

1 **Computational design of CRISPR guide RNAs to enable strain-specific**
2 **control of microbial consortia**

4 Austin G. Rottinghaus¹, Steven Vo², and Tae Seok Moon^{1,2,*}

5 ¹Department of Energy, Environmental and Chemical Engineering, Washington University in St.
6 Louis, St. Louis, United States

7 ²Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis,
8 United States

10 * Correspondence

11 Tae Seok Moon

12 One Brookings Dr., Box 1180

13 St. Louis, MO 63130, USA

14 Tel: +1 (314) 935-5026

15 Email: tsmoon7@gmail.com

16

18 **Abstract**

19
20 Microbes naturally coexist in complex, multi-strain communities. However, extracting individual
21 microbes from and specifically manipulating the composition of these consortia remains
22 challenging. The sequence-specific nature of CRISPR guide RNAs can be leveraged to
23 accurately differentiate microorganisms and facilitate the creation of tools that can achieve these
24 tasks. We developed a computational program, ssCRISPR, which designs strain-specific CRISPR
25 guide RNA sequences with user-specified target strains, protected strains, and guide RNA
26 properties. We experimentally verify the accuracy of the strain-specificity predictions in both
27 *Escherichia coli* and *Pseudomonas spp.* and show that up to three nucleotide mismatches are
28 often required to ensure perfect specificity. To demonstrate the functionality of ssCRISPR, we
29 apply computationally designed CRISPR-Cas9 guide RNAs to two applications: the purification
30 of specific microbes through one- and two-plasmid transformation workflows and the targeted
31 removal of specific microbes using DNA-loaded liposomes. For strain purification, we utilize
32 gRNAs designed to target and kill all microbes in a consortium, except the specific microbe to be
33 isolated. For strain elimination, we utilize gRNAs designed to target only the unwanted microbe,
34 while protecting all other strains in the community. ssCRISPR will be of use in diverse microbiota
35 engineering applications.

36
37
38 **Keywords**

39 computational CRISPR RNA design; microbial consortium engineering; targeted microbial killing;
40 targeted strain isolation from microbiota; machine learning; liposome-mediated delivery

41
42
43
44
45 **Significance Statement**

46
47 Modifying microbial consortia with strain-specificity is critical for maintaining stable and healthy
48 microbiota. However, consortium engineering tools with strain-specificity have yet to be
49 developed. Here, we describe the development and validation of a novel computational program,
50 which designs strain-specific CRISPR guide RNAs that can be utilized to modify complex
51 consortia. As a proof of concept, we applied the program to two novel applications: the isolation
52 of specific microbes from consortia and the removal of specific microbes from consortia. This new
53 technique has many practical applications, including addressing the problem of antibiotic-resistant
54 microbes and isolating useful microbes from the environment.

55
56

57 **Main**

58

59 Microbes naturally co-exist in complex and dynamic communities. These microbial consortia
60 cooperate to influence the health of the environment, domestic animals, humans, and plants(1,
61 2). Efforts to create synthetic microbial communities have led to advances in fields, including
62 metabolic engineering and bioremediation(3). Numerous microbes have been extracted from
63 natural consortia with highly specialized and essential functions(4, 5). However, identifying and
64 purifying these microbes remains challenging(6). Pathogens also inhabit these communities and
65 opportunistically disrupt host health. Modern methods of removing them, including antibiotics, are
66 highly disruptive to the survival of homeostatic, beneficial microbes and have led to the global
67 emergence of deadly antibiotic- and bactericide-resistant pathogens(7, 8). Recent advances in
68 phage engineering and plasmid conjugation have allowed microbes to be targeted and killed in a
69 strain-specific manner, causing minimal impact on the stability of the microenvironment(9-11).
70 Microbes have also been engineered with novel functions and introduced into natural
71 microbiomes to improve the health of the host(12, 13) and engineered to selectively colonize
72 specific microenvironments(14, 15). However, exogenously provided microbes often have a
73 difficult time penetrating consortia, finding a niche, and persisting for a long term(16). As an
74 alternative to supplementing microbiota with engineered microbes, microbes can instead be
75 engineered *in situ* using external DNA delivery methods, increasing the endurance of the added
76 functionality(6, 17, 18). However, methods for engineering microbes *in situ* often lack strain
77 specificity, and instead introduce the exogenous DNA randomly into the microbiota(6).

78

79 CRISPR-Cas systems can be tuned to recognize specific genetic loci by modulating the sequence
80 of the guide RNA (gRNA), providing opportunities for strain recognition in microbial consortia. This
81 functionality has been harnessed for applications in strain-specific microbial engineering(17, 18)
82 and elimination(19, 20). Numerous programs have been developed to help design gRNAs with
83 high cutting efficiency and low off-target cleavage rates using machine learning and deep learning
84 models that consider the sequence and thermodynamic characteristics of the gRNA
85 sequence(21-24). However, programs for designing gRNAs specific to individual microbial strains
86 are lacking. One recent work achieved this goal with an effective and accessible website(10).
87 However, the program lacks strain selection options, cannot be utilized for diverse CRISPR
88 systems beyond Cas9, and defines a strain-specific gRNA as one with at least one nucleotide (nt)
89 mismatch in the non-target strains, which has been shown to be insufficient to prevent
90 cleavage(25).

91

92 In this work, we created a program, ssCRISPR, which computationally designs strain-specific
93 CRISPR gRNAs from user-defined target and non-target strains without the common deficiencies
94 in current programs. Genome sequences for strain options were extracted from the expansive
95 National Center for Biotechnology Information (NCBI) genome repository, giving users over
96 27,000 strain selection options, or can be provided by the user. Users of ssCRISPR can also input
97 their desired protospacer adjacent motif (PAM) sequence, target sequence length, and PAM-
98 target orientation, giving the program the customizability required for use with any CRISPR-Cas
99 system. Furthermore, users can select their desired criteria for specificity, from 1-4 nt, as the
100 application will dictate the required stringency. However, we show that to ensure complete strain-
101 specificity, at least 3 nt mismatches in the target sequence relative to the genomes of all non-
102 target strains may be required. We also demonstrated two potential applications of ssCRISPR-
103 designed gRNAs: first, the purification of a single strain from a microbial consortium using a single
104 plasmid transformation; second, the depletion of a single strain from a microbial consortium using
105 liposomal delivery of strain-specific CRISPR-Cas9 cassettes. ssCRISPR can be downloaded and
106 run locally either as a Python script or as an all-encompassing executable application. In either

107 case, users can take advantage of the user-friendly graphical interface to operate the program
108 without programming expertise.

111 **Results**

113 **ssCRISPR Identifies efficient gRNAs for target strains**

115 We sought to create a program to computationally design strain-specific gRNAs through four
116 sequential stages (Fig. 1). In the first stage, the user can select criteria for the program, allowing
117 enough customizability for any consortium and Cas protein. In the second stage, the program
118 identifies gRNA target sequences in each target strain and keeps sequences present in all strains.
119 In the third stage, the program identifies gRNA target sequences in the non-target strains and
120 removes these sequences from the list of gRNAs identified in the second stage. When specified,
121 the list of non-target strain gRNAs is expanded to include each possible iteration with 1, 2, or 3
122 nucleotide changes. In the final stage, for use with specific Cas proteins, the program ranks the
123 gRNAs from most to least efficient using machine learning models based on the sequence and
124 thermodynamic properties.

125 To develop ssCRISPR, we first needed a reference database of genome sequences. We selected
126 the NCBI genome repository, which at the time of last download included 27,569 complete
127 bacterial genome sequences. The database is rapidly expanding to include newly sequenced
128 genomes. The sequences can be quickly extracted from NCBI using the sequence reference
129 number which eliminates the burdensome need to maintain the full sequences locally and allowing
130 for easy future updates. To use the repository, we downloaded the table of strain names and
131 corresponding sequence reference numbers and packaged the table file with the developed
132 gRNA design program. The user then has the option to select target strains and protected, non-
133 target strains for gRNA identification (Fig. 1). However, if a desired strain is not provided as an
134 option, users can also provide their own sequences.

135 Having obtained an expansive database of strain selections, we next sought to make ssCRISPR
136 generalizable across any CRISPR-Cas system. To achieve this goal, we created user inputs for
137 the following characteristics: target sequence length, PAM sequence, and PAM orientation
138 relative to the target sequence. These inputs allow the user to apply the program to CRISPR-Cas
139 systems ranging from *Streptococcus pyogenes* Cas9, which has a 20 nt target sequence, an NGG
140 PAM sequence, and a 5'-target-PAM-3' orientation(26), to *E. coli* Cas3, which has a 32 nt target
141 sequence, AWG/NAG/ATG PAM sequence, and 5'-PAM-target-3' orientation(27). ssCRISPR
142 applies these criteria to sequentially search the genomes of all selected target strains for the
143 specified PAM sequences and extract the corresponding target sequences. Native plasmids are
144 not considered viable gRNA target sites as they are mostly inessential for cell survival. However,
145 if multiple unique chromosomes exist, all are considered for possible gRNA target sites. After
146 searching each selected strain, ssCRISPR compares the lists of identified target sequences, and
147 only gRNA sequences with exact matches between all target strains are maintained (Fig. 1).

148 To evaluate the program, we determined the number of CRISPR-Cas9 gRNA target sites shared
149 between all 2,068 sequenced *E. coli* genomes using reverse alphabetical order. ssCRISPR
150 identified 1,441 broad-targeting *E. coli* gRNA sequences (Fig. 2A). We repeated the process for
151 all 1,020 sequenced strains of *Pseudomonas spp.* and identified 142 total gRNA target sites. The
152 program run for *Pseudomonas spp.* gRNAs eliminated viable gRNAs more rapidly than the run
153 for *E. coli*, with over 99% of potential gRNAs removed after just two strains (*P. zhaodongensis*

157 A252 and *P. zeae* OE 48.2) versus 880 *E. coli* strains. This observation can be explained by the
158 larger genetic diversity between *Pseudomonas* species than same-species *E. coli* strains. We
159 repeated the analysis for several additional Cas proteins, including variants for Cpf1
160 (*Lachnospiraceae bacterium* Cas12a; 23 nt target length, TTTV PAM, and 5'-PAM-target-3'
161 orientation(28)), *E. coli* Cas3 (32 nt target length, AWG, ANG, or ATG PAM, and 5'-PAM-target-
162 3' orientation(27)), and *Alicyclobacillus acidoterrestris* Cas12b (20 nt target length, TTN PAM,
163 and 5'-PAM-target-3' orientation(29)) (Fig. S1). Cas proteins with more stringent PAM sequences
164 and longer target sequences generally had fewer potential gRNA target sites in both *E. coli* and
165 *Pseudomonas* spp. Furthermore, *Pseudomonas* spp., which have a higher GC content (~60%)
166 than *E. coli* (~50%), had a 2-fold larger reduction in the number of predicted gRNAs for Cpf1
167 relative to Cas9 due to the AT rich Cpf1 PAM sequences.

168
169 We next sought a method to select the best possible gRNAs from the list of identified sequences.
170 To achieve this goal, we adapted and incorporated a relative cleavage efficiency prediction model
171 previously demonstrated by Guo *et al.*(21) We used the dataset of ~56,000 CRISPR-Cas9 gRNA
172 sequences assessed by Guo *et al.* to train and optimize a gradient boosting regression machine
173 learning model from the following 396 sequence composition and energetic properties: total A, T,
174 C, G and GC content, T content of the four PAM-adjacent nucleotides, presence of an A, T, C, or
175 G in each of the 20 PAM adjacent nucleotides (80 properties), presence of each nucleotide dimer
176 (NN) in each of the 20 PAM adjacent nucleotides (304 properties), minimum free energy for the
177 12 PAM adjacent nucleotides and the full gRNA sequence, the melting temperature for the five
178 PAM adjacent nucleotides, next eight nucleotides, remaining nucleotides, and the full gRNA
179 sequence. The GC content, sequence of the PAM-adjacent seed region, and thermodynamic
180 properties of the RNA and DNA-RNA complex were found to be the most important features of
181 the model (Fig. S2). To evaluate the accuracy of the model, we compared the predicted and actual
182 efficiency rankings (Fig. 2B). The ranking comparison displayed a moderate relationship, with a
183 Spearman's rank correlation coefficient of 0.56, which is in line with other gRNA efficiency
184 machine learning models(21, 22). To see if the model was generalizable across Cas proteins, we
185 obtained a gRNA efficiency dataset for Cpf1 from Kim *et al.* and applied the model(24). The model
186 showed no correlation between predicted and actual gRNA efficiency (Fig. S3A). As such, we
187 used the same sequence composition and energetic properties to train a new machine learning
188 model for Cpf1 gRNAs. The new model showed a moderate correlation, with a spearman's rank
189 correlation coefficient of 0.57 (Fig. S3B). As such, ssCRISPR can present users with high
190 efficiency gRNAs for Cas9 and Cpf1. However, new models will need to be created for alternative
191 proteins as experimental datasets become available.

192
193 To experimentally validate the program, we selected four gRNAs that target all tested *E. coli*
194 strains and four gRNAs that target all tested *Pseudomonas* strains with the highest predicted
195 efficiency (Table S1). Plasmids for each gRNA target sequence were constructed with constitutive
196 promoters driving gRNA expression. We next transformed *E. coli* DH10B, Nissle 1917, MG1655,
197 and BL21(DE3), each harboring a Cas9 expression plasmid or an empty vector, with a non-
198 targeting control plasmid or the gRNA plasmids; the following four transformation combinations
199 were performed for each strain: strain with Cas9 transformed with gRNA, strain with Cas9
200 transformed with non-targeting control, strain without Cas9 transformed with gRNA, and strain
201 without Cas9 transformed with non-targeting control. To obtain the efficiency of each gRNA, we
202 calculated the ratio of the number of colonies obtained from each gRNA plasmid to the number
203 of colonies obtained from the control plasmid with Cas9 present divided by the ratio of the number
204 of colonies obtained from each gRNA plasmid to the number of colonies obtained from the control
205 plasmid without Cas9 present. Each gRNA plasmid demonstrated a killing efficiency (see
206 Methods) of 3- to 4-log₁₀ in all four tested strains (Fig. 2C). We observed similar results with the
207 *Pseudomonas* spp. gRNAs, with killing efficiencies of 2- to 4-log₁₀ achieved for each gRNA in all

208 four strains (Fig. 2D). These results demonstrate that ssCRISPR identifies gRNAs with efficient
209 target sites in multiple organisms.
210

211 **Three nucleotide mismatches are required for optimal strain specificity**

212 We next wanted to incorporate strain protection into the program by allowing the user to select
213 non-target strains that lack the gRNA target site. However, criteria for what makes a gRNA
214 sequence strain-specific were required (Fig. 1). It has been previously demonstrated that
215 nucleotide mismatches in the PAM and 10-12 nt PAM-adjacent seed region cause the largest
216 reduction in cleavage efficiency(25, 30, 31). As such, we first defined a strain-specific gRNA to
217 be one that possesses at least one nucleotide mismatch in the PAM site or the 10 nt seed region
218 compared to all specified non-target strains. The program applied the same method described
219 above to identify all gRNA target sequences in the specified non-target strains. Any sequence in
220 the identified list of broad-targeting gRNAs that contained a seed region perfectly matching a
221 gRNA from the non-target strains was removed.
222

223 To assess this function, we tested the efficiency of four gRNAs, one specific to each of *E. coli*
224 DH10B, Nissle 1917, MG1655, and BL21(DE3), in each of the four *E. coli* strains. Each gRNA
225 efficiently killed its cognate strain (Fig. 3A, left). However, a gRNA efficiency of greater than 1-
226 \log_{10} was also observed in 4/12 non-cognate combinations. To improve specificity and reduce the
227 likelihood of off-target cleavage, we increased the stringency of the program to require two
228 mismatches in the same region. Specificity was improved but remained imperfect, with all four
229 gRNAs demonstrating efficient activity in their cognate strain and significant activity observed in
230 1/12 non-cognate combinations (Fig. 3A, middle). We further increased the stringency to 3 nt but
231 found that gRNA options were rapidly eliminated after considering each non-target strain. We
232 determined that requiring three mismatches in the 10 nt seed region, but ignoring the rest of the
233 gRNA sequence, led to a high probability of each gRNA sequence occurring in any given random
234 nucleotide sequence (Fig. S4). To alleviate this issue, we expanded the considered region to be
235 the full 12 nt seed region. This criterion successfully identified strain-specific gRNAs, with all four
236 tested gRNAs demonstrating efficient activity in their cognate strain and no activity in their non-
237 cognate strains (Fig. 3A, right).
238

239 Upon further analysis, we determined that the probability of a 12 nt gRNA seed sequence
240 randomly occurring in any given sequence remained too high for considering many non-target
241 strains. Specifically, 99% of gRNA sequences are eliminated by a random 80,000,000 nt
242 sequence, corresponding to approximately 16 average size microbial genomes(32). As such, we
243 expanded the considered region to a 20 nt target sequence. Using this criterion, over 1,000,000
244 strains worth of random DNA are required to eliminate 99% of gRNAs, with less than 1% of gRNAs
245 eliminated after over 1,000 strains worth of random DNA. However, we found screening tens of
246 thousands of gRNAs for 3 nt of specificity to be very computationally intensive. As such, if more
247 than 5,000 gRNAs are identified with 2 nt of specificity, 5,000 are randomly selected for further
248 analysis (Fig. S5A). However, we found this number to be more than sufficient. ssCRISPR
249 identified thousands of gRNAs with specificity to each of the four considered *E. coli* and
250 *Pseudomonas* strains when the set of four was considered exclusively (Figs. S6A, 6B). The
251 number of viable gRNA sequences was reduced when all other *E. coli* or all other *Pseudomonas*
252 strains were specified as non-target strains (Figs. S6C, S6D and Table S2). However, at least
253 one gRNA was identified with 3 nt of specificity for all strains except *E. coli* MG1655. This result
254 may be caused by its frequent use and analysis, as many of the sequenced strains in the
255 reference genome database may be derived from *E. coli* MG1655.
256

257

258 We selected and tested the four best predicted gRNAs with specificity to each of the four *E. coli*
259 strains (16 total gRNAs). All 16 gRNAs maintained perfect specificity, with no significant activity
260 observed in any non-cognate combination (Fig. 3B). To further validate the program, we tested
261 an additional predicted 16 strain-specific gRNAs in the four *Pseudomonas* strains. Again, all 16
262 gRNAs demonstrated perfect strain-specific activity (Fig. 3C). While we showed that 3 nt
263 mismatches in a 20 nt gRNA target sequence allows for perfect strain specificity, ssCRISPR
264 allows the user to specify the desired number of nucleotide mismatches (from 1-4), as fewer may
265 be sufficient for some applications. Notably, when 4 nt of specificity are desired, the number of
266 gRNAs with 3 nt tested is limited to 100 (Fig. S5B).

267

268

269 **Purifying single strains from microbial consortia using ssCRISPR gRNAs**

270

271 We next wanted to apply ssCRISPR to isolate and engineer a single strain from a microbial
272 consortium. Modern methods of microbial engineering employ lambda Red-mediated
273 recombination to engineer a strain of interest and CRISPR-Cas gRNAs that target the unmodified
274 recombination site to select for successfully modified strains(33, 34). To utilize this system to
275 isolate and engineer microbes, we created a workflow where strain-specific gRNAs, designed
276 using ssCRISPR, target the genomes of non-desired strains, rather than the site of recombination
277 in the desired strain. A consortium containing the desired strain can be transformed with the
278 Cas9/lambda Red plasmid, cultured, and transformed again with the integration cassette and
279 strain-specific gRNA plasmid (Fig. 4A). To negate the need for a gRNA that targets the integration
280 site, an antibiotic resistance gene can be included in the integration cassette for selection during
281 this initial round of engineering. The antibiotic resistance gene can be later replaced with any DNA
282 of interest using a gRNA that targets the antibiotic resistance gene. Alternatively, a two-gRNA
283 system can be employed, where one gRNA targets the genome of non-desired strains and a
284 second targets the engineered site. If the user wants the integration to occur in multiple strains,
285 they can also design the second gRNA with ssCRISPR by providing a sequence file for the
286 desired integration region in one or more of the target strains.

287

288 To validate the one-gRNA system, we used ssCRISPR to design a gRNA that protects *E. coli*
289 Nissle 1917 while targeting *E. coli* DH10B, MG1655, and BL21(DE3). We next created an
290 integration cassette harboring a kanamycin resistance gene that targets the *lacZ* locus in *E. coli*
291 Nissle 1917. The *E. coli* Nissle 1917 *lacZ* sequence is 99% identical to the *lacZ* sequences in the
292 other *E. coli* strains, suggesting that any strain-specificity by the system would be a result of strain-
293 specific genomic cleavage from the gRNA, and not differences in homologous recombination
294 efficiency caused by nucleotide mismatches in the homologous arms. We tested the system using
295 cultures of each strain individually and in an equal-part consortium. *E. coli* BL21(DE3) yielded no
296 colonies when transformed with the Cas9/lambda Red plasmid and was therefore excluded from
297 this experiment. When we transformed the integration cassette with a control plasmid, colonies
298 of all three strains were observed (Fig. 4B). However, in the microbial mixture, *E. coli* MG1655
299 and Nissle 1917 outcompeted *E. coli* DH10B due to their higher growth rates. When the strains
300 were transformed with the strain-specific gRNA plasmid, only engineered colonies of *E. coli* Nissle
301 1917 were observed. This demonstrates that ssCRISPR can facilitate the isolation and
302 engineering of specific microbes from a consortium. We next attempted to use the system to
303 isolate and engineer *E. coli* Nissle 1917 from murine fecal samples. We previously obtained
304 murine fecal samples from mice gavaged with 10⁸ CFUs of *E. coli* Nissle 1917(20). When we
305 transformed the Cas9/lambda Red plasmid into the fecal consortium, 100% of the resulting
306 colonies were from *E. coli* Nissle 1917. This result suggests that the plasmid is not compatible
307 with other microbial genera and can therefore be leveraged alone to purify *E. coli* from complex
308 consortia.

309
310 When only strain isolation is desired, Cas9 and strain-specific gRNAs can be paired on a single
311 plasmid, and a single transformation can be used to isolate the strain (Fig. 4C). Furthermore,
312 multiple gRNAs can be expressed in an array from a single promoter and post-transcriptionally
313 processed using intergenic RNA cleavage sites(35) or in multiple independent and non-repetitive
314 cassettes(36). To demonstrate this idea, we used a p15A origin plasmid, which only replicates in
315 *Enterococcus spp.*(18), to constitutively express Cas9 and a gRNA ELSA array(36). The gRNA
316 array consisted of six non-repetitive gRNA cassettes that target different subsets of *Enterococci*
317 but protect *E. coli* Nissle 1917 with at least 1 nt of specificity (Table S3). We individually tested
318 two gRNAs from each strain group to identify ones with the desired specificity (Fig. S7). When we
319 transformed a mixture of *E. coli* strains with a control plasmid and the test plasmid, we observed
320 a substantially higher ($p<0.0001$) relative abundance of *E. coli* Nissle 1917 in the population that
321 received the test plasmid (95%) compared to the population that received the control plasmid
322 (13%; Fig. 4D). We then used the same plasmid to purify *E. coli* Nissle 1917 from a more complex
323 strain mixture composed of *P. putida* F1, *Salmonella typhimurium*, and *Rhodococcus opacus*
324 PD630. Transforming the strain mixture with the test plasmid significantly depleted *P. putida* F1
325 ($p=0.0006$) and *S. typhimurium* ($p=0.0062$), while increasing the abundance of *E. coli* Nissle 1917
326 ($p<0.0001$). *R. opacus* PD630, which is an incompatible host for p15A origin plasmids, was not
327 detected after either transformation. We created a similar construct for the purification of *P. putida*
328 F1 from a consortium of *Pseudomonas* strains and demonstrated a strong increase ($p<0.0001$)
329 in the abundance of *P. putida* F1 in the population that received the test plasmid (85%) compared
330 to the population that received the control plasmid (<1%; Fig. S8). Collectively, these data show
331 that gRNAs designed using ssCRISPR can be utilized to isolate microbes from consortia in a
332 single transformation.
333
334

335 **Liposome delivery of strain-specific CRISPR-Cas9 antimicrobials**

336

337 ssCRISPR also has the potential to be used to selectively remove microbes from a consortium.
338 To accomplish this goal, we selected a gRNA that specifically targets *E. coli* Nissle 1917 and
339 inserted it on the p15A plasmid with the constitutive Cas9 cassette. When we transformed an
340 equal-part, multi-strain *E. coli* consortia with the control plasmid and test plasmid, we observed a
341 3.8-log₁₀ reduction in *E. coli* Nissle 1917 CFUs for the test plasmid compared to the control
342 plasmid treated populations (Fig. 5A). *E. coli* DH10B, MG1655, and BL21(DE3) also showed
343 lower CFUs in response to transformation with the test plasmid compared to those transformed
344 with the control plasmid, but to a significantly smaller degree than *E. coli* Nissle 1917 ($p<0.0001$).
345 These changes may have been a result of differences in the transformation efficiency of the
346 competent cells or plasmids. Alternatively, the lower CFUs may have been a result of the inherent
347 toxicity of constitutive Cas9 and gRNA expression. Optimization of the Cas9 and gRNA
348 expression levels may reduce the toxicity and eliminate the gRNA sequence-independent CFU
349 differences. We applied the same protocol to remove *E. coli* Nissle 1917 from murine fecal
350 samples. Prior to transformation, we quantified the amount of *E. coli* Nissle 1917 in the samples
351 and determined that the strain made up approximately 2% of the aerobically-culturable microbes
352 (Fig. S9). Transformation of the fecal consortia with the control plasmid increased the relative
353 CFUs of *E. coli* Nissle to approximately 10% of the total aerobically-culturable microbes (Fig. 5B).
354 However, transformation of the fecal consortia with the test plasmid eliminated *E. coli* Nissle 1917.
355 These results show that ssCRISPR gRNAs can be used to selectively target and eliminate
356 microbes in consortia.
357

358 ssCRISPR gRNAs can also be used to create strain-specific CRISPR antimicrobials by pairing
359 them with a non-specific DNA delivery method. Several methods of non-specific delivery of

360 biologics have been demonstrated in bacteria, including plasmid conjugation(18), bacteriophage
361 infection(37), and liposome delivery(38). To date, bacteriophages(9) and plasmid conjugation(10,
362 11) have been used to deliver strain-specific antimicrobials *in situ*. We sought to instead package
363 plasmid DNA carrying Cas9 and ssCRISPR gRNAs in liposomes that non-specifically fuse with
364 microbes and deliver the DNA payload which is lethal only to strains harboring the gRNA target
365 sequence (Fig. 5C). We constructed liposomes and packaged them post-synthesis with the
366 control and *E. coli* Nissle-1917-killing test plasmid described above and optimized the liposome
367 synthesis and plasmid-packaging protocols (Fig. S10). We next incubated an equal-part, multi-
368 strain *E. coli* consortium with the liposomes for 30 minutes and quantified the number of cells that
369 survived plasmid delivery (Fig. 5D). The *E. coli* DH10B, MG1655, and BL21(DE3) populations
370 treated with the test and control plasmids showed similar CFUs after plasmid delivery. However,
371 *E. coli* Nissle 1917 showed a 2-log₁₀ reduction in viable CFUs when comparing the control and
372 test treated populations. On average, less than 1 CFUs/mL was observed in populations treated
373 with either the control or test plasmids without liposome packaging, showing the importance of
374 the liposomes for plasmid delivery (Fig. S11). We next wanted to determine the feasibility of using
375 ssCRISPR to design strain-specific gRNAs for *in vivo* applications, such as pathogen elimination,
376 where significantly more complex consortia would be encountered. We designed gRNAs that
377 target all *E. coli* strains, all *Staphylococcus aureus* and *Staphylococcus epidermidis*, or all
378 *Clostridioides difficile* strains, while protecting strains from all other genera with at least 1 nt of
379 specificity. We identified 189 *E. coli*-specific, 124 *S. aureus*- and *S. epidermidis*-specific, and more
380 than 5,000 *C. difficile*-specific gRNAs. Furthermore, for cases where the exact strain causing a
381 bacterial infection is unknown, a gRNA array could also be used to eliminate several of the
382 pathogens that may be causing the infection. Together, these results show that ssCRISPR can
383 be used to design gRNAs that target microbes in consortia with high selectivity and efficiency.
384
385

386 Discussion

387 Manipulating microbial consortia with strain specificity can facilitate significant advances in
388 medicine, agriculture, and climate control(6, 13, 39). However, a method for reliably distinguishing
389 strains is essential to minimize unwanted side effects(6). Current programs for designing strain-
390 specific gRNAs lack selectable strain options, cannot be customized for different CRISPR
391 systems, and insufficiently define the characteristics that make a gRNA strain-specific(10). As
392 described here, we created the ssCRISPR program to design CRISPR gRNAs with reliable strain-
393 specific cleavage profiles. To ensure accuracy, we comprehensively tested selectivity criteria in
394 multiple microbial strains. In addition, to allow for wide-spread use of ssCRISPR, we incorporated
395 a wide array of user-defined parameters and more than 27,000 selectable strain options (Fig. 1).
396 We showed that ssCRISPR accurately predicts gRNAs with efficient and specific activity in all
397 selected target strains (Fig. 2) and minimal activity in selected non-target strains (Fig. 3).
398 Furthermore, we demonstrated two applications of ssCRISPR: first, to purify specific microbes
399 from defined consortia (Fig. 4); second, to remove individual microbes from defined and complex
400 consortia using broad-spectrum delivery methods such as liposomes (Fig. 5).
401

402 Purifying a specific microbe from a consortium can be a difficult task using standard modern
403 methods such as targeted enrichment in tailored complex media and serial plating(40). However,
404 this process can be simplified using strain-specific gRNAs designed with ssCRISPR. To use
405 ssCRISPR to purify a microbe from a consortium, a degree of knowledge about the strains in the
406 mixture is required. If the consortium is defined, designing gRNAs using ssCRISPR to target
407 strains is a simple process. However, it is still essential that the genetic parts, such as the origin
408 of replication and promoters, are compatible with the organisms to facilitate the purification; the
409

410 origin needs to be functional in the strain of interest, and the promoters driving expression of the
411 Cas protein and gRNAs need to be functional in any organism with origin compatibility.
412 Furthermore, for more complex consortia, experiments such as 16S rRNA sequencing may be
413 required to first characterize the composition of the mixture and identify relevant strains. However,
414 the isolation process can be improved by carefully selecting origins with narrow compatibility
415 groups (Fig. 4D) and by selecting growth conditions favorable for the desired microbe(41).
416

417 Creating technologies to remove specific microbes from a consortium is essential to combat the
418 growing issues of antibiotic- and bactericide-resistant pathogens in domesticated animals(42),
419 humans(7), and plants(8). Identifying gRNAs for strain-specific removal is simpler than for
420 purification, as microbial diversity becomes an advantage. For this application, genetic parts only
421 need to be functional in the selected target strains. However, for the delivery of strain-specific
422 CRISPR antimicrobials, factors including delivery efficiency and genetic remnants need to be
423 considered. Recent advances in plasmid conjugation allow for a significantly higher transfer and
424 delivery rates of the CRISPR cassettes(43). However, genetic materials transferred via
425 bacteriophages, viral vectors, and plasmid conjugation are permanent once introduced into the
426 environment, and wide-spread delivery of this replicating genetic material into native microbes
427 can have adverse biological consequences(44, 45). Here, as a proof of concept, we used plasmid-
428 packaged liposomes to deliver the CRISPR payload but experienced a low uptake efficiency.
429 However, liposomes have the potential to deliver antimicrobial CRISPR systems in non-
430 permanent forms, including as RNA and proteins, which are degraded intracellularly.
431 Furthermore, RNA- and protein-based payloads may have a higher delivery efficiency than
432 plasmids when packaged in liposomes, as both can be engineered to penetrate a cell membrane
433 more easily than plasmids in the event that the liposome only fuses with the outer membrane(46,
434 47). Finally, the CRISPR delivery efficiency by the liposomes may be improved through alternative
435 liposome production methods. Producing the CRISPR-loaded liposomes through microfluidic or
436 controlled ethanol injection approaches could result in smaller, unilamellar liposomes with better
437 microbial fusion efficiencies(48).
438

439 The ssCRISPR program is not without limitations. The selectable strain options in ssCRISPR are
440 derived from the NCBI genome repository and can be easily updated to include the rapidly
441 accumulating new microbial genomes. However, the number of strains with sequenced genomes
442 pales in comparison to the 10^{12} microbial species predicted to exist on Earth(49). As such, the
443 true specificity of the gRNAs designed by the program will never be completely defined until all
444 microbial genomes have been sequenced. In addition, although the ssCRISPR efficiency
445 predictions for Cas9 and Cpf1 gRNAs are comparable to numerous other machine learning
446 models, they fall behind recent deep learning models in accuracy(23, 24). Fortunately, in most
447 applications of ssCRISPR, only a highly active gRNA, rather than the best gRNA, is needed. To
448 this end, when considering the top 5% most efficient gRNAs in a defined group, ssCRISPR
449 predicts 96% (Cas9) or 98% (Cpf1) of the subset to be above the true median efficiency (Fig. 2B
450 and Fig. S3B). Therefore, ssCRISPR efficiency predictions are sufficient to select for highly
451 effective gRNAs. Lastly, we showed that ssCRISPR can be used to design efficient gRNAs for
452 strain-specific targeting, isolation, and removal in different strains of *E. coli* and *Pseudomonas*.
453 However, when applying the program to design gRNAs for more complex consortia, the results
454 should be validated in more diverse organisms to ensure that the outputs are accurate.
455 Furthermore, Cas proteins are not functional in all microbial strains. As such, when selecting a
456 CRISPR system for an application, data mining or experimental validation may be required to
457 ensure functionality in the strains of interest.
458

459 In summary, we developed ssCRISPR, a user-friendly program for computationally designing
460 strain-specific gRNAs for diverse microbes and CRISPR systems. We validated our

461 computational tool by testing gRNAs with a wide array of target and non-target strain profiles in
462 *E. coli* and *Pseudomonas* spp. Furthermore, we demonstrated two applications of the program,
463 including the strain-specific isolation and removal of individual microbes from consortia. However,
464 the program can facilitate numerous additional applications in microbiome engineering in humans
465 and the environment(6, 13, 17, 18, 43). ssCRISPR is easily accessible and can be downloaded
466 and run locally as a Python script or as a single package executable application without
467 programming knowledge through the user interface. ssCRISPR will be a valuable tool for
468 managing the health of livestock, plants, and humans, identifying microbes with novel
469 characteristics, exploring dynamics of microbial communities, and tailoring microbiota for
470 improved functions.

471
472

473 **Methods**

474

475 **Generating strain selection options and obtaining genome sequences**

476

477 All programming was performed using Python 3.7, Spyder IDE, and Anaconda software package.
478 A list of bacterial strain names and sequence reference numbers was downloaded from NCBI
479 (<https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/>). Strains were filtered for complete
480 genomes to remove partial or incomplete sequences and for bacteria to remove archaea. The list
481 was then imported into the Python program. To create selectable strain choices, the list was
482 sorted alphabetically, and duplicates removed, only maintaining the first sequence in the
483 downloaded list. Genome sequences for the selected target and non-target strains are then
484 individually extracted from the NCBI server using Entrez.efetch and the genome reference
485 numbers. To account for short temporary lapses in the NCBI servers, genome calls are attempted
486 10 times before drawing an error.

487

488

489 **Identifying strain-specific guide RNAs**

490

491 To generate gRNAs with target sites in all selected target strains, genome sequences are
492 individually extracted from the NCBI database. Locations of all PAM sites are then identified in
493 the genome of the first selected target strain. Next, the specified number of PAM adjacent
494 nucleotides are extracted with the specified orientation relative to the PAM site to generate a
495 string with the gRNA sequence. All identified gRNA sequences are compiled in a list. This gRNA
496 target site identification process is then repeated for the second selected target strain. The two
497 lists of gRNA sequences are then compared and only sequences present in both lists are
498 maintained. This process is repeated for all remaining target strains to generate a list of gRNA
499 sequences, termed here as perfect gRNAs, present in all selected target strains with perfect
500 homology.

501

502 To protect strains from gRNA cleavage, the program extracts genome sequences from the NCBI
503 database in batches of 25 strains. Locations for the PAM sequences are then identified from the
504 combined genomes and the respective gRNA sequences extracted and compiled in a list of non-
505 target strain gRNAs. To generate a list of strain-specific gRNAs, gRNA sequences shared
506 between the perfect gRNAs list and the non-target gRNAs list are first removed from the list of
507 perfect gRNAs, resulting in a list of gRNAs with at least 1 nt of specificity. If additional nucleotides
508 of specificity are required, the remaining list of perfect gRNAs are sequentially input into functions
509 that generate lists of all sequence permutations with 1, 2, and 3 nt mismatches and the shared

510 sequences removed from the list of perfect gRNAs until the desired degree of specificity is
511 reached.

514 **Predicting relative guide RNA cleavage efficiencies**

516 We altered a method of gRNA efficiency predictions previously described by Guo *et al.*(21) The
517 set of 56,335 Cas9 gRNA sequences assessed by Guo *et al.*(21) and 15,000 Cpf1 gRNA
518 sequences assessed by Kim *et al.*(24) were independently analyzed for the following 396
519 sequence composition and energetic properties: total A, T, C, G and GC content, T content of the
520 four PAM-adjacent nucleotides, presence of an A, T, C, or G in each of the 20 PAM adjacent
521 nucleotides (80 properties), presence of each nucleotide dimer (NN) in each of the 20 PAM
522 adjacent nucleotides (304 properties), minimum free energy for the 12 PAM adjacent nucleotides
523 and the full gRNA sequence, and the melting temperature for the five PAM adjacent nucleotides,
524 next eight nucleotides, remaining nucleotides, and the full gRNA sequence. The resulting property
525 array and the corresponding experimental gRNA cleavage rates were used to train gradient
526 boosting regression machine learning models with a 90:10 split between training group and test
527 group. The models were optimized by tuning the following parameters until the minimum sum
528 squared error was reached for the test groups: the number of boosting stages, the minimum
529 number of samples required to split an internal node, the maximum depth of the tree, and the
530 learning rate.

533 **Plasmids, strains, and growth conditions**

535 The *Pseudomonas* pCas9-RK2K and pSEVA-gRNAT plasmids were purchased from GenScript
536 (catalog numbers MC_0000261 and MC_0000262)(50). Plasmids were designed using
537 SnapGene and assembled in *E. coli* DH10B using the Gibson Assembly (100 mM Tris-HCl, 10
538 mM MgCl₂, 0.2 mM dNTPs, 10 mM DTT, 5% PEG-8000, 1 mM NAD⁺, 4 U/μL Taq DNA ligase, 4
539 U/mL T5 exonuclease, and 25 U/mL Phusion DNA polymerase) or Golden Gate Assembly (1X
540 T4 ligase buffer, 1X Cutsmart buffer, 40 U/μL T4 ligase, 1 U/μL Sapl, and 1 U/μL DpnI) methods.
541 Plasmids lethal to *E. coli* DH10B were instead assembled in *E. coli* Nissle 1917. Plasmids
542 harboring both Cas9 and gRNA expression cassettes were assembled in strains expressing AttJ,
543 a TetR-like transcription factor, to repress the P_{attKLM}-cas9 cassette and minimize toxicity(51).
544 Plasmid DNA was isolated using the PureLink Quick Plasmid Miniprep Kit (K210011, Invitrogen)
545 or PureLink HiPure Plasmid Midiprep Kit (K210005, Invitrogen), and polymerase chain reaction
546 (PCR) products were extracted from electrophoresis gels using the Zymoclean Gel DNA
547 Recovery Kit (D4008, ZYMO research). Chemicals were purchased from Millipore Sigma
548 (Burlington, MA, USA). Enzymes were purchased from New England Biolabs (Ipswich, MA, USA).
549 All Sanger and next-generation sequencing was performed by Genewiz (South Plainfield, NJ,
550 USA). Primers were purchased from Integrated DNA Technologies (Coralville, IA, USA). All
551 plasmids and parts constructed and used in this work are summarized in Tables S4 and S5,
552 respectively.

553 All strains of *E. coli* used in the study, including DH10B, MG1655, Nissle 1917, and BL21(DE3)
554 were cultured in LB medium at 37°C with 250 rpm shaking unless otherwise stated. Cultures
555 derived from mouse fecal samples were also cultured in LB medium at 37°C with 250 rpm shaking.
556 Medium was supplemented with the following concentrations of antibiotics as necessary: 100
557 μg/ml ampicillin, 20 μg/ml kanamycin, and 100 μg/ml spectinomycin (Gold Biotechnology,
558 Olivette, MO, USA). *Pseudomonas* strains *P. putida* F1, *P. putida* KT2440, *P. stutzeri* JM300, and
559 *P. syringae* pv. *tomato* DC3000 were cultured in LB medium with 250 rpm shaking. Cultures
560

561 containing exclusively *P. putida* F1, *P. putida* KT2440, or *P. stutzeri* JM300 were grown at 30°C.
562 Cultures containing exclusively *P. syringae* pv. tomato DC3000 or mixtures containing multiple
563 *Pseudomonas* strains were grown at 28°C. Medium was supplemented with the following
564 concentrations of antibiotics as necessary: 10 µg/ml gentamycin and 50 µg/ml (*P. putida* F1, *P.*
565 *syringae* pv. tomato DC3000, or *P. stutzeri* JM300) or 200 µg/ml (*P. putida* KT2440 or strain
566 mixtures) tetracyclin (Gold Biotechnology, Olivette, MO, USA).

567
568
569

gRNA efficiency assays

570

571 *E. coli*-specific gRNAs were assessed for cleavage efficiency using a chemical transformation cell
572 death assay. Strains were first transformed with a plasmid harboring a constitutive P_{tet} -cas9
573 expression cassette but lacking *tetR*. The strains were then incubated overnight in 5 mL of LB in
574 14 mL round bottom tubes (14-959-11B, Fisher Scientific) at 37°C and 250 rpm. Cultures were
575 then diluted 50X into fresh LB supplemented with the relevant antibiotic for the Cas9 plasmid in
576 250 mL baffled Erlenmeyer flasks. Cultures were incubated for ~1.5 h to an OD600 of 0.4 and
577 distributed in 1 mL aliquots in 1.7 mL centrifuge tubes (20383, GeneMate). The tubes were
578 centrifuged at 3000xg for 2 min, the supernatant removed, and the pellets resuspended in 100 µL
579 ice cold 0.1 M CaCl₂. Each tube was supplemented with 10 ng of the control plasmid or a gRNA
580 plasmid, gently mixed, and chilled on ice for 20 min. Each tube was then heat shocked in a 42°C
581 water bath for 60 sec and supplemented with 900 µL SOC (5 g/L yeast extract, 20 g/L tryptone,
582 0.5 g/L NaCl, 2.5 mM KCl, 10 mM MgCl₂, and 20 mM Glucose). The transformed cells were
583 incubated for 60 min at 37°C and 250 rpm. Culture dilutions were then plated on LB-agar plates
584 with the relevant antibiotics and incubated overnight for CFU quantification. To obtain the
585 efficiency of each gRNA, we calculated the ratio of the number of colonies obtained from each
586 gRNA plasmid (+gRNA) to the number of colonies obtained from the control plasmid (-gRNA) with
587 Cas9 present (+Cas9) divided by the ratio of the number of colonies obtained from each gRNA
588 plasmid to the number of colonies obtained from the control plasmid without Cas9 present (-Cas9)
589 (Equation 1).

590

$$\text{Efficiency} = \frac{CFUs_{+Cas9}^{+gRNA} / CFUs_{+Cas9}^{-gRNA}}{CFUs_{-Cas9}^{+gRNA} / CFUs_{-Cas9}^{-gRNA}} \quad (1)$$

591

592 *Pseudomonas*-specific gRNAs were assessed for cleavage efficiency using an electroporation
593 cell death assay. Strains were first transformed with the pCas9-RK2K plasmid which harbors a
594 constitutive Cas9 expression cassette. The strains were then incubated overnight in 5 mL of LB
595 in 14 mL round bottom tubes at 28°C (*P. syringae* pv. tomato DC3000) or 30°C (*P. putida* F1, *P.*
596 *putida* KT2440, or *P. stutzeri* JM300) and 250 rpm. Cultures were then diluted 25X into 50 mL
597 fresh LB supplemented with the relevant antibiotic for the Cas9 plasmid in 250 mL baffled
598 Erlenmeyer flasks. Cultures were incubated for ~2 h to an OD600 of 0.4, centrifuged at 4000xg
599 for 12 min, and washed three times with 50 mL of 3 mM HEPES. The pellet was resuspended in
600 500 µL of 3 mM HEPES and 50 µL aliquots transferred to 1.7 mL centrifuge tubes. Each tube was
601 supplemented with 250 ng of the control plasmid or a gRNA plasmid, gently mixed, electroporated
602 at 2.5 kV (12358-346, Bulldog Bio; Eporator 4309, Eppendorf), and resuspended in 950 µL SOC.
603 The transformed cells were incubated for 2.5 h at 28 or 30°C and 250 rpm. Culture dilutions were
604 then plated on LB-agar plates with the relevant antibiotics and incubated overnight for CFU
605 quantification.

606

607

E. coli strain-specific recombineering

608

609
610 To construct engineered *E. coli* variants, we utilized lambda red-mediated recombineering as
611 previously described(33). The dsDNA insert was obtained by constructing a plasmid with a
612 kanamycin-resistance cassette flanked by 500 bp arms homologous to the *lacZ* insertion region.
613 The full product (both arms and insert DNA) were PCR amplified and purified by gel extraction.
614 *E. coli* MG1655, DH10B, and Nissle 1917 were individually transformed with the pMP11 plasmid
615 containing constitutive Cas9 and arabinose-inducible lambda Red expression cassettes.
616 Individual colonies of each strain were incubated overnight in 5 mL of LB in 14 mL round bottom
617 tubes at 30°C and 250 rpm. Cultures were then mixed and diluted 50X in 50mL of LB
618 supplemented with 2% arabinose in 250 mL baffled Erlenmeyer flasks. Cultures were incubated
619 at 30°C and 250 rpm for an ~2 h to an OD600 of 0.4. Cultures were chilled and washed three
620 times in 50 mL ice cold water, resuspended in 300 μ L ice cold water, and 50 μ L aliquots
621 transferred to chilled 1.7 mL centrifuge tubes. Tubes were supplemented with 100 ng of the
622 dsDNA insert and 100 ng of either a control plasmid or the strain-selection gRNA plasmid. The
623 cells were electroporated at 2.5 kV, suspended in 950 μ L SOC, and incubated at 30°C and 250
624 rpm for 3 h. Cultures were plated on LB-agar supplemented with spectinomycin and kanamycin
625 to select for cells that received both the control or gRNA plasmid and the integration cassette,
626 respectively. The resulting strains were identified by colony PCR and sequencing.
627
628

629 **Isolating or killing specific strains from microbial consortia**

630
631 For same-genus strain mixtures, all strains were individually incubated overnight in 5 mL of LB in
632 14 mL round bottom tubes at 37°C (*E. coli*) or 28°C (*Pseudomonas* spp.) and 250 rpm. For *E. coli*
633 and fecal mixtures, cultures were combined and diluted 50X into 50 mL of fresh LB in 250 mL
634 baffled Erlenmeyer flasks and incubated for ~1.5 h to an OD600 of 0.4. For *Pseudomonas* spp.,
635 cultures were combined and diluted 25X into 50 mL of fresh LB in 250 mL baffled Erlenmeyer
636 flasks and incubated for ~2 h to an OD600 of 0.4. The multi-strain cultures were chilled and
637 washed three times in 50 mL ice cold water (*E. coli* and fecal) or 3 mM HEPES (*Pseudomonas*
638 spp.) and resuspended in 500 μ L ice cold water (*E. coli* and fecal) or 3 mM HEPES (*Pseudomonas*
639 spp.), and 50 μ L aliquots were transferred to chilled 1.7 mL centrifuge tubes. The multi-strain cells
640 were then transformed with 10 ng (*E. coli*) or 250 ng (*Pseudomonas* spp.) of the control plasmid
641 or relevant test plasmid harboring cas9 and strain-specific gRNA cassettes and resuspended in
642 950 μ L SOC. After a 60 min (*E. coli*) or 2.5 h (*Pseudomonas* spp.), the transformations were
643 plated for the specified cell quantification method.
644

645 For NGS strain quantification, transformations were plated onto LB-agar plates supplemented
646 with spectinomycin (*E. coli*) or gentamycin (*Pseudomonas*) and incubated overnight at the
647 respective temperature. All colonies were mixed together and resuspended in 5 mL of LB. The
648 resuspension was then used as a template for a mixed colony PCR with primers harboring NGS
649 adapter sequences (Table S6). PCR products were gel purified and submitted to Genewiz for
650 Amplicon-EZ sequencing. For antibiotic-based quantification, transformations were serially
651 diluted and each plated onto four LB-agar plates with antibiotics matching the resistances of the
652 four strains.
653

654 For multi-genus strain mixtures, each strain was individually incubated overnight in 5 mL of LB in
655 50 mL glass culture tubes (47729-586, VWR International) at 30°C and 250 rpm. Cultures were
656 combined at an OD600 ratio of 1:1:1:1, diluted 50X into fresh LB, and incubated for 2 h. Cultures
657 were then chilled, washed three times with 50 mL ice cold water, resuspended in 500 μ L water,
658 aliquoted at 50 μ L, and transformed with 100 ng of the control plasmid or test plasmid.
659 Transformations were resuspended in 950 μ L SOC, incubated for 2.5 h at 30°C and 250 rpm, and

660 plated for qPCR-based strain quantification. After 24 h of incubation at 30°C, all resulting colonies
661 were combined, and the genomic DNA extracted using the ZR Fungal/Bacterial DNA MidiPrep kit
662 (D6105, Zymo Research). The genomic DNA was used as the template for quantitative PCR
663 (qPCR) reactions using qPCR primers for each strain (Table S7). qPCR primer pairs for each
664 strain were designed following previously described guidelines(52). SsoAdvanced Universal
665 SYBR Green Supermix (1725270, BioRad), Simi-Skirted 96-well PCR Plates (T-3070-1,
666 GeneMate), and the standard suggested CFX Connect Real-Time System (Bio-Rad) protocol
667 were used for the qPCR reactions. The $2^{-\Delta\Delta CT}$ analysis method was then used to quantify relative
668 population values across samples.

671 **Collecting murine fecal samples**

673 All mouse experiments were approved by the Washington University in St. Louis School of
674 Medicine Institutional Animal Care and Use Committee (Protocol number 21-0160). Mouse
675 experiments were conducted in compliance with the Washington University in St. Louis Biological
676 and Chemical Safety Committee. Finally, mouse experiments were also performed in AAALAC-
677 accredited facilities in accordance with the National Institute of Health guide for the care and use
678 of laboratory animals.

680 Mouse experiments were performed with 8-week old female C57BL/6 mice (Jackson Labs
681 C57BL/6J, RRID:IMSR_JAX:000664) in a specific pathogen free barrier facility maintained by
682 WUSM DCM. Mice were provided feed (Purina Conventional Mouse Diet (JL Rat/Mouse 6F Auto)
683 #5K67) and water *ad libitum*. Oral gavage of mice was performed using 18ga x 38mm plastic
684 feeding tubes (FTP-18-38, Instech). Mice were administered 20 mg streptomycin sulfate salt
685 prior to EcN gavage to ablate the native microbiome. 24 hours after streptomycin administration,
686 mice were orally gavaged with 10^8 CFU EcN in 100 μ L phosphate buffered saline. 24 hours after
687 EcN administration, fecal samples were collected in sterile 2 mL microtubes and frozen at -80 °C
688 until ready for use.

690 **Liposome synthesis, packaging, and killing assays**

692 Liposomes were generated as previously described(38, 53). The neutral lipid 1,2-dioleoyl-sn-
693 glycero-3-phosphoethanolamine (DOPE; 76548, Millipore Sigma) and cationic lipid *N*-[1-(2,3-
694 dioleoyloxy)propyl]-*N,N,N*-trimethylammonium chloride (DOTAP; D6182, Millipore Sigma) were
695 individually dissolved in chloroform at a concentration of 5 mM. The two lipids were then mixed at
696 a 1:1 molar ratio in a 250 mL Büchner flask. The chloroform was removed under a vacuum
697 overnight. The lipid film was rehydrated in 20 mM HEPES at a final concentration of 5 mM of each
698 lipid. The mixture was vortexed for 1 min and sonicated in a 40°C bath sonicator (Branson
699 M3800H) for 30 min. Half of the mixture was removed after 5 min of sonication for protocol
700 optimization experiments. Liposomes were stored at 4°C until used. To package the liposomes
701 with plasmid DNA, liposomes were diluted to the specified concentration in 1 mL of 20 mM HEPES
702 and mixed with 1 μ g of plasmid. The mixture was then subjected to five 1-2 min freeze-thaw cycles
703 between liquid nitrogen and a 40°C water bath(54, 55).

705 To assess the antimicrobial activity of the DNA-loaded liposomes, *E. coli* MG1655, DH10B,
706 BL21(DE3), and Nissle 1917, each harboring a plasmid with a different antibiotic resistance gene,
707 were individually incubated overnight in 5 mL of LB in 14 mL round bottom tubes at 37°C and 250
708 rpm. Cultures were combined and diluted 40X into 40 mL of fresh LB in 250 mL baffled Erlenmeyer
709 flasks and incubated for an additional ~2 h to an OD600 of ~0.6. 0.5 mL of the exponential phase
710 cultures were aliquoted into 1.7 mL centrifuge tubes and centrifuged at 3000xg for 2 min. The

711 supernatant was then removed, and the pellet washed with 1 mL 20 mM HEPES. The tube was
712 again centrifuged at 3000xg for 2 min, and the supernatant was removed. The pellet was then
713 resuspended in 0.5 mL of the DNA-loaded liposome mixture. The liposome-*E. coli* mixture was
714 incubated at 37°C and 250 rpm for 30 min. The centrifuge tubes were supplemented with 0.5 mL
715 of SOC medium and returned to the incubator for an additional 60 min. For CFU quantification
716 and cell type identification, cultures were plated onto four LB-agar plates, each supplemented
717 with a different antibiotic.

718

719

720 **Next-generation sequencing (NGS)**

721

722 Amplicon-EZ next generation sequencing was performed by Genewiz to sequence individual DNA
723 strands from purified colony PCR samples obtained from pooled cell samples. The resulting
724 Fastq.gz files were analyzed using custom Python scripts. Two Fastq.gz files were obtained for
725 each sequencing sample (one forward and one reverse); however, only forward reads were
726 analyzed to avoid double counting. Individual sequencing reads were extracted from the files and
727 assessed for read length and sequence. Only sequences of at least 240 nucleotides long were
728 considered. Sequences were compared to the wildtype sequences and counted for the relevant
729 strains: *E. coli* Nissle 1917, MG1655, DH10B, and BL21(DE3) or *P. putida* F1, *putida* KT2440,
730 *stutzeri* JM300, and *syringae* DC3000 (Table S6). Only sequencing reads with a perfect match to
731 one of the strains of interest were counted.

732

733

734 **Quantification of the frequency of gRNA target sequences in random DNA**

735

736 The probability that a gRNA target sequence, including the PAM sequence, will appear in a
737 randomly generated nucleotide sequence was calculated using Equation 2. The equation
738 inaccurately assumes that every nucleotide in the sequence is independently generated without
739 bias. This results in an overestimation in the probability of random occurrence relative to in
740 practice when multiple sequence-similar strains are considered.

741

$$P = 1 - (1 - (0.25)^{PAM+gT})^{N-PAM-gT} \quad (2)$$

742

743 Where

744 P = Probability that the gRNA target sequence is present in a random nucleotide sequence

745 PAM = Number of non-random nucleotides in the PAM sequence

746 gT = Number of nucleotides in the gRNA target site being considered for specificity

747 N = Length of the random nucleotide sequence

748

749

750 **Quantification and statistical analysis**

751

752 All statistical tests were performed using GraphPad Prism or Excel. All statistical details of
753 experiments, including definition of center, significance criteria, and sample size can be found in
754 the figure legends, in the Results section, or in the Source Data file. Sample sizes were chosen
755 based on our previous work(20, 56) and the literature, and represent sample sizes routinely used
756 for these methods. No sample size calculations were performed during the design of experiments.
757 Samples were randomized during group assignment in all experiments. No samples were
758 excluded from analyses. The Investigators were not blinded to allocation during experiments and
759 outcome assessment.

760

761
762 **Data availability**
763

764 **Lead contact**
765

766 Further information and requests for resources and reagents should be directed to and will be
767 fulfilled by Lead Contact, Tae Seok Moon (tsmoon@wustl.edu).
768

769
770 **Materials availability**
771

772 Plasmids generated in this paper are available upon request from the Lead Contact. This study
773 did not generate additional new unique reagents.
774

775
776 **Data availability**
777

778 All plasmid maps and NGS data were deposited to Mendeley Data (doi:
779 10.17632/gpgyytwgb5.2; <https://data.mendeley.com/datasets/gpgyytwgb5/2>). Source data has
780 been provided as a source data file. Any additional information is available from the Lead
781 Contact upon request.
782

783
784 **Code availability**
785

786 All code has been deposited to GitHub (<https://github.com/Austin-Rottinghaus/ssCRISPR/>). A
787 stand-alone, executable version of the software can be downloaded from Mendelay Data (doi:
788 10.17632/gpgyytwgb5.2; <https://data.mendeley.com/datasets/gpgyytwgb5/2>).
789

790
791 **Acknowledgments**
792

793 We thank Prof. Brian Pfleger for the gift of the pMP11 plasmid. We thank Prof. Laura Jarboe and
794 Prof. Barbara Kunkel for their gifts of *P. putida* KT2440 and *P. syringae* pv. tomato DC3000,
795 respectively. We thank Aura Ferreiro of Gautam Dantas' lab for the fecal samples from mice. We
796 also thank members of the Moon lab for helpful suggestions and comments on this work and
797 manuscript. This work was supported by the National Institutes of Health (R01 AT009741), the
798 Office of Naval Research (N00014-17-1-2611, N00014-19-1-2357, and N00014-21-1-2206), the
799 United States Department of Agriculture (2020-33522-32319), National Science Foundation
800 (CBET-1350498 and MCB-2001743), and U.S. Environmental Protection Agency (84020501).
801 The content is solely the responsibility of the authors and does not necessarily represent the
802 official views of the funding agencies.
803

804
805 **Author contributions**
806

807 A.G.R. and T.S.M. conceived the project. A.G.R., S.V., and T.S.M. designed experiments and
808 analyzed the data. A.G.R. and S.V. performed the experiments. A.G.R. and T.S.M. wrote the
809 manuscript.

810

811

812 **Declaration of interests**

813

814 The authors filed a provisional application with the US Patent and Trademark Office on this work.

815 **References**

1. B. S. O'Banion, L. O'Neal, G. Alexandre, S. L. Lebeis, Bridging the Gap Between Single-Strain and Community-Level Plant-Microbe Chemical Interactions. *Mol Plant Microbe Interact* **33**, 124-134 (2020).
2. L. H. Morais, H. L. t. Schreiber, S. K. Mazmanian, The gut microbiota-brain axis in behaviour and brain disorders. *Nat Rev Microbiol* **19**, 241-255 (2021).
3. S. Che, Y. Men, Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. *J Ind Microbiol Biotechnol* **46**, 1343-1358 (2019).
4. F. Y. Chang *et al.*, Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. *Nat Microbiol* **6**, 792-805 (2021).
5. P. Strandwitz *et al.*, GABA-modulating bacteria of the human gut microbiota. *Nat Microbiol* **4**, 396-403 (2019).
6. T. S. Moon, SynMADE: synthetic microbiota across diverse ecosystems. *Trends Biotechnol* **40**, 1405-1414 (2022).
7. F. Prestinaci, P. Pezzotti, A. Pantosti, Antimicrobial resistance: a global multifaceted phenomenon. *Pathog Glob Health* **109**, 309-318 (2015).
8. G. W. Sundin, L. F. Castiblanco, X. Yuan, Q. Zeng, C. H. Yang, Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. *Mol Plant Pathol* **17**, 1506-1518 (2016).
9. R. J. Citorik, M. Mimee, T. K. Lu, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. *Nature biotechnology* **32**, 1141-1145 (2014).
10. A. Reuter *et al.*, Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. *Nucleic Acids Res* **49**, 3584-3598 (2021).
11. R. Lopez-Igual, J. Bernal-Bayard, A. Rodriguez-Paton, J. M. Ghigo, D. Mazel, Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. *Nat Biotechnol* **37**, 755-760 (2019).
12. M. B. Amrofelli, A. G. Rottinghaus, T. S. Moon, Engineering microbial diagnostics and therapeutics with smart control. *Current opinion in biotechnology* **66**, 11-17 (2020).
13. J. Ke, B. Wang, Y. Yoshikuni, Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. *Trends Biotechnol* **39**, 244-261 (2021).
14. T. Chien *et al.*, Enhancing the tropism of bacteria via genetically programmed biosensors. *Nat Biomed Eng* **6**, 94-104 (2022).
15. C. L. Ho *et al.*, Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. *Nat Biomed Eng* **2**, 27-37 (2018).
16. L. M. Kaminsky, R. V. Trexler, R. J. Malik, K. L. Hockett, T. H. Bell, The Inherent Conflicts in Developing Soil Microbial Inoculants. *Trends Biotechnol* **37**, 140-151 (2019).
17. B. E. Rubin *et al.*, Species- and site-specific genome editing in complex bacterial communities. *Nature microbiology* **7**, 34-47 (2022).
18. C. Ronda, S. P. Chen, V. Cabral, S. J. Yaung, H. H. Wang, Metagenomic engineering of the mammalian gut microbiome in situ. *Nat Methods* **16**, 167-170 (2019).

860 19. A. A. Gomaa *et al.*, Programmable removal of bacterial strains by use of genome-
861 targeting CRISPR-Cas systems. *mBio* **5**, e00928-00913 (2014).

862 20. A. G. Rottinghaus, A. Ferreiro, S. R. S. Fishbein, G. Dantas, T. S. Moon, Genetically
863 stable CRISPR-based kill switches for engineered microbes. *Nat Commun* **13**, 672
864 (2022).

865 21. J. Guo *et al.*, Improved sgRNA design in bacteria via genome-wide activity profiling.
866 *Nucleic Acids Res* **46**, 7052-7069 (2018).

867 22. L. Wang, J. Zhang, Prediction of sgRNA on-target activity in bacteria by deep learning.
868 *BMC Bioinformatics* **20**, 517 (2019).

869 23. H. K. Kim *et al.*, SpCas9 activity prediction by DeepSpCas9, a deep learning-based
870 model with high generalization performance. *Sci Adv* **5**, eaax9249 (2019).

871 24. H. K. Kim *et al.*, Deep learning improves prediction of CRISPR-Cpf1 guide RNA
872 activity. *Nat Biotechnol* **36**, 239-241 (2018).

873 25. P. D. Hsu *et al.*, DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat
874 Biotechnol* **31**, 827-832 (2013).

875 26. M. Jinek *et al.*, A programmable dual-RNA-guided DNA endonuclease in adaptive
876 bacterial immunity. *Science (New York, N.Y.)* **337**, 816-821 (2012).

877 27. R. P. Hayes *et al.*, Structural basis for promiscuous PAM recognition in type I-E Cascade
878 from *E. coli*. *Nature* **530**, 499-503 (2016).

879 28. H. K. Kim *et al.*, In vivo high-throughput profiling of CRISPR-Cpf1 activity. *Nat
880 Methods* **14**, 153-159 (2017).

881 29. S. Shmakov *et al.*, Discovery and Functional Characterization of Diverse Class 2
882 CRISPR-Cas Systems. *Mol Cell* **60**, 385-397 (2015).

883 30. H. Feng, J. Guo, T. Wang, C. Zhang, X. H. Xing, Guide-target mismatch effects on
884 dCas9-sgRNA binding activity in living bacterial cells. *Nucleic Acids Res* **49**, 1263-1277
885 (2021).

886 31. E. Semenova *et al.*, Interference by clustered regularly interspaced short palindromic
887 repeat (CRISPR) RNA is governed by a seed sequence. *Proc Natl Acad Sci U S A* **108**,
888 10098-10103 (2011).

889 32. M. Land *et al.*, Insights from 20 years of bacterial genome sequencing. *Funct Integr
890 Genomics* **15**, 141-161 (2015).

891 33. C. R. Mehrer, M. R. Incha, M. C. Politz, B. F. Pfleger, Anaerobic production of medium-
892 chain fatty alcohols via a beta-reduction pathway. *Metab Eng* **48**, 63-71 (2018).

893 34. W. Jiang, D. Bikard, D. Cox, F. Zhang, L. A. Marraffini, RNA-guided editing of bacterial
894 genomes using CRISPR-Cas systems. *Nature biotechnology* **31**, 233-239 (2013).

895 35. C. C. Campa, N. R. Weisbach, A. J. Santinha, D. Incarnato, R. J. Platt, Multiplexed
896 genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. *Nat
897 Methods* **16**, 887-893 (2019).

898 36. A. C. Reis *et al.*, Simultaneous repression of multiple bacterial genes using nonrepetitive
899 extra-long sgRNA arrays. *Nat Biotechnol* **37**, 1294-1301 (2019).

900 37. P. Tao *et al.*, In vitro and in vivo delivery of genes and proteins using the bacteriophage
901 T4 DNA packaging machine. *Proc Natl Acad Sci U S A* **110**, 5846-5851 (2013).

902 38. S. Pereira *et al.*, Lipoplexes to Deliver Oligonucleotides in Gram-Positive and Gram-
903 Negative Bacteria: Towards Treatment of Blood Infections. *Pharmaceutics* **13** (2021).

904 39. M. B. N. Albright *et al.*, Solutions in microbiome engineering: prioritizing barriers to
905 organism establishment. *ISME J* **16**, 331-338 (2022).

906 40. W. D. Xian *et al.*, Network-directed efficient isolation of previously uncultivated
907 Chloroflexi and related bacteria in hot spring microbial mats. *NPJ Biofilms Microbiomes*
908 **6**, 20 (2020).

909 41. E. J. Stewart, Growing unculturable bacteria. *J Bacteriol* **194**, 4151-4160 (2012).

910 42. E. Palma, B. Tiloca, P. Roncada, Antimicrobial Resistance in Veterinary Medicine: An
911 Overview. *Int J Mol Sci* **21** (2020).

912 43. K. Neil *et al.*, High-efficiency delivery of CRISPR-Cas9 by engineered probiotics
913 enables precise microbiome editing. *Mol Syst Biol* **17**, e10335 (2021).

914 44. Z. Hosseiniidoust, T. G. van de Ven, N. Tufenkji, Evolution of *Pseudomonas aeruginosa*
915 virulence as a result of phage predation. *Appl Environ Microbiol* **79**, 6110-6116 (2013).

916 45. V. L. Waters, Conjugative transfer in the dissemination of beta-lactam and
917 aminoglycoside resistance. *Front Biosci* **4**, D433-456 (1999).

918 46. D. H. Burke, Cell-penetrating RNAs: new keys to the castle. *Mol Ther* **20**, 251-253
919 (2012).

920 47. K. Kanekura *et al.*, Characterization of membrane penetration and cytotoxicity of
921 C9orf72-encoding arginine-rich dipeptides. *Sci Rep* **8**, 12740 (2018).

922 48. D. Carugo, E. Bottaro, J. Owen, E. Stride, C. Nastruzzi, Liposome production by
923 microfluidics: potential and limiting factors. *Sci Rep* **6**, 25876 (2016).

924 49. K. J. Locey, J. T. Lennon, Scaling laws predict global microbial diversity. *Proc Natl
925 Acad Sci U S A* **113**, 5970-5975 (2016).

926 50. J. Sun *et al.*, Genome editing and transcriptional repression in *Pseudomonas putida*
927 KT2440 via the type II CRISPR system. *Microb Cell Fact* **17**, 41 (2018).

928 51. H. B. Zhang, L. H. Wang, L. H. Zhang, Genetic control of quorum-sensing signal
929 turnover in *Agrobacterium tumefaciens*. *Proc Natl Acad Sci U S A* **99**, 4638-4643 (2002).

930 52. S. A. Bustin *et al.*, The MIQE guidelines: minimum information for publication of
931 quantitative real-time PCR experiments. *Clinical chemistry* **55**, 611-622 (2009).

932 53. B. K. Kim *et al.*, DOTAP/DOPE ratio and cell type determine transfection efficiency
933 with DOTAP-liposomes. *Biochim Biophys Acta* **1848**, 1996-2001 (2015).

934 54. T. Gjetting *et al.*, A simple protocol for preparation of a liposomal vesicle with
935 encapsulated plasmid DNA that mediate high accumulation and reporter gene activity in
936 tumor tissue. *Results Pharma Sci* **1**, 49-56 (2011).

937 55. W. L. Fotoran, R. Santangelo, B. N. M. de Miranda, D. J. Irvine, G. Wunderlich, DNA-
938 Loaded Cationic Liposomes Efficiently Function as a Vaccine against Malarial Proteins.
939 *Mol Ther Methods Clin Dev* **7**, 1-10 (2017).

940 56. A. G. Rottinghaus, C. Xi, M. B. Amrofelli, H. Yi, T. S. Moon, Engineering ligand-
941 specific biosensors for aromatic amino acids and neurochemicals. *Cell Syst*
942 10.1016/j.cels.2021.10.006 (2021).

943

944

945

946 **Figure captions**

947

948 **Fig. 1: ssCRISPR program logic flowchart for strain-specific gRNA design.**

949

950 The user first inputs the desired non-target strains, target strains, nucleotides of specificity (1-4
951 nt), PAM sequences and orientation (5' or 3'), and target length (grey). The program searches the
952 first selected target strain for all potential gRNA target sites using the user-specified PAM
953 sequence, PAM orientation, and target length. Next, the program iterates through all additional
954 selected target strains and identifies the gRNA target sequences that are perfectly shared
955 between the strains (green). The program then identifies gRNA target sites in batches of non-
956 target strains and eliminates gRNAs that have less than the specified nucleotides of specificity to
957 the any non-target strain (blue). Finally, for Cas9 and Cpf1 gRNAs, the program predicts the
958 relative efficiencies of the determined gRNAs using 396 sequence composition and energetic
959 properties. The gRNAs are ranked by their relative efficiency and a full report of the results is
960 provided to the user (yellow). The number of gRNAs tested for specificity is capped at *10,000 for
961 2 nt mismatches and **100 for 3 nt mismatches due to limits in computation power.

962

963 **Fig. 2: Computational design of gRNAs with broad strain specificity.**

964

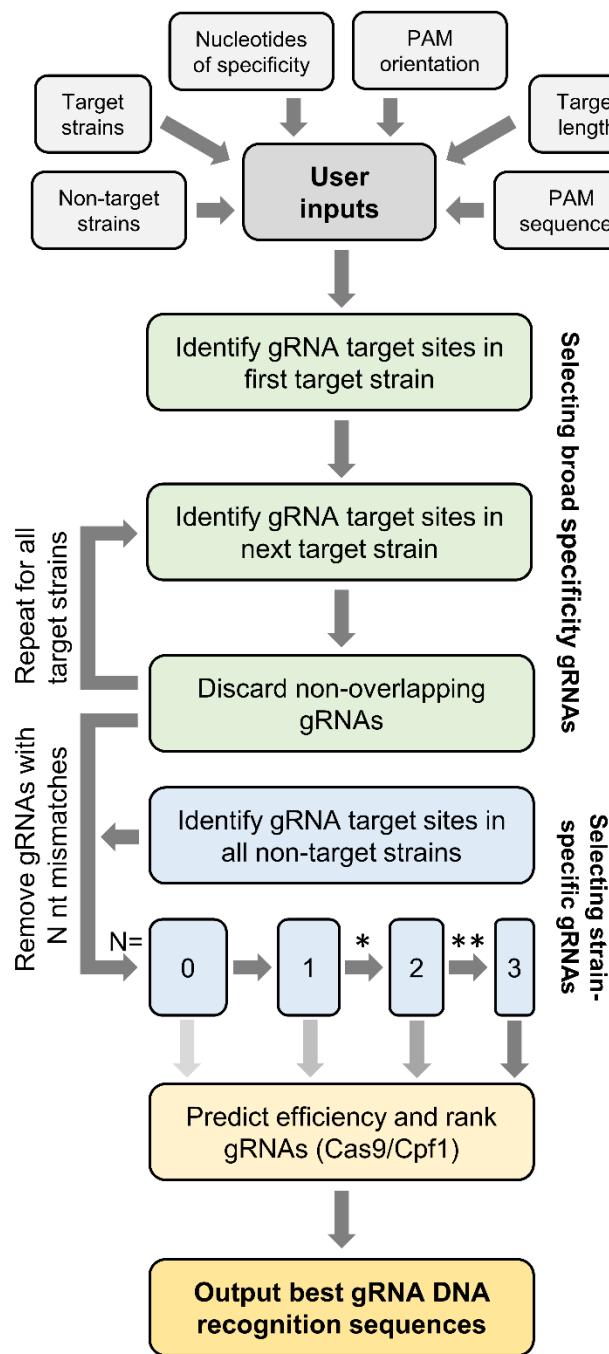
965 **(A)** The number of gRNAs that broadly target different amounts of each of the 2,068 *E. coli* and
966 1,020 *Pseudomonas* strains. **(B)** Actual versus predicted efficiency rankings for 56,335 Cas9
967 gRNAs. Actual efficiency values were obtained from Guo et al(21). Predicted efficiency rankings
968 were determined using a modified approach from Guo et al (See methods). **(C and D)** Efficiency
969 values for the top four predicted gRNAs that target (C) all *E. coli* strains (gRNAs All-E1, All-E2,
970 All-E3, and All-E4) in *E. coli* DH10B, Nissle 1917, MG1655, and BL21(DE3) or (D) all
971 *Pseudomonas* strains (gRNAs All-P1, All-P2, All-P3, and All-P4) in *P. putida* F1, *P. putida*
972 KT2440, *P. stutzeri* JM300, and *P. syringae* pv. tomato DC3000. Efficiency values were obtained
973 using cell death transformation assays. Efficiency values are the ratio of the number of colonies
974 obtained from each gRNA plasmid to the number of colonies obtained from the control plasmid
975 with Cas9 present divided by the ratio of colonies obtained from each gRNA plasmid to the
976 number of colonies obtained from the control plasmid without Cas9 present (see Methods).
977 Values and error bars are the average and standard deviation of biological triplicate, respectively.
978 Source data are provided as a source data file.

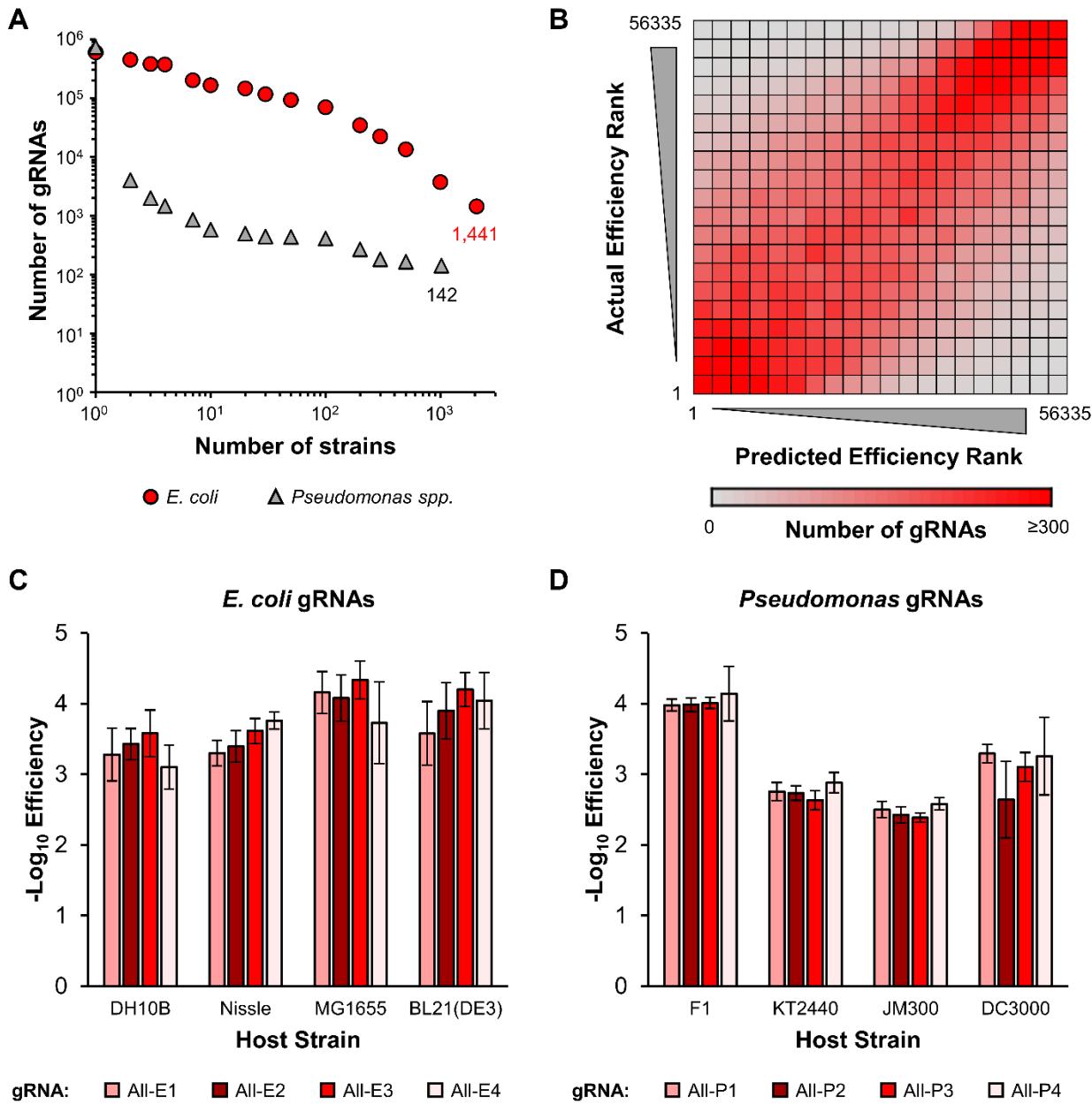
979

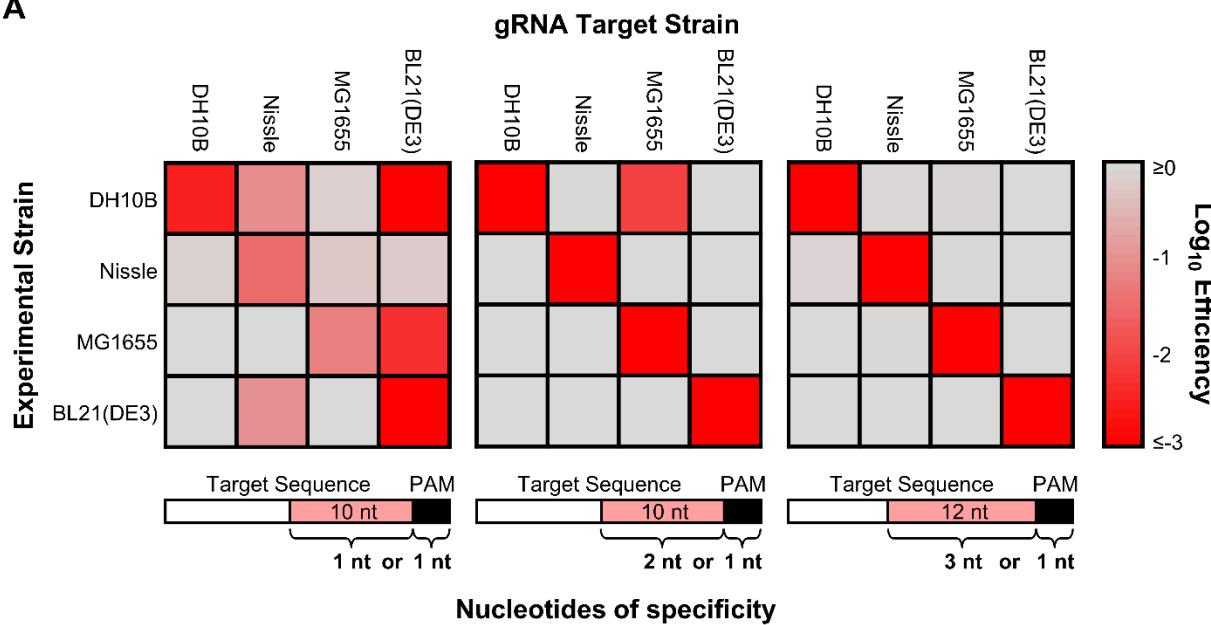
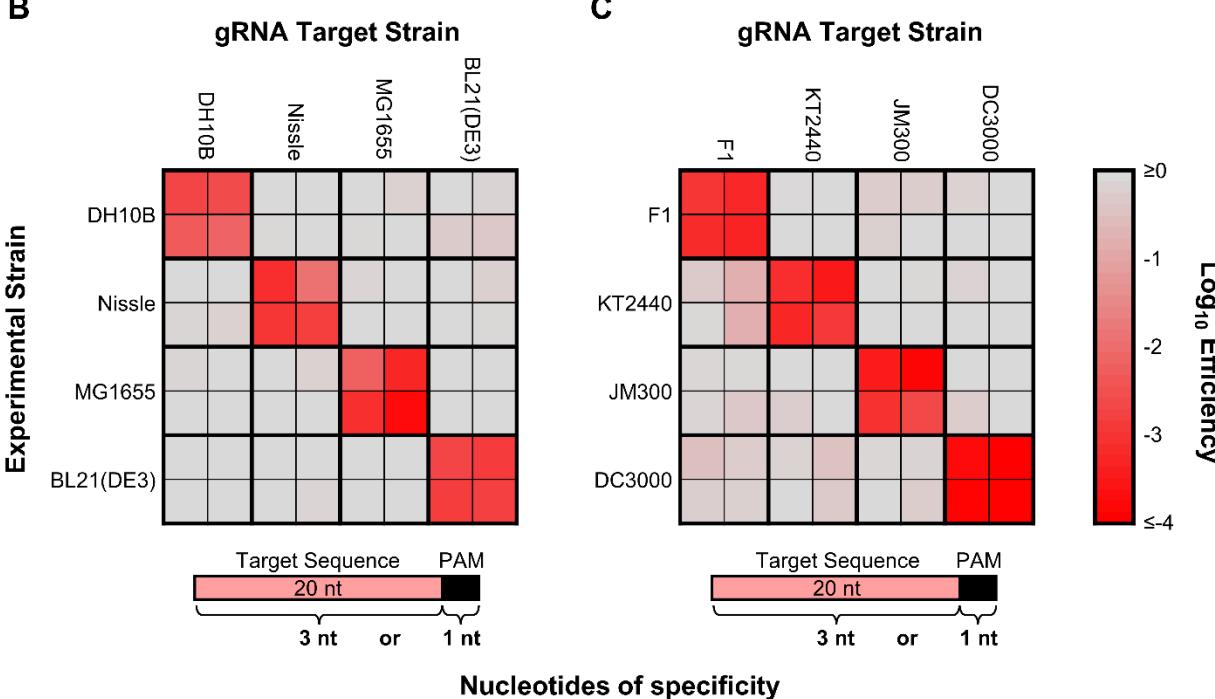
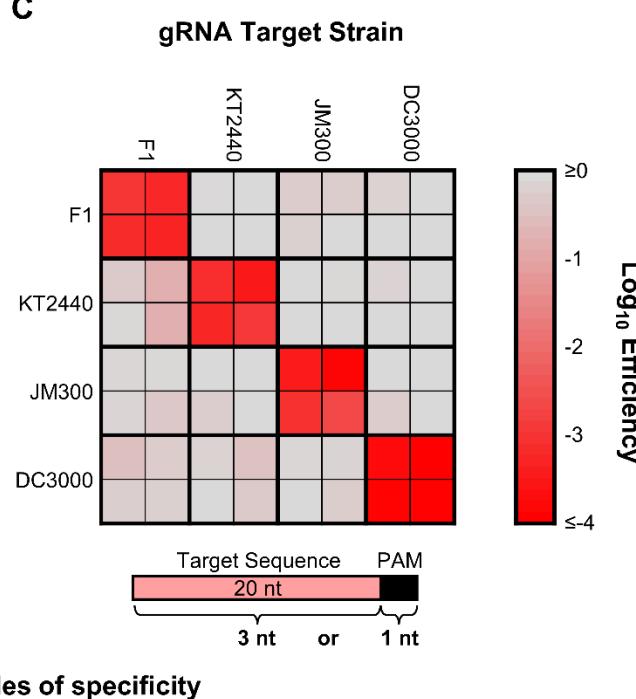
980 **Fig. 3: Computational design of strain-specific gRNAs.**

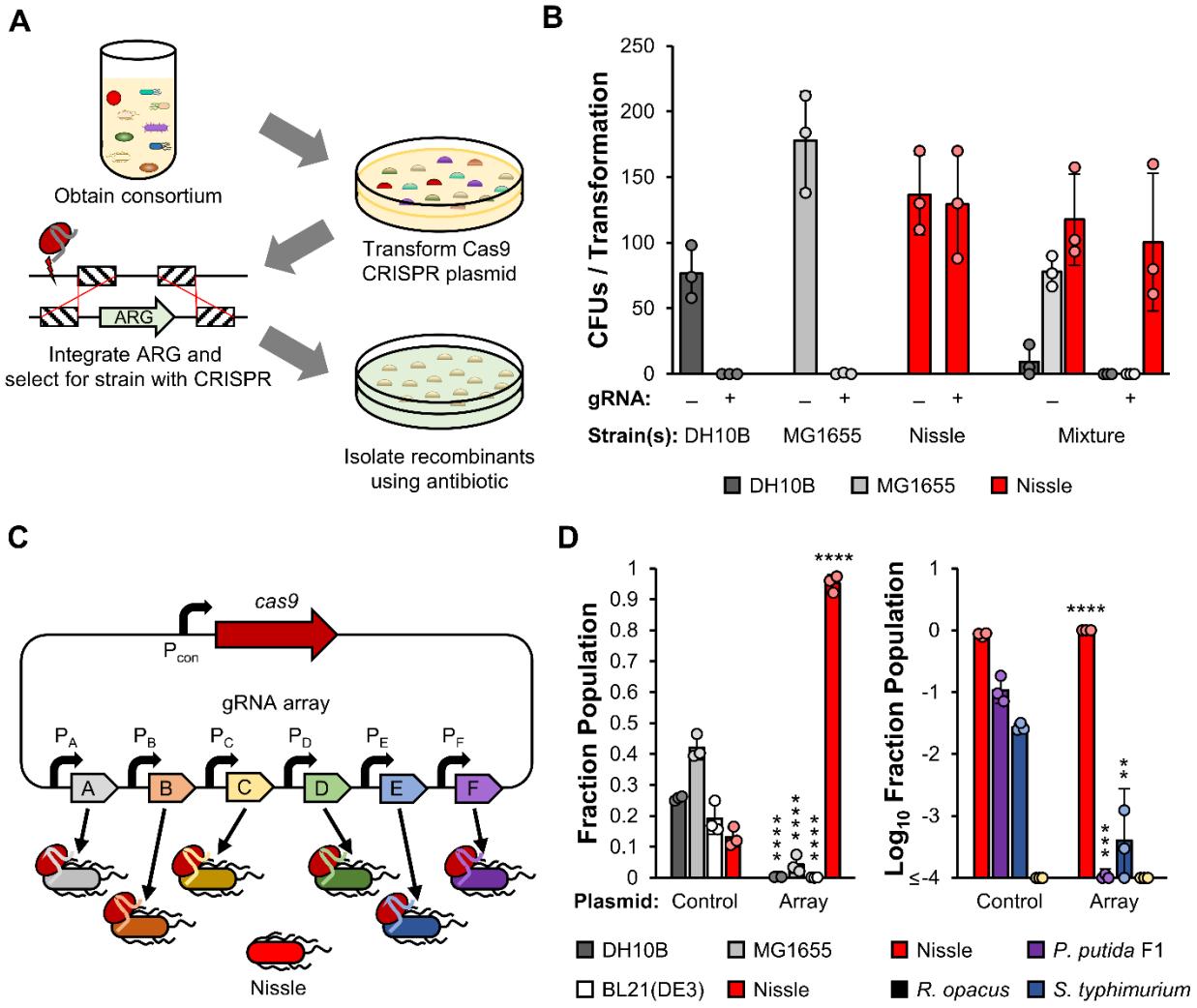
981

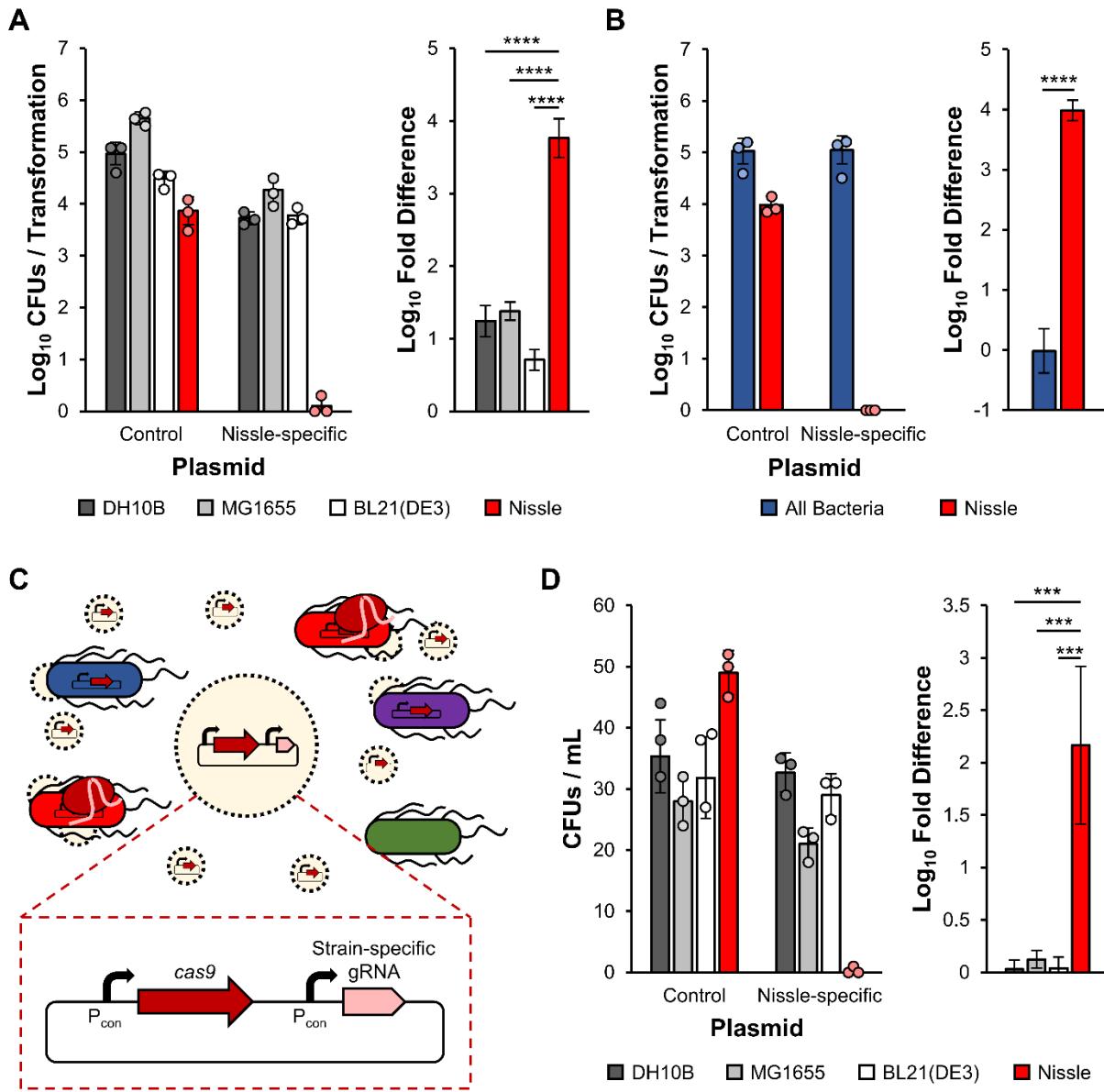
982 **(A)** Efficiency of the top scoring strain-specific gRNAs with at least one mismatched nucleotide
983 (nt) in the PAM or at least (left) 1 mismatched nucleotide in the 10 nt PAM-adjacent target region,
984 (middle) 2 mismatched nucleotides in the 10 nt PAM-adjacent target region, or (right) 3
985 mismatched nucleotides in the 12 nt PAM-adjacent target region. gRNAs were designed to
986 selectively target *E. coli* DH10B, Nissle 1917, MG1655, or BL21(DE3). **(B and C)** Efficiency of
987 strain-specific gRNAs with at least one mismatched nucleotide in the PAM or at least 3
988 mismatched nucleotides in the 20 nt PAM-adjacent target region. gRNAs were designed to
989 selectively target (B) *E. coli* DH10B, Nissle 1917, MG1655, or BL21(DE3), or (C) *P. putida* F1, *P.*
990 *putida* KT2440, *P. stutzeri* JM3000, or *P. syringae* pv. tomato DC3000. The top four predicted
991 gRNAs for each strain were selected from the program and tested for killing efficiency using a
992 transformation assay. Efficiency values are the ratio of the number of colonies obtained from each
993 gRNA plasmid to the number of colonies obtained from the control plasmid with Cas9 present
994 divided by the ratio of the number of colonies obtained from each gRNA plasmid to the number
995 of colonies obtained from the control plasmid without Cas9 present (see methods). Each value is
the average of biological duplicate (A) or triplicate (B and C). Source data are provided as a
source data file.


996


996 **Fig. 4: Isolation of specific bacteria from microbial consortia using strain-specific CRISPR-
997 Cas9 selection**




998 (A) Procedural schematic for isolating specific strains from a consortium. Selected consortia are
999 transformed with a Cas9- and lambda red-containing CRISPR plasmid. The strain mixture with
1000 the CRISPR plasmid is then transformed with a strain-specific gRNA plasmid, designed to target
1001 selected non-desired strains, and double stranded DNA carrying an antibiotic resistance gene
1002 (ARG). The ARG is integrated into the genome by lambda red recombinase to yield antibiotic-
1003 resistant microbes. Recombinants are then isolated by plating on agar plates containing the
1004 relevant antibiotic. The transformed gRNA plasmid selectively kills non-desired strains, leaving
1005 viable colonies only of the desired microbe. If the purified strain is desired to be further
1006 engineered, a second round of recombination can be performed using an ARG-specific gRNA to
1007 replace the ARG with any DNA of interest. (B) Isolation of *E. coli* Nissle 1917 from a three-microbe
1008 consortium with *E. coli* DH10B and MG1655. Cultures of each of the three microbes alone and
1009 together at a 1:1:1 ratio were transformed with a kanamycin-resistance cassette and either a
1010 control plasmid (gRNA —) or a plasmid harboring a gRNA designed to target *E. coli* DH10B and
1011 MG1655, but not *E. coli* Nissle 1917. (C) Plasmid schematic for strain-specific isolation of
1012 microbes from consortia. Six gRNAs were designed to target different subsets of the
1013 *Enterobacteriaceae* family, while protecting *E. coli* Nissle 1917. Each gRNA is expressed in its
1014 own unique cassette with nonrepetitive constitutive promoters, Cas9 hairpins, terminators, and
1015 spacer regions. (D) Isolation of *E. coli* Nissle from defined single-genus and multi-genus microbial
1016 consortia. Cultures of *E. coli* DH10B, MG1655, BL21(DE3), and Nissle 1917 or *E. coli* Nissle
1017 1917, *P. putida* F1, *S. typhimurium*, and *R. opacus* PD630 were mixed at a 1:1:1:1 ratio and
1018 transformed with an empty control plasmid or a plasmid harboring a constitutive Cas9 cassette
1019 and an *Enterobacteriaceae*-targeting but *E. coli* Nissle-protecting gRNA array. Strains were
1020 quantified by next-generation amplicon sequencing (left) or qPCR (right). Values and error bars
1021 are the average and standard deviation of biological triplicate, respectively. Statistical
1022 comparisons between the control plasmid and gRNA array plasmid were performed using two-
1023 sided two-way ANOVA with Sidak's multiple comparisons (***, $p < 0.001$; ****, $p < 0.0001$). Source
1024 data and p -values are provided as a source data file.


1025
1026 **Fig. 5: Removal of individual microbes from consortia using strain-specific CRISPR-Cas9
1027 DNA antimicrobials**


1028 (A and B) Plasmids harboring constitutive Cas9 and *E. coli* Nissle-specific gRNAs selectively
1029 remove *E. coli* Nissle from microbial consortia. Defined consortia of (A) a 1:1:1:1 mixture of *E. coli*
1030 DH10B, MG1655, BL21(DE3), and Nissle 1917 or (B) mouse fecal samples containing ~2% *E.*
1031 *coli* Nissle were transformed with a control plasmid or an *E. coli* Nissle-specific targeting plasmid,
1032 and the strains were identified by antibiotic plating (see Methods). The fold difference in CFUs
1033 between transformation with the control plasmid and *E. coli* Nissle-specific plasmid was then
1034 quantified. (C) Schematic of strain-specific antimicrobial liposomes. Cationic liposomes packaged
1035 with plasmids harboring Cas9 and strain-specific gRNA cassettes are delivered to complex
1036 microbial consortia. Liposomes nonspecifically fuse with microbes, delivering the payload.
1037 Microbes harboring the gRNA target sequence have their genome inactivated by Cas9 cleavage,
1038 causing cell death. (D) CFUs and fold difference of *E. coli* DH10B, MG1655, BL21(DE3), and
1039 Nissle 1917 that received control plasmid and *E. coli* Nissle-specific plasmid payloads after
1040 incubation with DNA-loaded liposomes. Values and error bars are the average and standard
1041 deviation of biological triplicate, respectively. Statistical comparisons between the control plasmid
1042 and the Nissle-specific plasmid were performed using two-sided one-way ANOVA with Tukey's
1043 Honest Significant Difference post-hoc test (***, $p < 0.001$; ****, $p < 0.0001$). Source data and p -
1044 values are provided as a source data file.

A**B****C**

