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We are rapidly approaching a future in which cancer patient digital twins will
reach their potential to predict cancer prevention, diagnosis, and treatment
in individual patients. This will be realized based on advances in high
performance computing, computational modeling, and an expanding
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repertoire of observational data across multiple scales and modalities. In 2020, the US
National Cancer Institute, and the US Department of Energy, through a trans-
disciplinary research community at the intersection of advanced computing and
cancer research, initiated team science collaborative projects to explore the
development and implementation of predictive Cancer Patient Digital Twins. Several
diverse pilot projects were launched to provide key insights into important features of
this emerging landscape and to determine the requirements for the development and
adoption of cancer patient digital twins. Projects included exploring approaches to
using a large cohort of digital twins to perform deep phenotyping and plan
treatments at the individual level, prototyping self-learning digital twin platforms,
using adaptive digital twin approaches to monitor treatment response and resistance,
developing methods to integrate and fuse data and observations across multiple
scales, and personalizing treatment based on cancer type. Collectively these efforts
have yielded increased insights into the opportunities and challenges facing cancer
patient digital twin approaches and helped define a path forward. Given the rapidly
growing interest in patient digital twins, this manuscript provides a valuable early
progress report of several CPDT pilot projects commenced in common, their overall
aims, early progress, lessons learned and future directions that will increasingly

involve the broader research community.
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Introduction

A paradigm shift appears underway in the use of digital
twin approaches to advance new methods for precision and
predictive cancer care. This shift is motivated not only to
better diagnose and treat the individual, but also from the
point of view of transforming care by more effectively
involving the individual patient in their health and care
decisions over their lifetime (1). Cancer is not a single disease,
but a family of diseases that share certain common
characteristics resulting in uncontrolled cellular proliferation
and destructive invasion of tissue (2). The complexity of
cancer extends beyond the individual cancer cells to include
the “normal” cells in the tumor environment and the
individual as a whole; the unique underlying genomics and
functional systems of the body are critical in the response to
both disease and treatments. Precision oncology, according to
the Precision Medicine Initiative' aims to diagnose and treat
patients with increased specificity based on a more in-depth
and precise understanding of an individual’s disease, taking
into account the added scientific insights, similarities, and
differences among patients, many of these gained from
multiomic analyses.

!Online  reference: https://obamawhitehouse.archives.gov/precision-

medicine accessed July 18, 2022.
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A digital twin, as defined by the Digital Twin Consortium, is
a virtual embodiment of a real-world object or system,
historically based and continuously updated to mirror the
behavior of the object in the real world”. Digital twins have
been used for several years in multiple industries to predict
behavior, monitor an object’s activities and responses, and
predict potential future situations that would support
decisions to initiate preemptive maintenance or guide
different behavior. As real-world systems are complex, so too
are digital twins created at different levels of detail, at
multiple scales, and represent many different objects and/or
systems. After insightfully detailing how digital twins have
been used in industry, Croatti et al. (3) recently posited that
digital twins can be applied to healthcare systems, thus
providing an approach to monitor and manage the multiple
interacting components in the healthcare system while
incorporating such emerging technologies as the Internet of
Things (IoT) to support real-time data acquisition. Fertig
et al. (4) elaborated further on how data assimilation methods
from weather forecasting can be adapted to cancer forecasting,
particularly when patient models merge domain knowledge
with data-driven insights into rigorous computational models.
More recently, and aligned with the work of this manuscript,

2Online reference: https://www.digitaltwinconsortium.org/initiatives/

the-definition-of-a-digital-twin/ on July 18, 2022.
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Wu et al. (5) described digital twins and proposed a framework
to extend the concept of digital twins to individual patients,
providing insights into opportunities and challenges facing
imaging-driven digital twin approaches. The concept of a
cancer patient digital twin (CPDT) continues to gain interest
and inspire the cancer community, as shared in a recent
report exploring the future for predictive radiation oncology (6).

Background and motivation

The concept for the CPDT efforts described in this paper
has its origin in the NCI-DOE Collaboration, established in
2016 (7). In the wake of the Precision Medicine Initiative
(referenced previously) and the emergence of the National
Strategic Computing Initiative’, this unique collaboration set
forth with aims to pursue cancer challenges that could
leverage predictive modeling, simulations, and AI to make
significant progress, while at the same time informing the
development of exascale computing co-design through the
application to large-scale biological challenges. As part of the
first Cancer Moonshot™ effort, three pilot projects were
pursued with aims to develop new capabilities at the forefront
of multi-scale molecular scale predictive modeling (8),
predicting tumor response to drug treatments (9, 10) and
monitor cancer patients more efficiently and effectively using
natural language processing of cancer pathology reports (11,
12). Indeed, these pilot project efforts each pushed the
frontiers for emerging technologies needed to develop cancer
patient digital twins including multi-scale modeling, cancer
patient surveillance and health trajectories, and prediction of
cancer treatment outcomes.

With the groundwork laid by the NCI-DOE pilot projects
and continuing efforts to grow the trans-disciplinary
community while pushing the frontiers of computing and
cancer, the concept of digital twins and cancer patients
converged at the 2017 Frontiers of Predictive Oncology and
Computing meeting,” and parallels were identified between
industry successes in digital twin approaches and employing
the latest advances involving large scale DOE computing to
advance cancer research. During the ensuing 2019
Envisioning Computational Innovations for Cancer Challenges
meeting, the cancer patient digital twin concept was further
developed, establishing the foundation for pursuing the

*Online reference: https://www.nitrd.gov/nsci/ accessed July 18, 2022
The NSCI was launched by Executive Order (EO) 13702 in July 2015 to
advance U.S. leadership in high performance computing (HPC).
“https://www.intel. com/content/www/us/en/government/predictive-

oncology-and-computing.html, accessed July 18, 2022.
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envisioned CPDT. The vision is for the CPDT to build on the
new NCI-DOE capabilities being developed and provide a
driving shared community goal that would foster broad
community involvement and advance new modeling
approaches to a level of scientific, computational, data, and
community integration needed to cross the barrier to an
integrated cancer patient digital twin (1).

Building on the need for integrated and cross-disciplinary
team science, the exploratory projects for the CPDT described
below were developed using a cross-organization and
interdisciplinary methodology which involved having 30
researchers from 25 organizations across multiple disciplines
come together for a weeklong Ideas Lab’ in 2020 to develop
the exploratory CPDT projects described below. Participants
self-organized around common areas of interest in CPDT
approaches and worked together with experienced mentors to
define shared project plans that established a clear conceptual
CPDT

approaches. After internal NCI and DOE review, the

vision and technical roadmap for respective
following five projects described below were selected for
short-term funding to develop the concepts and approaches
for advancing cancer patient digital twins.

Cancer patient digital twin
exploratory projects

Project 1: simulating one million
pancreatic cancer patients to guide
treatment

Project description: lead institution—
Georgetown University

The initial goal of this project was to develop methods that
connect the progression, therapeutic interventions, and
outcomes from a cohort of pancreatic cancer patients to
simulation results generated from a model of subclonal tumor
evolution. The model tracked the growth of 4 subclone
populations as they were subjected to treatment with one of
any two, non-cross resistant therapies. In terms of these two
interventions, subclones represent cell populations that are
sensitive to both, resistant to the first, resistant to the second,
and resistant to both. Transitions of individual cells between
sensitive to resistant populations occur according to
characteristic subclonal evolutionary rates. Every 45 days, the
model will apply one of the two therapies, or both in
combination at a reduced dose, and compare different
strategies to make that choice.

°https://events.cancer.gov/chiit/dtwin2020, accessed July 18, 2022.
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The simulation results represented a pan-cancer analysis of a
parameter space spanning the range of realistic values that
define subclonal sensitivity to therapeutic intervention and the
kinetics of growth and emergence of drug resistance. In silico,
the evolutionary model doubles the survival of virtual patients
on average (13, 14). The first two 45-day periods are particularly
critical in achieving these results (15). The team had extensive
data describing the patient demographics, molecular profiling
identifying actionable biomarkers, and the ordering and duration
of therapeutic interventions in a population of pancreatic cancer
patients. However, matching real patients in this cohort with
simulated patients from the model did not result in a definitive
mapping between real-world data and model parameters. The
patient data lacked the temporal resolution to profile tumor
response to therapeutic interventions, and a population-based
approach that mapped patients with similar biomarkers and
treatment schedules to simulation outcomes did not uniquely
converge in the model parameter space.

Observations and future efforts

While the work did not result in a mapping algorithm
between patient data and model input parameters, the
process defined some very important challenges to utilizing
CPDTs for guiding precision therapy. Patient data are, and
will continue to be, incomplete, especially with respect to
the resolution needed to uniquely identify any single
model parameter. At best, the team can estimate the
confidence in a specific patient-mapped input parameter
and translate that to a range around the associated value.
Through the combinatorial expansion of values that span
the range of possible values, a single patient is then
represented by a population CPDTs. Even for models with
a modest number of adjustable parameters, this population
will be quite large.
the
outcomes are, the challenge then becomes identifying which

Depending on how heterogeneous simulation
of the CPDTs in the population are truly representative of
the given patient. Results can be used to identify population
subsets with divergent responses to a given therapy, and
analysis could then inform subsequent data collection.
Consider the case in which a majority of the patient-specific
CPDTs are predicted to have a similar response to different
therapies, but there is a subset of the population with a
drastically improved outcome with one intervention with
respect to the other. Understanding what combinations of
parameter values led to the divergent model behavior could
direct additional data collection that would definitively place
the patient in one of the subsets of their CPDT population.
The challenge is finding the least invasive way to provide
the highest resolution data collection possible.

For any model as an approximation of a complex system, it
is expectedly impossible to exactly match patient data to any
model parameter; there will always be some error or

Frontiers in Digital Health

04

10.3389/fdgth.2022.1007784

uncertainty. Practically, this means data from a single patient
will result in a population of CPDTs, likely with divergent
outcomes for any of the tested intervention strategies. The
challenge will then become how to collect additional data
that will refine the population into an increasingly accurate
representation of the individual’s therapeutic response.
Project future work aims to understand the regions of the
complex parameter for

space which  high-resolution

measurement is needed, and to deconvolute their

relationships to CPDT simulation output.

Project 2: self-learning platforms for
personalized treatment of melanoma

Project overview: lead institution—Indiana
University

This project is an initial stage of an aspirational vision to
CPDTs
immunotherapy in metastatic melanoma patients. The team

develop  clinically  actionable for  planning
leveraged cutting-edge multiscale models of heterogeneous
tumors and immune system dynamics to create multiscale
of

pulmonary metastases, aided by canine data to drive rapid

models tumor-immune interactions in melanoma
model refinement. HPC-driven model exploration will ensure
that the multiscale model can recapitulate essential clinical
trajectories including spontaneous regression, arrest at sub-
clinical size, and growth to clinical detection. Techniques
grounded in Artificial Intelligence (AI) are used to analyze
the and develop CPDT

templates—a key step in fitting models to individual patients

simulated patient trajectories

(see Figure 1).

The overarching goal is to develop and implement a model
of metastatic melanoma for autologous cancer vaccine
immunotherapies and to prepare for prototyping and testing
against canine data. To reach this goal, the pilot project aims
to (1) construct a multiscale model of melanoma metastases,
(2) perform model exploration on HPC to identify digital
patient templates (3) extend the model to autologous vaccine
immunotherapy, (4) prepare sample longitudinal canine data
for framework testing, and (5) perform initial (human)
clinical case selection.

Observations and future efforts

Building upon work by Macklin’s COVID-19 modeling
coalition (16), the team designed a multiscale agent-based
model of melanoma pulmonary micrometastases with local and
systems-scale immune interactions, including innate and
adaptive immune responses to the infiltrating cancer cells. The
team verified that the model could capture clinically salient
outcomes, including uncontrolled growth, partial tumor
control, and complete tumor elimination. The team also varied

and explored ten key immune system parameters on HPC
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FIGURE 1
Overall approach to identify digital patient templates.

ment exploration
on supercomputers

) =

Digital Twin repository

Al-based techniques
for template detection

resources and applied AI techniques to the simulation data to
the The
heterogeneity in the trajectories required novel clustering

analyze digital patient trajectories. significant
methods to identify patient templates. The team also found
that it was possible to mimic vaccine immunotherapy by
introducing virtual tumor cell debris to prime immune
interactions.

For future model training, the team selected and annotated
four canine melanoma cases, including clinical findings, weight,
primary and metastasis measurements, mitosis, and immune
cell infiltration. The team also identified 9,295 melanoma
patients from the Stanford Comprehensive Cancer Center with
diverse gender, ethnicity, age, and treatment characteristics. The
team is currently analyzing these trajectories to retrospectively

identify optimal treatment patterns.

Multiscale CPDTs (with many parameters) are
challenging to fit to individual patients with routine
clinical measurements. CPDT templates address this

challenge by reducing the size of the “search space” for
fitting,
further tailor the templates to individuals throughout

model and data assimilation techniques can

their treatment. Over time, an accumulated repository of
fitted CPDTs can help refine the templates, effectively
transferring knowledge from prior patients to new
patients. Because the models incorporate fundamental cell
behaviors, they can be mechanistically updated to
The

framework approach encourages community contributions

incorporate new biological discoveries. open
to these model components, allowing the community to
pool resources, combine expertise, and more rapidly
advance towards CPDTs that improve patient outcomes

and quality of life.
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Project 3: an adaptive digital twin
approach for monitoring treatment
response and resistance

Project overview: lead institution—Stanford
University

In this project, the team is developing a CPDT by integrating
baseline multi-modal data and repeated measurements for real-
time dynamic model training and updating (17). The approach
leverages innovations in the areas of cancer research, artificial
intelligence, and computing technologies to realize a CPDT for
monitoring treatment response and treatment resistance (18).
Specifically, the effort proposes an adaptive dynamic CPDT,
using baseline features to predict response to therapy, enabling
treatment  reassignment should predictions not meet
expectations (Figure 2). During the maintenance phase, the
CPDT will help additionally assess resistance mechanisms and
similarly enable effective treatment reassignment. This CPDT
will help physicians make initial treatment determinations,
comparatively monitor treatment response, assess toxicity and
effectiveness, and decide when to discontinue or change an
approach.

The team is developing initial modules for each of the
data modalities proposed as essential components of the
lung cancer digital twin approach: demographic data, CT
digital data,

genomics. The team is curating a retrospective dataset

imaging, pathology, histopathologic and
that will serve as one of the main cohorts to develop,
fine-tune and test this lung cancer digital twin (19). Next
the team will build deep learning models to integrate
these data modalities (20) into an adaptive predictive

CPDT model.

frontiersin.org
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Observations and future efforts

The team has built a lung lesion variational auto-encoder that
can successfully reconstruct 3D volumes of lung nodules and
yield meaningful embeddings of the nodules. Such models are
shown to have the ability to predict tumor volume and could
potentially be used for other downstream task predictions
including genomic features such as EGFR mutation status (21,
22). On top of that, the model can easily generalize to other
lung CT datasets without any fine-tuning and can predict
tumor volume changes with similar qualities as the dataset it
was trained on (manuscript in preparation). Secondly, the team
has developed a variational autoencoder (VAE) that learns a
latent representation of lung tissue gene expression profiles and
has early observations that this model is able to generate
realistic synthetic gene expression. This representation is used
to infuse generative adversarial networks (GAN), generating
lung tissue tiles with a new model that we call RNA-GAN.

When model training is faced with small datasets or datasets,
missing modalities, or studies in which multi-modal data are
expensive to produce, or especially for multi-modal problems,
early results show the promise of multi-modal biological data
imputation and obtain better quality multi-modal data. In
future work, the team is working to connect each of the
modules just described to eventually develop a multiscale
model of a lung cancer lesion. The approach employs a late
fusion strategy to bring all modules together and predict tumor
size in the context of two treatment modalities: anti-EGFR
treatment and immunotherapy. The team will also investigate
the estimation of the cellular microenvironment of lung cancer
patients, and its use to determine tumor evolution. One of the
main challenges to continuing the work on a lung cancer DT
will be to collect and share multi-institutional multi-modal
longitudinal cohorts of lung cancer patients in a privacy-
preserving manner. Even though public databases are available,
most publicly available cohorts are not multimodal and not
longitudinal. A federated learning approach may offer a
solution to share multi-modal longitudinal biomedical data
more seamlessly without the need for data sharing agreements.
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Project 4: a patient-specific multiscale
digital twin for the exploration of optimal
treatment pathways for non-small cell
lung cancer

Project overview: lead institution—University of
South Carolina

This project aims to develop a dynamic, multiscale cancer
patient digital twin (CPDT) for a non-small cell lung cancer
(NSCLC) patient by harnessing the patient’s own medical data
and leveraging data from similar patients in the population. It
will be deployed to search for optimal pathways for the
specific cancer patient by exploring the treatment pathway
space dynamically. The digital twin by design is a virtual
replica of the NSCLC patient, recording the patient’s past
state, monitoring the patient’s present state, and forecasting
the patient’s future state.

The team takes an in silico approach to build the
CPDT HPC
infrastructure, exploiting multimodal patient data across

dynamic,  multiscale leveraging  an
observational and treatment scales longitudinally, as well as
cross-sectionally, as an initial digital twin. The team then
leverages data from similar patients in the population to
simulate various nuanced treatment choices in a treatment
pathway graph to form clinical recommendations. The
CPDT leverages four key sources of information and in
silico tools: (1) medical data, including diagnostic notes, of
the cancer patient and longitudinal data from similar
)

treatment pathways from various institutions; (3) prior

patients; a priori clinical knowledge of existing
treatment pathways of existing patients from electronic
health records; and (4) simulations of treatment pathways
exploring patient similarity. The CPDT will adopt the latest
advances in artificial intelligence (AI), especially, deep
learning models and technologies, and physics-informed
modeling and simulations.

To build the CPDT, the team leverages the existing NSCLC

patient data in available databases and in-house datasets. This is
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a large collaborative endeavor across several traditionally
expertise
working seamlessly on multiscale mechanistic modeling and

orthogonal  disciplines, ~requiring complementary

implementation, regulatory protein network development,
patient pathway infrastructure development, data fusion
technologies, and trustworthy AI New Al-enabled mechanical
and mechanistic models, latent-space representations, multigraph
neural networks for the fusion of multiple modalities, and
evolutionary models will be innovated by exploiting the hidden
information in the dynamical, longitudinal dataset of the patient.
A novel computational platform integrating mechanical/physical
models and machine learning will be developed leveraging the
advanced computational capability in HPC environments. A
schematic of the basic components in a multiscale DT is shown
in Figure 3 above.

Observations and future efforts

The team will actively engage in the digital twin
development community and work closely with the other
developers to improve and wupdate our design and
implementation. The digital twin model will be developed
following the state-of-the-art trustworthy AI criteria. Its
fundamental architecture will be made extensible and
adaptable to other medical applications through enhanced
transfer learning. A rigorous model assessment procedure will
be implemented to ensure the safe and effective use of the
model in clinical settings. So far, the team has gathered a set
of NSCLC patient data for a cohort of patients treated at
Yale-New Haven Health System and from publicly available
databases, made progress on the physiological module in the
multiscale DT (23), developed deep learning guided similarity
analysis of patients (24, 25), and started building a portion of
protein network dynamics. Various deep learning tools

including LSTM and more general neural dynamical systems

T;‘;?:J;gnt Weighted Treatment
y -I-b Treatment Pathway
Graph Optimization
Similar - l
Patient Patient DT
Berore i, - Recommended
T Next or Final
. Step
Patient Updated Data ey
Data for Patient DT OUTPUT
DT DT
Template < Depository
FIGURE 3

The schematic of a multiscale digital twin for a lung cancer patient.

Frontiers in Digital Health

07

10.3389/fdgth.2022.1007784

have been implemented on time-series data of metabolic
panels of cancer patients. Transfer learning has been adopted
to translate the DT from one patient to another. Given the
scope of the project, additional components need to be
the
community, and a path forward laid out in the project’s

developed with sufficient support working with

blueprint.

Project 5: virtual cancer digital twin
approaches

Project overview: lead institution—University of
Massachusetts, Amherst

Since each cancer has its own unique characteristics, each
one can respond differently to the same treatments. Therefore,
the creation of a digital twin (DT) of cancer can assist us in
the of
computational modeling and finding the best treatment
option for each patient. For each patient, the CPDT receives

predicting evolution each cancer through

its information as input and predicts the evolution of their
cancer. The CPDT will assist clinicians in the early detection
of aggressive tumors and guide them to conduct timely
surveillance, data collection, and choose appropriate treatments.

To reach this goal, it is proposed to take advantage of new
advances in computational approaches and combine
mechanistic, machine learning, and stochastic modeling
approaches to create “My Virtual Cancer,” a CPDT platform.
The team continues to develop a CPDT, which provides an
in-vivo patient-specific experience to visualize the evolution of
the disease of a given cancer patient based on the individual’s
disease characteristics. Users of this CPDT can visualize the
evolution of a given cancer and its impact on other organs in
the absence or presence of targeted therapies. This CPDT
begins by using the patient’s initial data, then suggests the
time and type of new data be collected and updates itself
accordingly.

This CPDT is based on the integration of data-driven
mechanistic, machine learning, and stochastic agent-based
models; all these models give constant feedback to each other
to improve this dynamic CPDT. The proposed data-driven
mechanistic model, which is a combination of biochemistry,
biophysics, and PK-PD models, uses the compartmental-based
scheme of quantitative systems pharmacology (QSP) modeling
approach to model the entire body (26-28) QSP modeling is
one of the main computational approaches used to discover,
test, and predict the dose-exposure response. One of the main
challenges of the QSP modeling is parameter estimation;
parameters are calibrated using the data that are often
assembled from disparate sources rather than a single curated
data set (29, 30). As a result, they cannot be easily validated
To establish a

personalized CPDT, the team uses patient-specific data for

or used for personalized treatments.
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parameter estimations, sensitivity analysis, and uncertainty
quantification. For the parameter estimation, the approach
considers the parameters as unknowns and determines them
in the QSP model using state-of-the-art topology optimization
methods. The team then performs a multi-dimensional
sensitivity analysis and uncertainty quantification on the QSP
model to find a set of critical interactions and predict the
intervals of confidence.

The team analyzed 1,218 primary breast tumors in Breast
Cancer (BRCA) data sets of the TCGA project (31) and 1,904
tumors in Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) data (32). This was followed by a
digital cytometry method on gene expression profiles of
primary breast tumors to characterize the tumors’ immune
profiles and estimate the values of the mathematical model’s
variables to create a data-driven ordinary differential equation
(ODE) model for human breast tumors (33). The team found
that there are five distinct immune patterns of human breast
tumors and investigated the dynamics of each of these immune
patterns. The team also developed a data-driven ODE model
for mice breast tumors (34) using the PyMT mice RNA-seq
data (35) and extended it to a PDE model, which considers the
observed spatial locations of key players in the mice breast
tumors (36), using collaborator’s data to document the
differences between mice and human tumors and validate the
model on mice data. The results of these models emphasize the
importance of modeling cells’ locations and separate parameter
estimations for humans and mice.

Observations and future efforts

One of the main challenges of mathematical modeling of
cancer is the lack of data, particularly time-course human
multimodal data, for more reliable parameter estimation
and validation. Future support is needed to be able to
address some of the important limitations of current
mathematical models by integrating available multi-modal
patients’ data and collaborating with biologists to estimate
some of the parameters and validate the results. There are a
limited number of computational models for rare cancer
types, while patients with these cancers have mostly poor
prognoses. For example, there are not any identifiable
mathematical models for uveal melanoma (UM), and there
is very limited publicly available data on UM. For the next
phase of “My Virtual Cancer,” the team aims to (a) gather
multi-modal patient data for UM and breast cancer; (b)
analyze and merge different data types of both UM and
(d)
estimate the mechanical parameters of the mathematical
(e)
mathematical models using pathology and MRI images; (f)

breast cancer; (c) create a database with an API;

model by performing some experiments; improve
perform parameter estimation using topology optimization;
and (g) validate the model’s predictions in mice and human

and document the differences between them.
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Discussion

In terms of approaches, the five CPDT projects span a
broad of One
variation among the projects is the selection of the type
of
melanoma, NSCLC, and breast cancer. The projects also
their with
mechanistic approaches, while others employed agent-

range starting points and emphases.

cancer to pursue, involving pancreatic cancer,

varied in approaches some incorporating
based approaches. Not surprisingly, all used a form of Al,
machine learning or data-driven approaches, albeit at
different levels in which some wused AI for model
development while others used data-driven approaches for
analysis of results or selecting the best models for
individual patients.

The five exploratory projects have several recurring
themes that share and underpin the need for an expanded
First,

framework, also emphasized by Wu et al. (5), underscores

community effort. the concept of a common
the importance of cooperative efforts and collaborations
to advance the state of cancer patient digital twins.
Secondly, while progress has been made within these
projects, the reports of these efforts reinforce the critical
additional data,
particularly across populations that are representative of

need for patient-specific longitudinal
the community the CPDT is anticipated to support.
Relatedly, and as expected, these data must also be
multimodal, multiscale, and extensible to support the
multiple levels of modeling and coherence necessary to
achieve the CPDT.

These themes are not surprising, they were among the
several challenges facing the development of CPDTs shared
(1). the all

demonstrated and domain

Nonetheless, five
that

knowledge, machine intelligent-driven analysis of large-

previously projects

biological clinical
scale multimodal datasets, and mechanistic modeling can
be merged to create modular, reusable frameworks for
CPDTs. Creative uses of artificial intelligence and large-
scale model exploration for HPC resources have the

potential to  “shrink” seemingly intractable model
calibration and featurization challenges into simpler
problems that can be addressed by modern data

assimilation techniques. As the community continues to
explore and combined approaches, CPDTs will begin the
march from science fiction to clinical reality.

The early outcomes of the CPDT pilot projects as well as
the results from other CPDT efforts provide a sense of real
promise for the future of the CPDT. As is evident, there
are many potential future efforts identified within each of
the five pilot projects, as well as future efforts that would
span projects and other efforts involving the broader
community. What is clear is that growing the CPDT
community is among the highest priorities in realizing the
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potential of the CPDT and is the key focus for future efforts
shared here.

The NCI-DOE Collaboration is committed to bringing
together an ever-expanding and diverse community of
interdisciplinary scientists across career stages from
public and private organizations, such as the participants
in the cancer patient digital twin projects. Focus areas
emanate from a growing transdisciplinary community,
termed the Envisioning Computational Innovations in
Cancer Challenges (ECICC) community’. Since 2019, the
ECICC community has engaged in collaborative activities
with academia and other outside organizations across
cancer, HPC and AI. There are over 200 members from
multiple relevant disciplines, organizations and career
stages registered through an NCI Hub site. ECICC has
hosted numerous interactive events that have led to new
partnerships and research projects at the intersection of
research and science/Al.  For
the

oncology (6) was created by the ECICC community, and

cancer computational

example, recent report on predictive radiation

now serves as a resource to the broader cancer research
community. The ECICC site includes a dedicated CPDT
resource area to serve as a hub for growing the
CPDT community.

Future research projects in digital twin technologies,
predictive radiation oncology and other grand cancer
challenges are expected to engage broader communities
and lead to disease and intervention-specific models and
simulations, active and

using mathematical, learning,

ensemble model approaches for cancer and other areas of

biomedical research. Additional, robust initiatives are
underway to expand the community and increase
opportunities for interdisciplinary, cross-organizational

research projects. Broader engagement with the research

community, and collaborative research
opportunities developed by the NCI-DOE Collaboration

are shaping the future of predictive oncology, drug

new resources

discovery, and clinical applications. To join this dynamic

community or for more information, contact

ECICC_Community@nih.gov.
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