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Multivariate sign functions are often used for robust estimation and inference. We
propose using data dependent weights in association with such functions. The proposed
weighted sign functions retain desirable robustness properties, while significantly im-
proving efficiency in estimation and inference compared to unweighted multivariate
sign-based methods. Using weighted signs, we demonstrate methods of robust location
estimation and robust principal component analysis. We extend the scope of using
robust multivariate methods to include robust sufficient dimension reduction and func-
tional outlier detection. Several numerical studies and real data applications demonstrate
the efficacy of the proposed methodology.
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1. Introduction

Given a point µ in a normed linear space X with norm denoted by | · |, the generalized sign function S : X × X ↦→ X

with center µ is defined as

S(x; µ) =
{
|x − µ|−1(x − µ), x ̸= µ,

0, x = µ.
(1)

This is a functional and multivariate generalization of the real-valued sign function, that takes the values one, negative one
or zero if the point x ∈ R is to the right, left or equal µ ∈ R respectively. This generalized sign function was introduced
by [36] for X = R

p, the p-dimensional real Euclidean space.
The function S maps µ to the origin and all other points of X to the unit sphere S0;1 = {x ∈ X : |x| = 1}. Given

a dataset {Xi ∈ R
p : i ∈ {1, . . . , n}}, that we collect together in the n × p matrix X = (X1; . . . ; Xn)

⊤, an approach for
robust estimation and inference in multivariate data starts by evaluating (1) on each observation—defining Si = S(Xi; µi)
with respect to some suitable center µi ∈ R

p—then using these for robust location and scale estimation and inference,
including inference for µi [27,42,51]. Suppose S = (S1; . . . ; Sn)⊤ ∈ R

n×p. If the data {Xi ∈ R
p : i ∈ {1, . . . , n}} are

independent, identically distributed (hereafter, i.i.d.) from an elliptically symmetric distribution, then the eigenvectors of
E(X1 − µ̃)(X1 − µ̃)⊤ and of ES1S

⊤
1 are the same for suitable centering parameter µ̃ ≡ µi, that is, the population principal

components from the original data and from its sign transformations are the same [48]. However, valuable information is
lost in the form of magnitudes of sample points. As a result, spatial sign-based procedures suffer from low efficiency. For
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example, eigenvector estimates obtained from the covariance matrix of S are asymptotically inadmissible [29] and Tyler’s
M-estimate of scatter [49] has uniformly lower asymptotic risk.

In this paper, we propose to alleviate this low efficiency problem, by associating a data-driven weight Wi with the
generalized sign Si, that can be used to adaptively trade-off between efficiency and robustness considerations in any
given application. We demonstrate the utility of using the proposed weighted generalized sign functions in a number of
problems of current interest, including robust estimation of location and scatter.

Specifically, we propose using the product of the generalized sign function and a weight function derived as a
transformation of a data depth function [46,55]. Like data depth functions, the weight functions used in this paper are
non-negative reals defined over X ×F , where F is a fixed family of probability measures. For every choice of parameters
µ ∈ X and F ∈ F , in this paper

R(Xi; µ,F) = S(Xi, µ)W (Xi,F)

is used as a robust surrogate for observation Xi. Notice that for the trivial choice W (x,F) = |x − µF|, µ = µF, we
get R(Xi; µ,F) = Xi − µF, the original centered observations. With the other trivial choice of W (x,F) ≡ 1, we get the
generalized sign R(Xi; µ,F) = S(Xi, µ) = Si. However, in this paper we illustrate how using other weight functions can
lead to interesting robustness and efficiency trade-offs in a variety of situations.

We primarily focus on the task of robust dispersion/scatter estimation and robust principal component analysis in
this paper. Fig. 1 presents an illustrative example of bivariate data with outliers in the top left panel, where the outliers
are marked with red points. In the other panels, the generalized sign values of the same data are presented as black
points on the unit circle, with the outliers again marked with red points. Notice that the black points from either the
top right or bottom panels have very similar eigenvector structure as the original data without the outliers. The green
and blue triangles are examples of the proposed weighted sign values: the top right (respectively, bottom left, bottom
right) panels depict these values where the weights have been generated using Mahalanobis depth (respectively Tukey’s
half-space depth and the projection depth). The blue triangles are the weighted sign values of the outliers. Notice that
the eigenvectors from the weighted signs also capture the pattern from the original data without the outliers.

We assume that X = R
p, that is, the support of the random variable under study is the p-dimensional Euclidean plane

for fixed p. However, several of the results of this paper generalize to the case where X is a separable Hilbert space,
however additional technicalities are involved, as in [3], and will be considered in a future project. Similarly, we will
consider in future the case where p → ∞ as n → ∞, and we anticipate most of the analysis ad results of this paper to
be applicable in the situation p2/n → 0. We assume that the data X1, . . . , Xn are independent and identically distributed
from an elliptical distribution F with parameters µ and Σ . A formal definition follows, from [17]:

Definition 1. A p-dimensional random vector X is said to elliptically distributed if there exist a vector µ ∈ R
p, a

positive semi-definite matrix Σ ∈ R
p×p and a function φ : (0, ∞) → R such that the characteristic function of X is

exp{it⊤µ}φ(tTΣt) for t ∈ R
p.

We also assume that X1 is absolutely continuous, with P[|X1| = 0] = 0, and that Σ is positive definite. This eliminates
technicalities arising from rank deficient cases.

There are two unknown quantities in the generalized sign function defined in (1): µ and F, To estimate dispersion
and its eigen-structure robustly, we must start with a robust estimator for µ. In Section 2.1 we briefly present the case
for weighted spatial quantiles, which can be defined and studied in very general spaces X . One special case of this is the
weighted spatial median. As a location estimator, it has several interesting robustness properties and can be shown to be
more efficient that some existing robust location estimators, thus making it a perfect candidate to estimate µ. Following
that, we present detailed discussions on our primary proposal for a robust measure of dispersion in Section 2.2, followed
by a proposed affine equivariant version of it in Section 3, robust estimation of eigenvalues and a third robust estimator
for dispersion in Section 4, and a thorough study of robustness and efficiency using influence functions in Section 5. We
then report multiple simulation-based numeric studies in Section 6, present several real data examples in Section 7, and
concluding remarks in Section 8. All proofs and other technical details are presented in the appendices. All computations
are performed on R, with the help of the packages ddalpha [44], fda.usc [18] and robustbase [28] for computing
depth-based estimators. Code and data are available in the supplementary material.

In the rest of this paper, all finite-dimensional vectors are column vectors, and for a vector or matrix a, the notation
a⊤ stands for its transpose. The Gaussian distribution with mean µ and variance Σ is denoted by N(µ, Σ). The identity
matrix is denoted by I, with or without a subscript to denote its dimension. The notations A−1, det(A), λmin(A), λmax(A)
respectively stand for the inverse, determinant, minimum and maximum eigenvalues of a matrix A, whenever these are
well-defined. For a scalar or vector valued random variable Y , EY denotes its expected value, while VY denotes its variance
or covariance matrix.

The various technical conditions and assumptions that we impose later on the weight function W (x,F) are valid
for weights derived from three well-known data depth functions: the halfspace depth, the Mahalanobis depth, and the
projection depth. Note that for i.i.d. data, there are three parameters involved here: the location parameter µ in (1), the
distribution F used for the weight function, and the distribution FX of X1. For clarity and to mirror the contexts of how data
depth has been used in the literature [26,46,55], we fix F = FX for this paper, although in Section 2.1 we briefly remark
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Fig. 1. An illustrative bivariate scatter plot in the top left panel where the outliers are identified with red circles, and generalized signs from the

same data (black points on the unit radius circle, outliers are red points) in the other panels. In the top right (bottom left, bottom right) panel,

weighted signs from the same data with weights obtained using Mahalanobis depth (Tukey depth, projection depth respectively) are presented as

green triangles (outliers are identified by blue triangles). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

on the case when these distributions are different. Also note that in many problems of interest, F is unknown and data
depths are computed using Fn, however, under very standard regularity conditions (for example, see assumptions B1–B3
below), the properties of W (x,F) and W (x,Fn) are close enough for both asymptotic theory and practical applicability.
Additionally, we assume that the weight function is affine invariant, i.e., W (Ax+b, AF+b) = W (x,F) for A ∈ R

p×p, b ∈ R
p.

Some specific choices of weight functions that are compatible with our conditions arise as easy transformations of
data depth functions. A data depth function is defined on X × F , where F is a fixed set of probability measures. The
main property of a data depth function is that for every probability measure F ∈ F , there exists a constant µF ∈ X

such that for any t ∈ [0, 1] and x ∈ X , we have D(µF;F) ≥ D(µF + t(x − µF);F). That is, for every fixed F, the data
depth function achieves a supremum at µF , and is non-decreasing in every direction away from µF , thus providing a
center-outward partial ordering of points in X . There are generally several algebraic and analytic properties assumed for
data depth functions to elicit interesting mathematical properties, see for example [46,55] for details.

The spherically symmetric case of an elliptical distribution is realized with Σ = σ 2
Ip for some σ 2 > 0. We fix

the notation Z = Σ−1/2(X − µ), and let Z ∼ FZ . Note that FZ is a spherically symmetric distribution and hence
depends only on |z|, and EZ = 0p ∈ R

p and VZ = Ip. Taking affine invariant data depth functions as weights
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ensures that W (X,F) = W (Z,FZ ). It is easy to show that results in this paper are valid for the weight functions
(i) WHSD(X) ∝ FZ1 (|Z |) derived from the half-space depth, (ii) WMhD(X) ∝ |Z |2/(1 + |Z |2) derived from the Mahalanobis
depth, and (iii) WPD(X) ∝ |Z |/(1 + |Z |/MAD(Z1)), where MAD stands for median absolute deviation, derived from the
projection depth. We omit the technical details. These three weight functions give a center-inward partial ordering, thus
essentially quantifying peripherality instead of depth. Note however, that our results below are of much more general
form, and these three special choices of weights only serve as important illustrative examples to achieve desirable
robustness and efficiency balance in data analysis. Note that in all these cases, W (Z) is a function of |Z | only. We
additionally assume that EW 2(Z) < ∞.

2. Robust measures of multivariate location and scale

2.1. The weighted spatial median

We first propose a robust measure of location below, and also use this section to set up some notations and conditions
that we will assume for the rest of the paper. Suppose the open unit sphere in X is given by intX0;1 = {x ∈ X : |x| < 1},
and let u ∈ intX0;1. We also fix the set of probability measures M, and select F ∈ M. Consider a random element X ∈ X ,
and define the function Φ(q; X, u,F) = W (X,F)

{
|X − q| + ⟨u, X − q⟩

}
. We define the (u,F)th weighted spatial quantile

of X as the minimizer q(u,F) ∈ X of the expectation of Φ(q; X, u,F), that is

Ψ (q; u,F) = E

[
W (X,F)

{
|X − q| + ⟨u, X − q⟩

}]
= EΦ(q; X, u,F).

This is a natural generalization of the spatial median [9,20,25,35] (W (X,F) ≡ 1 and u = 0p), or more general spatial
quantiles [6,7,34] (W (X,F) ≡ 1). We assume that Φ(q; X, u,F) is convex in q for F-almost all values of x ∈ X . For
brevity we elaborate only the case of the weighted spatial median (thus Ψ (q; 0,F) = E

[
W (X,F)|X − q|

]
). The sample

weighted spatial median is computed by minimizing Ψn(q; 0,F) =
∑n

i=1 W (Xi,F)|Xi − q|, and is denoted by q̂nW , the
second subscript is in acknowledgment that the weight function is used. We denote the unweighted version of this
estimator, i.e., the case where W (X,F) ≡ 1 as q̂n. Assume the following technical conditions:

A1 Ψ (q; 0,F) is finite for all q ∈ X ⊆ R
p and has a unique minimizer q0.

A2 Ψ (q; 0,F) is twice differentiable at q0 and the second derivative is positive definite.

A3 ∂2

∂q2
Ψ (q; 0,F) exists for all q in a neighborhood of q0, and we use the notations

Ψ1W =
( ∂

∂q
Ψ (q0; 0,F)

)( ∂

∂q
Ψ (q0; 0,F)

)⊤
, Ψ2W = ∂2

∂q2
Ψ (q0; 0,F).

These assumptions are very broad-based and general. The first one essentially requires the existence of a population
parameter, the second one requires that the minimization approach is meaningful in the population, and the third
one essentially requires that the weight function has a finite variance. No further restrictions are placed on the tuning
parameter F or the choice of the weight function.

Theorem 1. Under assumptions [A1]–[A3], we have

n1/2(q̂nW − q0)
D⇒ N(0, Ψ −1

2WΨ1WΨ −1
2W ).

The proof can be found in Appendix A. Thus, under very standard regularity conditions, the sample weighted spatial
median is consistent and is asymptotically normal.

Remark 1. Note that the technical conditions for the result presented in Theorem 1 is one of several alternatives that can
conceived, and the scope of this result is broader than what is presented above. First, note that if F and FX are different
and the weights are not a function of q, a situation that may arise in hypothesis testing problems where the weights
are based on the null distribution, the convexity of Φ(q; Xi, u,F) follows automatically and is not an assumption. Second,
even if Φ(q; Xi, u,F) is not convex but sufficiently smooth, we can have a central limit theorem, for example, by using
techniques similar to [8]. Choices of F other than FX , e.g., [30], may lead to interesting interpretations of W (.,F) and the
resulting location estimator and will be explored further in future.

Let VW = Ψ −1
2WΨ1WΨ −1

2W be the asymptotic variance of q̂n,W from Theorem 1, where we use the subscript ‘‘W ’’ to denote
that this depends on the weight function. We use the notation V1 for the case where W (x,F) ≡ 1, that is, all weights are
one. The asymptotic relative efficiency of two statistics is the pth root of the reciprocals of their determinants. That is,

ARE(q̂nW , q̂n) =
{

det(V1)

det(VW )

}1/p

.

We obtain the following result (see Appendix A for proof):
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Table 1

Table of ARE(q̂nW , q̂n) for spherical distributions: p-variate normal and tν-distributions with

degree of freedom ν ∈ {3, 5, 10, 20}.
p t3 t5 t10 t20 Normal

5 1.28 1.20 1.16 1.14 1.13

10 1.15 1.10 1.07 1.07 1.06

20 1.09 1.05 1.04 1.03 1.03

50 1.05 1.02 1.01 1.01 1.01

Corollary 1. Assume that the weight function W (X,F) is bounded above by some Wmax > 0, and the matrices Ψ1 =
ES(X; q0)S⊤(X; q0) and Ψ1W are positive definite. Then

ARE(q̂nW , q̂n) ≥ λmin(Ψ1)λ
2
min(Ψ2W )

Wmaxλmax(Ψ1W )λ2
max(Ψ2)

.

Consequently, if Wmax/λ
2
min(Ψ2W ) < λmin(Ψ1)/(λmax(Ψ1W )λ2

max(Ψ2)) then this asymptotic relative efficiency is larger than 1.

Table 1 summarizes the AREs for several families of elliptic distributions, numerically calculated using 10,000 random
samples, and taking W as projection depth [52]. Weighted spatial median outperforms its unweighted counterpart for
all data dimensions and distribution families considered, with higher ARE for smaller values of p. We shall explore in a
principled manner the choices of W and F that lead to when the weighted spatial median is more efficient than the usual
spatial median in future work.

2.2. The weighted sign covariance matrix

We now initiate discussion on the main topic of this paper, on robust dispersion estimation and associated quantities.
Consider the spectral decomposition of Σ given by Σ = Γ ΛΓ ⊤, where Γ is an orthogonal matrix and Λ is diagonal with
positive diagonal elements λ1 ≥ · · · ≥ λp. Also denote the ith eigenvector of Σ by γi = (γi,1, . . . , γi,p)

⊤ for 1 ≤ i ≤ p. Thus,
the ith column of Γ is γi. In the rest of this paper we use the notation Σ−1/2 = Λ−1/2Γ ⊤, and hence Z = Λ−1/2Γ ⊤(X−µ).
Recall that we use the notation FZ for the distribution of Z , and that FZ is a spherically symmetric distribution and
hence depends only on |z|. Additionally, to simplify notations, for any random variable X ∼ F, we occasionally use the
abbreviated notation W (X) ≡ W (X,F). Note that W (X) is a random weight, and takes the same value as W (Z,FZ ) ≡ W (Z).

It is convenient to write X = µ + RΓ Λ1/2U , where U is a random variable uniformly distributed on the unit sphere
S0;1 = {x ∈ X : |x| = 1} and R is another random variable independent of U satisfying ER2 = p. Note that Z = RU , and
|Z | = R, Z/|Z | = U . Then we have

S(X; µ) = X − µ

|X − µ| = RΓ Λ1/2U

|Λ1/2RU | = Γ Λ1/2U

|Λ1/2U | = Γ Λ1/2Z

|Λ1/2Z | .

As a robust surrogate for X − µ, we consider the following random variable

X̃ = W (X,F)S(X; µ) ≡ W (Z,FZ )
Γ Λ1/2Z

|Λ1/2Z | .

In samples, the equivalent for X̃ is
ˆ̃
X = W (X,Fn)S(X; µ̂) for a suitable location estimator µ̂, for example, the weighted

spatial median. We fix the notation S(X; µ) = S(X; µ)S(X; µ)⊤, and define the following dispersion parameter:

Σ̃ = EX̃ X̃⊤ = EW 2(X,F)S(X; µ).

In the following Theorem (proof in Appendix A), we establish that the eigenvectors of Σ and Σ̃ are identical, although
their eigenvalues may be different.

Theorem 2. Under the conditions listed above, we have Σ̃ = Γ Λ̃Γ ⊤, where Λ̃ = Λ1/2
EW 2(X)E[UU⊤/(U⊤ΛU)]Λ1/2 is a

diagonal matrix. Thus, the eigenvectors of Σ and Σ̃ are identical.

Note that the eigenvalues of Σ̃ and Σ are not necessarily the same: λ̃i = λiEW
2(X)E[U2

i /(U⊤ΛU)]. However, since
the coordinates of U are iid, the ordering of eigenvalues is preserved post-transformation.

2.3. Sample version of Σ̃

We now discuss the properties of the sample version of Σ̃ , say ˆ̃Σ computed from X. In practice, we cannot obtain
W (x) ≡ W (x,F), and consequently use W (x,Fn) instead. We assume the following conditions:

B1 Bounded weights: The weights W (·, ·) are bounded functions.
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B2 Uniform convergence:

sup
x∈X

|W (x,Fn) − W (x,F)| → 0 almost surely as n → ∞.

B3 Smoothness under perturbation: For all F ∈ F , there exists a δ > 0, possibly depending on F, such that for any
ϵ ∈ (0, δ)

sup
x∈X

⏐⏐⏐W
(
x,F

)
− W

(
x, (1 − ϵ)F + ϵδx

)⏐⏐⏐ ≤ ϵ.

In the above, δx denotes point mass at x. These properties are easily satisfied for weight functions derived from standard
depth functions, for example, WHSD(·), WMhD(·) and WPD(·) discussed earlier.

The following result allows us to use the empirical, plug-in weights and an estimated location parameter in the
weighted dispersion estimator —similar to the unweighted case in [15]. A natural choice for the location parameter
estimator is the solution to

∑n

i=1 X̃i = 0, which is the same as the sample version of the weighted spatial median discussed
in Section 2.1. The proof is given in Appendix A.

Lemma 1. Assume that E|X − µ|−4 < ∞. Also assume that we have a location estimator µ̂n satisfying E|µ̂n − µ|4 = O(n−2).
Then

1

n

n∑

i=1

W 2
n (Xi,Fn)S(Xi; µ̂n) = 1

n

n∑

i=1

W 2(Xi,F)S(Xi; µ) + Rn,

where for any c ∈ R
p such that for |c| = 1, we have Ec⊤Rnc = o(n−1).

If F is the p-dimensional standard normal distribution, the moment condition E|X − µ|−4 < ∞ is easily seen to hold
when p > 4. Similar verification of this condition can be done for several other distributions. Also, the moment condition
E|X − µ|−4 < ∞ can be circumvented by slightly redefining the generalized sign function S(x; µ) as zero whenever
|x − µ| < ϵn for an appropriately decreasing sequence {ϵn}.

Let vec(S(X; µ)) be the vectorized version of S(X; µ). We are now in a position to state the result for consistency of
the sample version of Σ̃ (see Appendix A for proof).

Theorem 3. Assume the conditions of Lemma 1. Then

n1/2

[
1

n

n∑

i=1

W 2
n (Xi,Fn)vec(S(Xi; µ̂n)) − EW 2(X)vec(S(X; µ))

]
D⇒ Np2

(
0, VW

)
,

where VW = V[W 2(X)vec(S(X; µ))].
The asymptotic normality follows from our assumptions and as a direct consequence of Lemma 1. An expression for

VW can be explicitly obtained in terms of Γ , Λ and F, but is algebraic in nature. We present it in Appendix B.
We now use Theorem 3 to obtain consistency results for the eigenvectors obtained from

ˆ̃
Σ = 1

n

n∑

i=1

W 2(Xi,F)S(Xi; µ̂n).

Suppose that Λ̃1 > · · · > Λ̃p are the eigenvalues of Σ̃ , which we assume are all distinct values.

Theorem 4. Suppose the spectral decomposition of ˆ̃Σ is given by ˆ̃Σ = Γ̂
ˆ̃
ΛΓ̂ ⊤. Then the matrix of centered and scaled

eigenvectors Gn = n1/2(Γ̂ − Γ ) and the vector of centered and scaled eigenvalues Ln = n1/2(ˆ̃Λ − Λ̃) have asymptotically
independent distributions. The distribution of the random variable vec (Gn) converges weakly to a p2-variate normal distribution
with mean 0p2 and the variance matrix whose (i, j)th block of p × p entries are given by

p∑

k=1,k̸=i

[
Λ̃i − Λ̃k

]−2

E

[
W 4(Z,FZ )

(
Si,k(Λ

1/2Z; 0)
)2]

γkγ
⊤
k , i = j,

−
[
Λ̃i − Λ̃j

]−2

E

[
W 4(Z,FZ )

(
Si,j(Λ

1/2Z; 0)
)2]

γiγ
⊤
j , i ̸= j.

The distribution of Ln converges weakly to a p-dimensional normal distribution with mean 0p and the variance–covariance
matrix whose (i, j)-the element is

E

[
W 4(Z,FZ )

(
Si,i(Λ

1/2Z; 0)
)2]− Λ̃2

i , i = j,

E

[
W 4(Z,FZ )

(
Si,j(Λ

1/2Z; 0)
)2]− Λ̃iΛ̃j, i ̸= j.
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The proof of this result follows from using Theorem 3 and using techniques similar to a corresponding result in [48].
We omit the algebraic details here and present it in Appendix A.

Recall that the asymptotic variance of the ith eigenvector of the sample covariance matrix, say γ̂i is [2]:

AV(
√
nγ̂i) =

p∑

k=1;k̸=i

λiλk

(λi − λk)2
γkγ

⊤
k ; 1 ≤ i ≤ p. (2)

Suppose ˆ̃γ i is the ith eigenvector of ˆ̃Σ , whose asymptotic behavior is presented above in Theorem 4.
This leads to the following useful result:

Corollary 2. The asymptotic relative efficiency of ˆ̃γ i, relative to γ̂i, is given by

ARE(ˆ̃γ i, γ̂i;F) =
[ p∑

k=1;k̸=i

λiλk

(λi − λk)2

][ p∑

k=1,k̸=i

[
Λ̃i − Λ̃k

]−2

E

[
W 4(Z,FZ )

(
Si,k(Λ

1/2Z; 0)
)2
]]−1

.

The proof of this Corollary is immediate, by plugging in the asymptotic variances of γ̂i and ˆ̃γ i from (2) and Theorem 4,
respectively.

3. An affine equivariant robust measure of dispersion

A desirable invariance property of any dispersion parameter TX corresponding to a random variable X is that under
affine transformation Y = AX + b the dispersion parameter scales to TY = ATXA

⊤. It is clear that Σ̃ does not possess this
property, since it remains unchanged for X and Y = cX for any scalar c > 0.

We follow the general framework of M-estimation with data-dependent weights [23] to construct an affine equivariant
counterpart of the Σ̃ . Specifically, we implicitly define

Σ∗ = p

VW (X)
E

[
W 2(X)(X − µ)(X − µ)⊤

(X − µ)⊤Σ−1
∗ (X − µ)

]
. (3)

To ensure existence and uniqueness of Σ∗, consider the class of dispersion parameters ΣM that are obtained as
solutions of the following equation:

E

[
u(|ZM |)ZMZ⊤

M

|ZM |2
− v(|ZM |)Ip

]
= 0, (4)

with ZM = Σ
−1/2

M (X − µ). Under the following assumptions on the scalar valued functions u and v, the above equation
produces a unique solution [23]:

C1 The function u(r)/r2 is monotone decreasing, and u(r) > 0 for r > 0;

C2 The function v(r) is monotone decreasing, and v(r) > 0 for r > 0;

C3 Both u(r) and v(r) are bounded and continuous,

C4 u(0)/v(0) < p,

C5 For any hyperplane in the sample space X , (i) P(H) = E{I{X∈H}} < 1 − pv(∞)/u(∞) and (ii) P(H) ≤ 1/p.

Putting things into context, in our case we have v(·) = p−1
VW (X), u(·) = W 2(X). We proceed to verify the other conditions

for the weight functions WHSD(·), WMhD(·) and WPD(·) discussed earlier.
It is easy to verify that the resulting u(·) from the above choices satisfy C1 and C3. Note that v(·) is a finite positive

constant, and C2 and C3 are also easily satisfied. Since u(0) = 0 in all the above cases, C4 is also easy to check. Since X is
absolutely continuous, C5 holds trivially.

To compute the sample version of Σ∗, we solve (3) iteratively by obtaining a sequence of positive definite matrices

Σ̂
(k)
∗ until convergence. Thus, using the location estimator µ̂n, we may iterate

Σ̂ (k+1)
∗ = p

VW (X)
E

[
W 2(X)(X − µ̂n)(X − µ̂n)

⊤

(X − µ̂n)⊤(Σ̂
(k)
∗ )−1(X − µ̂n)

]
.

The asymptotic properties of Σ̂∗ can be obtained using methods similar to those of Section 2, and techniques presented
in [13] and elsewhere. We summarize these properties in the following result. The proof is provided in Appendix A.

Theorem 5. The asymptotic covariance matrix of an eigenvector of the sample affine equivariant scatter functional Σ̂∗ is

given by

V12

p∑

k=1,k̸=i

λiλk

λi − λk

γiγ
⊤
k ,

7
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where V12 is the asymptotic variance of an off-diagonal element of Σ̂∗ when the underlying distribution is FZ . It follows that

if γ̂∗,i is the ith eigenvector of Σ̂∗,

ARE(γ̂∗,i, γ̂i;F) = V−1
12 =

[
E(pu(|Z |) + u′(|Z |)|Z |)

]2

p2(p + 2)2E(u(|Z |))2E(S12(Z; 0))2 .

4. Robust estimation of eigenvalues and Σ

As seen in Theorem 2, eigenvalues of the Σ̃ are not same as the population eigenvalues. In this section, we discuss on
robust estimation of λi’s using Σ̃ . Assume the data is centered, the robust estimator from Section 2.1 suffices. We start

by computing the sample version ˆ̃Σ and its spectral decomposition: ˆ̃Σ = Γ̂
ˆ̃
ΛΓ̂ ⊤. We then use the following steps:

1. Randomly divide the sample indices {1, . . . , n} into k disjoint groups {G1, . . . ,Gk} of size ⌊n/k⌋ each.

2. Transform the data matrix: S = Γ̂ ⊤X.
3. Calculate coordinate-wise variances for each group of indices Gj:

λ
†

i,j = 1

|Gj|
∑

l∈Gj

(
Sli − S̄Gj,i

)2; i ∈ {1, . . . , p}; j ∈ {1, . . . , k}, where

S̄Gj = (S̄Gj,1, . . . , S̄Gj,p)
⊤ is the vector of column-wise means of SGj , the submatrix of S with row indices in Gj.

4. Obtain estimates of eigenvalues by taking coordinate-wise medians of these variances:

λ
†

i = median(λ
†

i,1, . . . , λ
†

i,k); i ∈ {1, . . . , p}.

We collect λ
†

i , i ∈ {1, . . . , p} in the diagonal matrix Λ† = diag(λ
†

1, . . . , λ
†
p). The number of subgroups used to calculate

this median-of-small-variances estimator can be determined following [34]. There can be other ways of estimating the
eigenvalues of Σ using S also, we will pursue such methods elsewhere. We construct a consistent plug-in estimator of
the population covariance matrix Σ as Σ† = Γ̂ Λ†Γ̂ ⊤. Let |A|F denote the Frobenius norm of a matrix A, in other words,
|A|F = (trace(A⊤A))1/2. The following result establishes that this is a consistent estimator of Σ (see Appendix A for proof):

Theorem 6. Suppose that as n → ∞, k → ∞ and n/k → ∞. Then we have

∥Σ† − Σ∥F
P→ 0.

5. Influence functions of dispersion measures

We retain the framework adopted in Section 2, and discuss in this section the robustness and efficiency properties
associated with Σ̃ and Σ∗, and principal components derived therefrom. We do not discuss Σ† here, since the properties
of that approach follow from those of Σ̃ . We additionally assume that the eigenvalues of Σ are distinct, and given by
λ1 > · · · > λp, to avoid several additional technical conditions for the theoretical results to follow. The case where the
eigenvalues of Σ can have multiplicity greater than one requires no additional conceptual development, but does require
considerable algebraic manipulations.

For studying the robustness aspect, we present some results relating to influence functions in the current context, with
proofs given in Appendix A. Influence functions quantify how much influence a sample point, especially an infinitesimal
contamination, has on any functional of a probability distribution [22]. Given any probability distribution H ∈ M, the
influence function of any point x0 ∈ X for some functional T (H) on the distribution is defined as

IF (x0; T ,H) = lim
ϵ→0

1

ϵ
(T (Hϵ) − T (H)),

where Hϵ = (1 − ϵ)H + ϵδx0 ; δx0 being the distribution with point mass at x0. When T (H) = EHf for some H-integrable

function f , IF (x0; T ,H) = f (x0) − T (H). It now follows that IF (x0; Σ̃,F) = W 2(x0)S(x0; µ) − Σ̃ . Recall that λ̃1 > · · · > λ̃p

are the eigenvalues of Σ̃ , which we assume are all distinct values.

Proposition 1. The influence function of γ̃i, the ith eigenvector of Σ̃ , is as follows:

IF (x0; γ̃i,F) = W 2(x0)

p∑

k=1;k̸=i

Sik(x0; µ)

λ̃i − λ̃k

γk.

If the weight function W (·) is a bounded function, as is the case of WHSD, WMhD, and WPD, the influence function given
in Proposition 1 is bounded, indicating good robustness properties of the principal component analysis.

We now derive the influence function for Σ∗.

8
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Proposition 2. The influence function of Σ∗ is given by IF (x0, Σ∗,F) = αΣ∗ (|x0|;FZ )S(x0; µ)−βΣ∗ (|x0|;FZ )Σ∗, for constants
αΣ∗ (|x0|;FZ ) and βΣ∗ (|x0|;FZ ) that depend on Σ∗ and FZ .

Suppose λ∗1 > · · · > λ∗p are the eigenvalues of Σ∗, which we assume are all distinct values. Also denote the ith
eigenvector of Σ∗ by γ∗i = (γ∗i1, . . . , γ∗ip)T for 1 ≤ i ≤ p.

Proposition 3. The influence function of γ∗i may be obtained as

IF (x0; γ∗i,F) = αΣ∗ (|x0|;FZ )

p∑

k=1;k̸=i

Sik(x0; µ)

λi − λk

γk; αΣ∗ (|x0|;FZ ) = p(p + 2)u(|z0|)
E(pu(|Z |) + u′(|Z |)) ,

where z0 = Σ−1/2(x0 − µ).

It can be shown that when W (·) is a bounded function, αΣ∗ (|x0|;FZ ) is also bounded, along the lines of [23], which in
turn implies that the influence function for a principal component based on Σ∗ is also bounded.

6. Simulation studies

We report extensive simulation studies on several properties relating to Σ̃ , Σ∗, and their eigenvalues and
eigenvectors—on datasets with or without influential outlying points—to illustrate the finite sample efficiency and
robustness properties of the proposed weighted estimators. We compare these proposed estimators with techniques that
exist in literature, specifically, the Sign Covariance Matrix (SCM) and Tyler’s M estimate of scatter [49].

6.1. Efficiency of different robust estimators

We compare the performance of Σ̃ and Σ∗ with that of the SCM and Tyler’s scatter matrix. For this study, we
fix the dimension p = 4. To generate the data matrices X, we consider four elliptical distributions, as well as three
non-elliptical settings: (i) normal distribution with the first coordinates of 10% randomly selected rows of X shifted by
1000maxi,j xij, (ii) normal distribution with the first coordinates of 30% random rows shifted, and (iii) a gaussian copula
with correlation 0.8, paired with Beta(3, 3) marginals. From every distribution we draw 10000 samples each for sample
sizes n ∈ {50, 100, . . . , 500}. All distributions are centered at 0p, and have covariance matrix Σ = diag(4, 3, 2, 1).

We use the concept of principal angles [33] to find out error estimates for the first eigenvector of a scatter matrix. In
our case, the first eigenvector is

γ1 = (1,

p−1  
0, . . . , 0)T .

We measure the prediction error for an eigenvector estimate γ̃1 using the smallest angle between the true and predicted
vectors, i.e., cos−1 |γ̃ T

1 γ̂1|. A small absolute value of this angle means to better prediction. We repeat this 10,000 times
and calculate the Mean Squared Prediction Angle (MSPA):

MSPA(γ̂1) = 1

10000

10000∑

m=1

(
cos−1

⏐⏐⏐γ T
1 γ̃

(m)
1

⏐⏐⏐
)2

,

where γ̃
(m)
1 is the value of γ̃1 in the mth replication, m ∈ {1, . . . , 10,000}. The finite sample efficiency of γ̃1 relative to

that from the sample covariance matrix, i.e., γ̂1 is obtained as: FSE(γ̃1, γ̂1) = MSPA(γ̂1)/MSPA(γ̃1).
We present the results from this simulation exercise in Fig. 2. It can be seen that Σ̃-based estimators outperform

SCM and Tyler’s M-estimator of scatter. Among the depth functions considered, Mahalanobis depth has highest efficiency
without the presence of any outliers. However its performance degrades in the contaminated settings—evidently because
of the use of non-robust location and scatter estimates in its calculation. Projection and halfspace depth-weighted
estimators outperform sign-based methods in presence of a small amount of (10%) outliers, but the SCM is more robust
for small sample sizes and high (30%) contamination. In terms of computational load, SCM and Tyler take the lowest
time, but Σ̃-H and Σ̃-P have competitive orders of magnitude. The affine equivariant Σ∗ estimators are more efficient
than their Σ̃ counterparts. However this efficiency comes at the cost of high computation cost, and loss of robustness.
Overall, projection depth based estimators (Σ̃-P) strike a good balance between efficiency and computation time in our
simulation settings.

6.2. Influence function comparison

In Fig. 3 we consider first eigenvectors of Σ̃ , the Sign Covariance Matrix (SCM) and Tyler’s shape matrix [49]. We
generate data from and set F ≡ N2(0, diag(2, 1)) and plot norms of the eigenvector influence functions for different

9
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Fig. 2. Finite sample efficiencies of the first eigenvector estimates based on scatter matrices of several distributions in dimension p = 4. The notation

H, M or P after Σ̃ or Σ∗ indicates the depth function used for the weights: H = halfspace depth, M = Mahalanobis depth, P = projection depth.

Computation load is calculated for the normal distribution case.

values of x0. Let us denote the ith eigenvector of the Sign Covariance Matrix and Tyler’s shape matrix by γS,i and γT ,i,

respectively. Their influence functions are given as follows:

IF (x0; γS,i,F) =
p∑

k=1;k̸=i

Sik(x0; µ)

λS,i − λS,k

γk; where λS,i = EZ

(
λiz

2
i∑p

j=1 λjz
2
j

)
,

IF (x0; γT ,i,F) = (p + 2)

p∑

k=1;k̸=i

Sik(x0; µ)

λi − λk

γk.

Panels (b) and (c) in Fig. 3, corresponding to Sign Covariance Matrix and Tyler’s shape matrix respectively, exhibit an ‘inlier

effect’, that is, points close to the center having high influence, which results in loss of efficiency. On the other hand, the

10
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Fig. 3. Plot of the norm of influence function for first eigenvectors of (a) sample covariance matrix, (b) SCM, (c) Tyler’s scatter matrix, and Σ̃ for

weights obtained from (d) halfspace depth, (e) Mahalanobis depth, (f) projection depth for a bivariate normal distribution with µ = 0, Σ = diag(2, 1).

influence function for eigenvector estimates of the sample covariance matrix (panel (a)) is unbounded and makes the

corresponding estimates non-robust. In comparison, the Σ̃ corresponding to weights derived from projection depth, half-

space depth and Mahalanobis depth have bounded influence functions and small values of the influence function at ‘deep’

points.

6.3. Efficiency of affine equivariant robust estimator

To study the finite sample efficiency properties of Σ∗, we consider 6 different elliptic distributions, namely, the p-

variate multivariate Normal distribution and the multivariate t distributions corresponding to degrees of freedom 5, 6, 10,

15 and 25. We compute the ARE of the estimator for the first eigenvector using Σ∗, using weights based on the projection

depth (PD) and the halfspace depth (HSD), thus this simulation is an illustration of how different choices of weights

affect the results in the context of Theorem 5. We consider using the sample covariance matrix as the baseline method

for this study. The ARE values are computed by using Monte-Carlo simulation of 106 samples and subsequent numerical

integration. We report the results of this exercise in Table 2. Based on these results, we notice that Σ∗ is particularly

efficient in lower dimensions for distributions with heavier tails (t5 and t6), while for distributions with lighter tails, the

AREs increase with data dimension. At higher values of p, note that Σ∗ is almost as efficient as the sample covariance

matrix even when the data comes from multivariate normal distribution.

6.4. Robust sufficient dimension reduction and supervised learning

One of the main usages of obtaining dispersion estimators and their eigenvalues and eigenvectors is in dimension

reduction techniques. Examples of such uses are in principal component regression, partial least squares and envelope

methods. We illustrate below the latter technique, in the context of sufficient dimension reduction (SDR). For details on

envelope methods and other uses of robust estimators of dispersion and eigen-structures, see [1,10,11] and references

and citations of these articles. In the context of multivariate-response (Yi ∈ R
q) linear regression, the envelope method

11
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Table 2

Table of AREs of the estimator for the first eigenvector estimation using Σ∗ , relative to using the sample covariance matrix, for different choices of

dimension p. The data-generating distributions are the multivariate Normal (MVN), and multivariate t-distributions with degrees of freedom 5, 6,

10, 15 and 25. Weights for Σ∗ are based on either the projection depth (PD) or the half-space depth (HSD).

Distribution PD HSD

p = 2 p = 5 p = 10 p = 20 p = 2 p = 5 p = 10 p = 20

t5 4.73 3.99 3.46 3.26 4.18 3.63 3.36 3.15

t6 2.97 3.28 2.49 2.36 2.59 2.45 2.37 2.32

t10 1.45 1.47 1.49 1.52 1.30 1.37 1.43 1.49

t15 1.15 1.19 1.23 1.27 1.01 1.10 1.17 1.24

t25 0.97 1.02 1.07 1.11 0.85 0.94 1.02 1.08

MVN 0.77 0.84 0.89 0.93 0.68 0.77 0.84 0.91

Fig. 4. Average SDR prediction errors (left) in absence and (right) in presence of outliers. For each value of p, prediction errors are calculated over

100 replications of the data setting.

proposes the model Yi = α+Γ1ηxi+ei, where ei are independent mean zero Gaussian noise terms with covariance matrix
Σ whose spectral representation can be written as

Σ = Γ ΛΓ ⊤ =
(
Γ0 Γ1

) (Λ0 0
0 Λ1

)(
Γ0

Γ1

)
= Γ0Λ0Γ

⊤
0 + Γ1Λ1Γ

⊤
1 .

Thus, the eigenvectors of Σ are partitioned into two blocks: Γ1 ∈ R
q × R

d and Γ0 ∈ R
q × R

q−d, and the regression
coefficient of Yi on xi is given by Γ1η for some η ∈ R

d × R
p. Dimension reduction is achieved when d ≪ p, typically

without extraneous assumptions like sparsity. The envelope model for generalized linear models is discussed in [1], and
may be used for supervised learning. Nonlinear regression models may also be handled similarly.

Given a set of examples {(Yi, Xi), i ∈ {1, . . . , n}}, an envelope-based prediction for the response Y for any X may be
obtained from

Ŷ (X) =
[ n∑

i=1

wi

]−1
n∑

i=1

wiYi, where wi = exp

[
− 1

σ̂ 2
|Γ̂ T

1 (X − Xi)|2
]

.

The above assumes that the covariates come from the Gaussian distribution Np(0p, σ
2
Ip), and appropriate changes may

be made for other distributions.
We design a robust version of the above, by using weighted spatial medians for location parameters corresponding to

the distributions of X and X |Y , and using the first d eigenvectors of Σ̃ as Γ̂1. A robust location estimator for the distribution
of X |Y is required for the estimation of σ 2. Details are available in [1]. In a non-linear regression model, we compare the
performance of the robust version of SDR with the original method of [1] with or without the presence of bad leverage
points in Σ . For any given choice of covariate dimension p, we take n = 200 and d = 1, and generate the responses
Y1, . . . , Yn as independent standard normal, and X |Y as Normal with mean Y + Y 2 + Y 3 in each of the p coordinates, and
variance 25Ip. We measure performances of the SDR models by their mean squared prediction error on another set of
200 observations generated similarly, and taking the average of these errors on 100 such training-test pairs of datasets.
The above steps are repeated for the choices of p ∈ {5, 10, 25, 50, 75, 100, 125, 150}.

The left panel of Fig. 4 compares prediction errors using both robust and maximum likelihood SDR estimates when
the covariates contain no outliers: here the two methods are virtually indistinguishable. We then introduce outliers in
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each of the 100 datasets by adding 100 to first p/5 coordinates of the first 10 observed covariate values, and repeat the
analysis. The right panel of the figure shows that the robust SDR method remains more accurate in predicting out of
sample observations for all values of p than the standard SDR.

7. Data applications

We now present an application of our proposed approach to some real data problems. Robust techniques are useful
when in identifying outlying observations, and we illustrate below how to make use of our fixed-dimensional methods
presented earlier for outlier detection functional (and hence infinite-dimensional) data.

We follow the approach of [5] for performing robust principal component analysis on functional data using the

estimated eigenvectors from ˆ̃
Σ . Suppose the data consistent of n curves, say F = {f1, . . . , fn} ∈ L2[0, 1], each observed

at a set of common design points {t1, . . . , tm}. We model each of these functions as a linear combination of p mutually
orthogonal B-spline basis functions D = {δ1, . . . , δp}. We map data for each of the functions onto the coordinate system
formed by the spline basis:

T (F,D)ij =
m∑

l=2

fi(tl)δj(tl)(tl − tl−1), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

We then model the ith row of the n×p matrix T (F,D) ≡ T , denoted by Ti = µ+Psi+ei, where µ is a location parameter,
P is a p × q loading matrix, si is a q × 1 score vector, and ei is the error term. We obtain robust estimators of µ, P and

consequently si using
ˆ̃
Σ . Define T̂i = µ̂+ P̂ ŝi. The orthogonal distance (OD) and score distance (SD) corresponding to this

projection are defined as

ODi = |Ti − T̂i|, SDi =

√
q∑

j=1

ŝ2ij

λ̂j

;

where λ̂1, . . . , λ̂q are the top eigenvalues from ˆ̃
Σ . For outlier detection, following [24] we set the upper cutoff values for

score distances at (χ2
2,.975)

1/2 and orthogonal distances at

[median(OD2/3) + MAD(OD2/3)Φ−1(0.975)]3/2,
where Φ(·) is the standard normal cumulative distribution function.

We apply the above outlier detection method on two datasets. First, we consider the monthly average sea surface
temperature anomaly data from June 1970 to May 2004 (available from http://www.cpc.ncep.noaa.gov/data) (Fig. 5 top-
left panel). Second, we consider the octane data, which consists of 226 variables and 39 observations [16]. Each sample
is a gasoline compound with a certain octane number, and has its NIR absorbance spectra measured in 2 nm intervals
between 1100–1550 nm. There are 6 outliers here: compounds 25, 26 and 36–39, which contain alcohol. (Fig. 5 top-right
panel).

In the sea surface temperature data, using a cubic spline basis with knots at alternate months starting in June, we get
a close approximation as depicted in middle-top panel of Fig. 5. Using our proposed methodology with q = 1 results in
two points having their SD and OD larger than cutoff, depicted in top-right panel of Fig. 5. These points correspond to
the time periods June 1982 to May 1983 and June 1997 to May 1998 are marked by black curves in panels a and c, and
pinpoint the two seasons with strongest El-Niño events.

On the octane data, we use the same methodology, and again the top robust PC turns out to be sufficient in identifying
all 6 outliers. Details are available in the bottom panels of Fig. 5.

8. Conclusion

We propose the use of a weighted multivariate sign transformation for robust estimation and inference, and as
demonstrated by theoretical results and several simulation studies and data examples, in many situations using a data-
depth driven weight function leads to considerable efficiency gain without compromising on robustness properties. Our
methodology seems to suggest new ways of identifying El-Niño or La-Niña events from the sea-surface temperature
anomaly data, which will be studied further later.

Although our weight functions are broad-based, we focus on transformations of data depth functions as weights in
this paper. It may be possible to link existing work on multivariate rank-based methods [31,50] to potentially interesting
choices of weighted signs, such as with other application areas. Examples of such directions include the use of ℓ1-norm
based methods [14,41], the use of signed ranks [43], parametric tests for eigenvalue/vector estimates [43], and non-
parametric tests for location [21,54]. As pointed by one of the reviewers, clustering is another interesting domain of
application where existing notions of multivariate rank [37–39] can inform the use of weighted signs. For example, the
weights themselves may be optimized to increase efficiency relative to cluster sizes.

Along with Tyler’s M estimate, other variations of SCM and robust estimation of scatter matrices are worth exploring for
comparison and generalization. For example, the k-step SCM—a finite-iteration intermediary between SCM and Tyler’s M
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Fig. 5. Actual sample curves, their spline approximations and diagnostic plots, respectively, for (top) El-Niño and (bottom) Octane datasets.

estimate—aims to balance robustness and efficiency [12], and the generalized SCM [45] in essence uses an orthogonally
equivariant weight function. Finally, the depth-weighted Stahel–Donoho estimates of location and scatter [53] may be
incorporated in a slightly relaxed version of our weighted signs framework by considering (transformations of) depth
functions multiplied by the ℓ2-norm of a vector as the weight function.

Several of our results stated in this paper are for data from the Euclidean space R
p, where p is fixed. The cases where

p increases with sample size and may be higher than sample size, and where data are from a separable Hilbert space, will
be considered in a future work. There are only few conceptual challenges to such extensions. However, there are several
technical and algebraic challenges (e.g., see [4]), which may be tackled using recent developments in high-dimensional
M-estimation [32].
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Appendix A. Proofs

Proof of Theorem 1. This result can be proved in several different ways. We use the techniques of [19,40] for our
approach. Specifically, following Theorem 4 in [40]—which traces back to [19] with slightly relaxed conditions—we get

n1/2(q̂nW − q0) = −Ψ2W√
n

n∑

i=1

∇Φ(q; Xi, u,F) + oP (1),

where ∇Φ(q; Xi, u,F) is any measurable subgradient of Φ(q; Xi, u,F). Theorem 1 now follows using the techniques of [40],
specifically Theorem 4 and the first paragraph of page 1517 therein. □
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Proof of Corollary 1. Using the facts that det(AB) = det(A)det(B) for square matrices A, B and det(A−1) = 1/det(A) for

non-singular A, we write

det(V1)

det(VW )
= det(Ψ −1

2 Ψ1Ψ
−1
2 )det(Ψ2WΨ −1

1WΨ2W ) = det(Ψ1)det(Ψ
−1
1W )[det(Ψ −1

2 )det(Ψ2W )]2.

The result follows, using the facts that det(A) ≥ λmin(A) and det(A−1) ≥ 1/λmax(A), and the upper bound on W . □

Proof of Theorem 2. Fix any index i ∈ {1, . . . , p}. Consider the vector Ũ such that

Ũj =
{
Uj. j ̸= i,

−Ui, j = i.

Then Ũ and U have the same distribution, and note that U⊤ΛU = Ũ⊤ΛŨ almost surely. Consequently, for any j ̸= i we

have

E
UiUj

U⊤ΛU
= E

ŨiŨj

Ũ⊤ΛŨ
= −E

UiUj

U⊤ΛU
.

so that ES(X; µ)S(X; µ)⊤ = Γ ΛSΓ
⊤, as established in Theorem 1 of [48]. Also, since the weight W (X) is a function of

|Z | = R, we have that W (X) is independent of S(X; µ). Consequently, we have

Σ̃ = EX̃ X̃⊤ = EW 2(X)S(X; µ)S(X; µ)⊤ = EW 2(X)ES(X; µ)S(X; µ)⊤ = Γ ΛWΓ ⊤,

where ΛW is a diagonal matrix. □

Proof of Lemma 1. The proof is mostly algebra, and we provide a sketch of the main arguments. We have

1

n

n∑

i=1

W 2
n (Xi,Fn)S(Xi; µ̂n) = 1

n

n∑

i=1

W 2(Xi,F)S(Xi; µ) + 1

n

n∑

i=1

{
W 2

n (Xi,Fn) − W 2(Xi,F)
}
S(Xi; µ)

+ 1

n

n∑

i=1

W 2(Xi,F)
{
S(Xi; µ̂n) − S(Xi; µ)

}

+ 1

n

n∑

i=1

{
W 2

n (Xi,Fn) − W 2(Xi,F)
}{

S(Xi; µ̂n) − S(Xi; µ)
}

= 1

n

n∑

i=1

W 2(Xi,F)S(Xi; µ) + T2 + T3 + T4.

Using the stated technical conditions, we can now show that Ec⊤Tjc = o(n−1) for j = 2, 3, 4. For illustration, we

present the case for T2 below.

Notice that the (j, k)th element of T2 is given by n−1
∑n

i=1 |Xi − µ|−2
{
W 2

n (Xi,Fn)−W 2(Xi,F)
}
(Xi,j − µj)(Xi,k − µk), and

hence

c⊤T2c =
∑

j,k

cjckT2,j,k ≤ Mn−1

n∑

i=1

|Xi − µ|−2
{
|Wn(Xi,Fn) − Wn(Xi,Fn,−i)|

}(
c⊤(Xi − µ)

)2

+ Mn−1

n∑

i=1

|Xi − µ|−2
{
|Wn(Xi,Fn,−i) − W (Xi,F)|

}(
c⊤(Xi − µ)

)2

= Mn−1

n∑

i=1

T21i + Mn−1

n∑

i=1

T22i = T21 + T22.

Let H(Xi) = |Xi − µ|−2
(
c⊤(Xi − µ)

)2
, and notice that H(Xi) ≤ 1 almost surely for |c| = 1. Now notice that conditional on

Xi except for a null set Ai (possibly depending on Xi) we have T21i ≤ n−1H(Xi). Thus, except for a null set A1 ∩ . . . ∩ An,

T21 ≤ Mn−2H(Xi) and the conclusion follows for this part.

The argument for T22 follows a similar argument. □
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Proof of Theorem 3. The quantity in the statement of the theorem can be broken down as:

n1/2

[
1

n

n∑

i=1

W 2
n (Xi,Fn)vec(S(Xi; µ̂n)) − 1

n

n∑

i=1

W 2(Xi,F)vec(S(Xi; µ))

]

+n1/2

[
1

n

n∑

i=1

W 2(Xi,F)vec(S(Xi; µ)) − EW 2(X)vec(S(X; µ))

]

The first part goes to 0 in probability by Lemma 1. Applying Slutsky’s theorem along with Central Limit Theorem, we get
the required convergence. □

Proof of Theorem 4. We suppose Gn = (g1, . . . , gp), Ln = diag(l1, . . . , lp). In spirit, this corollary is similar to Theorem
13.5.1 in [2]. We start with the following result, due to [48], which allows us to obtain asymptotic joint distributions of

eigenvectors and eigenvalues of ˆ̃
Σ , provided we know the limiting distribution of ˆ̃

Σ itself:

Theorem 7. Let FΛ be defined as before, and Ĉ be any positive definite symmetric p × p matrix such that at FΛ the limiting

distribution of
√
n vec(Ĉ − Λ) is a p2-variate (singular) normal distribution with mean zero. Write the spectral decomposition

of Ĉ as Ĉ = P̂Λ̂P̂⊤. Then the limiting distributions of
√
n vec(P̂ − Ip) and

√
n vec(Λ̂ − Λ) are multivariate (singular) normal

and
√
n vec(Ĉ − Λ) =

[
(Λ ⊗ Ip) − (Ip ⊗ Λ)

]√
n vec(P̂ − Ip) +

√
n vec(Λ̂ − Λ) + oP (1) (A.1)

The first matrix picks only off-diagonal elements of the left-hand side and the second one only diagonal elements. We

shall now use this as well as the form of the asymptotic covariance matrix of the vectorized ˆ̃
Σ , i.e., VW to obtain limiting

variance and covariances of eigenvalues and eigenvectors.

Due to the decomposition (A.1) we have, for FΛ, the following relation between any off-diagonal element of ˆ̃
Λ and

the corresponding element in the estimate of eigenvectors, say ˆ̃
ΓΛ as

√
n ˆ̃γΛ,ij =

√
n

ˆ̃
Λ(i,j)

λ̃i−λ̃j
; i ̸= j. So that for eigenvector

estimates of the original F we have

√
n( ˆ̃γi − γi) =

√
nΓ ( ˆ̃γΛ,i − ei) =

√
n

⎡
⎣

p∑

k=1;k̸=i

ˆ̃γΛ,i,kγk + ( ˆ̃γΛ,i,i − 1)γi

⎤
⎦ (A.2)

Now
√
n( ˆ̃γΛ,i,i − 1) = oP (1) and AV(

√
n

ˆ̃
Λ(i, k),

√
n

ˆ̃
Λ(i, l)) = 0 for k ̸= l, so the above equation implies

AV(gi) = AV(
√
n( ˆ̃γi − γi)) =

p∑

k=1;k̸=i

AV(
√
n

ˆ̃
Λ(i, k))

(λ̃i − λ̃k)2
γkγ

⊤
k

For the covariance terms, from (A.2) we get, for i ̸= j,

AV(gi, gj) = AV(
√
n( ˆ̃γi − γi),

√
n( ˆ̃γj − γj)) = −AV(

√
n

ˆ̃
Λ(i, j))

(λ̃i − λ̃j)2
γjγ

⊤
i .

The exact forms given in the statement of the corollary now follow from the Form of VW in Appendix B.

For the on-diagonal elements of ˆ̃
Λ, using Theorem 7 we have for the ith eigenvalue of ˆ̃

Λ, say λΛ,i,
√
n
ˆ̃
λΛ,i =

√
n

ˆ̃
Λ(i, i),

for i = 1, . . . , p. Hence

AV(li) = AV(
√
n(

ˆ̃
λΛ,i − λ̃i)) = AV(

√
n(

ˆ̃
λΛ,i − λ̃Λ,i)) = AV(

√
n

ˆ̃
Λ(i, i))

A similar derivation gives the expression for AV(li, lj); i ̸= j. Finally, since the asymptotic covariance between an

on-diagonal and an off-diagonal element of ˆ̃
Λ, it follows that the elements of Gn and diagonal elements of Ln are

independent. □

Proof of Theorem 5. Following [22], the influence function for the eigenvector of an affine equivariant dispersion
parameter ΣM of an elliptic distribution—defined as in (4)—is

IF (x0; γi, ΣM ) = αΣM
(|z0|)

p∑

k=1,k̸=i

√
λiλk

λi − λk

Sik(z0; 0)γk, αΣM
(|z0|) := p(p + 2)u(|z0|)

E(pu(|Z |) + u′(|Z |)) , (A.3)

where z0 = Σ−1/2(x0 − µ), and the expression of αΣM
(|z0|) is due to Huber [23]. Now taking ΣM ≡ Σ∗, following [13]

we have that

V12 = E
[
(αΣ∗ (|Z |)S12(Z; 0))2

]
= E(αΣ∗ (|Z |))2.E(S12(Z; 0))2,
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using the fact that |Z | and S(Z; 0) are independent with Z ∼ FZ . Consequently

ARE(γ̂∗,i, γ̂i;F) = V−1
12 =

[
E(pu(|Z |) + u′(|Z |)|Z |)

]2

p2(p + 2)2E(u(|Z |))2E(S12(Z; 0))2 . □

Proof of Theorem 6. This proof has many algebraic steps, and we sketch the main arguments below. Suppose Â = Γ̂ ⊤ΣΓ̂ .

Owing to the fact that the Frobenius norm is invariant under rotations and that p is finite and fixed, it suffices to show that

the off-diagonal elements of Â converge in probability to zero, and that the difference between the ith diagonal element

of Â and λ
†

i converges to zero for any i = {1, . . . , p}. Now notice that from Theorem 4 we have that Γ̂ = Γ + Rn1,

where the (i, j)th element of the remainder Rn1,i,j satisfies ER2
n1,i,j = O(n−1). We can show, using standard algebra, that

Â = Λ + Rn2, where the (i, j)th element of the remainder Rn2,i,j satisfies ER2
n2,i,j = O(n−1). This follows immediately from

above, the fact that p is finite and fixed, and all elements of Λ are constants. This immediately establishes the case for the
off-diagonal elements. For the diagonal elements, notice that since k → ∞, each coordinate-wise variance λ

†

i,j for each

group of indices Gj is a consistent estimator of λi. The result follows. □

Proof of Proposition 1. Recall that IF (x0; Σ̃,F) = W 2(x0)S(x0; µ) − Σ̃ . Now we have, following [13,47], that

IF (x0; γ̃i,F) =
p∑

k=1;k̸=i

1

λ̃i − λ̃k

{
γ̃ ⊤
k IF (x0; Σ̃,F)γ̃i

}
γk =

p∑

k=1;k̸=i

1

λ̃i − λ̃k

{
γ̃ ⊤
k W 2(x0)S(x0; µ)γ̃i − λ̃iγ̃

⊤
k γ̃i

}
γ̃k

=
p∑

k=1;k̸=i

1

λ̃i − λ̃k

W 2(x0)
{
γ̃ ⊤
k S(x0; µ)γ̃i

}
γ̃k

=
p∑

k=1;k̸=i

1

λ̃i − λ̃k

W 2(x0)Sik(x0; µ)γk,

since γ̃i = γi for 1 ≤ i ≤ p. □

Proof of Proposition 2. Let z0 = Λ−1/2Γ ⊤(x0 − µ) = (z01, . . . , z0p)
⊤. As a first step, since Σ∗ is affine equivariant, we

obtain from [13] that IF (x0, Σ∗,F) = Σ
1/2
∗ IF (z0, Σ∗,FZ )Σ

1/2
∗ . From Lemma 1 of [22], page 276, we obtain that there exist

scalar valued functions αΣ∗ (|x0|;FZ ) and βΣ∗ (|x0|;FZ ) such that

IF (z0, Σ∗,FZ ) = αΣ∗ (|x0|;FZ )S(z0; 0) − βΣ∗ (|x0|;FZ )Ip.

Consequently we obtain IF (x0, Σ∗,F) = αΣ∗ (|x0|;FZ )S(x0; µ) − βΣ∗ (|x0|;FZ )Σ∗. □

Proof of Proposition 3. After (A.3), this proof follows through similar steps as the above proof of Proposition 1. □

Appendix B. Form of VW

We elaborate on the form of the asymptotic covariance matrix VW in Theorem 3. First observe that for F having

covariance matrix Σ = Γ ΛΓ ⊤,

VW = (Γ ⊗ Γ )VW ,Λ(Γ ⊗ Γ )⊤, (B.1)

where VW ,Λ is the covariance matrix of FΛ, the elliptic distribution with mean µ and covariance matrix Λ. Now,

VW ,Λ = E

[
vec

{
W 2(Z,FZ )Λ

1/2ZZ⊤Λ1/2

Z⊤ΛZ
− Λ̃

}
vec⊤

{
W 2(Z,FZ )Λ

1/2ZZ⊤Λ1/2

Z⊤ΛZ
− Λ̃

}]

= E
[
vec

{
W 2(Z,FZ )S(Λ

1/2z; 0)
}
vec⊤ {W 2(Z,FZ )S(Λ

1/2Z; 0)
}]

− vec(Λ̃)vec⊤(Λ̃)

The matrix vec(Λ̃) vec⊤(Λ̃) consists of elements λiλj at (i, j)th position of the (i, j)th block, and 0 otherwise. These

positions correspond to variance and covariance components of on-diagonal elements. For the expectation matrix, all its

elements are of the form E[
√

λaλbλcλdZaZbZcZd.W
4(Z,FZ )/(Z

⊤ΛZ)2], with 1 ≤ a, b, c, d ≤ p. Since W 4(Z,FZ )/(Z
⊤ΛZ)2 is

even in Z , which has a spherically symmetric distribution, all such expectations will be 0 unless a, b, c, d are all equal or

pairwise equal. Following a similar derivation for generalized sign covariance matrices in [29], we collect the non-zero

elements and write the matrix of expectations:

(Ip2 + Kp,p)

{
p∑

a=1

p∑

b=1

γ̃ab(eae
⊤
a ⊗ ebe

⊤
b ) −

p∑

a=1

γ̃aa(eae
⊤
a ⊗ eae

⊤
a )

}
+

p∑

a=1

p∑

b=1

γ̃ab(eae
⊤
b ⊗ eae

⊤
b )

17



S. Majumdar and S. Chatterjee Journal of Multivariate Analysis 191 (2022) 105013

where Ik = (e1, . . . , ek),Km,n =
∑m

i=1

∑n

j=1 Jij ⊗ J
⊤
ij with Jij ∈ R

m×n having 1 as (i, j)th element and 0 elsewhere, and

γ̃mn = E[λmλnZ
2
mZ

2
n .W 4(Z,FZ )/(Z

⊤ΛZ)2]; 1 ≤ m, n ≤ p.

. Putting everything together, denote by ˆ̃
Λ the sample version of Λ̃, the weighted covariance matrix obtained from FΛ,

i.e., ˆ̃
Λ =

∑n

i=1 W
2
n (Zi,FZ,n)S(Λ

1/2Zi; µ̂n)/n. Then the different types of elements in the matrix ˆ̃
Λ are as given below

(1 ≤ a, b, c, d ≤ p):

• Variance of on-diagonal elements:

AV(
√
n

ˆ̃
Λ(a, a)) = E

[
W 4(Z,FZ )λ

2
aZ

4
a

(Z⊤ΛZ)2

]
− λ̃2

a.

• Variance of off-diagonal elements (a ̸= b):

AV(
√
n

ˆ̃
Λ(a, b)) = E

[
W 4(Z,FZ )λaλbZ

2
a Z

2
b

(Z⊤ΛZ)2

]
.

• Covariance of two on-diagonal elements (a ̸= b):

AV(
√
n

ˆ̃
Λ(a, a),

√
n

ˆ̃
Λ(b, b)) = E

[
W 4(Z,FZ )λaλbZ

2
a Z

2
b

(Z⊤ΛZ)2

]
− λ̃aλ̃b.

• Covariance of two off-diagonal elements (a ̸= b, c ̸= d): AV(
√
n

ˆ̃
Λ(a, b),

√
n

ˆ̃
Λ(c, d)) = 0.

• Covariance of one off-diagonal and one on-diagonal element (a ̸= b ̸= c): AV(
√
n

ˆ̃
Λ(a, b),

√
n

ˆ̃
Λ(c, c)) = 0.

The above give all the elements of VW ,Λ. We plug these into (B.1) to recover VW .

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105013.
The supplementary material consists of codes to implement numerical methods, and the real datasets analyzed.
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