of learnt embeddings.

For example, REGAL [22] learns embeddings by xNetMF in

the first step, which makes use of both attribute and structure

information of entities, and then in the second step, conducts

soft matching. We will be using REGAL as our running

example graph matching in this paper, because of the fact

that its embedding stage is the closest conceptually to our

envisioned factorization, however, our proposed method can

benefit from any current or future advances in embedding

alignment, since, as we demonstrate, we can absorb such

methods within our proposed method.

Currently, if we wish to jointly analyze two datasets which

require alignment, we would have to first compute separate

embeddings per dataset (e.g., single tensor factorizations for

each given tensor) and then perform the alignment as a

subsequent step, much like state-of-the-art graph alignment

works [22]. However, doing so, suffers from a number of

significant drawbacks: (a) The aligned embeddings will not

going to be in the same latent factor space since they have been

computed independently, and (b) the quality of the alignment

will be suboptimal, especially if the two datasets share their

latent structure. It is important to note here that drawback

(a) could potentially be addressed by conducting a coupled

factorization post-alignment, however, as we mention above

and demonstrate in the experiments, because of the lower-

quality computed alignment, this coupled factorization will not

be able to recover the latent factors accurately.

In this paper, we jointly tackle the two tasks of alignment

and coupled factorization. To the best of our knowledge, this

work is the first to do so, and as we demonstrate in our

experimental evaluation, solving those two tasks jointly is

highly beneficial for both tasks, and substantially outperforms

approaches where embedding and alignment happen separately

in sequence. Our contributions are summarized as follows:

• Novel Problem: We are the first to formulate the problem

of joint tensor alignment and factorization, and in this pa-

per we explore two novel expressions of this problem and

we discuss the trade-offs between the two formulations.

• Flexible Algorithms: We introduce TENALIGN which

solves the two proposed formulations by deriving cus-

tom optimization algorithms. Furthermore, TENALIGN is

extremely flexible and can subsume existing and future

advances in computing alignment matrices as parts of the

optimization procedure. We demonstrate such flexibility

by leveraging REGAL’s alignment solver [22] within

TENALIGN as an example.

• Extensive Experiments: We perform extensive experi-

mental evaluation of our proposed method using synthetic

and real data and comparing against baselines where

the two tasks are solved independently. Furthermore, we

conduct detailed sensitivity analysis and ablation study.

• Reproducibility: We provide detailed derivations and

descriptions for our proposed algorithms and our ex-

perimental setup, and we demonstrate our results on

public data. Furthermore, we make our implementation

publicly available upon publication at https://github.com/

yunshuwu/TenAlign in order to promote reproducibility

and extensions of our work.

II. PROBLEM FORMULATION

We provide the necessary notation and definitions for our

work. Table I provides a summary of the notation used.

Notation Description

X, X, x, x Tensor, Matrix, vector, scalar
∥X∥F Frobenius norm of matrix X

∥x∥p ℓp-norm of vector x

A(i, :) the i-th row of matrix A

vec() Vectorization operator
◦ Outer product
⊙ Khatri-Rao product (column-wise Kronecker product)
∗ Element-wise multiplication
×n n-mode product
X(n) n-mode matricization of tensor X

X−1 Inverse of matrix X

X⊺ Transpose of matrix X

H (p) Entropy of probability distribution p

TABLE I: Notations used in matrix and tensor algebra.

Tensors are higher-order extensions of matrices, and they

are a natural way to express multimodal real world data.

The Canonical Polyadic Decomposition (CPD), also named as

PARAFAC or CANDECOMP [23], one of the most commonly

used tensor methods, models a tensor T as the sum of R outer

products where R is a pre-defined decomposition rank. Taking

a three-mode tensor as an example (higher order CPD can be

readily generalized), CPD minimizes the distance between the

input tensor T ∈ R
I×J×K and the approximation of it in the

squared norm, i.e., T ≈
∑R

r=1 ar ◦br ◦cr = JA,B,CK where

ar ∈ R
I , br ∈ R

J , and cr ∈ R
K are the r-th column of the

factor matrices A, B and C, respectively.

A matrix and a tensor can be multiplied together using the

n-mode product, denoted by X ×1 M as an example of a 1-

mode product, where the slices along the n-th mode of the

tensor are multiplied by matrix M resulting in slices of a

new tensor. In the interest of space, we refer the reader to

existing comprehensive surveys [1], [2] for a detailed overview

of notation and definitions.

Problem Introduction Consider two tensor datasets X and Y,

where for instance X captures (user,video,time) YouTube data

and Y captures (user,product,time) Amazon data. Further as-

sume that there is a complete matching Π (for current problem

it is assumed to be complete and we defer partial matching for

future work) which is unknown to us. In optimization terms,

we can express the joint alignment and coupled factorization

below, by jointly learning the mapping Π and the latent

factors, while forcing the rows of X and Y to be expressed by

the same latent factors:

min
A,B,C,D,E,Π

∥X− JA,B,CK∥
2
F + ∥Y×1 Π− JA,D,EK∥

2
F

(1)



where Π is a permutation matrix and Y ×1 Π effectively

permutes the data pertaining to each row of the tensor. The

above formulation simultaneously learns a joint embedding

(where A embeds the rows to a latent space) while enforcing

that transformation on the data. We assume that both tensors

X and Y admit a joint CPD structure, which allows us to

consider that Π when multiplying the tensor in the first mode

equivalently only multiplies the factor of that mode [2].

What does the ideal Π look like? In order to define

precisely our problem, we should describe what the ideal

alignment matrix Π should look like. Strictly speaking, Π,

is a permutation matrix, which is a square matrix whose each

row and column have exactly one ª1º and their rest of their

entries equal to ª0º. Every ª1º in that matrix is essentially

capturing the corresponding of the i-th row of tensor X and

the j-th row of tensor Y.

The permutation matrix Π has the following properties:

• Π is an orthogonal matrix, i.e., Π⊺ = Π
−1.

• Πij ∈ {0, 1}, ∀i ∈ I, j ∈ J , element is either 0 or 1

To identify the constraints for Π, we have:

Proposition 2.1: Given an orthogonal matrix Π with all

elements non-negative, then Π is a permutation matrix.

Proof. Let us prove this by contradiction. Assume each row

has more than one positive elements, by pigeonhole principle,

there must be one component (column) which is positive at

least in two columns. Let this component be a, where at least

ai > 0 and aj > 0. By the assumption, there will be another

component b which is positive at row i, then the dot product

of a and b is not going to be zero:

a · b ≥ aibi > 0

which contradicts the orthogonality. ■

Thus, we can form the alignment matrix Π to be an orthog-

onal matrix with all elements being non-negative decimals.

III. PROPOSED METHOD

Factorizing tensors and solving directly for a permutation

matrix Π given the Π structure are computationally very hard,

therefore we investigate two linear programming relaxations of

the optimization problem.

Proposed relaxations Here for each of these two relaxations

we have a separate formulation, where L1 is a harder con-

strained problem which forces factors into a same space:

L1 = ∥X− JA,B,CK∥
2
F + ∥Y×1 Π− JA,D,EK∥

2
F (2)

and L2 is a relaxed problem which softly makes factors of

tensors X and Y to share some common components, meaning

that the space of two tensors are intersect but not the same:

L2 = ∥X− JAx,B,CK∥
2
F + ∥Y− JAy,D,EK∥

2
F

+λ ∥Ax −ΠAy∥
2
F

(3)

For both relaxations, the permutation matrix Π should satisfy

the following constraints:

Πij ∈ {0, 1}, ∀i, j, and Π·1 = 1 (row sum equal to 1), and

1
⊺ ·Π = 1

⊺ (column sum equal to 1), and ΠΠ
⊺ = Π

⊺
Π = I

(orthogonality constraint), and H (Π(i, :)) < b, ∀j (row-wise

entropy constraint)

By bounding the entropy of each row of Π. This way we

are forcing the entropy of each row to be small which, if we

view each row as a probability distribution that describes the

most likely alignments, we would like that distribution to be

as far from uniform as possible and as close to a deterministic

distribution as possible (with a single 1 in that row).

Trade-offs between formulations L1 and L2 Conceptually,

formulation L1 is defining a harder optimization problem

because the permutation matrix Π is directly affecting tensor

Y, compared to L2 where the permutation matrix is softly

enforced as a regularization term.

In terms of the type of latent factors that each formulation

learns, conceptually, L1 is directly enforcing the coupling

between X and Y by forcing them to be expressed by the

same factor matrix A, which is how typically CMTF-style

approaches are expressed. On the other hand, L2 is learning

two different factor matrices Ax and Ay which are softly

required to be similar under the alignment transformation. This

implies that L2 may not always give us the exact same set of

latent factors, thereby violating the typical CMTF modeling.

However, regarding this last remark, there are cases where

the two tensors may share part of their latent factors [11] (in

fact, the chemical datasets analyzed in our experiments fall

under this category), and this formulation may be able to more

flexibly capture shared and unshared latent factors.

To solve these two optimization problems, we compute

the gradient and let it be zero to update the corresponding

factor matrix. Next, let’s first discuss the calculations of the

gradient for the first formulation L1 and then followed by the

calculations of the gradient for the second formulation L2.

A. Solution for TENALIGN-L1

For formula L1, We can rewrite it by two sub-functions f11
and f12:

L1 = ∥X− JA,B,CK∥
2
F

︸ ︷︷ ︸

f11(A,B,C)

+ ∥Y×1 Π− JA,D,EK∥
2
F

︸ ︷︷ ︸

f12(A,D,E,Π)

(4)

Let Y
′

(1), Y
′

(2) and Y
′

(3) to be the one-mode matricization,

two-mode matricization and three-mode matricization of Y×1

Π, respectively.

The first order partial derivative of L1 respect to each factor

matrix is as follows:

1) For partial derivative with respect to A:

∂L1

∂A
=

∂f11

∂A
+

∂f12

∂A

=
∂

∂A
∥X(1) −A(C⊙B)⊺∥2F+

∂

∂A
∥Y′

(1) −A(E⊙D)⊺∥2F

=
∂

∂A
Tr ((X(1) −A(C⊙B)⊺)(X(1) −A(C⊙B)⊺)⊺)

+
∂

∂A
Tr ((Y′

(1) −A(E⊙D)⊺)(Y′

(1) −A(E⊙D)⊺)⊺)

= −2X(1)(C⊙B) + 2A(C⊺
C ∗B⊺

B)

−2Y′

(1)(E⊙D) + 2A(E⊺
E ∗D⊺

D)



Where in the first equality above, we obtain this representation

for the 1-mode matricization of the two tensors according to

the CPD model [2].

Let ∂L1

∂A
be zero, then we have the update for matrix A:

A = (X(1)(C⊙B)+Y
′

(1)(E⊙D))·(C⊺
C∗B⊺

B+E
⊺
E∗D⊺

D)−1

2) For partial derivative with respect to B:

∂L1

∂B
=

∂f11

∂B
=

∂

∂B

∥
∥X(2) −B(C⊙A)⊺

2
F

=
∂

∂B
Tr ((X(2) −B(C⊙A)⊺)(X(2) −B(C⊙A)⊺)⊺)

= −2X(2)(C⊙A) + 2B(C⊺
C ∗A⊺

A)

Let ∂L1

∂B
be zero, then we have the update rule for matrix B:

B = X(2)(C⊙A) · (C⊺
C ∗A⊺

A)−1

3) For partial derivative with respect to C:

∂L1

∂C
=

∂f11

∂C
=

∂

∂C

∥
∥X(3) −C(B⊙A)⊺

2
F

=
∂

∂C
Tr ((X(3) −C(B⊙A)⊺)(X(3) −C(B⊙A)⊺)⊺)

= −2X(3)(B⊙A) + 2C(B⊺
B ∗A⊺

A)

Let ∂L1

∂C
be zero, then we have the update rule for matrix C:

C = X(3)(B⊙A) · (B⊺
B ∗A⊺

A)−1

4) For partial derivative with respect to D:

∂L1

∂D
=

∂f12

∂D
=

∂

∂D
∥Y′

(2) −D(E⊙A)⊺∥2F

=
∂

∂D
Tr ((Y′

(2)−D(E⊙A)⊺)(Y′

(2) −D(E⊙A)⊺)⊺)

= −2Y′

(2)(E⊙A) + 2D(E⊺
E ∗A⊺

A)

Let ∂L1

∂D
be zero, then we have the update rule for matrix D:

D = Y
′

(2)(E⊙A) · (E⊺
E ∗A⊺

A)−1

5) For partial derivative with respect to E:

∂L1

∂E
=

∂f12

∂E
=

∂

∂E
∥Y′

(3) −E(D⊙A)⊺∥2F

=
∂

∂E
Tr ((Y′

(3)−E(D⊙A)⊺)(Y′

(3) −E(D⊙A)⊺)⊺)

= −2Y′

(3)(D⊙A) + 2E(D⊺
D ∗A⊺

A)

Let ∂L1

∂E
be zero, then we have the update rule for matrix E:

E = Y
′

(3)(D⊙A) · (D⊺
D ∗A⊺

A)−1

6) For partial derivative with respect to Π :

∂L1

∂Π
=

∂f12

∂Π
=

∂

∂Π
∥ΠY(1) −A(E⊙D)⊺∥2F

=
∂

∂Π
Tr ((ΠY(1) −A(E⊙D)⊺)(ΠY(1) −A(E⊙D)⊺)⊺)

= 2Π ·Y(1)Y
⊺

(1) − 2(Y(1)(E⊙D)A⊺)⊺

Then we need to solve ∂L1

∂Π
= 0 for Π with the following

constraints:

Π ·Y(1)Y
⊺

(1) = (Y(1)(E⊙D)A⊺)⊺

s.t. Π1 = 1, 1
⊺
Π = 1

⊺,

Πij ∈ {0, 1}, ΠΠ
⊺ = Π

⊺
Π = I

(5)

We find out that the orthogonality constraint of Π is too

strong such that it cannot directly be applied, thus we further

relax Equation 6 into the following problem:

min
Π

∥Π ·Y(1)Y
⊺

(1) − (Y(1)(E⊙D)A⊺)⊺∥2F

+γ1∥ΠΠ
⊺ − I∥2F + γ2∥Π

⊺
Π− I∥2F

s.t. Π1 = 1, 1
⊺
Π = 1

⊺, H (Π(i, :)) < b, ∀j

0 ≤ Πij ≤ 1, ∀i ∈ I, j ∈ J

(6)

We use the fmincon 1 solver in Matlab to solve the above

problem.

Algorithm 1 describes the overview of our proposed

TENALIGN-L1.

Algorithm 1 Alternating Least Squares Algorithm for TENALIGN-L1

Input: Tensors X, Y

Output: Factor matrices A,B,C,D,E and Π

while not ºconvergedº do

A = (X(1)(C⊙B) +Y
′

(1)(E⊙D)) · (C⊺
C ∗B⊺

B+E
⊺
E ∗D⊺

D)−1

B = X(2)(C⊙A) · (C⊺
C ∗A⊺

A)−1

C = X(3)(B⊙A) · (B⊺
B ∗A⊺

A)−1

D = Y
′

(2)(E⊙A) · (E⊺
E ∗A⊺

A)−1

E = Y
′

(3)(D⊙A) · (D⊺
D ∗A⊺

A)−1

Solve Π in Eq. 6 using fmincon solver in Matlab

end while=0

B. Solution for TENALIGN-L2

For formula L2, We can rewrite it by three sub-functions

f21, f22 and f23:

L2 = ∥X− JAx,B,CK∥
2
F

︸ ︷︷ ︸

f21(Ax,B,C)

+ ∥Y− JAy,D,EK∥
2
F

︸ ︷︷ ︸

f22(Ay,D,E)

+λ ∥Ax −ΠAy∥
2
F

︸ ︷︷ ︸

f23(Ax,Ay,Π)

(7)

1) For partial derivative with respect to Ax :

∂L2

∂Ax

=
∂f21

∂Ax

+
∂f23

∂Ax

=
∂

∂Ax

∥
∥X(1) −Ax(C⊙B)⊺

∥
∥
2

F
+λ

∂

∂Ax

∥Ax −ΠAy∥
2
F

=
∂

∂Ax

Tr ((X(1) −Ax(C⊙B)⊺)(X(1) −Ax(C⊙B)⊺)⊺)

+
∂

∂Ax

Tr ((Ax −ΠAy)(Ax −ΠAy)
⊺)

= −2X(1)(C⊙B) + 2Ax(C
⊺
C ∗B⊺

B) + 2λ(Ax −ΠAy)

Let ∂L2

∂Ax

be zero, then we have the update rule for matrix Ax:

Ax = (X(1)(C⊙B) + λΠAy) · (C
⊺
C ∗B⊺

B+ λI)−1

1https://www.mathworks.com/help/optim/ug/fmincon.html



2) For partial derivative with respect to B:

∂L2

∂B
=

∂f21

∂B
=

∂

∂B

∥
∥X(2) −B(C⊙Ax)

⊺2
F

=
∂

∂B
Tr ((X(2) −B(C⊙Ax)

⊺)(X(2) −B(C⊙Ax)
⊺)⊺)

= −2X(2)(C⊙Ax) + 2B(C⊺
C ∗Ax

⊺
Ax)

Let ∂L2

∂B
be zero, then we have the update rule for matrix B:

B = X(2)(C⊙Ax) · (C
⊺
C ∗Ax

⊺
Ax)

−1

3) For partial derivative with respect to C:

∂L2

∂C
=

∂f21

∂C
=

∂

∂C

∥
∥X(3) −C(B⊙Ax)

⊺2
F

=
∂

∂C
Tr ((X(3) −C(B⊙Ax)

⊺)(X(3) −C(B⊙Ax)
⊺)⊺)

= −2X(3)(B⊙Ax) + 2C(B⊺
B ∗Ax

⊺
Ax)

Let ∂L2

∂C
be zero, then we have the update rule for matrix C:

C = X(3)(B⊙Ax) · (B
⊺
B ∗Ax

⊺
Ax)

−1

4) For partial derivative with respect to Ay :

∂L2

∂Ay

=
∂f22

∂Ay

+
∂f23

∂Ay

=
∂

∂Ay

∥
∥Y(1) −Ay(E⊙D)⊺

∥
∥
2

F
+ λ

∂

∂Ay

∥Ax −ΠAy∥
2
F

=
∂

∂Ay

Tr ((Y(1) −Ay(E⊙D)⊺)(Y(1)−Ay(E⊙D)⊺)⊺)

+
∂

∂Ay

Tr ((Ax −ΠAy)(Ax −ΠAy)
⊺)

= −2Y(1)(E⊙D) + 2Ay(E
⊺
E ∗D⊺

D)

+2λ(−Π
⊺
Ax +ΠAy)

Because we cannot get Ay directly from ∂L2

∂Ay

, update the

factor matrix Ay by gradient descent.

5) For partial derivative with respect to D:

∂L2

∂D
=

∂f22

∂D
=

∂

∂D

∥
∥Y(2) −D(E⊙Ay)

⊺2
F

=
∂

∂D
Tr ((Y(2) −D(E⊙Ay)

⊺)(Y(2) −D(E⊙Ay)
⊺)⊺)

= −2Y(2)(E⊙Ay) + 2D(E⊺
E ∗Ay

⊺
Ay)

Let ∂L2

∂D
be zero, then we have the update rule for matrix D:

D = Y
′

(2)(E⊙A) · (E⊺
E ∗A⊺

A)−1

6) For partial derivative with respect to E:

∂L2

∂E
=

∂f22

∂E
=

∂

∂E

∥
∥Y(3) −E(D⊙Ay)

⊺2
F

=
∂

∂E
Tr ((Y(3) −E(D⊙Ay)

⊺)(Y(3) −E(D⊙Ay)
⊺)⊺)

= −2Y(3)(D⊙Ay) + 2E(D⊺
D ∗Ay

⊺
Ay)

Let ∂L2

∂E
be zero, then we have the update rule for matrix E:

E = Y(3)(D⊙Ay) · (D
⊺
D ∗Ay

⊺
Ay)

−1

7) For partial derivative with respect to Π : To update

the value of Π, we need to solve ∥Ax −ΠAy∥
2
F

= 0 for

Π with the following constraints in Equation 8, which softly

forces the factor matrices of X and Y to be in the same space.

∥Ax −ΠAy∥
2
F
= 0

s.t. Π1 = 1, 1
⊺
Π = 1

⊺,

Πij ∈ {0, 1}, ΠΠ
⊺ = Π

⊺
Π = I

(8)

For the same reason with Algorithm 1 for L1, we relax

Equation 9 into the following problem and also solve it by

linear programming:

min
Π

∥Ax −ΠAy∥
2
F
+ γ1∥ΠΠ

⊺ − I∥2F + γ2∥Π
⊺
Π− I∥2F

s.t. Π1 = 1, 1
⊺
Π = 1

⊺, H (Π(i, :)) < b, ∀j

0 ≤ Πij ≤ 1, ∀i ∈ I, j ∈ J

(9)

We use the fmincon 2 solver in Matlab to solve the above

problem.

The algorithm for TENALIGN-L2 is described in Algorithm

2 below.

Algorithm 2 Alternating Least Squares Algorithm for TENALIGN-L2

Input: Tensors X, Y

Output: Factor matrices Ax,B,C,Ay,D,E and Π

while not ºconvergedº do

Ax = (X(1)(C⊙B) + λΠAy) · (C
⊺
C ∗B⊺

B+ λI)−1

B = X(2)(C⊙Ax) · (C
⊺
C ∗Ax

⊺
Ax)

−1

C = X(3)(B⊙Ax) · (B
⊺
B ∗Ax

⊺
Ax)

−1

while
∥
∥Ai+1

y −Ai
y

∥
∥
2

F
≥ threshold do

Ai+1
y = Ai

y − α · ∂L2

∂Ay

end while

D = Y
′

(2)(E⊙A) · (E⊺
E ∗A⊺

A)−1

E = Y(3)(D⊙Ay) · (D
⊺
D ∗Ay

⊺
Ay)

−1

Solve Π in Eq. 9 using fmincon solver in Matlab

end while=0

For factor matrix updates in Alg.1 and Alg.2 we are using

the MTTKRP (Matricized Tensor Times Khatri-Rao Product)

operation to speed up the computations.

IV. EXPERIMENTAL EVALUATION

Here, we evaluate our proposed algorithms from the per-

spectives of accuracy, sensitivity analysis, ablation study, and

sanity check by answering the following questions:

1) Accuracy: Can our algorithms outperform the baseline

alignment methods in terms of latent factor matching and

alignment accuracy?

2) Sensitivity analysis: How sensitive are our algorithms to

important hyperparameters?

3) Ablation study: How is the performance affected by

different constraints on Π?

4) Sanity check: Here we check if each component of our

our algorithms help with the final solution.

2https://www.mathworks.com/help/optim/ug/fmincon.html



A. Experiment Setup and Datasets

We implement TENALIGN in Matlab and our implementa-

tion is publicly available3. In order to fully test our algorithms,

we use real-world coupled data tensors, the chemistry datasets

[11] and a large number of synthetic data tensors generated

by [12]. For all datasets, before delivering the input tensors,

we do column-wise normalization and tensor normalization.

1) Synthetic Data: For each experiment with synthetic

dataset, we run it for 100 times where each time with random

generated datasets. Tensors X and Y are built following CPD

model from already known factors, which are also used as

the true factors when measuring the factor accuracy, or called

factor matching score. Specifically, the two synthetic datasets

by [12] where both datasets’ tensors are first-mode coupled

and contain 100 pairs of tensors which are randomly drawn

from a normal distribution. The synthetic dataset 1 (namely

Syn 1) contains a tensor T1 of size 10×30×40 coupled with

a tensor T2 of size 10×70×10 and they are created by ground-

truth factor matrices with rank R = 4. The synthetic dataset

2 (namely Syn 2) contains a tensor T3 of size 15 × 30 × 40
coupled with a tensor T4 of size 15 × 70 × 10 and they are

created by ground-truth factor matrices with rank R = 5.

2) Real Data: We use real-world public chemistry datasets

(namely Chem) [11] which have know joint CPD structure

and are publicly available4. This dataset includes three datasets

coupled in the first mode, which consist of chemical samples

observed using different measurement techniques: two tensors

EEM of size 28× 13324× 8 and NMR, and one matrix LC-

MS of size 28× 168. Note that NMR contains five chemical

information, LC-MS contains four, and EEM only contains

three, this means that this coupled matrix tensor datasets

doesn’t have all components shared. Because TENALIGN

assumes all components shared, we only use tensor EEM and

matrix LC-MS which exhibit that structure [11].

3) Metrics: We measure TENALIGN-L1 and TENALIGN-

L2 with three metrics: raw accuracy measurement for align-

ment defined in Eq. 10, factor matching score, and clustering

accuracy measurement for alignment.

Raw accuracy =
No. of correctly aligned entities

No. of entities
(10)

For factor accuracy measurement, we use factor matching

score (FMS). There the learned factors Ĉi,d are tested by

how well can they match with the true factors Ci,d by FMS

function defined below [12]:

FMS =

N∏

i=1

1

Ri

Ri∑

r=1

(
Di∏

d=1

⟨Ci,d(:, r), Ĉi,d(:, r)⟩

∥Ci,d(:, r)∥2∥Ĉi,d(:, r)∥2

)

(11)

where N is the number of tensors we have in the model, and

each tensor Ti of order Di ≥ 2 has Ri components.

Typically, state-of-the-art graph alignment methods measure

alignment accuracy via a ªsoftº-alignment approach, where

they identify a list of potential candidates for a given node, and

3https://github.com/yunshuwu/TenAlign
4http://www.models.life.ku.dk/joda/prototype

if that list contains the correct matching node, this is counted

as a successful match [22]. The rationale behind existing works

for this is that due to node/entity similarities and correlations,

strict matching may be impossible and, thus, measuring the

accuracy in a strict manner may not paint a fair picture of

how the alignment algorithm actually performs.

In our case, we propose a similar in spirit clustering-based

accuracy measurement. We first group entities in the first mode

into k clusters, and assume that two entities can be regarded

as the same one if they are from the same cluster. Consider the

property of the row permutation matrix Πrow, if Πrow(i, j) =
p where 0 ≤ p ≤ 1, this means that the j-th row will be

moved to i-th position with probability p. For each row i of

the learned alignment matrix, compare the true matrix Π(j, i)
and the learned matrix Π̂(k, i). If j = k, row i-th is correct

aligned. If j ̸= k, only if the destinations row j and row k are

in the same cluster, then it is counted as correct alignment.

Numerically, our clustering accuracy measurement metric is

defined below

Π accuracy =
No. correctly aligned entities based on clustering

No. of entities

It’s worth to mention that when we don’t perform clustering,

i.e., each entity is in the cluster of itself, Π accuracy =

Raw accuracy. Without loss of generality, we use Π accuracy

to capture alignment performance as Raw accuracy is its

special case. In our experiments, due to space limitations,

we present (a) results for the best performing number of

clusters for each given baseline and dataset (where in some

cases, the best performance was observed without the need

for clustering), and (b) for a given dataset and algorithm

combination we demonstrate the behavior of the accuracy

measured for different numbers of clusters k.

B. TENALIGN Variants

We are testing three variants of our method: TENALIGN-L1,

TENALIGN-L2, and TENALIGN-L2-REGAL. For the latter,

we substitute our alignment method in formulation L2 with

REGAL’s alignment algorithm. This is meant to (a) demon-

strate the flexibility of TENALIGN, which can incorporate any

existing state-of-the-art alignment method, and (b) compare

the performance of this state-of-the-art alignment component

against our proposed relaxed optimization scheme.

C. Baseline Methods

Since this work is the first to perform joint tensor alignment

and coupled factorization, we were not able to identify pub-

lished baseline methods to compare against, however, we are

comparing against the following schemes which conceptually

represent different baseline methods.

• CPD-REGAL: First conduct separate CPD factorizations

to X and Y and we subsequently apply REGAL’s align-

ment [22] to the row embeddings (factor matrices) com-

puted by the CPD. This is not an iterative algorithm but

a two-step process which closely mimics state-of-the-

art approaches. This is meant to test the quality of the

alignment obtained via this two-step process.









improvements in the alignment subproblem, especially as it

pertains to scalability, but also in terms of obtaining a better

solution to the optimization problem. At the same time we

will explore variations of the coupled factorization paradigm

where e.g., there are shared and individual latent factors.
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