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Full Waveform Inversion-Based
Ultrasound Computed
Tomography Acceleration Using
Two-Dimensional Convolutional
Neural Networks
Ultrasound computed tomography (USCT) shows great promise in nondestructive evalua-
tion and medical imaging due to its ability to quickly scan and collect data from a region of
interest. However, existing approaches are a tradeoff between the accuracy of the predic-
tion and the speed at which the data can be analyzed, and processing the collected data into
a meaningful image requires both time and computational resources. We propose to
develop convolutional neural networks (CNNs) to accelerate and enhance the inversion
results to reveal underlying structures or abnormalities that may be located within the
region of interest. For training, the ultrasonic signals were first processed using the full
waveform inversion (FWI) technique for only a single iteration; the resulting image and
the corresponding true model were used as the input and output, respectively. The proposed
machine learning approach is based on implementing two-dimensional CNNs to find an
approximate solution to the inverse problem of a partial differential equation-based
model reconstruction. To alleviate the time-consuming and computationally intensive
data generation process, a high-performance computing-based framework has been devel-
oped to generate the training data in parallel. At the inference stage, the acquired signals
will be first processed by FWI for a single iteration; then the resulting image will be pro-
cessed by a pre-trained CNN to instantaneously generate the final output image. The
results showed that once trained, the CNNs can quickly generate the predicted wave
speed distributions with significantly enhanced speed and accuracy.
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1     Introduction
Nondestructive testing (NDT) is a critical part of quality control

and ensures the safety of products and infrastructure. The challenge
of NDT is often in finding a way to examine and analyze internal
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properties or defects that we are unable to physically see or
measure. Medical fields face similar challenges in visualizing the
properties of internal bodily tissue. In both cases, ultrasound com-
puted tomography (USCT) can be used to help us visualize and
analyze these internal properties. Full waveform inversion (FWI)
is a USCT technique based on numerical wave propagation [1]
that seeks to find a high-resolution subsurface model [2] of a
region of interest. The ability to visualize internal defects or
varying material properties without causing damage to the underly-
ing structure has applications in many areas, including NDT [3],
structural health monitoring [4], aquifer identification [5], early
medical diagnosis [6], and industrial process monitoring [7].

The FWI [8,9] process starts with an initial model predicting the
region of interest [10] which estimates the underlying distribution of
material properties or potential defects. This model is used in com-
bination with the wave equation to generate a predicted wavefield
with ultrasonic or seismic excitation [11]. The wavefield signals
are recorded at a series of receiver locations as the measurements or
data [12]. These predicted measurements are compared to the
observed measurements to calculate the data misfit between them.
Based on adjoint theory, the misfit data are used to update the
model of the region and this process is repeated until the misfit
between the predicted and observed data is minimized to an accept-
able level [8,13].

While FWI-based USCT [8,9,14–19] has been shown to have
applications for numerous industries and is becoming a more com-
monly used method to reconstruct material properties or damage dis-
tribution, this technique is not without its own challenges. Waveform
inversion is a typical non-linear and ill-posed inverse problem and
existing physics-driven computational methods for solving wave-
form inversions suffer from cycle-skipping [12] and local-minima
issues [20]. Due to the complexity of solving the related inverse
problem in FWI, this is often an intensive task, both in terms of math-
ematical complexity [21] and computational time [22]. In an effort to
reduce the required computational time, the number of iterations of
the calculations are often limited, or larger errors are allowed leading
to more of an approximation rather than an exact solution, which
often compromises the quality of the reconstructed model [23].
Because of these complexities in solving traditional FWI, various
methods have been researched to solve the inverse problem of
FWI and provide a model of the underlying structure directly
from the observed full waveform dataset. Classical solutions to
the FWI inverse problem are numerically calculated, and early
attempts [24] at solving the inverse problem were iterative and data-
driven [25].

Modern advancements in machine learning and image generation
have shown great success in solving the inverse problem in various
image reconstruction-related areas (e.g., X-ray tomography) [26–
28]. Related deep-learning approaches also show promise in allevi-
ating the aforementioned challenges in FWI. In recent years, efforts
have been made to incorporate a generative adversarial network
(GAN) with seismic FWI [4] and similar data-driven inversion
methods such as seismic impedance inversion problems [29].
Zhang and Lin [30] proposed a GAN-based model to estimate a
velocity map from raw seismic waveform data. Studies where
FWI was applied to elastic and transversely isotropic media using
recurrent neural networks (RNNs) also showed significant potential
in deep-learning-based FWI research [31,32]. In addition to GAN
and RNN, some attempts are being made at incorporating physics
information into machine learning loss functions to be used in
neural networks. These are termed physics-informed neural net-
works (PINNs) in ultrasound inversion studies [33,34]. Raissi
et al. [33] demonstrated that PINN approximates the solution of a
partial differential equation (PDE) by training on control points
and constraining the solution’s time and space derivatives to obey
the PDE. In RNN-based FWI, on the other hand, the partial deriv-
atives are computed using finite differencing, and automated differ-
entiation is only used on the model parameters. However, the
RNN method requires storage for the entire multi-component wave-
field [31].
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Most of the above deep-learning-based improvements for FWI
are still in geophysics. For FWI-based USCT, deep-learning-based
enhancement is still in its infancy. Robins et al., in their
deep-learning-based USCT study [35], implemented convolutional
neural network (CNN) as a preprocessing step to the input data of
FWI and were able to recover high-resolution velocity models.
However, to achieve such effective results they had to go through
208 iterations of FWI, making the process still computationally
expensive. Feigin et al. [36] analyzed deep-learning-based FWI
with a single iteration using high frequencies (5–40 MHz). Never-
theless, high frequencies lead to non-negligible attenuation [37],
which creates another model parameter to deal with. Several
studies have thereby been performed on neural network architecture
in FWI problems, and there is ample room for research on theoret-
ical analysis of network architecture on FWI, the effects of different
hyperparameters on final outputs, etc. [31]. Another possible
method is to treat the problem as an image-to-image translation
and implement a CNN to solve the inverse problems in different
fields [27,35,36,38,39].

The present work aims to develop a CNN that will solve the
inverse problem of FWI in USCT with low computational process-
ing requirements of the trained machine learning model. Due to the
complexity of solving the FWI, some limitations are set in the initial
testing and training of the CNN for this application. However,
applying adjoint tomography-based deep-learning to the FWI
problem takes into account the full non-linearity of the wave prop-
agation [40], allowing for more usable information from each iter-
ation. This can improve the reconstruction quality while also
requiring less computational cost than classical FWI methods
[41]. If CNNs can be trained to accurately predict the inverse
problem for FWI, large reductions in computation requirements
can be realized. This serves to reduce the entry cost of implementing
FWI-based USCT systems and expand its application, use, and
adoption in the industry. We propose to leverage modern advance-
ments in machine learning and image generation to solve the inverse
problem as an image translation issue. Our previous work [38]
shows promise in applying 1D CNNs for single wave speed
regions with the same wave speed. In this paper, we propose to
build and train a two-dimensional (2D) CNN to identify and learn
patterns to solve the inverse problem from the first iteration FWI
input cost-effectively without compensating much on the perfor-
mance, for multiple regions with various wave speeds. The
effects of various loss functions in this CNN-based approach for
FWI-based USCT problems have also been studied.

The remainder of the paper is organized as follows. First, the
dataset generation will be introduced. This includes the creation
of ground truth and FWI datasets which will be used to train,
verify, and test the capabilities of the machine learning model, fol-
lowed by the preparation of this data for use in machine learning.
Next, the architecture of the machine learning model will be dis-
cussed along with the selection of various hyperparameters used
for the training series. Finally, the results of the machine learning
model are presented and discussed with an analysis of how each
of the chosen hyperparameters affected the outcomes of each of
the machine learning iterations.

2     Methods and Data
Our proposed approach is to develop a two-dimensional CNN

to accelerate and enhance the inversion results. To build and test
this, we need to implement a two-step approach. The first step
is to generate datasets to work with; the second step is to train,
validate, and test the machine learning models. In the first step
of data creation, a set of randomly generated ground truth
models has been created, and then a single iteration FWI is per-
formed on the corresponding ultrasonic measurements. Because
the combination of indefinite boundaries and varying shapes and
sizes can quickly result in very complex challenges to solve, the
dataset is limited to only a few regions of simple rectangular
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Fig. 1     Illustration of the wave propagation at various times in the domain of 12 mm × 12 mm with 100 transducers near the top
wall and 400 sensors (square boundaries) surrounding the domain. There are three unknown materials inside this domain: (a)
0.75 μs, (b) 3.0 μs, (c) 6.0 μs, and (d) 7.5 μs

Fig. 2     Longitudinal wavespeed (vp, m/s) mapping of (a) initial model, (b) true model, and (c) reconstructed FWI model after a
single iteration

shapes with definite boundaries, but with different wave propaga-
tion speeds in rectangular regions. The inversion images generated
by the FWI process have been used as inputs to the machine learn-
ing model to train said model to predict what the ground truth
solution should be.

2.1     Implementation of Full Waveform Inversion. FWI is a
non-linear inversion method that aims to identify model parameters
by minimizing the gradient of the misfit function between the
observed and synthetic data in an iterative manner [8,13]. The
process begins with selecting sources and an assumed model,
which is referred to as an initial model. A finite element analysis
is performed with this initial model to create the synthetic data.
This process is called forward simulation [8] and models the ultra-
sound wave propagation in the domain. For the acoustic case,
sensors measure pressure signals. Hence, the wavefield s(x, t) can
be expressed as

ρ∂2s =  −Δp +  f (1)

where p denotes the pressure, ρ is the mass density, and f is the
source excitation force. For waveform tomography, Tarantola
[42] introduced the least-squares waveform misfit function. For
this study, we also define the misfit function as

χ(m) = [psyn(xr , t, m) −  pobs(xr , t)]2 dt (2)
r

where m is the model space in ultrasound tomography and depends
on material parameters such as density, wavespeed, attenuation, etc.
At a lower frequency, attenuation is much lower [37]. For our study,
therefore, we neglected attenuation and assumed the density to be
constant throughout the process. The pobs and psyn are the pressure
signals of the true data and synthetic data, respectively. The gradient
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of the misfit function is
δχ(m) = [psyn(xr , t, m) −  pobs(xr , t)]δpsyn(xr , t, m) dt (3)

r

where δp is the perturbation in pressure field p due to the
model perturbation δm [13,43]. The aim of FWI is to reduce the
misfit gradient between these two data points so that model param-
eters can be obtained and a high-resolution, numerical model of the
material distribution can be reconstructed as the final model [8].
However, in this study, we stopped the process after a single itera-
tion of inversion. The results of this “single iteration FWI” process
and the corresponding true models are then used to train–validate–
test the deep-learning model.

2.2     Training and Test Dataset Generation. A spectral finite
element solver—called SPECFEM2D [44]—was used to simulate
forward and adjoint wave propagation in two-dimensional media.
A 12 mm × 12 mm water-immersed domain was designed as the
2D media. The domain consists of 900 spectral elements (30
along the x-axis and 30 along the y-axis) in the mesh. Each spectral
element contained 25 control points. Excitation was generated from
100 source transducers located at one side of the domain (just below
top wall in Fig. 1). All transducers were excited simultaneously to
generate a plane wave with a center frequency of 1 MHz, and 400
sensor-elements were setup around the domain to receive the
signals. Figure 1 illustrates how the plane wave propagated at dif-
ferent time-steps inside the domain. We built the initial model
with a water-immersed environment at room temperature with a
1479.7 m/s wave propagation speed.

The ground truth models were created by introducing regions
with unknown material properties (i.e., wave speed in this research).
To generate a diverse dataset, the number, length, width, location,
and wave speed for these regions were randomly selected. A total
of 1000 ground truth models were created. Figure 2 shows the
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Fig. 3     Representative process of rearranging one-dimensional
array into the correct two-dimensional arrangement

longitudinal wavespeed mapping of the initial model, a ground truth
model, and an inverted model after a single iteration of FWI of that
ground truth model.

We used a python-based framework called SeisFlows for FWI
[8,45]. The output of both forward and inverse simulations was
the wavespeed information of every control point in the domain
saved as separate NumPy arrays.

FWI is a state-of-the-art tool for producing high-accuracy veloc-
ity models [46]. However, this method can be very computationally
expensive [47]. Initially, the data generation was performed sequen-
tially with one dataset sample being calculated at a time and then
later stacked to create a single NumPy output array on a lab
desktop. This approach proved to be time-consuming taking more
than 15 h to generate 1000 samples. To remove this bottleneck,
high-performance computing was used to allow data generation to
be performed in parallel. The parallelization process was
managed using Simple Linux Utility for a Resource Management
(SLURM) software package. A batch of 100 models was simulated
as a single SLURM job using 128 processor cores simultaneously.
Each SLURM job was completed in approximately 13 min. To gener-
ate 1000 models, we needed 10 SLURM jobs. Thus, after paralleliza-
tion, the time to generate a dataset of 1000 models was reduced to
approximately 13 min.

2.3     Data Preprocessing. The output of SPECFEM2D and
SeisFlows is a one-dimensional array which contains wavespeed
information of every control point in the spectral elements.
However, since the problem is from a two-dimensional region,
we needed to convert the data back into the original width and
height dimensions. Additionally, there are many duplicate wave
speed data points from overlapping control points of adjacent spec-
tral elements that can be removed, and since the allowable gradient
update region was a masked subset region, the domain can be
reduced from the original 12 mm × 12 mm region to a 9.4 mm ×

Fig. 4     Augmentation of original dataset to three new samples

9.4 mm region. As in common practice, the wavespeeds were nor-
malized between 0 and 1 using a linear regression normalization
technique. Therefore, after normalization, the least wavespeed
(the background wavespeed) became 0, and the highest wavespeed
in the entire dataset was rescaled to 1. At this point, each individual
sample exists as a one-dimensional array with a shape of 1 × 9025.
However, each array can be rearranged back into a two-dimensional
shape of size 95 × 95. Figure 3 illustrates the process of rearranging
the 1D array into the 2D array.

Once converted into the two-dimensional array, we can expand
the size of our dataset by augmenting the two-dimensional array
by flipping the datasets along its axes (Fig. 4). Due to the symmetry
of this surrounding array setup, this augmentation strategy allows us
to enhance our original dataset with 3000 additional samples giving
us a dataset of 4000 samples, without introducing non-physical
artifacts.

Fig. 5     The implemented 2D U-NET architecture

041004-4 / Vol. 6, NOVEMBER 2023 Transactions of the A S M E



Table 1     U-NET parameters

MSE MAE
Error function
Activation function ReLU LeakyReLU ReLU LeakyReLU

Optimization algorithm Adam
Kernel size                                                            3 × 3
Batch size                                                                32
Training epochs                                                      25

Next, all samples are stacked into a single three-dimensional
NumPy array of size of 4000 × 95 × 95 pertaining to the now 4000
samples with the 95 × 95 pixel values making up each sample.
Once stacked, the samples are zero-padded along the bottom and
right side increasing the dimension to 96 × 96 to allow easy
pooling and scaling of the datasets in the machine learning processes.
The deep-learning model processes each sample as a grey-scale
image giving us a channel of one (instead of three for red–green–
blue images). Hence, the final shape of our dataset is 4000 × 96 ×
96 × 1. The final step in the data preparation process is to randomize
and split the dataset into respective training, validation, and testing
sets. The training and validation datasets are used to train the CNN
and the testing dataset is reserved to test the performance of the
trained model. The distribution of the datasets was 80% of the
samples for training, 15% for validation, and 5% reserved for
testing purposes.

2.4     Architectures. With the original wave speed region and
our dataset being a two-dimensional domain, a 2D CNN is well
suited for this problem adaptation [48]. We use a CNN because

of its ability to detect and classify features in an image [49], to
deblur images [50], and for its ability to increase details through
super-resolution [51]. Once trained, the CNN model facilitates the
solving of the associated inverse problem and produces a high-
resolution image of the predicted model in near real time. Operating
in a Linux environment and utilizing the Anaconda 4.10 PYTHON

package along with TensorFlow and Keras, a two-dimensional
U-shaped CNN (U-NET) model was developed and trained using
the single iteration FWI data as its input. While training, the
CNN progresses the learning via mapping the prediction and the
given ground truth to improve its predictions. During testing of
the CNN, only FWIs from the test dataset are used.

The U-NET CNN Fig. 5 consists of an encoder and decoder
block configured in a U shape with skip connections connecting
encoder/decoder layers. The encoder block works to extract features
from the input image and through the layers learns a representation
of the image. The encoder block consists of two sets of convolu-
tional layers utilizing batch normalization and an activation func-
tion. The skip connection allows the skipping of deeper U-NET
layers as a shortcut to the decoder block. After each convolutional
layer, a max pooling layer is implemented to reduce the physical
dimensions of the input image by half while doubling the number
of feature channels. The encoder and decoder blocks are connected
with a bridge consisting of another pair of convolutional layers,
batch normalization, and activation function combinations. The
decoder block then works in reverse of the encoder block by dou-
bling the input image size through a two-dimensional convolutional
transpose and concatenating the feature map from the skip connec-
tion, and then another pair of convolutional, batch normalization,
and activation blocks. The final convolutional layer then reduces
the number of channels back to 1 to match the input image
channel depth.

Fig. 6     2D U-NET accuracy comparison: (a) M S E  ReLU accuracy, (b) M S E  LeakyReLU accuracy, (c) MAE ReLU accuracy, and
(d) MAE LeakyReLU accuracy
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Fig. 7     2D U-NET loss comparison: (a) M S E  ReLU loss, (b) M S E  LeakyReLU loss, (c) MAE ReLU loss, and (d) MAE LeakyReLU
loss

While the architecture of the U-NET is in place, there are still
several hyperparameters that can be adjusted to tune the machine
learning model. As each of these hyperparameters has its own
strengths and weaknesses, it is necessary to test the performance
of each hyperparameter and their combination with other hyper-
parameters. The main parameters considered in our U-NET imple-
mentation was the mean squared error (MSE) and mean absolute
error (MAE) loss functions as well as the rectified linear unit
(ReLU) and leaky rectified linear unit (LeakyReLU) activation
functions. While the activation functions are both very similar,
they exhibit some key differences in their performance. The
ReLU function has the benefit of being fast but can also lead to
some neurons being deactivated during training due to a vanishing
gradient for negative values. The LeakyRelu activation function
does not exhibit the vanishing gradient issue, but its value tends
to be less stable [52].

The MSE loss function works by taking the difference between
the model’s predicted value and the ground truth value, squaring
it, and then averaging it across the dataset. As the error is squared
in this approach, large errors carry a heavier weight than smaller
errors and this approach excels at finding outliers in the dataset.

MSE =  
1 

(yi −  yi)2 (4)
i=1

The MAE loss function works similar to the MSE function but
differs in applying an absolute value to the difference of the predic-
tion and ground truth models instead of squaring the difference. The
benefit in this approach is that all errors are weighted on a linear
scale. Using this approach, the impact of outliers is reduced

041004-6 / Vol. 6, NOVEMBER 2023

during training.

MAE =  
1  

�yi −  yi � (5)
i=1

The next parameter being compared in the U-NET implementation
is the activation function which is utilized for the convolutional
blocks. The purpose of the activation function is to learn complex
non-linear functions. All of our U-NET configurations are based
around the ReLU activation function [53]. The ReLU function
will return its input value if it is a positive value, and if the input
is negative it will return a 0 value. The LeakyReLU activation func-
tion works similarly to the ReLU activation function but will remap
negative values by multiplying them with a small positive value.

With a total of two loss functions and two activation functions to
test, we have a total of four U-NET models to compare. The com-
plete list of parameters and a breakdown of their configurations can
be seen in Table 1. All models were trained with 25 epochs and a
batch size of 32. Model parameters were updated using the Adam
optimizer. All convolutional layers utilized a 3 × 3 kernel size.
Each U-NET model configuration utilized a single activation and
error function for the entire model [54]. The four models were
then trained on a high-performance cluster using a single GPU
node with four NVIDIA Tesla V100-SXM2-32GB graphics cards
with a total training time of approximately 4 min per model.

3     Results and Discussion
Once trained, all four of the 2D CNN models were able to quickly

predict the ground truth model from a single iteration FWI image.

Transactions of the A S M E



Fig. 8     2D U-NET prediction comparison. First Iter FWI is the FWI input to the CNN. Ground
truth is the true model the CNN is attempting to predict. M S E  ReLU is the predicted outputs
of the U-NET configured with M S E  loss and ReLU activation functions. MAE ReLU is the pre-
dicted outputs of the U-NET configured with MAE loss and ReLU functions. M S E  LeakyReLU is
the predicted outputs of the U-NET configured with M S E  loss and LeakyReLU functions. MAE
LeakyReLU is the predicted outputs of the U-NET configured with MAE loss and LeakyReLU
functions. Please view the color image online for accurate velocity identification if viewing in
black and white

All configurations of the U-NET were able to converge to greater
than 96% accuracy after approximately seven epochs of training
(Fig. 6). This means the CNN models were able to correctly
predict most of the values and the total required training time is
reduced to just over 1 min per model. Additionally, all of the
models exhibited similar convergence on the loss values (Fig. 7),
which is a measurement of how far from the true value the predic-
tion was. A quantitative review of the model predictions (Fig. 8)
shows that some of the more complex regions would cause over
or under-prediction of values, particularly in locations where
regions overlapped. Despite these challenges, the overall results
of the predicted values proved quite favorable.

To quantify the performance of the U-NET models, a total of 200
of the test dataset inversions were predicted by each of the trained
models (the results summarized in Table 2). All four of the
trained U-NET models proved to perform exceptionally well at pre-
dicting the background speed distributions with none of the models
exhibiting under-predicting or over-predicting of the background
speed. Since the background speed is also the lowest speed in the
models, all of the performance measurements of the U-NET config-
urations in Table 2 are calculated by the percent overshoot or
percent undershoot of the maximum wave speed region located in
the individual predicted sample.

As can be seen by this summary (and by Fig. 8), both U-NET
configurations, when using the LeakyReLU activation function,
have a greater tendency to over-predict the maximum wave speed

Table 2     Prediction comparison

ReLU LeakyReLU

MSE MAE MSE MAE

as compared to their counterpart U-NET models using the ReLU
activation function. However, the LeakyReLU activation function
also tends to be less likely to under-predict the true wave speed.
By comparing the different U-NET configurations in Fig. 8, we
can also see that the LeakyReLU activation function tends to
perform better at displaying the edges of complex region interac-
tions, particularly in overlapping regions, while the standard
ReLU activation function tends to perform better at predicting a
uniform internal region wave speed.

Similarly, by comparing the MSE versus MAE loss functions, we
can see that the MSE function tends to produce more consistent
internal region speed predictions, while the MAE function tends
to produce cleaner region edges. We also saw that the MAE loss
function was slightly less likely to over-predict wave speeds;
however, it was also slightly more prone to under-predicting the
speeds when compared to the MSE loss function. We also saw
that the MAE loss function in combination with the LeakyReLU
activation function was more likely to predict false regions or
fuzzy edges of regions.

Each of the U-NET models compared was configured to only use
one error function (MSE or MAE) and one activation function
(ReLU or LeakyReLU). However, as we can see from the results
of the independent models, each of the error functions and activa-
tion functions do have certain benefits. A proposed path forward
is to leverage a custom error function that combines the MSE and
the MAE in a shared manner so that the strengths of each can be
utilized. Additionally, since each encoder and decoder block in
the U-NET uses a pair of convolutional layers, each with an activa-
tion layer, the activation functions could also be split between
ReLU and LeakyReLU activations in an attempt to further leverage
the strengths of each of the individual activation functions; this
includes further tuning the LeakyReLU parameters to tailor its per-
formance to the region identification task it excels at while attempt-
ing to reduce its tendency to over-predict wave speed values.

Max over-prediction
Max under-prediction
Min over-prediction
Min under-prediction
Average over-prediction
Average under-prediction

6.77%          6.74%          9.71%        10.67%
−2.13%       −4.16%       −1.29%       −1.23%

0.05%          0.10%          0.09%          0.03%
−0.10%       −0.02%       −0.08%       −0.06%

2.03%          1.36%          3.58%          3.53%
−0.87%       −1.11%       −0.59%       −0.58%

4     Conclusion
Two-dimensional CNN architectures were explored to instanta-

neously solve the associated FWI problem in USCT. 2D CNNs
were found to be able to quickly provide quantitative results after
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data acquisition with only a few training epochs required to achieve
a high level of accuracy. Various configurations of U-NETs were
explored to analyze the strengths and weaknesses of various error
and activation functions, whose performance was also qualitatively
and quantitatively analyzed. Our studies show that 2D CNNs can be
leveraged for solving the inverse problem in FWI-based USCT
according to our results, and we suspect that the accuracy and per-
formance of the U-NET can be improved through combinations of
error and activation function implementations and will be tested
in continued research.
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