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Abstract—This paper describes a group-level classification
of 14 patients with prefrontal cortex (pFC) lesions from 20
healthy controls using multi-layer graph convolutional networks
(GCN) with features inferred from the scalp EEG recorded from
the encoding phase of working memory (WM) trials. We first
construct undirected and directed graphs to represent the WM
encoding for each trial for each subject using distance correlation-
based functional connectivity measures and differential directed
information-based effective connectivity measures, respectively.
Centrality measures of betweenness centrality, eigenvector cen-
trality, and closeness centrality are inferred for each of the
64 channels from the brain connectivity. Along with the three
centrality measures, each graph uses the relative band powers in
the five frequency bands - delta, theta, alpha, beta, and gamma- as
node features. The summarized graph representation is learned
using two layers of GCN followed by mean pooling, and fully
connected layers are used for classification. The final class label
for a subject is decided using majority voting based on the results
from all the subject’s trials. The GCN-based model can correctly
classify 28 of the 34 subjects (82.35% accuracy) with undirected
edges represented by functional connectivity measure of distance
correlation and classify all 34 subjects (100% accuracy) with
directed edges characterized by effective connectivity measure of
differential directed information.

Index Terms—brain connectivity, graph convolutional net-
works (GCN), prefrontal cortex (pFC), working memory task

I. INTRODUCTION

Working memory (WM) in humans is the brain system
that provides the capability of actively storing information
over short periods, which is essential to perform any complex
cognitive task [1]. WM is often impaired by neurological
disorders such as Parkinson’s disease (PD), as evidenced
by successful diagnoses using standardized tests for WM
evaluation [2]. However, it is possible to alter WM to treat neu-
rological disorders. For example, modification of WM through
therapy has been shown to treat anxiety symptoms and post-
traumatic stress disorder (PTSD) [3]. Thus, understanding the
neural pathways responsible for WM can ease the modification
process, treat the symptoms of severe neurological disorders,
and provide insight into human cognition.

The prefrontal cortex (pFC) of the frontal lobe, which has
been instrumental in complex cognitive behavior, personality
expression, decision-making, and moderating social behavior
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[4], also plays a vital role in the WM process. Brain imaging
using MRI revealed a strong correlation between WM load
and the activity of the pFC region inferred from positive,
statistically significant pixel-wise signal differences induced
by the stimulus [5]. Despite multiple studies corroborating the
essential role of pFC in the WM process [6], [7], it is non-
intuitive to observe patients being able to complete WM tasks
despite suffering from severe tissue damage (lesions) to the
pFC cortical region. This discovery hints at the possibility
of alternate neural pathways for WM that do not heavily
rely on pFC. Additional support for this hypothesis comes
from the study’s results in [8] that identified pFC-independent
frontoparietal neural pathways for WM, and pFC is not always
required for a successful WM process.

Traditional machine learning (ML) and deep learning
(DL) algorithms have recently become prevalent in analyzing
datasets of the brain’s electrophysiology and have shown
robust predictions with high accuracy [9]. However, they fail
to provide the mapping of brain connectivity by locating
Regions of Interest (ROIs) [10]. The fundamental network-like
structure of the brain is often ignored in these models. A graph
representation of the brain is thus better suited to explain the
interactions by considering its physiological configuration. The
graph edges can represent the two types of commonly used
brain connectivity measures for statistical analysis. Functional
connectivity characterizes the correlation between the different
brain regions, which identifies the cluster of regions activated
during a cognitive task, and Effective connectivity describes
the directional flow of information/signal between different
brain regions during a cognitive task [11].

This paper discusses a graph convolutional network (GCN)-
based classifier to distinguish healthy controls from patients
with lesioned pFC from scalp EEG recorded while performing
WM trials. A graph data type represents the functional or
directed functional connectivity as edge features, and node
features represent each channel’s centrality measures and band
powers. These models can better characterize the variations in
memory encoding of the two classes of subjects studied in our
previous work [12]. The remainder of the paper is organized as
follows. Section II provides a brief overview of WM trials and
the data. Generation of graph and GCN classifier architecture
are described in Section III. The classifier results and our



Fig. 1. The phases of a lateralized visuospatial WM task, adapted from [12].

inference are discussed in sections IV and V, respectively.

II. OVERVIEW OF TASK AND DATA

A. Working Memory (WM) task

The WM is assessed in two ways using identity and spatio-
temporal relation tests [8]. In either case, the subjects are
shown a pair of common shapes sequentially. For the identity
test, a task prompt shows a pair of shapes, and the subjects
are asked to identify whether the shown pair is the same as
what they had just studied. For the relation test, the spatial
or temporal aspects are assessed by prompting the subjects to
indicate the shape observed in the top/bottom or first/second,
respectively.

Each WM trial can be divided into five phases, as illustrated
in Fig. 1. Central fixation is shown to record the resting state
EEG during the 2 s pretrial phase. After this, subjects are
shown two common shapes in a top/bottom spatial orienta-
tion for 200 ms each sequentially with a 200 ms break in
between, marking the encoding phase. A 900 ms or 1150
ms maintenance interval follows the encoding phase, where
the subjects actively hold the information shown during the
encoding phase. This is followed by the active processing
stage, where a text prompt appears for the same duration as
the maintenance phase. Finally, the subjects indicated their
response.

B. Data

The data set consists of scalp EEG recordings from 20
healthy control subjects and 14 patients with unilateral pFC
lesions performing lateralized visuospatial working memory
tasks [13]. All participants gave informed written consent
following the University of California, Berkeley, Institutional
Review Board, or the Regional Committee for Medical Re-
search Ethics, Region South, per the Declaration of Helsinki.

TABLE I
DESCRIPTION OF GRAPH EDGE AND NODE FEATURES FOR THE THREE

TYPES OF GRAPHS GENERATED FOR CLASSIFICATION

S.No Graph type Edge features Node features

1. Undirected

Distance correlation (DC)
between each channel pair
during WM encoding
No. of edges =

(64
2

)
= 2016

None (all set to 1 to
infer the GCN
performance using the
weighted graph alone)

2. Undirected

Distance correlation (DC)
between each channel pair
during WM encoding
No. of edges =

(64
2

)
= 2016

Relative power in the five
frequency bands and three
centrality measures inferred
from DC-edge-connected graph
No. of node features = 8

3. Directed

Differential DI (the change in
DI value during WM
encoding from the baseline)
between each channel pair
during WM encoding
No. of edges = 2 ∗

(64
2

)
= 4032

Relative power in the five
frequency bands and three
centrality measures inferred
from differential
DI-edge-connected graph
No. of node features = 8

Using a 64 + 8 channel BioSemi ActiveTwo amplifier with
Ag-AgCl pin-type active electrodes mounted on an elastic cap,
the scalp EEG was recorded with a 1024 Hz sampling fre-
quency. The participants completed 120-240 trials of working
memory tasks each, with each trial having an equal probability
of being an identity or relation type. The EEG signals from
the 64 channels were recorded during the five phases. The raw
signals were preprocessed for noise removal and normalizing
all lesions to the left hemisphere using spatial transformation.
The recordings for each trial were then segregated into three
multivariate time-series corresponding to the pretrial phase,
encoding and maintenance phase, and active processing phase.

III. EXPERIMENTAL SETUP

A. Graph Generation

The preprocessed EEG signals are transformed into graphs
with 64 nodes representing 64 channels and edges representing
the adjacency matrix corresponding to either functional or
directed functional connectivity (effective connectivity), as
described in Table I. The following features are used for
generating graphs from the EEG recordings:

• Adjacency matrix: We compare the classification perfor-
mance of two different brain connectivity parameters to
represent the adjacency matrix. The functional connectiv-
ity is expressed using the statistical distance correlation
(DC) that measures the linear and nonlinear association
between two random variables, i.e., EEG recordings from
two channels [14]. Directed information (DI) [15], which
statistically provides the degree of causation from the
observed EEG recordings, is used to characterize the
effective connectivity. The DI estimator was adapted from
[16]. The superiority of DI-based connectivity features for
subject-wise classification of the memory encoding phase
from baseline is demonstrated in [12] using the same
data used in this study. To combat inter-subject variances
that stem from differences in subjects’ physiology, we
represent the connectivity features as the absolute change
from the pretrial baseline to the encoding phase.



• Node features: A combination of Centrality features and
relative power spectral densities (PSD) are used as the
node features. Betweenness centrality (BC) is a topolog-
ical feature that measures the fraction of shortest paths
passing through a node [17] in a graph. Nodes with a
high betweenness centrality are interpreted as gatekeepers
as cutting off the edges to these nodes can split the
graph into clusters, severing information flow across the
network. Thus, BC is a reliable measure of a node’s
influence over information flow within a graph and is used
to identify significant regions during cognitive tasks [18].
In addition to BC, we also included eigenvector centrality
and closeness centrality to learn additional information on
a node’s influence. Spectral power is another proven fea-
ture used in the literature for classification tasks involving
electrophysiological datasets of the brain, such as seizure
prediction [19], and automated schizophrenia screening
[20]. For our analysis, we computed the relative PSD for
each of the 64 channels in the five frequency bands - δ (1
- 4 Hz), θ (4 - 8 Hz), α (8 - 13 Hz), β (13 - 30 Hz), and
γ (30 - 80 Hz). Thus, each node (channel) is represented
using 8 features (3 centrality and 5 PSD measures).

B. Classifier Architecture

Fig. 2 shows our proposed architecture of the GCN-based
classifier. The input is the graph represented by its adjacency
matrix and node features. Feature representation from the
generated graph is performed using two layers of GCN,
followed by mean pooling. Each layer consists of 64 nodes
corresponding to the 64 channels with rectified linear unit
(ReLU) activation function. To improve generalizability and
avoid overfitting the training data, we employ dropout regu-
larization for each layer with a probability of retention, p =
0.5. Two dense layers follow the GCN layers with 32 and 16
units, respectively, and both use ReLU activation. Finally, the
classifier layer is implemented using a fully connected layer
with two units and sigmoid activation. Other hyper-parameters,
such as batch size, learning rate, number of epochs, and
optimization algorithm, are tuned to obtain the best-performing
model. We also employ a callback feature to reduce the
learning rate by monitoring the validation loss.

We employ the leave-one-subject-out cross-validation
(LOOCV) technique, with the trials corresponding to one
subject held out for testing and the remainder used for training
and recursively repeating the process until all subjects are
tested. The training data is further segregated into independent
training and validation sets in the ratio 7:3. In each case, a sin-
gle label is assigned to the test subject using 2

3 majority voting
from the predicted labels of all the trials of the test subject.
A majority failure is also considered a misclassification when
calculating the overall performance.

IV. RESULTS

After an exhaustive tuning of hyper-parameters, the best-
performing model is chosen. The GCN model was trained
for 200 epochs with a training batch size of 16. The Adam

Fig. 2. Architecture of the GCN-based classifier showing the number of
parameters for each layer: i) Two layers of GCN followed by mean pooling to
learn the graph representation, ii) Two fully connected layers for classification.

optimizer with an initial learning rate of 10−3 and binary
cross-entropy loss function based on training accuracy was
used for this purpose. During training, the callback function
monitored the validation loss and reduced the learning rate
if the loss plateaued. We evaluated the overall classifier per-
formance as the percentage of 34 subjects identified correctly
after majority voting with class labels ”0” and ”1” representing
control subjects and patients with pFC lesions, respectively.

We first evaluated the performance with DC features as edge
weights. The classifier performance was compared with and
without the node features, using the adjacency matrix as edge
weights in both cases. After optimal hyper-parameter tuning,
the GCN-classifier that utilized edge weights alone with no
nodal information identified the class label of 6 of 14 subjects
with pFC lesions (sensitivity of 42.86%) and 14 of the 20
control subjects (70% specificity), which gave an accuracy
of 58.82%. The performance improved considerably with the
addition of centrality and PSD measures. The GCN classifier
with DC edge weights and the eight nodal features identified
the class label of 11 subjects with pFC lesions (sensitivity of
78.57%) and 17 control subjects (85% specificity), resulting
in an accuracy of 82.35%.

Using effective connectivity measures of differential DI,
the change in DI feature during encoding from the pretrial
baseline as edge weights instead of DC resulted in the best
performance. The GCN classifier, in this case, identified the
class label of all 34 subjects correctly (100% accuracy). Fig.



Fig. 3. Classification performance (% of subjects identified correctly using
majority voting) with distance correlation (DC) and differential directed
information (DI). The use of relative band power and centrality features as
node features improves the classifier accuracy of the DC-edge-based classifier.
Differential DI as edge features further improve the accuracy and lead to the
identification of all 34 subjects.

3 summarizes the classification performance using the three
methods discussed above.

V. CONCLUSION

This paper demonstrates the capability of GCN models to
represent the cognitive features of WM encoding among two
populations - healthy controls and patients with pFC lesions.
The GCN model can perform group-level classification with
high accuracy from functional and effective brain connectivity
features, centrality measures inferred from the connectivity,
and band powers from different channels. This indicates that
a graph-based model of brain connectivity is well-suited for
capturing relevant information across subjects, making them
agnostic to inter-subject variances.

Amongst the two connectivity measures, the differential
DI as directed edge weight results in the best performance,
identifying the class label of all 34 subjects. Although DC
can measure nonlinear interactions, DI-based effective connec-
tivity measure is far superior in characterizing the nonlinear
interaction in the brain, as indicated by its better performance
(100%) when compared to that of DC (82.35%). Finally, we
show that centrality measures and band powers play a crucial
role in the classification process. The inclusion of these nodal
features results in an increase in accuracy by 23.5%.

Though the number of parameters used by the GCN classi-
fier is comparable to a simple neural network and much less
than many standard deep neural networks, there is scope to
simplify the architecture further. Future work will be directed
towards deriving the two classes’ graphical representation
and identifying significant differences in the connectivity and
nodal features. This can be extended to the decoding phase
of WM tasks to identify the significant variations in regional
dependence on the WM process among the two populations
and can also be generalized to determine the deterioration in
brain networks for subjects with memory disorders, such as
dementia and Alzheimer’s.
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