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We are rapidly approaching a future in which cancer patient digital twins will

reach their potential to predict cancer prevention, diagnosis, and treatment

in individual patients. This will be realized based on advances in high

performance computing, computational modeling, and an expanding
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repertoire of observational data across multiple scales and modalities. In 2020, the US

National Cancer Institute, and the US Department of Energy, through a trans-

disciplinary research community at the intersection of advanced computing and

cancer research, initiated team science collaborative projects to explore the

development and implementation of predictive Cancer Patient Digital Twins. Several

diverse pilot projects were launched to provide key insights into important features of

this emerging landscape and to determine the requirements for the development and

adoption of cancer patient digital twins. Projects included exploring approaches to

using a large cohort of digital twins to perform deep phenotyping and plan

treatments at the individual level, prototyping self-learning digital twin platforms,

using adaptive digital twin approaches to monitor treatment response and resistance,

developing methods to integrate and fuse data and observations across multiple

scales, and personalizing treatment based on cancer type. Collectively these efforts

have yielded increased insights into the opportunities and challenges facing cancer

patient digital twin approaches and helped define a path forward. Given the rapidly

growing interest in patient digital twins, this manuscript provides a valuable early

progress report of several CPDT pilot projects commenced in common, their overall

aims, early progress, lessons learned and future directions that will increasingly

involve the broader research community.
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Introduction

A paradigm shift appears underway in the use of digital

twin approaches to advance new methods for precision and

predictive cancer care. This shift is motivated not only to

better diagnose and treat the individual, but also from the

point of view of transforming care by more effectively

involving the individual patient in their health and care

decisions over their lifetime (1). Cancer is not a single disease,

but a family of diseases that share certain common

characteristics resulting in uncontrolled cellular proliferation

and destructive invasion of tissue (2). The complexity of

cancer extends beyond the individual cancer cells to include

the “normal” cells in the tumor environment and the

individual as a whole; the unique underlying genomics and

functional systems of the body are critical in the response to

both disease and treatments. Precision oncology, according to

the Precision Medicine Initiative1 aims to diagnose and treat

patients with increased specificity based on a more in-depth

and precise understanding of an individual’s disease, taking

into account the added scientific insights, similarities, and

differences among patients, many of these gained from

multiomic analyses.

A digital twin, as defined by the Digital Twin Consortium, is

a virtual embodiment of a real-world object or system,

historically based and continuously updated to mirror the

behavior of the object in the real world2. Digital twins have

been used for several years in multiple industries to predict

behavior, monitor an object’s activities and responses, and

predict potential future situations that would support

decisions to initiate preemptive maintenance or guide

different behavior. As real-world systems are complex, so too

are digital twins created at different levels of detail, at

multiple scales, and represent many different objects and/or

systems. After insightfully detailing how digital twins have

been used in industry, Croatti et al. (3) recently posited that

digital twins can be applied to healthcare systems, thus

providing an approach to monitor and manage the multiple

interacting components in the healthcare system while

incorporating such emerging technologies as the Internet of

Things (IoT) to support real-time data acquisition. Fertig

et al. (4) elaborated further on how data assimilation methods

from weather forecasting can be adapted to cancer forecasting,

particularly when patient models merge domain knowledge

with data-driven insights into rigorous computational models.

More recently, and aligned with the work of this manuscript,

1Online reference: https://obamawhitehouse.archives.gov/precision-

medicine accessed July 18, 2022.

2Online reference: https://www.digitaltwinconsortium.org/initiatives/

the-definition-of-a-digital-twin/ on July 18, 2022.

Stahlberg et al. 10.3389/fdgth.2022.1007784

Frontiers in Digital Health 02 frontiersin.org



Wu et al. (5) described digital twins and proposed a framework

to extend the concept of digital twins to individual patients,

providing insights into opportunities and challenges facing

imaging-driven digital twin approaches. The concept of a

cancer patient digital twin (CPDT) continues to gain interest

and inspire the cancer community, as shared in a recent

report exploring the future for predictive radiation oncology (6).

Background and motivation

The concept for the CPDT efforts described in this paper

has its origin in the NCI-DOE Collaboration, established in

2016 (7). In the wake of the Precision Medicine Initiative

(referenced previously) and the emergence of the National

Strategic Computing Initiative3, this unique collaboration set

forth with aims to pursue cancer challenges that could

leverage predictive modeling, simulations, and AI to make

significant progress, while at the same time informing the

development of exascale computing co-design through the

application to large-scale biological challenges. As part of the

first Cancer MoonshotSM effort, three pilot projects were

pursued with aims to develop new capabilities at the forefront

of multi-scale molecular scale predictive modeling (8),

predicting tumor response to drug treatments (9, 10) and

monitor cancer patients more efficiently and effectively using

natural language processing of cancer pathology reports (11,

12). Indeed, these pilot project efforts each pushed the

frontiers for emerging technologies needed to develop cancer

patient digital twins including multi-scale modeling, cancer

patient surveillance and health trajectories, and prediction of

cancer treatment outcomes.

With the groundwork laid by the NCI-DOE pilot projects

and continuing efforts to grow the trans-disciplinary

community while pushing the frontiers of computing and

cancer, the concept of digital twins and cancer patients

converged at the 2017 Frontiers of Predictive Oncology and

Computing meeting,4 and parallels were identified between

industry successes in digital twin approaches and employing

the latest advances involving large scale DOE computing to

advance cancer research. During the ensuing 2019

Envisioning Computational Innovations for Cancer Challenges

meeting, the cancer patient digital twin concept was further

developed, establishing the foundation for pursuing the

envisioned CPDT. The vision is for the CPDT to build on the

new NCI-DOE capabilities being developed and provide a

driving shared community goal that would foster broad

community involvement and advance new modeling

approaches to a level of scientific, computational, data, and

community integration needed to cross the barrier to an

integrated cancer patient digital twin (1).

Building on the need for integrated and cross-disciplinary

team science, the exploratory projects for the CPDT described

below were developed using a cross-organization and

interdisciplinary methodology which involved having 30

researchers from 25 organizations across multiple disciplines

come together for a weeklong Ideas Lab5 in 2020 to develop

the exploratory CPDT projects described below. Participants

self-organized around common areas of interest in CPDT

approaches and worked together with experienced mentors to

define shared project plans that established a clear conceptual

vision and technical roadmap for respective CPDT

approaches. After internal NCI and DOE review, the

following five projects described below were selected for

short-term funding to develop the concepts and approaches

for advancing cancer patient digital twins.

Cancer patient digital twin
exploratory projects

Project 1: simulating one million
pancreatic cancer patients to guide
treatment

Project description: lead institution—
Georgetown University

The initial goal of this project was to develop methods that

connect the progression, therapeutic interventions, and

outcomes from a cohort of pancreatic cancer patients to

simulation results generated from a model of subclonal tumor

evolution. The model tracked the growth of 4 subclone

populations as they were subjected to treatment with one of

any two, non-cross resistant therapies. In terms of these two

interventions, subclones represent cell populations that are

sensitive to both, resistant to the first, resistant to the second,

and resistant to both. Transitions of individual cells between

sensitive to resistant populations occur according to

characteristic subclonal evolutionary rates. Every 45 days, the

model will apply one of the two therapies, or both in

combination at a reduced dose, and compare different

strategies to make that choice.
3Online reference: https://www.nitrd.gov/nsci/ accessed July 18, 2022.

The NSCI was launched by Executive Order (EO) 13702 in July 2015 to

advance U.S. leadership in high performance computing (HPC).

4https://www.intel.com/content/www/us/en/government/predictive-

oncology-and-computing.html, accessed July 18, 2022. 5https://events.cancer.gov/cbiit/dtwin2020, accessed July 18, 2022.
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The simulation results represented a pan-cancer analysis of a

parameter space spanning the range of realistic values that

define subclonal sensitivity to therapeutic intervention and the

kinetics of growth and emergence of drug resistance. In silico,

the evolutionary model doubles the survival of virtual patients

on average (13, 14). The first two 45-day periods are particularly

critical in achieving these results (15). The team had extensive

data describing the patient demographics, molecular profiling

identifying actionable biomarkers, and the ordering and duration

of therapeutic interventions in a population of pancreatic cancer

patients. However, matching real patients in this cohort with

simulated patients from the model did not result in a definitive

mapping between real-world data and model parameters. The

patient data lacked the temporal resolution to profile tumor

response to therapeutic interventions, and a population-based

approach that mapped patients with similar biomarkers and

treatment schedules to simulation outcomes did not uniquely

converge in the model parameter space.

Observations and future efforts

While the work did not result in a mapping algorithm

between patient data and model input parameters, the

process defined some very important challenges to utilizing

CPDTs for guiding precision therapy. Patient data are, and

will continue to be, incomplete, especially with respect to

the resolution needed to uniquely identify any single

model parameter. At best, the team can estimate the

confidence in a specific patient-mapped input parameter

and translate that to a range around the associated value.

Through the combinatorial expansion of values that span

the range of possible values, a single patient is then

represented by a population CPDTs. Even for models with

a modest number of adjustable parameters, this population

will be quite large.

Depending on how heterogeneous the simulation

outcomes are, the challenge then becomes identifying which

of the CPDTs in the population are truly representative of

the given patient. Results can be used to identify population

subsets with divergent responses to a given therapy, and

analysis could then inform subsequent data collection.

Consider the case in which a majority of the patient-specific

CPDTs are predicted to have a similar response to different

therapies, but there is a subset of the population with a

drastically improved outcome with one intervention with

respect to the other. Understanding what combinations of

parameter values led to the divergent model behavior could

direct additional data collection that would definitively place

the patient in one of the subsets of their CPDT population.

The challenge is finding the least invasive way to provide

the highest resolution data collection possible.

For any model as an approximation of a complex system, it

is expectedly impossible to exactly match patient data to any

model parameter; there will always be some error or

uncertainty. Practically, this means data from a single patient

will result in a population of CPDTs, likely with divergent

outcomes for any of the tested intervention strategies. The

challenge will then become how to collect additional data

that will refine the population into an increasingly accurate

representation of the individual’s therapeutic response.

Project future work aims to understand the regions of the

complex parameter space for which high-resolution

measurement is needed, and to deconvolute their

relationships to CPDT simulation output.

Project 2: self-learning platforms for
personalized treatment of melanoma

Project overview: lead institution—Indiana
University

This project is an initial stage of an aspirational vision to

develop clinically actionable CPDTs for planning

immunotherapy in metastatic melanoma patients. The team

leveraged cutting-edge multiscale models of heterogeneous

tumors and immune system dynamics to create multiscale

models of tumor-immune interactions in melanoma

pulmonary metastases, aided by canine data to drive rapid

model refinement. HPC-driven model exploration will ensure

that the multiscale model can recapitulate essential clinical

trajectories including spontaneous regression, arrest at sub-

clinical size, and growth to clinical detection. Techniques

grounded in Artificial Intelligence (AI) are used to analyze

the simulated patient trajectories and develop CPDT

templates—a key step in fitting models to individual patients

(see Figure 1).

The overarching goal is to develop and implement a model

of metastatic melanoma for autologous cancer vaccine

immunotherapies and to prepare for prototyping and testing

against canine data. To reach this goal, the pilot project aims

to (1) construct a multiscale model of melanoma metastases,

(2) perform model exploration on HPC to identify digital

patient templates (3) extend the model to autologous vaccine

immunotherapy, (4) prepare sample longitudinal canine data

for framework testing, and (5) perform initial (human)

clinical case selection.

Observations and future efforts
Building upon work by Macklin’s COVID-19 modeling

coalition (16), the team designed a multiscale agent-based

model of melanoma pulmonary micrometastases with local and

systems-scale immune interactions, including innate and

adaptive immune responses to the infiltrating cancer cells. The

team verified that the model could capture clinically salient

outcomes, including uncontrolled growth, partial tumor

control, and complete tumor elimination. The team also varied

and explored ten key immune system parameters on HPC

Stahlberg et al. 10.3389/fdgth.2022.1007784
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resources and applied AI techniques to the simulation data to

analyze the digital patient trajectories. The significant

heterogeneity in the trajectories required novel clustering

methods to identify patient templates. The team also found

that it was possible to mimic vaccine immunotherapy by

introducing virtual tumor cell debris to prime immune

interactions.

For future model training, the team selected and annotated

four canine melanoma cases, including clinical findings, weight,

primary and metastasis measurements, mitosis, and immune

cell infiltration. The team also identified 9,295 melanoma

patients from the Stanford Comprehensive Cancer Center with

diverse gender, ethnicity, age, and treatment characteristics. The

team is currently analyzing these trajectories to retrospectively

identify optimal treatment patterns.

Multiscale CPDTs (with many parameters) are

challenging to fit to individual patients with routine

clinical measurements. CPDT templates address this

challenge by reducing the size of the “search space” for

model fitting, and data assimilation techniques can

further tailor the templates to individuals throughout

their treatment. Over time, an accumulated repository of

fitted CPDTs can help refine the templates, effectively

transferring knowledge from prior patients to new

patients. Because the models incorporate fundamental cell

behaviors, they can be mechanistically updated to

incorporate new biological discoveries. The open

framework approach encourages community contributions

to these model components, allowing the community to

pool resources, combine expertise, and more rapidly

advance towards CPDTs that improve patient outcomes

and quality of life.

Project 3: an adaptive digital twin
approach for monitoring treatment
response and resistance

Project overview: lead institution—Stanford

University
In this project, the team is developing a CPDT by integrating

baseline multi-modal data and repeated measurements for real-

time dynamic model training and updating (17). The approach

leverages innovations in the areas of cancer research, artificial

intelligence, and computing technologies to realize a CPDT for

monitoring treatment response and treatment resistance (18).

Specifically, the effort proposes an adaptive dynamic CPDT,

using baseline features to predict response to therapy, enabling

treatment reassignment should predictions not meet

expectations (Figure 2). During the maintenance phase, the

CPDT will help additionally assess resistance mechanisms and

similarly enable effective treatment reassignment. This CPDT

will help physicians make initial treatment determinations,

comparatively monitor treatment response, assess toxicity and

effectiveness, and decide when to discontinue or change an

approach.

The team is developing initial modules for each of the

data modalities proposed as essential components of the

lung cancer digital twin approach: demographic data, CT

imaging, digital pathology, histopathologic data, and

genomics. The team is curating a retrospective dataset

that will serve as one of the main cohorts to develop,

fine-tune and test this lung cancer digital twin (19). Next

the team will build deep learning models to integrate

these data modalities (20) into an adaptive predictive

CPDT model.

FIGURE 1

Overall approach to identify digital patient templates.
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Observations and future efforts

The team has built a lung lesion variational auto-encoder that

can successfully reconstruct 3D volumes of lung nodules and

yield meaningful embeddings of the nodules. Such models are

shown to have the ability to predict tumor volume and could

potentially be used for other downstream task predictions

including genomic features such as EGFR mutation status (21,

22). On top of that, the model can easily generalize to other

lung CT datasets without any fine-tuning and can predict

tumor volume changes with similar qualities as the dataset it

was trained on (manuscript in preparation). Secondly, the team

has developed a variational autoencoder (VAE) that learns a

latent representation of lung tissue gene expression profiles and

has early observations that this model is able to generate

realistic synthetic gene expression. This representation is used

to infuse generative adversarial networks (GAN), generating

lung tissue tiles with a new model that we call RNA-GAN.

When model training is faced with small datasets or datasets,

missing modalities, or studies in which multi-modal data are

expensive to produce, or especially for multi-modal problems,

early results show the promise of multi-modal biological data

imputation and obtain better quality multi-modal data. In

future work, the team is working to connect each of the

modules just described to eventually develop a multiscale

model of a lung cancer lesion. The approach employs a late

fusion strategy to bring all modules together and predict tumor

size in the context of two treatment modalities: anti-EGFR

treatment and immunotherapy. The team will also investigate

the estimation of the cellular microenvironment of lung cancer

patients, and its use to determine tumor evolution. One of the

main challenges to continuing the work on a lung cancer DT

will be to collect and share multi-institutional multi-modal

longitudinal cohorts of lung cancer patients in a privacy-

preserving manner. Even though public databases are available,

most publicly available cohorts are not multimodal and not

longitudinal. A federated learning approach may offer a

solution to share multi-modal longitudinal biomedical data

more seamlessly without the need for data sharing agreements.

Project 4: a patient-specific multiscale
digital twin for the exploration of optimal
treatment pathways for non-small cell
lung cancer

Project overview: lead institution—University of

South Carolina
This project aims to develop a dynamic, multiscale cancer

patient digital twin (CPDT) for a non-small cell lung cancer

(NSCLC) patient by harnessing the patient’s own medical data

and leveraging data from similar patients in the population. It

will be deployed to search for optimal pathways for the

specific cancer patient by exploring the treatment pathway

space dynamically. The digital twin by design is a virtual

replica of the NSCLC patient, recording the patient’s past

state, monitoring the patient’s present state, and forecasting

the patient’s future state.

The team takes an in silico approach to build the

dynamic, multiscale CPDT leveraging an HPC

infrastructure, exploiting multimodal patient data across

observational and treatment scales longitudinally, as well as

cross-sectionally, as an initial digital twin. The team then

leverages data from similar patients in the population to

simulate various nuanced treatment choices in a treatment

pathway graph to form clinical recommendations. The

CPDT leverages four key sources of information and in

silico tools: (1) medical data, including diagnostic notes, of

the cancer patient and longitudinal data from similar

patients; (2) a priori clinical knowledge of existing

treatment pathways from various institutions; (3) prior

treatment pathways of existing patients from electronic

health records; and (4) simulations of treatment pathways

exploring patient similarity. The CPDT will adopt the latest

advances in artificial intelligence (AI), especially, deep

learning models and technologies, and physics-informed

modeling and simulations.

To build the CPDT, the team leverages the existing NSCLC

patient data in available databases and in-house datasets. This is

FIGURE 2

Longitudinal and multi-modal data capture for a lung cancer patient: timeline of a composite lung cancer patient showing possible treatment

strategies and possible biomedical data modalities.
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a large collaborative endeavor across several traditionally

orthogonal disciplines, requiring complementary expertise

working seamlessly on multiscale mechanistic modeling and

implementation, regulatory protein network development,

patient pathway infrastructure development, data fusion

technologies, and trustworthy AI. New AI-enabled mechanical

and mechanistic models, latent-space representations, multigraph

neural networks for the fusion of multiple modalities, and

evolutionary models will be innovated by exploiting the hidden

information in the dynamical, longitudinal dataset of the patient.

A novel computational platform integrating mechanical/physical

models and machine learning will be developed leveraging the

advanced computational capability in HPC environments. A

schematic of the basic components in a multiscale DT is shown

in Figure 3 above.

Observations and future efforts

The team will actively engage in the digital twin

development community and work closely with the other

developers to improve and update our design and

implementation. The digital twin model will be developed

following the state-of-the-art trustworthy AI criteria. Its

fundamental architecture will be made extensible and

adaptable to other medical applications through enhanced

transfer learning. A rigorous model assessment procedure will

be implemented to ensure the safe and effective use of the

model in clinical settings. So far, the team has gathered a set

of NSCLC patient data for a cohort of patients treated at

Yale-New Haven Health System and from publicly available

databases, made progress on the physiological module in the

multiscale DT (23), developed deep learning guided similarity

analysis of patients (24, 25), and started building a portion of

protein network dynamics. Various deep learning tools

including LSTM and more general neural dynamical systems

have been implemented on time-series data of metabolic

panels of cancer patients. Transfer learning has been adopted

to translate the DT from one patient to another. Given the

scope of the project, additional components need to be

developed with sufficient support working with the

community, and a path forward laid out in the project’s

blueprint.

Project 5: virtual cancer digital twin
approaches

Project overview: lead institution—University of
Massachusetts, Amherst

Since each cancer has its own unique characteristics, each

one can respond differently to the same treatments. Therefore,

the creation of a digital twin (DT) of cancer can assist us in

predicting the evolution of each cancer through

computational modeling and finding the best treatment

option for each patient. For each patient, the CPDT receives

its information as input and predicts the evolution of their

cancer. The CPDT will assist clinicians in the early detection

of aggressive tumors and guide them to conduct timely

surveillance, data collection, and choose appropriate treatments.

To reach this goal, it is proposed to take advantage of new

advances in computational approaches and combine

mechanistic, machine learning, and stochastic modeling

approaches to create “My Virtual Cancer,” a CPDT platform.

The team continues to develop a CPDT, which provides an

in-vivo patient-specific experience to visualize the evolution of

the disease of a given cancer patient based on the individual’s

disease characteristics. Users of this CPDT can visualize the

evolution of a given cancer and its impact on other organs in

the absence or presence of targeted therapies. This CPDT

begins by using the patient’s initial data, then suggests the

time and type of new data be collected and updates itself

accordingly.

This CPDT is based on the integration of data-driven

mechanistic, machine learning, and stochastic agent-based

models; all these models give constant feedback to each other

to improve this dynamic CPDT. The proposed data-driven

mechanistic model, which is a combination of biochemistry,

biophysics, and PK-PD models, uses the compartmental-based

scheme of quantitative systems pharmacology (QSP) modeling

approach to model the entire body (26–28) QSP modeling is

one of the main computational approaches used to discover,

test, and predict the dose-exposure response. One of the main

challenges of the QSP modeling is parameter estimation;

parameters are calibrated using the data that are often

assembled from disparate sources rather than a single curated

data set (29, 30). As a result, they cannot be easily validated

or used for personalized treatments. To establish a

personalized CPDT, the team uses patient-specific data for

FIGURE 3

The schematic of a multiscale digital twin for a lung cancer patient.
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parameter estimations, sensitivity analysis, and uncertainty

quantification. For the parameter estimation, the approach

considers the parameters as unknowns and determines them

in the QSP model using state-of-the-art topology optimization

methods. The team then performs a multi-dimensional

sensitivity analysis and uncertainty quantification on the QSP

model to find a set of critical interactions and predict the

intervals of confidence.

The team analyzed 1,218 primary breast tumors in Breast

Cancer (BRCA) data sets of the TCGA project (31) and 1,904

tumors in Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) data (32). This was followed by a

digital cytometry method on gene expression profiles of

primary breast tumors to characterize the tumors’ immune

profiles and estimate the values of the mathematical model’s

variables to create a data-driven ordinary differential equation

(ODE) model for human breast tumors (33). The team found

that there are five distinct immune patterns of human breast

tumors and investigated the dynamics of each of these immune

patterns. The team also developed a data-driven ODE model

for mice breast tumors (34) using the PyMT mice RNA-seq

data (35) and extended it to a PDE model, which considers the

observed spatial locations of key players in the mice breast

tumors (36), using collaborator’s data to document the

differences between mice and human tumors and validate the

model on mice data. The results of these models emphasize the

importance of modeling cells’ locations and separate parameter

estimations for humans and mice.

Observations and future efforts

One of the main challenges of mathematical modeling of

cancer is the lack of data, particularly time-course human

multimodal data, for more reliable parameter estimation

and validation. Future support is needed to be able to

address some of the important limitations of current

mathematical models by integrating available multi-modal

patients’ data and collaborating with biologists to estimate

some of the parameters and validate the results. There are a

limited number of computational models for rare cancer

types, while patients with these cancers have mostly poor

prognoses. For example, there are not any identifiable

mathematical models for uveal melanoma (UM), and there

is very limited publicly available data on UM. For the next

phase of “My Virtual Cancer,” the team aims to (a) gather

multi-modal patient data for UM and breast cancer; (b)

analyze and merge different data types of both UM and

breast cancer; (c) create a database with an API; (d)

estimate the mechanical parameters of the mathematical

model by performing some experiments; (e) improve

mathematical models using pathology and MRI images; (f)

perform parameter estimation using topology optimization;

and (g) validate the model’s predictions in mice and human

and document the differences between them.

Discussion

In terms of approaches, the five CPDT projects span a

broad range of starting points and emphases. One

variation among the projects is the selection of the type

of cancer to pursue, involving pancreatic cancer,

melanoma, NSCLC, and breast cancer. The projects also

varied in their approaches with some incorporating

mechanistic approaches, while others employed agent-

based approaches. Not surprisingly, all used a form of AI,

machine learning or data-driven approaches, albeit at

different levels in which some used AI for model

development while others used data-driven approaches for

analysis of results or selecting the best models for

individual patients.

The five exploratory projects have several recurring

themes that share and underpin the need for an expanded

community effort. First, the concept of a common

framework, also emphasized by Wu et al. (5), underscores

the importance of cooperative efforts and collaborations

to advance the state of cancer patient digital twins.

Secondly, while progress has been made within these

projects, the reports of these efforts reinforce the critical

need for additional patient-specific longitudinal data,

particularly across populations that are representative of

the community the CPDT is anticipated to support.

Relatedly, and as expected, these data must also be

multimodal, multiscale, and extensible to support the

multiple levels of modeling and coherence necessary to

achieve the CPDT.

These themes are not surprising, they were among the

several challenges facing the development of CPDTs shared

previously (1). Nonetheless, the five projects all

demonstrated that biological and clinical domain

knowledge, machine intelligent-driven analysis of large-

scale multimodal datasets, and mechanistic modeling can

be merged to create modular, reusable frameworks for

CPDTs. Creative uses of artificial intelligence and large-

scale model exploration for HPC resources have the

potential to “shrink” seemingly intractable model

calibration and featurization challenges into simpler

problems that can be addressed by modern data

assimilation techniques. As the community continues to

explore and combined approaches, CPDTs will begin the

march from science fiction to clinical reality.

The early outcomes of the CPDT pilot projects as well as

the results from other CPDT efforts provide a sense of real

promise for the future of the CPDT. As is evident, there

are many potential future efforts identified within each of

the five pilot projects, as well as future efforts that would

span projects and other efforts involving the broader

community. What is clear is that growing the CPDT

community is among the highest priorities in realizing the
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potential of the CPDT and is the key focus for future efforts

shared here.

The NCI-DOE Collaboration is committed to bringing

together an ever-expanding and diverse community of

interdisciplinary scientists across career stages from

public and private organizations, such as the participants

in the cancer patient digital twin projects. Focus areas

emanate from a growing transdisciplinary community,

termed the Envisioning Computational Innovations in

Cancer Challenges (ECICC) community6. Since 2019, the

ECICC community has engaged in collaborative activities

with academia and other outside organizations across

cancer, HPC and AI. There are over 200 members from

multiple relevant disciplines, organizations and career

stages registered through an NCI Hub site. ECICC has

hosted numerous interactive events that have led to new

partnerships and research projects at the intersection of

cancer research and computational science/AI. For

example, the recent report on predictive radiation

oncology (6) was created by the ECICC community, and

now serves as a resource to the broader cancer research

community. The ECICC site includes a dedicated CPDT

resource area to serve as a hub for growing the

CPDT community.

Future research projects in digital twin technologies,

predictive radiation oncology and other grand cancer

challenges are expected to engage broader communities

and lead to disease and intervention-specific models and

simulations, using mathematical, active learning, and

ensemble model approaches for cancer and other areas of

biomedical research. Additional, robust initiatives are

underway to expand the community and increase

opportunities for interdisciplinary, cross-organizational

research projects. Broader engagement with the research

community, new resources and collaborative research

opportunities developed by the NCI-DOE Collaboration

are shaping the future of predictive oncology, drug

discovery, and clinical applications. To join this dynamic

community or for more information, contact

ECICC_Community@nih.gov.
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