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Abstract

The seasonal dynamics of plant communities are important indicators for

assessment of long-term vegetation patterns and provide valuable information

to predict ecosystem responses to climate change. However, increased fre-

quency of extreme weather events can force ecosystems into unstable states,

which leads to greater uncertainty in determining phenological metrics (e.g.,

growing season length). To better understand these uncertainties, we utilized

9 years of eddy covariance and remote sensing data to parameterize models of

seasonal ecosystem respiration (Re) for two subtropical longleaf pine forests

(mesic and xeric), with similar vegetation but different water holding capacity.

We compared two commonly used algorithms to extract phenology metrics,

the growth rate (GR) and third derivative (TD) methods, which are usually

used without justification. We determined the impact of algorithm selection

on estimating key biological dates related to plant community carbon dynam-

ics (e.g., start, end, and length of physiologically active season, specifically Re),

characterized the model’s response to extreme weather events, and compared

estimates to those derived via remotely sensed greenness from the enhanced

vegetation index (EVI). We observed that periods of winter warming increased

duration of physiological activity in terms of Re, and summer water limitation

caused multi-peaked, asymmetric behavior, creating significant uncertainties.

We found that choice of phenology metric extraction algorithm significantly

impacted biological event dates; the GR method estimated longer phenophases

than the TD in both sites, as well as earlier starting and later ending dates for

phenophases. Because the TD method was unable to give estimates during the

buffer period of phenophase transition under certain weather conditions, the

GR method may be more suitable for studies in subtropical forests. Dates

derived from EVI greenness rarely matched those of plant community seasonal

dynamics models, especially in spring and summer. The estimated length of

Re from the model was significantly longer than that derived from EVI, indi-

cating that the use of EVI could result in shorter growing season estimates and
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greater uncertainty. Our results provide direction for optimization of future

approaches to extract phenological metrics and better scientific understanding

of forest land surface phenology, as weather anomalies become more common

with climate change.
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INTRODUCTION

Forests play an important role in global carbon cycles
(García-Oliva & Jaramillo, 2011; Gong et al., 2019;
Wiesner et al., 2020). Their physiological response to
global climate change has long been an area of research
focus, as forests provide ecosystem services to offset cli-
mate change (Aber et al., 2001; Griscom et al., 2017). For-
est physiology is sensitive to climate change, responding
to alterations in temperature, precipitation, atmospheric
CO2 concentrations, and modifications in the frequency
and intensity of disturbance and extreme events
(Kirilenko & Sedjo, 2007). A better understanding of the
variability of the physiological functions of forests at dif-
ferent temporal and spatial scales is of great value in
quantifying responses to climate change (Aber
et al., 2001; Berra & Gaulton, 2021; Gong et al., 2020).

Observing carbon dioxide (CO2) fluxes is one of the
main methods used to quantify ecosystem physiological
activity and key phenological metrics (Baldocchi, 2003,
2008; Gong & Zhang, 2020; Wu & Chen, 2013). Net ecosys-
tem productivity (NEP) and gross primary productivity
(GPP) derived from eddy covariance (EC) observations
have been widely utilized to understand system responses
to climate variation, disturbance regimes, and manage-
ment practices in different ecosystems across the globe
(Gonsamo et al., 2015; Wiesner et al., 2021). Recent studies
have also utilized EC data with phenological approaches
(i.e., curve reconstruction and extraction of phenological
metrics; Kross et al., 2014) to understand key phenology
indicators across plant communities (Gonsamo
et al., 2015). Phenology metrics can then be estimated,
including the length of the growing season, to describe
vegetation carbon phenology (VCP; i.e., the start and end
points of a specific phenophase; Kong et al., 2020). Key
metrics of VCP for an ecosystem can be extracted through
fixed threshold, growth rate, or third derivative (TD)
approaches, ultimately quantifying the response of physio-
logical functions to seasonal cues and climatic variables
(Gonsamo et al., 2013; Gu et al., 2009; Jin et al., 2017).

In addition to climatic drivers, vegetation greenness has
been reported to be a driver of VCP (Kong et al., 2020; Wu

et al., 2014). Vegetation greenness can easily be determined
with remotely sensed data, such as the enhanced vegetation
index (EVI); however, data derived from EC methods may
be more useful for building a mechanistic understanding of
phenology. Relative agreement between EC observations
and remote sensing products can also provide reference for
the optimization of phenological algorithms. Models of
plant community seasonal dynamics and their associated
estimated metrics of ecosystem productivity (i.e., peak day
and stable period) are powerful tools to advance our under-
standing of changes in the functions of forests (Gong
et al., 2020; Gu et al., 2009; Niu et al., 2013).

Consistent with ecosystem productivity, ecosystem
respiration (Re) is an essential measurement used to
understand forest physiology (Noormets et al., 2009; Starr
et al., 2015, 2016). Most of the current VCP research
focuses on GPP or NEP, while VCP metrics derived from
Re are still nascent. While patterns of Re are often
described as the difference between GPP and NEP (Starr
et al., 2015), mathematically characterizing Re derived
from plant community seasonal dynamics models (i.e.,
Re-derived VCP) could advance knowledge of forest func-
tion (Yang & Noormets, 2020). For example, Kross
et al. (2014) fit models to extract dates of the maximum
and minimum values in the rate of change (first deriva-
tive) of Re, while Liu et al. (2021) extracted the dates of
the start, end, and peak day of modeled Re with a fixed
threshold method. Recently, Yang and Noormets (2020)
utilized logistic functions to model ecosystem Re and
extract complete phenological metrics (flux development
rate, transition date, and phenological duration). How-
ever, there is a lack of climatic and biological explana-
tions of the phenological characteristics associated with
Re for different ecosystems (Liu et al., 2021).

Like GPP-derived VCP, Re-derived VCP is affected by
environmental factors (e.g., temperature and precipitation
patterns) and strongly correlated with spectral-based vege-
tation greenness (Kong et al., 2020; Noormets et al., 2009;
Yuste et al., 2003). These factors control the dates of key
biological events related to VCP, such as phenophases and
vegetation growth (Kross et al., 2014). Re-derived VCP
event dates are estimated to give quantities such as the
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start of respiration (SOR), the end of respiration (EOR), and
the length of respiration season (LOR; days between SOR
and EOR) (Noormets et al., 2009; Wu & Chen, 2013). Esti-
mates of these phenological dates are usually derived
assuming the behavior of the response variable (e.g., GPP,
Re, or vegetation index) is symmetrical and unimodal (Luo
et al., 2019; Younes et al., 2020; Zhou, 2018). However, due
to various local and/or regional weather anomalies, forests
may enter an unstable state (Wiesner et al., 2021), which
can cause fluctuations in forest VCP (Starr et al., 2016; Yang
& Noormets, 2020). This introduces a significant amount of
variability in an ecosystem’s response, which makes it chal-
lenging to determine reasonable phenology metrics (Yang
& Noormets, 2020). Furthermore, Re is an important
medium for decomposing GPP from NEP and highly sensi-
tive to temperature variation (Jones et al., 2003). A better
understanding of Re-derived VCP can improve our ability
to quantify ecosystem responses to climate change.

Re can also be used to parameterize plant community
models to better quantify biological and nonbiological dis-
turbances in these systems (Yang & Noormets, 2020).
While simple functions may not be able to describe short-
term variation in ecosystem VCP (J. Wang et al., 2018;
Yang & Noormets, 2020), the nine-parameter function
developed by Gu et al. (2009) has been shown to have flex-
ibility in describing vegetation phenology responses (Gong
et al., 2019, 2021). The model also has better performance
when describing ecosystem VCP under abnormal environ-
mental conditions (Yang & Noormets, 2020). In addition
to choosing a suitable functional form, this type of pheno-
logical approach requires the selection of a biologically
reasonable algorithm to extract VCP metrics (Wu
et al., 2017; Zhou, 2018). For example, with the growth
rate approach (Gu et al., 2009), VCP metrics (e.g., SOR
and EOR) are assigned based on the locations of extreme
values in the daily change of modeled Re. The TD
approach (Gonsamo et al., 2013), in contrast, finds VCP
metrics using extrema of the TD of Re. While the choice of
algorithm is invariably made without discussion, different
VCP metrics may result from them in some locations.
Zhou (2018) found differences in these metrics derived
from PhenoCam data when comparing four methods in
three US forest sites. Because seasonal variation is slower
in the subtropical zone, there is a longer phenological
transition with weak growing season amplitude, compared
with temperate and continental regions (Zhang
et al., 2020). Thus, the GR method, which uses a dynamic
threshold based on the maximum recovery rate, may indi-
cate a longer LOR. However, there have been relatively
few applications of plant community seasonal dynamics
models using subtropical forest Re to parameterize them
(Liu et al., 2021; Noormets et al., 2009; Yang &
Noormets, 2020). Thus, there is a lack of comparative

research on the advantages and disadvantages of algo-
rithm selection for forest VCP (Gong et al., 2020), which
establishes the foundation for this study.

The goal of this study was to provide a new perspective
for the application of plant community seasonal dynamics
models for Re of subtropical forests, improve the current
understanding of physiological functions of subtropical for-
est, and provide a technical reference and theoretical sup-
port for future research in other forests. We used EC
measurements, meteorological, and satellite-based remote
sensing greenness data over a nine-year period (2009–2017)
from two subtropical evergreen coniferous forests. We
applied the nine-parameter function developed by Gu
et al. (2009), then examined the difference in derived VCP
metrics from the TD and GR approaches. The goal of this
research was to address the following hypotheses: (1) Phe-
nological dates derived from vegetation greenness will be
significantly correlated with Re-derived VCP metrics; (2)
due to the higher air temperature in the subtropical region,
the GR method—which is impacted by the steepness of the
Re curve—will overestimate the LOR; and (3) summer
water availability will cause instability in the inflection
timing of Re in the peak phenophase, and the TD method
will underestimate the length of peak period of Re. By test-
ing these three hypotheses, we evaluate the differences,
advantages, and disadvantages of the two algorithms to bet-
ter understand the relationship between Re-derived VCP
and vegetation greenness phenology. Similarities among
results from these approaches will indicate under which
conditions these models are robust, while divergence
among results will indicate a need for further investigation.

MATERIALS AND METHODS

Study sites

Our study was conducted with data from two sites
located at the Jones Center at Ichauway, a �11,000-ha
longleaf pine reserve in southwestern Georgia, USA
(31.22� N, 84.47� W; Figure 1). The regional climate is
subtropical (Wiesner et al., 2018). The long-term average
annual precipitation of the area is 1310 mm, with most of
the rainfall occurring from June to August. The long-
term average annual air temperature is 19.1�C, with the
lowest monthly average air temperature in January
(10.7�C) and the highest monthly average temperature in
June (27.4�C, Starr et al., 2015). While long-term winter
(November to December) air temperature over the past
60 years has been estimated to be 13�C (Gong
et al., 2021), an abnormal winter air temperature increase
occurred during 2015 and 2016, with winter tempera-
tures, which were �3.8 and �2.2�C higher than the long-
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term average at both sites. The two sites are situated
within 5 km of each other and differ in soil water holding
capacity and forest structure (Table 1; Wiesner
et al., 2020, 2021). The mesic site is at 65 m above sea
level and lies on somewhat poorly drained sandy loam
over sandy clay loam and clay-textured soils (Goebel
et al., 1997). The xeric site is at 60 m above sea level and
lies on well-drained deep sandy soils with no argillic hori-
zon (Goebel et al., 1997). In the flux footprint area of the
two EC towers, longleaf pine trees (Pinus palustris Mill.)
are the dominant woody plants, averaging 100 years in
age, and understory vegetation includes species such as
Diospyros virginiana L. and Aristida stricta Michx
(Kirkman et al., 2013; Wiesner et al., 2018). Low-intensity
prescribed burns have been applied every 2 years during
odd-numbered years (Wiesner et al., 2020, 2021). These
burns have been shown to impact CO2 dynamics for
�30–60 days postfire (Whelan et al., 2013).

Net ecosystem CO2 exchange
measurements with EC approach

Net ecosystem CO2 exchange (NEE; μmol CO2 m�2 s�1)
was estimated at the sites via open-path EC methods
(Starr et al., 2015, 2016) using LI-COR CO2/H2O infrared
gas analyzers (Li-7500, LI-COR, Lincoln, NE)

accompanied by three-dimensional ultrasonic anemome-
ters (CSAT-3, Campbell Scientific Instruments, Logan,
UT). Each EC measurement system was installed approx-
imately 4 m above mean canopy height (Starr et al., 2015,
2016). Tower heights were 34.4 and 34.9 m above ground,
for the mesic and xeric sites, respectively, resulting in

F I GURE 1 Geographical locations of two tower-based subtropical forest eddy covariance sites inside the Jones Center at Ichauway,

USA. EC, eddy covariance

TABL E 1 Stand characteristics and mean environmental

variables (�1 SD) for the mesic and xeric longleaf pine study sites

at the Jones Center at Ichauway in Georgia, USA

Stand characteristic Mesic Xeric

BA all tree spp. (m2 ha�1) 18.4 (�1.7) 11.1 (�2.9)

BA Pinus palustris (m2 ha�1) 17.4 (�2.1) 8.2 (�3.8)

dbh (cm) 25.7 (�15.2) 18.1 (�13.8)

Proportion of oak trees (%) 8.0 22.0

Wiregrass abundance (%) 28 24

Woody plant abundance (%) 12 10

Water holding capacity
(cm m�1; upper 3 m
soil)

40 18

EVI—growing season 0.418 (�0.046) 0.412 (�0.049)

EVI—nongrowing season 0.314 (�0.03) 0.284 (�0.03)

Note: Growing season is defined as spring–summer, inclusive.
Abbreviations: BA, basal area; EVI, enhanced vegetation index; dbh,
diameter at breast height.
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upwind flux source areas that extend a radius of approxi-
mately 500 m from each tower (Starr et al., 2015). Meteo-
rological data, including photosynthetically active
radiation (PAR; LI-190, LI-COR Inc.), global radiation
(LI-200SZ, LI-COR Inc.), incident and outgoing short-
wave and longwave radiation to calculate net radiation
(NR01, Hukseflux Thermal Sensors, Delft, The Nether-
lands), precipitation (TE525 Tipping Bucket Rain Gauge,
Texas Electronics, Dallas, TX), and air temperature and
relative humidity (HMP45C, Campbell Scientific Instru-
ments), were collected above the canopy and stored on
CR-5000 dataloggers (Campbell Scientific Instruments).

Ecosystem respiration partitioning from
EC-measured NEE

Flux data were processed with the EdiRe software
(v.1.4.3.1184) at 30-min intervals, using a coordinate rota-
tion, frequency response correction, WPL (Webb, Pearman,
and Leuning; Webb et al, 1980) density correction, and
spectral attenuation (Starr et al., 2015, 2016). QA/QC of the
CO2 flux data was maintained using stationarity criteria
and integral turbulent statistics (Starr et al., 2015), and by
filtering out data that did not pass plausibility tests (i.e.,
NEE < �30 and NEE > 30 μmol CO2 m

�2 s�1).
Missing and disqualified half-hourly CO2 flux data

were gap-filled using separate functions for NEE during
daytime and nighttime. When PAR was
≥10 μmol m�2 s�1, daytime NEE data were gap-filled
using a Michaelis–Menten approach, and when PAR was
<10 μmol m�2 s�1, nighttime NEE data were gap-filled
using a modification of the Lloyd and Taylor (1994)
approach, both on a monthly basis (Whelan et al., 2013).
When too few observations were available to produce sta-
ble and biologically reasonable parameter estimates, we
used annual equations to gap-fill daytime and nighttime
NEE data by site. Half hourly fluxes of NEE in μmol CO2

m�2 s�1 were used to calculate GPP and Re (Starr
et al., 2015). Error estimation from gap-filled values of
NEE was performed via bootstrap methods following
Whelan et al. (2013). Bootstrap procedures were per-
formed monthly or annually, where appropriate. Briefly,
for each dataset of size n, synthetic datasets were gener-
ated by randomly selecting n observations with replace-
ment from the original data. We generated 1000 synthetic
datasets for each estimated gap-filling model (day and
night models) and constructed the distribution of each
model parameter. These distributions were then checked
to ensure that the model parameters derived from the
original data were contained within a 95% confidence
region. In all cases, parameter estimates from the original
data were within the 95% bootstrap confidence regions
(Appendix S1: Tables S1 and S2).

Curve fitting and phenological metric
extraction algorithms for Re

This study used a nine-parameter function (Gu et al., 2003,
2009) to model the interannual behavior in Re at each site
and assess the potential impact of algorithmic differences
on ecosystem-scale VCP metrics (Gonsamo et al., 2013; Gu
et al., 2009). The flux-based function was originally devel-
oped utilizing interannual daily maximum GPP (μmol CO2

m�2 s�1) obtained from 30-min observations to quantify
the phenological characteristics of plant community photo-
synthetic capacity (Gu et al., 2003, 2009). Recent studies
have shown that this function performs well when parame-
terized with Re (Yang & Noormets, 2020). We fit the flux-
based function using daily cumulative Re (g C m�2 d�1),
here denoted A(t):

A tð Þ¼ y0 þ a1= 1þexp � t� t01ð Þ=b1ð Þc1½ �
� a2= 1þexp � t� t02ð Þ=b2ð Þc2½ �, ð1Þ

where A(t) is daily cumulative Re (g C m�2 d�1) at day of
year (DOY) t (t = 1, …, 365), and a1, a2, b1, b2, c1, c2, t01,
t02, and y0 are empirical fitting parameters (Gu et al., 2003,
2009). As described in Yang and Noormets (2020), y0 is the
dormant season base flux, a1 and a2 control the flux mag-
nitude, and b1, b2, c1, and c2 are transition and curvature
parameters. Equation (2) results in a smooth curve that
simultaneously represents the phenophases of growing
season initiation and senescence (Gu et al., 2009). Eddy
covariance-measured daily cumulative Re data were used
to parameterize A(t) for each site and year (Appendix S1:
Figures S1–S2, Table S3).

Estimated date of Re-derived VCP using GR
approach

The GR method (Gu et al., 2009) of estimating key eco-
system-scale biological events during phenological pro-
cesses is based on the growth rate of A(t), which is
defined by the function k(t) (Gu et al., 2003).

k tð Þ¼ dA tð Þ=dt
¼ a1c1=b1 � exp � t� t01ð Þ=b1½ �=

1þexp � t� t01ð Þ=b1½ �f g1þc1

�a2c2=b2 �exp � t� t02ð Þ=b2½ �=
1þexp � t� t02ð Þ=b2½ �f g1þc2 :

ð2Þ

After parameterizing A(t) with daily Re, the k(t) function
is used to calculate the growth rate of Re (Gu et al., 2003,
2009). Plant greenup and senescence phases during the
growing season are defined using the maximum and

ECOSPHERE 5 of 17



minimum values of k(t), and VCP metrics describing the
start of respiration, end of respiration, start of peak, day
of peak, and end of peak (SORGR, EORGR, SOPGR,
DOPGR, and EOPGR, respectively; DOY) are found based
on peak recovery day and peak senescence day using
derived recovery and senescence lines according to Gu
et al. (2009) (Figure 2a).

Estimated date of Re-derived VCP using TD
approach

The TD method for estimating key ecosystem-scale bio-
logical events during phenological processes estimates
the dates of these events based on local extrema of the
TD of the A(t) function (Gonsamo et al., 2013; Liu
et al., 2020). The date of the SOR, for example, is at the
intersection of the tangent at the steepest part of the
curve and the tangent of the asymptotic start of the fitted
curve, which corresponds to the maximum value among
the roots of its TD (Gonsamo et al., 2013). Since Gu
et al. (2009) did not provide an analytical formula for the
TD of A(t), numerical methods are used to estimate par-
tial derivatives of A(t) via the function “diff()” (MATLAB
R2014b; MathWorks Inc., Natick, MA). Since A(t)
involves one independent variable (t), the derivative is
uniquely defined at each value of t (Figure 2b). Using this
method, SORTD is defined as the DOY of the first maxi-
mum value of the third derivative, start of peak (SOPTD)

is defined as the DOY of the second maximum value of
the third derivative, end of peak (EOPTD) is defined as
the DOY of the second minimum value of the third deriv-
ative, and the end of respiration (EORTD) is defined as
the DOY of the third minimum value of the TD
(Gonsamo et al., 2013).

Model framework for VCP metrics

The fitting of the nine-parameter model of interannual
Re and the algorithms for Re-derived VCP metrics (GR
and TD) were coded and visualized in MATLAB R2014b
(MathWorks Inc.). The fit of each annual estimated func-
tion was verified by examining the adjusted coefficient of
determination (R2). We judged the model to have good fit
when R2 > 0.8. While this minimum value for the fit sta-
tistic ensures that these models can explain at least 80%
of the variation in Re data, it is worthwhile noting that
since the true dates of these events are unknown, no true
measure of accuracy or bias can be estimated.

Since the two study sites are evergreen coniferous for-
ests and the annual average air temperature in the sub-
tropical region is relatively high, the growing season may
cover the whole year (W. Zhang et al., 2020). This leads
to the fitted curve of Re maintaining low amplitude and
slope (0.02–0.03 g C m�2 d�1) during the annual growing
season in some cases, and the SOR and EOR of the GR
and TD method may extend beyond the annual scale,

F I GURE 2 Schematic diagram of estimated Re-derived vegetation carbon phenology metrics extracted using: (a) growth rate approach

(GR), (b) third derivative approach (TD). A(t) is the fitted red curve, length of respiration (LOR) was defined as the number of days between

the start of respiration (SOR) and end of respiration (EOR), the number of days between the start of peak (SOP) and end of peak (EOP) was

defined as the length of peak (LOP), and subscripts GR and TD refer to the approach used. In (a), k(t) is the fitted yellow dashed curve,

yellow arrows represent extreme values in the daily change of modeled Re (peak recovery and peak senescence), defined by Gu et al. (2009).

In (b), the black dashed curve is the third derivative of A(t). Since day of peak (DOP) was uniquely determined by A(t) for each site-year,

DOPGR = DOPTD
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resulting in a negative value of SOR and EOR >365 days.
In this case, SOR was corrected to DOY 1 and EOR was
corrected to DOY 365 (Appendix S1: Figures S1–S2).

Vegetation greenness phenology from
satellite-based remote sensing

In order to examine the relationship between Re-derived
VCP and vegetation greenness, we obtained 2009–2017
500-m spatial resolution and yearly interval land surface
phenology (LSP) data from the NASA Moderate Resolu-
tion Imaging Spectroradiometer (MODIS, https://
ladsweb.modaps.eosdis.nasa.gov/) land cover dynamics
products (MCD12Q2 v006) for the two study sites (Friedl
et al., 2019). In this spectral-based apparent phenology
product, first a QA/QC-weighted penalized cubic smooth-
ing spline is fit to the time series of the 2-band EVI
(EVI2); then, the curve’s amplitude is used to determine
the date of important biological events, including onset
of greenup (15% amplitude), mid-greenup (50% ampli-
tude), peak of EVI2, maturity (90% amplitude), senes-
cence (90% amplitude), mid-greendown (50% amplitude),
and dormancy (15% amplitude; Friedl et al., 2019).
MODIS-derived LSP data were processed with the
MODIS Reprojection Tool using ArcGIS (Version 10.2;
ESRI) for projection correction, image cropping, and ras-
ter calculation. Since the EC flux source area extends
500 m from the towers (Wiesner et al., 2018, 2019), we
used the average of the MODIS-derived phenology dates
obtained within a 500-m radius circle centered at each
EC site. However, we also calculated the minimum and
maximum value within the footprint to allow evaluation
across the possible range of values obtained from MODIS
EVI and further assess relationships between MODIS
dates and those of the nine-parameter function.

We defined the onset of greenup as the DOY of the
start of the effective growing season (SOESEVI2), maturity
as DOY of the start of peak (SOPEVI2), peak as the DOY
of peak of EVI2 (DOPEVI2, in days), senescence as the
DOY of the end of peak (EOPEVI2, in days), and dor-
mancy as the DOY of the end of the effective growing
season (EOESEVI2, in days). The number of days between
SOESEVI2 and EOESEVI2 was defined as the length of the
effective growing season (LOESEVI2, in days), and the
number of days between SOPEVI2 and EOPEVI2 was
defined as the length of peak (LOPEVI2, in days)
(Appendix S1: Figure S3). As with VCP metrics estimated
from the nine-parameter function (with either GR or TD
method), phenology dates derived from EVI cannot pro-
vide evidence of accuracy or precision, since the true
values are unknown. However, these estimates provide a
useful means for identifying patterns and consistent
trends both within and among methods.

Statistical analysis

To compare Re-based VCP metrics derived from the GR
and TD approaches, we first examined correlations
among estimated LOR, LOP, SOR, SOP, EOP, and EOR
values by site and method. To test for significant differ-
ences between methods, we used a paired t test with each
of the VCP metrics, comparing values derived from the
GR and TD methods with an additional fixed effect to
account for site. We checked the assumption that pre-
scribed fires (applied in odd-numbered years) did not
affect VCP metrics by also fitting models which included
a fixed effect for fire; a lack of significant fire effect was
taken as verification of this assumption. Using the aver-
age MODIS EVI phenology date values within the tower
footprint as response variables, we quantified the degree
to which Re-based phenology metrics derived from the
GR and TD methods were related to phenology dates
derived from EVI greenness using similar statistical
methods, comparing to both the TD and GR methods in
separate models. We then tested the sensitivity of these
conclusions by repeating analyses, using the minimum
and maximum phenology date values recorded in the
tower footprint each year.

To test the relationship between environmental vari-
ables and Re-derived VCP metrics, we computed Pearson
correlation coefficients, quantifying the relationship
between annual VCP metrics for each method (TD and
GR) versus average Ta (air temperature), PAR (photosyn-
thetically active radiation), and cumulative Pptn (precipi-
tation). We tested SOR against values of Ta and PAR
during spring (March to May) and Pptn during winter
(January to March). Start of peak was tested against
spring values of Ta, PAR, and Pptn. DOP, EOP, and LOP
were tested against early summer (June to August) values
of Ta, PAR, and Pptn, whereas EOR was tested against
autumn (September to November) values. Length of res-
piration was tested against annual values of Ta, PAR, and
Pptn. Statistical analyses and visualization were
processed in OriginPro 9.1 (OriginLab Corporation,
Northampton, MA) and R (R Core Team, 2021). Model
assumptions of normality and homoscedasticity were
visually evaluated.

RESULTS

Application of flux-based function to model
the interannual behavior in Re

Fits of the flux-based function by site and year to daily
cumulative Re using the A(t) function indicated good
agreement, with R2 values ≥0.8 (Appendix S1: Table S1).
The application of the two algorithmic approaches, in
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terms of ability to determine estimated VCP metrics, was
consistent at the site level in most years. For example, in
2011, 2012, and 2016, both approaches indicated respira-
tion exceeded the 365-day annual timescale in the xeric
site (Table 2). However, there were significant differences
in 2017; with the TD approach, SORTD values were at
DOY 21–29, whereas the GR approach values were
45 days earlier (beyond the annual timescale). Due to
unusual winter air temperature increases at the mesic
site in 2015 and 2016, estimated functional fits under
both approaches were uncertain, and the VCP metrics
SOR, EOR, and LOR could not be calculated.

Differences in VCP metrics derived from
GR and TD methods

In general, the GR method predicted earlier spring (SOR)
and later summer (EOP) VCP metrics than the TD
method (Figure 3; Table 3). In early spring, the GR
method prediction of SOR was 27 days earlier than the
TD method. In terms of summer metrics, SOP predicted
by the GR method was 14–19 days earlier than the TD,
while EOP was 8–11 days earlier (Table 3; Figure 3).

At both sites, the GR method was significantly and
positively correlated with the TD method in predicting
SOR, SOP, and EOP in each site (p < 0.05; Figure 3). The
TD and GR methods were positively correlated for EOR,
but not significantly so (p > 0.05). Paired t tests indicated
that none of the Re-derived VCP metrics (SOR, SOP,
EOP, EOR, LOR, and LOP) were significantly different
by site (p > 0.05) (Table 3), but that there were significant
differences (p < 0.05) between the two algorithms for all

of the parameters except SOP, which presented weaker
evidence of differences between the methods (p = 0.071;
Table 3).

On average, values of LORGR were 58 days longer
than that of LORTD (Table 3). Because average LOPGR
was 26 days longer than LOPTD, the TD method
predicted a shorter length of Re (in days) and length of
the peak (in days) than the GR method in the study land-
scape (Figure 4), especially during 2013 and 2014. Pre-
scribed fire had no discernible impact on the

TAB L E 2 Estimated vegetation carbon phenology metrics start of respiration (SOR), end of respiration (EOR), and length of respiration

(LOR) from fitting nine-parameter flux-based function using the growth rate (GR) and third derivative (TD) approach by site and year

SOR EOR LOR

Mesic Xeric Mesic Xeric Mesic Xeric

Year GR TD GR TD GR TD GR TD GR TD GR TD

2009 47 103 15 66 364 338 361 334 317 235 346 268

2010 28 41 24 40 356 342 365 359 328 301 341 319

2011 1a 1a 1a 1a 351 296 326 292 350a 295a 325a 291a

2012 1 26 1a 1a 343 312 337 314 342 286 336a 313a

2013 21 65 71 115 351 318 350 315 330 253 279 200

2014 18 48 26 111 354 324 351 321 336 276 325 210

2015 b b 3 23 b b 365 290 b b 362 267

2016 b b 1a 1a b b 338 304 b b 337a 303a

2017 1a 21 1a 29 361 335 358 336 360 314 357 307

aExceeded timescale, indicating that estimated SOR was <1 day, or that EOR/LOR was >365 days.
bWinter warming caused unstable estimates.

F I GURE 3 Day of year (DOY) of start of respiration (SOR),

start of peak (SOP), end of peak (EOP), and end of respiration

(EOR) estimated by third derivative (TD) method versus growth

rate (GR) method: (a) mesic site, (b) xeric site
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performance of either methods across all estimated VCP
metrics (p > 0.33; analysis not shown).

Relationship between VCP metrics and
vegetation greenness phenology

DOP estimated from the flux-based function (where esti-
mates are the same under both TD and GR methods) was
on average 10 days later than that of MODIS, a difference
which was significant (p < 0.001) only when tested
against the minimum MODIS values in the tower foot-
print (Table 4; Appendix S1: Figure S4). Moreover, differ-
ences were significantly more pronounced (an additional
25 days later) in the xeric site (p < 0.034); however, this
was the only significant site effect across all VCP metrics
(data not shown). Only EOP estimates were impacted by
prescribed fire; EOPEVI2 was 23–39 days earlier during
nonfire years versus that of fire years, a difference which
was more pronounced in the mesic site (data not shown).

When comparing the other MODIS-derived dates ver-
sus that of the flux-based function using the GR algo-
rithm, the average and minimum dates indicated by

MODIS were significantly earlier than the VCP metrics
(p < 0.002), except when examining SOP or SOES. While
SOP values were not significantly different, SOESEVI2
were significantly later than SORGR (p < 0.001). Using
the maximum dates derived from MODIS, all VCP met-
rics were significantly different from those estimated with
the GR method (p < 0.032) except for EOESEVI2 versus
EORGR (p = 0.058). Using the GR method, LORGR was
on average 98 days longer than LOESEVI2, while LOPGR
was on average 38 days longer than LOPEVI2 (Figure 5).

MODIS-derived dates were generally closer to those
indicated by the TD method. There were no significant
differences between SOP, EOR, and LOP from the TD
method and that of MODIS (for average, minimum and
maximum; p > 0.096; Table 4). When considering aver-
age, minimum, and maximum values, SOESEVI2 values
were later than those of SORTD, and LOESEVI2 values
were shorter than LORTD values. For EOP, MODIS
values only differed from the TD dates when considering
the maximum values. Using the TD method, LORTD was
on average 40 days longer than LOESEVI2, while LOPTD
was on average 13 days longer than LOPEVI2 (and not sig-
nificantly different; Figure 5).

TAB L E 3 Estimates, SEs, and p values associated with paired t test of vegetation carbon phenology (VCP) metrics (EOP, end of peak;

EOR, end of respiration; LOP, length of peak; LOR, length of respiration; SOP, the start of peak; SOR, start of respiration) as a function of

phenology metric extraction algorithm (GR, growth rate; TD, third derivative) and site

Estimate SE p

VCP metric GR versus TD algorithm Xeric vs. mesic site Algorithm Site Algorithm Site

SOR �26.86 �0.25 9.42 12.57 0.013 0.984

SOP �14.29 �4.71 7.32 9.76 0.071 0.637

EOP 11.29 �3.29 3.85 5.13 0.011 0.532

EOR 30.71 1.06 6.12 8.16 <0.01 0.898

LOR 57.57 1.32 10.71 14.28 <0.01 0.928

LOP 25.57 1.43 7.19 9.58 <0.01 0.884

F I GURE 4 Length of respiration (LOR) and length of peak (LOP) estimated by third derivative (TD) versus growth rate (GR) methods

by site: (a) LORGR versus LORTD, (b) LOPGR versus LOPTD
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TAB L E 4 Estimates and p values associated with paired t test of MODIS-derived phenological dates (average, minimum, and maximum

values in flux footprint) versus estimated vegetation carbon phenology (VCP) metrics (DOP, day of peak; EOES, end of effective growing

season; EOP, end of peak; EOR, end of respiration; LOES, length of effective growing season; LOP, length of peak; LOR, length of

respiration; SOES, start of effective growing season; SOP, the start of peak; SOR, start of respiration), for each phenology metric extraction

algorithm (GR, growth rate; TD, third derivative)

Comparison

Estimate p

VCP metric Avg. Min Max Avg. Min Max

Versus GR DOP �10.15 �30.78 9.67 0.096 <0.001 0.188

SOES versus SOR 70.14 62.71 75.57 <0.001 <0.001 <0.001

SOP 5.90 �7.57 20.71 0.324 0.288 0.032

EOP �32.33 �44.29 �14.00 0.001 <0.001 0.011

EOES versus EOR �27.76 �42.29 �16.00 0.002 <0.001 0.058

LOES versus LOR �97.90 �105.0 �91.57 <0.001 <0.001 <0.001

LOP �38.24 �36.71 �34.71 0.001 0.004 0.001

Versus TD DOP �10.15 �30.78 9.67 0.096 <0.001 0.188

SOES versus SOR 43.29 35.86 48.71 0.009 0.024 0.005

SOP �8.38 �21.86 6.43 0.439 0.095 0.588

EOP �21.05 �33.00 �2.71 0.040 0.005 0.660

EOES versus EOR 2.95 �11.57 14.71 0.758 0.217 0.152

LOES versus LOR �40.33 �47.43 �34.00 0.010 0.005 0.028

LOP �12.67 �11.14 �9.14 0.402 0.500 0.474

F I GURE 5 Vegetation greenness phenology derived from MODIS EVI using the average value within the tower footprint, versus those

of vegetation carbon phenology (VCP) by site: MODIS EVI-derived length of effective season (LOESEVI2) versus VCP length of respiration

(LOR) derived using (a) the growth rate method (LORGR) and (b) the third derivative method (LORTD), MODIS EVI-derived length of peak

(LOPEVI2) versus VCP length of peak (LOP) derived using (c) the growth rate method (LOPGR) and (d) the third derivative method (LOPTD)
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Relationship between environmental
variables and re-derived VCP metrics

Correlation analyses of Re-derived VCP metrics versus
environmental variables indicated differences between
the GR and TD approaches and sites (Table 5). EOPGR of
the mesic site was sensitive to Ta (R = �0.78, p < 0.05);
with increased summer Ta, the peak period of Re ended
earlier. SORGR of the xeric site was sensitive to spring Ta

(R = �0.84, p < 0.01) and winter precipitation (R = 0.76,
p < 0.01); as spring Ta increased, Re was activated earlier
and increased precipitation delayed the start of Re. In the

xeric site, the response of SORTD to spring Ta and winter
precipitation was consistent with that of SORGR.

On the annual scale, the LORGR of the mesic site was
also sensitive to Ta (R = 0.77, p < 0.05); as Ta increased,
Re was prolonged. LORTD of both sites was sensitive to
precipitation (R = �0.8, p < 0.01); the period of Re was
shortened when precipitation increased.

In general, the VCP metrics derived from GR and TD
approaches were different in response to precipitation
and Ta by site, especially LOR. The xeric site may be
more sensitive to environmental dynamics in spring (i.e.,
SOR), while the mesic site may be more sensitive to envi-
ronmental dynamics during early summer (i.e., EOP).

DISCUSSION

In this study, we used EC and remote sensing products,
and fit a model of interannual Re to determine biological
event dates. Our results indicate that the algorithm used
to determine the date of VCP metrics can have a signifi-
cant impact on the estimated phenophases of Re (Wu
et al., 2017). Under both approaches, spring phenology
(SOR) and LOR were highly sensitive to winter precipita-
tion and air temperature (Table 5), similar to Kross
et al. (2014). This effect may be exacerbated with higher
average air temperatures in subtropical regions where the
evergreen canopy is active most of the year (Whelan
et al., 2013), which causes uncertainty in the signal of
phenophase transition. Furthermore, warmer winters
and higher water availability in summer had a significant
impact on estimating VCP metrics for Re, as variation in
Re leads to prolonged growing season and multi-peak

TAB L E 5 Pearson correlation coefficient between time series of environmental variables: Ta (air temperature), PAR (photosynthetically

active radiation), and Pptn (precipitation) versus vegetation carbon phenology metrics (DOP, day of peak; EOP, end of peak; EOR, end of

respiration; LOP, length of peak; LOR, length of respiration; SOP, the start of peak; SOR, start of respiration)

Metric

Mesic site Xeric site

GR approach TD approach GR approach TD approach

Ta PAR Pptn Ta PAR Pptn Ta PAR Pptn Ta PAR Pptn

SOR �0.53 �0.06 0.43 �0.53 �0.34 0.64 �0.84** �0.01 0.76** �0.91** �0.02 0.66*

SOP �0.62 �0.29 �0.05 �0.60 �0.27 �0.06 0.28 0.04 0.17 0.51 0.18 0.04

DOP �0.05 �0.09 0.11 �0.05 �0.09 0.11 0.32 0.18 0.26 0.32 0.18 0.26

EOP �0.78* �0.6 0.48 �0.61 �0.51 0.44 �0.14 �0.29 0.12 �0.19 0.07 �0.45

EOR 0.53 0.24 0.25 0.63 �0.35 0.22 0.12 �0.28 0.51 0.25 �0.36 0.03

LOR 0.77* 0.23 �0.65 0.50 0.58 �0.81** 0.40 �0.06 �0.48 0.62 0.43 �0.78**

LOP �0.28 �0.19 0.18 �0.36 �0.36 0.34 0.58 0.47 �0.09 0.15 0.08 0.09

Note: SOR is tested against spring (March to May) values of Ta and PAR, and winter (January to March) Pptn. SOP is tested against spring values of Ta, PAR,
and Pptn. DOP, EOP, and LOP are tested against summer (June to August) values of Ta, PAR, and Pptn. EOR is tested against autumn (September to
November) values of Ta, PAR, and Pptn. LOR is tested against annual values of Ta, PAR, and Pptn.
*p < 0.05; **p < 0.01.

F I GURE 6 Conceptual diagram of peak period estimation for

multi-peak behavior in vegetation carbon phenology. The blue

dashed lines mark the multiple peak values, and the black solid

lines mark individualized amplitude thresholds based on each

peak. The solid blue lines represent estimate of the start and end of

the peak periods derived from each peak threshold.
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behavior in summer (Younes et al., 2020). In addition, we
found that the date of fall senescence derived from the 2-
band EVI was often mismatched with modeled Re
(p < 0.01) (Appendix S1: Figure S4), in agreement with
Wu et al. (2014). However, 2-band EVI and its derived
phenology products may not be sufficient to predict VCP
in subtropical evergreen coniferous forests (Wu
et al., 2014, 2017), as low variation in canopy greenness
due to the evergreen canopy may obscure identification
of phenological event dates. Only the start of the peak
period (maximum) of vegetation greenness was synchro-
nized, agreeing with VCP metrics from the flux-based
model.

Influence of phenological metric extraction
algorithm on phenophase transition

We found that phenological extraction algorithms (GR
and TD approach) differed significantly in their estimates
of Re-based VCP metrics (Gong et al., 2020; Wu
et al., 2017; Zhou, 2018) (Table 2). Compared to temper-
ate ecosystems, these subtropical ecosystems have higher
annual average air and soil temperatures (Whelan
et al., 2013), which is also associated with smaller inter-
annual amplitude of Re; that is, there are relatively small
changes in the slope of day-to-day carbon dynamics (W.
Zhang et al., 2020). This causes a less abrupt spring
recovery and autumn senescence than higher latitude
ecosystems (Gu et al., 2009; W. Zhang et al., 2020). A
larger buffer zone is formed during the phenophase tran-
sition, which results in significantly shorter LOR and
LOP (length of the peak respiration) from the TD method
versus that of the GR method. Since the phenological
date given by the GR method uses a dynamic threshold
based on the maximum rate of recovery and senescence
rather than the local extrema in the TD of modeled Re
(Zhou, 2018), this includes a part of the buffer zone and
the GR method may cover more phenological signals
than the TD method. These differences may be attributed
to the fact that the TD method identifies the precise loca-
tion of the inflection point in the phenology behavior,
and the boundary of the phenophase is clear. This
method will have better performance and accuracy in
areas with strong seasonal differences. While the GR
method relies on the differences in vegetation develop-
ment rates between spring and autumn, using the param-
eterized function to identify the overall trend between
adjacent phenophases, rather than the timing of specific
inflection points, results in higher flexibility in determin-
ing phenological dates (Zhou, 2018), which may be more
applicable in subtropical regions. To adequately assess
the sensitivity of the phenological extraction algorithm

mechanism to the phenological signals of sites in differ-
ent climate zones, more long-term, multisite integrated
analysis is needed to provide a wider range of parameter
estimates for the model (Wu et al., 2017).

It is also worth noting that prescribed fire is applied
to the study site in odd-numbered years in early spring
(Starr et al., 2016), which may also cause uncertainty in
the determination of SOR with both the GR and TD
approach. Indeed, 2011, in which both GR and TD
methods indicated a negative value for SOR and in 2017,
in which the GR method indicated a negative value for
SOR, were burn years. Prescribed fire has been found to
have a significant, but short-term impact on the carbon
dynamics at the site in early spring (Starr et al., 2015).
However, we found no clear pattern in our results in
terms of differences in estimated VCP metrics in fire ver-
sus nonfire years, except when considering the difference
between MODIS-derived EOP and those estimated from
the flux-based models, leading us to conclude that addi-
tional years of observation are required to detect differ-
ences in VCP metrics due to prescribed fire.

Site differences in Re-derived VCP metrics

Even with the same phenology metric extraction algo-
rithm, we found that the Re-derived dates may be very
different by site. Taking 2012 as an example, the SOPGR
of the mesic site was estimated at DOY 123, whereas the
SOPGR of the xeric site was 60 days later (DOY 183). The
main reason for this phenomenon was the site-level
spring increase in physiological activity. The spring
recovery rate of the mesic site was faster
(0.05 g C m�2 d�1) than that of the xeric site
(0.03 g C m�2 d�1), which led the mesic site to reach the
peak period earlier (SOP) (Appendix S1: Figures S1–S2).
Similarly in 2013, due to a more rapid increase in Re at
the xeric site (0.08 g C m�2 d�1), it reached the peak
period earlier than the mesic site (0.04 g C m�2 d�1).
Similar patterns in these sites resulted using the TD
method in 2012–2013 (Appendix S1: Figures S1–S2).
Thus, differences in estimated VCP metrics by year go
beyond the choice of phenological extraction algorithm.
Differences in site-level flux development rates in spring/
autumn can lead to large differences in site-level pheno-
logical dates (Gu et al., 2009).

The differences in phenology observed in this study
may be attributed to the ecosystems’ responses to varying
environmental conditions caused by site-level heteroge-
neity. In some years, the higher dominance of conifer
species at the mesic site may have led to broader peaks
(longer Re season), whereas the presence of more hard-
wood trees at the xeric site led to earlier leaf-out, before
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beginning a steep peak and shorter season. The spring
phenology (SOR) of the more oak-dominated xeric site
was more sensitive to air temperature and winter precipi-
tation, as warming in spring induces an earlier greening
of the understory (H. Wang et al., 2019). However,
increases in winter precipitation delayed SOR, which
may be related to a reduction of radiation that drives car-
bon capture and ultimately Re. The mesic site’s spring
phenology was less sensitive to air temperature and pre-
cipitation, which may be due to its higher abundance of
understory plants and evergreen trees (Whelan
et al., 2013), which contribute ecosystem phenological
signals in early spring. By contrast, the xeric site has a
lower density of understory plants, which may limit the
ecosystem phenological signals. Nonetheless, using the
GR method, we found that the mesic site’s end of peak
Re (EOPGR) was abbreviated with higher summer tem-
peratures, while its length (LORGR) was prolonged with
higher annual temperatures. This observed phenomenon
may be a consequence of the general site pattern, where
years with warmer summer temperatures tended to have
lower winter temperatures over our 9 years of observa-
tion (R = �0.61). As climate change creates more sea-
sonal variation in temperature, these results suggest that
the GR method for estimating VCP metrics is more sensi-
tive to this variability and timing of seasonal patterns.

Mismatch between vegetation greenness
and VCP in evergreen coniferous forests

Remote sensing products are widely used to characterize
the phenology of vegetation and for cross-validation with
EC-based VCP (Atkinson et al., 2012; B�ornez et al., 2020;
Gonsamo et al., 2012). In this study, among the VCP met-
rics, only Re-derived DOP and SOP were well-matched
with vegetation greenness for both methods, while EOES
and LOP showed correlations with TD (Table 4,
Appendix S1: Figure S4). This may be because the pro-
ductivity of evergreen species in these study sites does
not depend as strongly on leaf production compared to
deciduous forests (Wu et al., 2014, 2017); coupled with
the two-year needle replacement cycle, the greenness of
needles cannot fully predict the seasonal pattern of VCP
(Wu et al., 2014, 2017). Instead, medium- and/or long-
term weather changes induced by climate change, such
as photoperiod in spring and air temperature in summer,
may contribute more to VCP dynamics of these forest
(Gong et al., 2021; Kong et al., 2020; Wu et al., 2014). In
addition, due to the 8-day remote sensing data cycle and
limited spatial resolution, some LSP signals may be mis-
sed or delayed by the satellite sensors. Moreover, the
MODIS MCD12Q2 product relies on fitted cubic splines

and fixed amplitude thresholds to determine LSP metrics,
which may also have affected our results (Younes
et al., 2021). While our uncertainty analysis using the
maximum and minimum values across the tower foot-
print showed consistent results across space, we did not
account for this temporal uncertainty. Thus, there is the
potential for asynchrony of vegetation greenness and
VCP in evergreen coniferous forests (Kong et al., 2020).
Other satellite-derived indexes such as solar-induced
chlorophyll fluorescence (SIF) may perform better then
EVI for identifying phenological transitions, though
Zhang et al. (2022) showed that uncertainty in identifying
phenological dates was similar for EVI and SIF.

Short-term and long-term weather
anomalies

The carbon exchange between longleaf pine ecosystems
and the atmosphere is affected by weather variables such
as air temperature and precipitation (Whelan
et al., 2013). In 2015 and 2016 at the mesic site, we
observed an increase in winter Re, which caused uncer-
tainty in estimated VCP metrics. Since winter Re was
greater than that in spring, the estimated dates of EOR
extended beyond DOY 365, in both GR and TD algo-
rithms (Appendix S1: Figure S5). The abnormal increase
in Re at the mesic site during these two winters was
mainly due to warmer air temperatures from November
and December of these years, which was 2.2 and 3.8�C
higher than normal. Since the winter warming rate of
2015 was higher than that in 2016, this also led to a
higher growth rate of Re in the winter of 2015. This
warming caused an abnormal phenology phenomenon
where Re increased for a second time during that year (i.
e., two values of SOR), which caused an insignificant sig-
nal for EOR. While the xeric site also experienced abnor-
mal winter warming, the phenological model of Re was
still able to yield an estimate for EOR. This difference in
phenological response could be a consequence of the
site’s forest structure and species composition (Wiesner
et al., 2020, 2021). As climate change has given rise to
more pronounced winter warming at mid-latitudes, and
winter warming has been shown to impact Re more than
summer warming (Kreyling et al., 2019), this result
points to the need for models and methods that can
account for shifts in weather extremes.

During summer, variation in Re may be caused by
site-level water availability (Starr et al., 2016; Wiesner
et al., 2018, 2019), which also adds uncertainty in the
timing of SOP and EOP. These fluctuations cause the
growth rate of Re to appear as multiple peaks in summer
(Appendix S1: Figures S1–S2), and the GR and TD
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method may not give a biologically reasonable LOP
(Appendix S1: Figure S6). Moreover, when multi-peak
behavior occurs, the TD method may predict a shorter
LOP compared to the GR method. In the three cases, we
reported such abnormal behavior, the default LOP pre-
diction from the GR method overestimated Re, while the
default LOP prediction from the TD method under-
estimated Re (Appendix S1: Figure S6). However, water
did not affect DOP (Gong et al., 2021; Gu et al., 2009).

Autumn phenology was also affected by drought.
Starting in 2010, severe drought occurred at both sites
(Starr et al., 2016). When considering all years, EOR
showed no significant association with environmental
variables (Table 5); however, if we exclude 2010 data, the
negative correlation between EORGR of the xeric site and
autumn radiation becomes significant (R = �0.9,
p < 0.01; data not shown), indicating that increases in
radiation led to earlier EOR. This may indicate that the
respiration rate in autumn was mainly regulated by eco-
system productivity, similar to results reported by
Gonsamo et al. (2015).

Limitations and outlook

Short-term weather anomalies from global climate
change may become more frequent, and these will have a
significant impact on carbon exchange between the eco-
system and the atmosphere (Hutyra et al., 2007; Lian
et al., 2021). These day-to-day carbon exchange anoma-
lies will be reflected in phenological modeling, that is,
causing multiple peaks in the phenophases during the
growing season (Appendix S1: Figures S1–S2). This will
make the traditional functions assuming single-peak sea-
sonal dynamics unable to adequately characterize pheno-
logical patterns, that is, overestimating or
underestimating the length of the active season (Younes
et al., 2020; Zhou, 2018). While the functional form and
phenological metric extraction algorithms tested in this
study assume unimodal behavior, extraction methods
based on curvature, fixed thresholds, or dynamic thresh-
olds may be more suitable for stable ecosystems (Younes
et al., 2020; Zhou, 2018). A potential solution to short-
term summer weather anomalies such as the prediction
of peak period (Table 1; Appendix S1: Figures S1–S2)
could be determining the length of the peak period based
on the amplitude before and after the peak, that is, set
thresholds for multiple peak periods based on each peak
value, as the DOP is a unique value. This approach may
give an approximate estimate of peak length for multi-
peak behavior in VCP (Figure 6). Yet, such methods may
not be able to yield a generalizable function, since it will
need to adapt to local conditions and scientific

knowledge (Wu et al., 2017; Younes et al., 2020;
Zhou, 2018). In addition, increasing temperatures, which
are predicted for many regions globally, may lead to more
uncertainty.

The study of anomalies in the carbon exchange
between the ecosystem and the atmosphere due to cli-
mate change is an area of research concern. However,
the coupling process between vegetation phenology,
weather, and microclimate is not well understood. This
study also explored the relationship between vegetation
greenness of subtropical coniferous forests and VCP, but
it did not quantify the impact of climate change on vege-
tation greenness phenology. Moreover, to deal with
short-term day-to-day carbon exchange abnormalities,
the coupling relationship between vegetation phenology
and short-term weather abnormalities should be further
studied in conjunction with physiological models
(Younes et al., 2020). In addition, the sensitivity of the
phenology metric extraction algorithm to climate change
has not been fully explored in this study. Although we
have quantified the differences between algorithms over
9 years and their relationships to environmental condi-
tions, the uncertainty of VCP response to climate change
induced by choice of extraction algorithm needs addi-
tional attention. When evaluating phenology at the site-
level, rigorous model tests and field visits are required
(Velasco, 2018), as found by Wu et al. (2017) in a large-
scale analysis of remote sensing data and ground
observations.

CONCLUSION

Our results pointed out that the growth rate method of
estimating VCP metrics may be more suitable for model-
ing subtropical forests due to its sensitivity to tempera-
ture, while the TD approach may be better able to
distinguish extreme weather anomalies. Winter warming
can cause Re to be activated again, and the dynamics of
summer water availability can significantly affect the
summer phenological process. We found a negative cor-
relation between vegetation greenness and VCP in
autumn; thus, spectral-based remote sensing vegetation
index products may not have the potential to predict the
variability of seasonal carbon dynamics in subtropical
evergreen coniferous forests. Finally, although our pre-
liminary results showed variation in VCP metrics derived
using parametric methods, models which capture inter-
annual seasonal dynamics have the potential to be
applied in the future, as they better describe vegetation
growth carryover and changes in vegetation responses to
these anomalies, as compared to satellite data (Lian
et al., 2021). This finding underlines the need for
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additional research, in particular in light of the potential
for climate change to alter the systems and increase
uncertainty during seasonal transitions.
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