
1.  Introduction
Precipitation is a fundamental driver of the global hydrological cycle and has profound implications on human 
life and social society (Ramanathan et al., 2001; Swain et al., 2018; Wang L et al., 2021; Zhang et al., 2021). 
It can shorten cloud lifetime, regulate cloud water content and then affect radiative energy budget (Ackerman 
et al., 2000; Albrecht, 1989; Twomey, 1977). The aerosol effects on precipitation are complicated and have raised 
much attention. Aerosol microphysical and radiative effects have critical influence on cloud and precipitation 
(Ackerman et al., 2000; Albrecht, 1989; Twomey, 1977; Wang F. et al., 2018; Wang Y. et al., 2018). Diverse 
aerosol effects have been found in previous studies, debating on whether aerosol effects are significant (Guo J. 
et al., 2014), whether the effects are suppression (Ackerman et al., 2000; Kaufman & Fraser, 1997; Kaufman & 
Nakajima, 1993; Qian et al., 2009; Rosenfeld, 1999; Zhao et al., 2006) or enhancement (Fan et al., 2018; Koren 
et al., 2005; Rosenfeld et al., 2008; Wang et al., 2016; Zhao et al., 2018), and whether the effects are monotonic 
(Guo X. L. et al., 2014; Jiang et al., 2016; Koren et al., 2008; Liu H. et al., 2019; Yang et al., 2018). The dynamics, 
thermodynamics (Fan et al., 2009; Guo J. et al., 2016; Sun & Zhao, 2020, 2021; Xiao et al., 2022), aerosol types 
(Han et al., 2022; Jiang et al., 2018; Yang et al., 2016) and cloud types (Chen et al., 2016; Garrett & Zhao, 2006; 
Gryspeerdt et al., 2014; Gryspeerdt & Stier, 2012) can all modify the aerosol effect on cloud and precipitation.

Aerosols in the cloud and under the cloud play distinguishable effects on precipitation. In the cloud, the aero-
sols can affect cloud particle effective radius, evaporation rates, condensation and coalescence efficiency and 
then the competition of latent heat between released and absorbed (Jiang et al., 2006; Lee et al., 2015), which 
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can cause further influence on cloud and precipitation, especially for the precipitation with ice-phase processes 
(Andreae et al., 2004; Fan et al., 2018; Lin et al., 2006; Rosenfeld et al., 2008). Under the cloud, absorbing aero-
sols can modify the atmospheric thermodynamic structure (Wang et al., 2013), water vapor environment (Sun 
& Zhao, 2020), and then precipitation, especially the evaporation process, which has not been highlighted yet in 
previous studies.

Most previous studies have investigated aerosol effect on precipitation by studying the relationships between 
aerosol and surface precipitation rate or characteristics of cloud (Jiang et al., 2016; Xiao et al., 2022), but few have 
analyzed the topic from the perspective of the whole vertical structure. The global precipitation measurement 
(GPM) mission dual-frequency precipitation radar (DPR) data set (GPM-DPR) provides precipitation rate profile 
and precipitation types (convective, stratiform, and other), while the data set are mainly used to study the vertical 
structure of precipitation (Sun et al., 2020; Wang R et al., 2021; Yang et al., 2021a) without considering aerosol 
impacts. Several studies have used GPM-DPR data set to study the aerosol effect on precipitation, but still focused 
on surface precipitation rate (Xiao et al., 2022).

Here, we use precipitation rate, including GPM precipitation rate profile and hourly China Merged Precipitation 
Analysis product (CMPA), surface PM2.5 mass concentration, solid/liquid precipitation water in column from 
GPM, convective available potential energy (CAPE) from the National Centers for Environmental Prediction 
(NCEP), precipitable water vapor (PWV) from MERRA-2, wind shear (WS) and relative humidity (RH) from 
ERA5 to examine the aerosol effect on precipitation-top height and the near surface precipitation rate. With these 
data, we here address the question: How do aerosols affect precipitation rate at different layers, along with the 
potential reasons behind?

2.  Data and Method
The study region is located at 113.4°–120.0°E, 35.0°–41.0°N with the altitude of 0–2  km above sea level 
(Figure 1a), which has attracted much interest with serious air pollution and dense population, even though air 
quality over this region has been improved gradually and significantly during past decade (Fan et al., 2021; Guo 
J. et al., 2014; Sun et al., 2022; Zhang et al., 2020). The aerosol effects on precipitation may be different over the 
mountainous and plain regions, so this study only selects the area with Digital Elevation Model (DEM) less than 
100 m (Chen et al., 2021; Guo J. et al., 2014; Yang et al., 2021b, 2021c). The study period focuses on the warm 
season (May to September) of multiple years from 2015 to 2020. Detailed information about the precipitation, 
aerosol, meteorology, and cloud data adopted in this study are shown in Table S1 in Supporting Information S1.

The Ku-/Ka-band DPR from GPM can detect precipitation properties effectively and then provide rich precipi-
tation information, such as precipitation types, precipitation top height, precipitation rate, and so on, which have 
been validated and widely used in previous studies (e.g., Hamada & Takayabu, 2015; Kotsuki et al., 2014; Sun 
et al., 2020; Zhang & Fu, 2018). The convective precipitation is more sensitive to aerosol compared to strati-
form precipitation and the ice-phase process of precipitation has been highlighted in many recent studies (Li 
et al., 2022; Mülmenstädt et al., 2015; Sun & Zhao, 2021), so we focus our study on the convective precipitation 
with ice-process. We only choose the cases that the precipitation-top height is above the freezing level to confirm 
the existence of ice processes. We focus on the responses of precipitation-top height and precipitation rate to 
aerosols. Note that we remove the extreme heavy precipitation events with precipitation rates over 10 mm hr −1.

The different types of aerosols have different influence on cloud and precipitation (Han et  al.,  2022; Jiang 
et al., 2018; Sun & Zhao, 2021). We use single scattering albedo (SSA, 440 nm) and fine mode fraction (FMF, 
500 nm) from the AEROSOL ROBOTIC NETWORK (AERONET) (Lee et al., 2010) to investigate the aero-
sol types. As shown in Figure S1 in Supporting Information S1, the SSA is from 0.90 to 0.95 and the FMF is 
from 0.60 to 0.84, which means that the slightly-absorbing fine mode aerosols are dominant in the study region 
during our study period. Considering this, we have not further refined the aerosol types. Compared to AOD and 
coarse mode aerosol concentrations, fine mode aerosol mass concentration can better serve as the proxy for cloud 
condensation nuclei (CCN) (Pan et al., 2021), so we use the mean PM2.5 mass concentration within 4 hr before 
precipitation to represent the amount of CCN, which can weaken the influence of diurnal variations of aerosols 
(Sun & Zhao, 2021). The local scale convective precipitation meets the following criteria (Guo J. et al., 2019): 
(a) the precipitation start time is limited from 7:00-19:00 LT; (b) the proportion of rainy grids within a 15-grids 
radius around the selected grid has to be equal or less than 25%; (c) the proportion of rainy grids within a 
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5-grids radius has to be equal or less than 50%; (d) the duration of precipitation event is less than 4 hr (Sun & 
Zhao, 2021). Note that a grid is with the spatial resolution of 0.1 × 0.1°. We use the Aerosol Index (AI) from the 
Ozone Monitoring Instrument (OMI) onboard the Aura satellite to further investigate absorbing aerosol effect on 
precipitation. The positive (negative) AI values represent that the absorbing (scattering) aerosols are dominant 
in this region (Tariq & Ali, 2015). We remove the data with values from −0.1 to 0.1 due to potential large uncer-
tainties (Hammer et al., 2018).

Previous studies have indicated that the dynamics and thermodynamics of atmospheric environment can signifi-
cantly modify the aerosol effect on cloud and precipitation (Fan et al., 2009; Pan et al., 2021; Sun & Zhao, 2020). 
Here, we use the CAPE and WS to limit the impacts of dynamics and thermodynamics and use the PWV and RH 
to represent the moisture condition (e.g., Fan et al., 2009; Pan et al., 2021). Wind shear is calculated by max(u) 
minus min(u) within 400 hPa from 1,000 hPa (Fan et al., 2009). Relative humidity is defined with the averaged 
RH over 500–900 hPa (Fan et al., 2009). We group all data into two groups with similar meteorological condi-
tions, which are High CAPE-High PWV-Low WS-High RH, and Low CAPE-Low PWV- High WS- Low RH.

Based on the nearest method in space, we first match PM2.5 and precipitation from the GPM with the distance less 
than 35 km. The locations of GPM observed precipitation properties will be matched with a grid point in CMPA, 
NCEP, MERRA-2, ERA5, and Himawari-8 and then get corresponding parameters from those datasets, including 
precipitation rate, CAPE, PWV, WS, RH, and cloud effective radius (re). The time-continuous precipitation rates 
are provided by the CMPA, based on which we can obtain start time and duration of precipitation. Note that the 
start time and duration of precipitation are defined as the time when precipitation occurs and the time length from 

Figure 1.  (a) The study region with surface altitude (km) information, (b) Profiles of average precipitation (P.) rate 
(mm hr −1), (c) the precipitation-top height (km) statistics, and (d) the near surface precipitation rate statistics for different 
ranges of PM2.5 mass concentration in warm season (May-September) during 2015–2020 at North China Plain. The sample 
number (N) is 360. The colors of line from blue to red in (a) represent different PM2.5 mass concentration with an interval of 
12 μg m −3 from 0 to 60 μg m −3. The p-value is from one-way ANOVA and the hypothesis is that all groups are drawn from 
populations with the same mean. The white dots in panel (a) represent the PM2.5 site stations used in this study.
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precipitation occurrence to the end, respectively. Temporally, the CAPE and WS used are before precipitation 
start time, while the PWV and RH are matched with GPM precipitation time.

The cluster analysis is used to investigate the aerosol effect on precipitation. We find the similar results with 
different PM2.5 mass concentration intervals (Figure S2 in Supporting Information S1). Considering the limited 
sample volume, we investigate the aerosol effect on precipitation further with PM2.5 mass concentration interval 
of 12 μg m −3 from 0 to 60 μg m −3. Note that the sample number in every bin is set more than 30 to ensure the 
validity of the statistics (Wilks, 2011).

3.  Results
3.1.  The Boomerang-Shape Aerosol Effect on Top Height of Convective Precipitation

The North China Plain (NCP) with a large range of aerosol concentration is an ideal place to investigate the 
aerosol effect on precipitation (Liu H et al., 2019). We focus on the local scale convective precipitation with 
ice-phase processes and find that the aerosol effect on precipitation-top height is not monotonic and varies from 
invigoration to suppression (Figures 1b and 1c). As shown in Figure 1c, the precipitation-top height is enhanced 
when PM2.5 increases before reaching 36 μg m −3 but suppressed when PM2.5 changes from 36 to 60 μg m −3 signif-
icantly. The aerosol effects on precipitation-top height shown in Figure 1c may be linked with covarying meteor-
ological conditions (Koren et al., 2012; Pan et al., 2021). As shown in Figure 2a, the meteorological factors are 
coupled. The high (low) CAPE is accompanied with high (low) PWV and low (high) WS and the RHs are similar 
under different CAPE conditions. We further examine the potential influence of CAPE, PWV, WS, and RH on 
precipitation in Figure 2b. The boomerang-shape effects from invigoration to suppression are shown in Figure 2b 
with similar PM2.5 turning points under different meteorological conditions, that are 36–48 μg m −3. The compe-
tition of latent heat between released by condensation/freezing and absorbed by evaporation can help explain the 
boomerang-shape effects of aerosols on precipitation and will be shown in detail in the theoretical hypothesis 
proposed in Section 3.3. The conducive dynamics conditions with high CAPE and low WS and abundant supply 

Figure 2.  (a) The variations of wind shear (WS, m s −1; blue bar), precipitable water vapor (PWV, mm; orange bar) and 
relative humidity (RH, %; yellow bar) with convective available potential energy (CAPE, KJ kg −1); and the variations of (b) 
the precipitation-top height (km) statistics, (c) precipitation rate in High Layer statistics, (d) precipitation rate in Medium 
Layer statistics, (e) precipitation rate in Low Layer statistics, and (f) precipitation rate in Bottom Layer statistics for different 
ranges of PM2.5 mass concentration under different meteorological conditions in warm season (May-September) during 2015–
2020 at North China Plain. The solid and dashed lines represent different meteorological conditions as shown in panel (b).
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of water vapor with high PWV and RH can enhance the precipitation-top height evidently. In a word, the aero-
sol can strengthen precipitation-top height first and then suppress it from clean to polluted conditions, and the 
atmospheric dynamics and moisture are important meteorological factors that can influence the aerosol effect on 
precipitation-top height.

3.2.  The Strong Evaporation Suppressing the Near Surface Precipitation Rate

It has been suggested that the characteristics of cloud and precipitation at high altitude are closely correlated with 
precipitation rate near the surface (Dagan et al., 2015; A. P. Khain, 2009; Li et al., 2008; Rosenfeld et al., 2008). 
However, the results from Figure 1d suggest an insignificant effect on near surface precipitation rate by aerosols, 
different from the responses of precipitation-top height. To explore the reasons, we examine the response of 
precipitation rate to aerosols at heights below and above the freezing levels, respectively, and the latter is linked 
with the net effect of complex mixed-phase cloud processes. The climatological freezing levels are 4.8 (±0.6) 
km in the study region. We divide the precipitation rates from freezing level to ground into three groups based 
on the same sample number, called as Medium Layer (∼3.2–4.8 km), Low Layer (∼1.6–3.2 km), and Bottom 
Layer (∼0–1.6  km) from high (freezing level) to low (near surface) in altitudes and the High Layer is from 
precipitation-top height to freezing level.

Figure 2c shows that the precipitation-top height can influence precipitation rates above freezing level under 
different meteorological conditions. While, the precipitation rate shows insignificant responses to aerosol below 
the freezing level (shown in Figures 2d–2f), which indicates that the aerosol effect on precipitation is offset by 
other factors during falling. Being close to the surface, the temperature increases gradually and humidity condi-
tions become complex, which are closely related to the intensity of evaporation. Thus, we further investigate the 
evaporation efficiency near the surface to understand this phenomenon.

We define a precipitation lapse rate by calculating the slope between precipitation rate and altitude in Medium 
Layer, Low Layer, and Bottom Layer, respectively, which can reflect the evaporation efficiency indirectly (Zhao 
& Garrett, 2008). The positive lapse rate indicates that the precipitation rate is further weakened in the process 
of precipitation falling, suggesting the evident role of evaporation. The percentages of the cases with significant 
correlations at a confidence level of 95% are 63%–83% (shown in Table S2 in Supporting Information  S1). 
Both precipitation intensity and pollution conditions show different effects on lapse rates at different layers. The 
precipitation rates change evidently in Medium Layer, with rapidly increasing precipitation rate for 61%–93% 
cases, especially for heavy precipitation, which suggests that the evaporation is not dominant in Medium Layer 
(shown in Figures 3a, 3d and 3g). With precipitation falling, the proportions of cases that evaporation dominates 
increase gradually under different precipitation and pollution conditions at Low Layer (shown in Figure 3b). 
At the Bottom Layer, the evaporation is pre-dominant, and precipitation rates decrease for 59%–75% cases. 
Figures 3a–3c indicate that the proportions of the cases with evaporation dominant increase gradually as the 
precipitation approaches the ground (from Medium to Bottom Layer), which implies that evaporation can modify 
precipitation rate near the surface and then make the results of aerosol effects on precipitation rate near the 
surface not clear. Thus, the near surface precipitation rates are influenced by precipitation-top height, evaporation 
and other meteorological factors.

We investigate the liquid and solid precipitation water in column under different pollution and near surface 
precipitation rate conditions and find that the raindrop size and ice particle number contribute to the differences 
of lapse rate between light and heavy precipitation. Under the similar pollution conditions (assumed similar 
CCN number), the precipitation water in column is larger under heavy precipitation due to larger raindrop size 
(Figure 4a). The larger the size, the stronger the total evaporation is. While, the heavy precipitation is often along 
with more ice water (Figure 4a), which can cool the atmosphere more efficiently than liquid water with more 
absorbed energy, increasing the relative humidity. As shown in Figure 4a, there is more liquid (solid) precipitation 
produced under clean (polluted) conditions than under polluted (clean) conditions with heavy precipitation case. 
That's because conversion from cloud droplets to raindrops is more efficient due to higher collision/coalescence 
efficiency under clean conditions (Albrecht, 1989; Li et al., 2008; Rosenfeld, 1999). Meanwhile, the ice particles 
are generally larger under polluted conditions once produced (Li et al., 2008), making them survive from evap-
oration during their falling. The efficiency of evaporation battles with that of condensation, and the aerosol type 
can affect the result. The temperature and relative humidity can affect the evaporation efficiency, which can both 
be further influenced by aerosols. As shown in Figure 4b, aerosols can heat the atmosphere due to the presence of 
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absorbing aerosols in the study region (He et al., 2020; Sun & Zhao, 2021) and then decrease the relative humid-
ity, leading to strengthened evaporation. The proportion of positive Aerosol Index (AI) is 82% at precipitation 
location and the proportions with AI values larger at precipitation location than surrounding environment are 
64%–69% (Figure 4c), which indicate that absorbing aerosols can be conductive to the generation and develop-
ment of precipitation. The temperature differences between heavy and light precipitation are obvious at aerosol 
layer (about 850–925 hPa) as shown in Figure 4d (Li & Han, 2016; Liu M et al., 2019; Wang F. et al., 2018; Wang 
Y. et al., 2018), which confirms that more aerosol particles can heat the atmosphere further. Figure 4d shows that 
the temperature is slightly higher under heavy precipitation than under light precipitation. The heavy precipitation 
may result from stronger convection which is associated with higher near surface air temperature before precip-
itation. Although higher near-surface atmospheric temperature associated with heavy precipitation would also 
enhance evaporation efficiency, the relatively weaker temperature difference shown in Figure 4d between heavy 
and light precipitation under polluted conditions implies that the evaporation should have been strengthened by 
more aerosol particles.

3.3.  A Theoretical Framework to Explain the Observed Relationships

Previous studies have proposed many mechanisms about aerosol effect on precipitation. The positive 
precipitation-aerosol relationships have been attributed to invigoration effect (e.g., Fan et al., 2018; Rosenfeld 
et  al.,  2008). The negative precipitation-aerosol relationships have been ascribed to cloud water competition 
(Albrecht, 1989; Rosenfeld, 1999), wet scavenging (Grandey et al., 2014), decreased solar radiation by aerosols 

Figure 3.  The percentages of precipitation lapse rate ≥0 and lapse rate ＜0 under different conditions in (a) medium, (b) 
low, and (c) bottom layer, respectively. The cyan (blue, roseo, and red) and white circles represent the percentage of lapse rate 
≥0 and lapse rate ＜0. From the inner circle to the outer circle, it is clean and light precipitation (Clean-Light P.), clean and 
heavy precipitation (Clean-Hvy P.), polluted and light precipitation (Pollut-Light P.), polluted and heavy precipitation (Pollut- 
Hvy P.) in turn. The lapse rate ≥0 (＜0) represents precipitation rate decreasing (increasing) in falling. The N represents 
the sample number. (d–i) the slope of precipitation rate with altitude in Medium, Low, and Bottom Layer, respectively. The 
average positive slopes (lapse rate ≥0) are shown in (d–f) and negative slopes (lapse rate <0) are shown in (g–i).
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(Jiang et al., 2016), evaporation and sublimation of hydrometeors (Dagan et al., 2015; Liu H et al., 2019), and 
so on. However, these hypotheses are not applicable to our cases. Based on the results shown in Figures 1–4, 
we propose an explanatory theoretical framework here. The competition between released latent heat and evap-
oration cooling may explain the boomerang-shape aerosol effect on precipitation-top height. The part of cloud 
margin is under sub-saturation (Wang et  al.,  2009) and the evaporation cooling effect sometimes can offset 
the latent heat released from condensation and then suppress the development of cloud (Fan et al., 2009). The 
CCN number concentration increases with aerosols from clean to medium pollution conditions, resulting in 
more cloud droplets and frozen ice particles with enhanced latent heat release (Li et  al.,  2008). Meanwhile, 
the condensation or sublimation of cloud droplets don't consume water vapor excessively (Dagan et al., 2015; 
Fan et al., 2007), which means that the relative humidity on the edge of the cloud has no strong change; the 
collision-coalescence processes occur after condensation processes and reduce the total superficial area of cloud 
droplets (Dagan et  al., 2015; Freud & Rosenfeld, 2012) and then weaken the evaporation on the edge of the 
cloud; hence the convective clouds can develop further. Under the polluted conditions, the CCN number concen-
tration increases but the cloud effective radius decreases (shown in Figure S3 in Supporting Information S1) 
(Kaufman & Fraser, 1997; Kaufman & Nakajima, 1993), which contributes to prolonged condensation or subli-
mation (Dagan et al., 2015), delayed collision-coalescence processes (Albrecht, 1989; Ross & Phillips, 1957; 
Squires, 1958; Warner, 1968) and increased total surface cloud droplets aera (Dagan et al., 2015). Hence, there is 
more (less) latent heat released from condensation (freezing) (Dagan et al., 2015; Seiki & Nakajima, 2014) and 
more consumed water vapor (Dagan et al., 2015; Li et al., 2008), which implies that the heat absorbed by evap-
oration is larger than the released latent heat (Jiang et al., 2006; A. Khain et al., 2005; Small et al., 2009; Xue & 
Feingold, 2006) and then suppresses the development of cloud and precipitation. As a result, the precipitation-top 
heights are the highest under medium pollution conditions. In other words, the precipitation-top heights increase 
first and then decrease with increasing aerosol amount.

Under the polluted conditions, the conversion from cloud droplets to raindrops and the process of ice nuclea-
tion are hindered. However, the graupel particles will be larger than that under clean conditions once produced 

Figure 4.  (a) The liquid/solid precipitation water in column from GPM (kg m −2) under different pollution and near surface 
precipitation rate conditions. The green starlike dots are the proportion of solid water. (b) The difference of temperature and 
relative humidity between polluted and clean conditions when precipitation occurs. The blue and red line represent relative 
humidity and temperature, respectively. (c) The proportion of positive/negative (gray/white histogram) AI at precipitation 
location and the proportions of positive/negative (purple/orange histogram) AI at D. The D is the difference of AI between at 
precipitation location and surrounding environment around precipitation location, and the latter is a region within a 25 (50, 
100, and 150) km radius around precipitation location. The selected sample number is 377. (d) The temperature difference 
between heavy and light precipitation cases under clean (solid line) and polluted (dash line) conditions.
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(Li et al., 2008), which can make them survive from evaporation. While under the clean conditions, the cloud 
droplets are converted into raindrops largely, resulting in more but smaller raindrops than those under polluted 
conditions due to more efficiently collision/coalescence (Albrecht, 1989; Li et al., 2008; Rosenfeld, 1999). The 
numerous small raindrops with large superficial area are conductive to evaporation. As a result, the precipitation 
rates are similar under different pollution conditions. Besides, the absorbing aerosol can create warm and dry 
conditions to enhance evaporation (shown in Figure 4b).

4.  Conclusion and Discussion
Our observation-based analyses reveal that aerosols enhance precipitation-top height first and then suppress 
it for local scale convective precipitation with ice-phase processes. The turning point occurs at medium aero-
sol amount. The boomerang-shape effect persists over different atmospheric dynamical and thermodynamical 
conditions with turning points at similar aerosol amount. The high CAPE-high PWV-low WS-high RH generally 
make the precipitation-top height higher. Strong evaporation modifies the response of precipitation to aerosol 
from cloud base to the surface. Near surface precipitation rate shows no significant responses to aerosol and 
precipitation-top height. The atmospheric environment temperature, relative humidity, and aerosol amount affect 
evaporation of precipitation, which most likely plays a more important role than other factors in determining near 
surface precipitation rate.

A physical framework is proposed in the present study to explain the findings above. The key lies in the competi-
tion between latent heat released from condensation and freezing processes and energy absorbed by evaporation 
process. From clean to medium pollution conditions, the released latent heat by condensation and freezing is 
more than the energy absorbed by evaporation, which enhances the precipitation-top height. In contrast, the latent 
heat released is less than the energy absorbed from medium to heavy pollution conditions, which suppresses the 
precipitation-top height. The size and number of raindrops strongly regulate the evaporation efficiency and then 
precipitation rate. The small and numerous droplets are conductive to evaporation under the subsaturated condi-
tions. Moreover, due to the accumulated absorbing aerosols at low troposphere, the near surface precipitation 
rate is largely controlled by evaporation, resulting from increased temperature and decreased relative humidity.

In this study, we provide a holistic perspective to investigate cloud and precipitation simultaneously throughout 
the whole vertical processes of precipitation. While this study only focuses on the North China Plain, similar 
results about the aerosol impacts on convective precipitation can be expected over other regions with sufficient 
aerosol amount and similar aerosol types. In-depth modeling simulations will be done, and observational analyses 
can be extended in future to cover more regions with increased sample volume.

Data Availability Statement
The details of the hourly precipitation data from the China Merged Precipitation Analysis Version 1.0 prod-
uct can be found from https://www.ckcest.cn/default/es3/detail/4004/dw_dataset/C92AF495DE300001E3
27C1BD56401982 (last access: 22 November 2022) (Shen et  al.,  2014). The PM2.5 mass concentration data 
used in this article can be obtained from https://zenodo.org/record/6950751/. The DPR Level-2A product from 
the Global Precipitation Measurement (GPM) (Iguchi & Meneghini, 2021) mission can be downloaded from 
https://doi.org/10.5067/GPM/DPR/GPM/2A/07. NCEP (https://doi.org/10.5065/D6M043C6) reanalysis data 
sets. MERRA-2 (http://doi.org/10.5067/G0U6NGQ3BLE0). The ultraviolet AI from the Ozone Monitoring 
Instrument (OMI) onboard the Aura satellite is from https://doi.org/10.5067/Aura/OMI/DATA3004 (Deborah 
& Veefkind,  2012). The Aerosol Robotic Network (AERONET) datum are from https://aeronet.gsfc.nasa.
gov/cgi-bin/draw_map_display_aod_v3 and https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_display_inv_v3. 
Himawari-8 cloud mask product is obtained from http://www.eorc.jaxa.jp/ptree/index.html. The ERA5 product is 
obtained from https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2018).
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