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Abstract

Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modify-
ing the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions
of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents
the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other
anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations
in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter,
all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in
sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying
adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such
as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating,
swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the
world’s rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued
adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models
of aquatic ecosystems under conditions of the future global climate.

Graphical abstract

Abbreviations

ARGO  Array for real-time geostrophic oceanography
BWF Biological weighting function

CDOM  Chromophoric dissolved organic matter
DOM  Dissolved organic matter

EEAP  Environmental effects assessment panel
MAA  Mycosporine-like amino acid

P4 P.J. Neale
nealep@si.edu

P4 S. Hylander
samuel.hylander@lnu.se

Extended author information available on the last page of the article

Published online: 02 May 2023 13


http://orcid.org/0000-0002-4047-8098
http://orcid.org/0000-0001-7350-1912
http://orcid.org/0000-0002-6667-3983
http://orcid.org/0000-0002-4295-5660
http://orcid.org/0000-0002-3740-5998
http://orcid.org/0000-0003-4648-5958
http://orcid.org/0000-0002-1292-9381
http://orcid.org/0000-0002-8531-1013
http://orcid.org/0000-0003-3720-4042

Photochemical & Photobiological Sciences

MLD Mixed layer depth
NCP Net community production
PAR Photosynthetically available radiation (same as

visible radiation) (400—700 nm)
uv Ultraviolet (100-400 nm)

UV-A  Ultraviolet-A (315-400 nm)
UV-B  Ultraviolet-B (280-315 nm)
UV-C  Ultraviolet-C (100280 nm)
WASP  Water quality assessment simulation program

1 Introduction

The exposure of aquatic ecosystems to solar UV-B radia-
tion is changing due to variations in stratospheric ozone as
well as shifts in many other factors affected by global cli-
mate change. Together, these shifts in exposure have con-
sequences for the distributions of species, biogeochemical
cycles, and services provided by aquatic ecosystems, includ-
ing human health, fisheries, and recreation. Whereas strato-
spheric ozone only affects radiation in the UV-B region of
the solar spectrum, alterations of the aquatic environment
by climate change and human activity either increase or
decrease exposure over the full UV spectrum. Particularly
important is the amount and timing of terrestrial runoff,
which decreases the transparency of aquatic ecosystems to
UV radiation mainly due to inputs of dissolved organic mat-
ter (DOM). Other alterations increase or decrease exposure,
including changes in the depth of mixing, the thickness of
ice cover and the duration of ice-free conditions. Seasonal
variations in exposure are also modulated as UV radiation
itself photobleaches the DOM. This has the further conse-
quence of generating greenhouse gases and enhancing the
breakdown of DOM by micro-organisms. In turn, aquatic
micro-organisms, macroalgae, plants, and animals (floating,
swimming, and attached) respond to changes in UV irradi-
ance, and their responses also depend on other effects of
climate change, including warming and ocean acidification.

Substances released into the environment by humans,
such as oil, UV filters in sunscreens, and microplastics are
modified by UV radiation, which in turn can change their
effects on aquatic organisms and their environments. We
provide an assessment of the knowledge about the interac-
tive effects of UV radiation and climate change on aquatic
ecosystems,' emphasising the new findings since the last
Quadrennial Assessment by the Environmental Effects
Assessment Panel (EEAP) of the Montreal Protocol under

! This Perspective is part of the topical collection: Environmental
effects of stratospheric ozone depletion, UV radiation, and interac-
tions with climate change: UNEP Environmental Effects Assessment
Panel, 2022 Quadrennial Assessment, see https://doi.org/10.1007/
$43630-023-00374-9.
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the United Nations Environment Programme (UNEP) [1].
We start by assessing recent advances in understanding the
major factors controlling underwater exposure to UV radia-
tion and then discuss both the beneficial and adverse effects
of UV radiation on aquatic ecosystems in the context of
interactions with climate and other environmental changes.

2 Changes in abiotic conditions alter
the exposure of aquatic ecosystems
to underwater UV radiation

Exposure of aquatic ecosystems to UV radiation in marine
and inland surface waters is determined by the combined
effects of incident irradiance, ice and snow cover, water
transparency, and the depth to which organisms passively
circulate or, if motile, actively position. Depletion of strato-
spheric ozone specifically affects exposure by increasing
incident UV-B radiation, whereas other factors influence
exposure over the full spectrum (UV-B, UV-A, and visible
or photosynthetically active radiation [PAR]). After incident
irradiance, transparency is the most important factor deter-
mining the exposure of aquatic organisms and materials to
UV radiation, usually limiting penetration of UV-B radia-
tion to just the upper zone of the surface layer, which is the
warmest, most biologically active section of aquatic ecosys-
tems. Within the surface layer, penetration of UV radiation
can vary through space and time. For example, the depth
at which UV-B radiation is reduced to 1% of its incident
value ranges from tens of metres in the clearest ocean waters
to tens of centimetres in inland waters that have high con-
centrations of dissolved organic matter [2, 3]. The overall
exposure of organisms and materials present throughout the
full depth of the surface mixed layer thus depends on how
often they move (or are moved) into this upper zone of high
exposure (Fig. 1). Above the water surface, ice and snow
cover, when they are present, are important barriers to the
penetration of UV radiation into underlying waters.

While the Montreal Protocol has been successful in lim-
iting the increase in incident UV-B radiation due to ozone
depletion, other factors that change the exposure to UV-B
radiation are shifting with climate change. In this section,
we discuss how these factors can combine in different ways
across various regions to either increase or decrease expo-
sure to UV radiation in the aquatic environment.

2.1 Factors mediating the effect of climate change
on UV radiation in the aquatic environment

2.1.1 Water transparency

Inputs of terrestrially derived dissolved organic matter
control the transparency to UV-B radiation in most inland
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Fig. 1 Schematic depiction of
processes controlling exposure
to UV-B radiation in aquatic
ecosystems comparing before
and after the “Anthropocene”,
i.e. the current period of sig-
nificant human impact on the
Earth's ecosystems. In general,
exposure to UV-B radiation

is limited to the surface layer
(light blue/brown), the mixing
of which depends on the strati-
fying effect of surface warming
and inputs of fresh water vs
the stirring effects of surface
winds and currents. Ice cover
shields the polar ocean and

s

Lakes

Pre-Anthropocene

Anthropocene

wintertime lakes (not shown).
In the Anthropocene ocean,
there is more warming, more
wind, and a greater mixed layer
depth (MLD), while sharpening
the density barrier (pycnocline,
dark blue) to nutrient trans-
port (arrows) from deep water
(black). Ice melt reduces shield-
ing and freshens the polar ocean
reducing the MLD. Terrestrial
run-off from rain events browns
lake surface water, lowers
UV-B transparency and warms
surface waters due to enhanced
absorption of solar radiation.
Drought would have the oppo-
site effect. The warming results
in shallower mixed layers, as do
weaker winds. Dimensions are
not to scale

Mid-latitude Oceans

Polar Oceans

and coastal waters because they contain a large portion of
chromophoric (coloured) dissolved organic matter (CDOM),
the fraction of terrestrially derived DOM that absorbs UV
and visible radiation. CDOM is the most important con-
tributor to decreased UV transparency of all surface waters,
but suspended sediments, organic particulates, and algal
pigments also contribute [2]. Algal-derived CDOM and
pigments are the main controls of UV transparency in the
open ocean [4]. Climate change and anthropogenic activities
are causing long-term changes in these factors, which are
increasing the transparency in some regions while decreas-
ing it in others. In this section, we assess these region-spe-
cific trends in UV transparency.

Where the inputs of CDOM have increased, transparency
to both visible and UV radiation has decreased. This
“browning” of surface waters has been mainly documented
for boreal lakes in North America and Europe affected in
the past by atmospheric deposition and surface runoff [1,
5]. More recently, reductions in exposure to UV radiation
have also been reported for three lakes in eastern and
southwestern China. Modelled UV-B radiation at 1 m depth
(relative to the surface incidence) decreased 12—-39% over
the period 1961-2014 due to decreased transparency [6].
The suggested causes of decreased transparency included
increases in CDOM, algal pigments and suspended
sediments, the importance of each driver varying among
the lakes.
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There are many more long-term datasets covering broad
geographical regions that focus on the transparency of
visible radiation, which can be an indicator of transparency
to UV-B radiation. These datasets show a diversity of trends,
with both increases and decreases in transparency. Only
some of the decreases were due to browning. For example,
browning was observed in about half of the lakes in a large
database covering the Northeast and Midwest United States
over the period 1980-2013. These lakes were concentrated
in the Adirondack mountains, an area that is recovering
from acid deposition after the installation of acidification
pollution controls [7]. The consequent increases in soil
pH cause greater dissolution of soil-bound organic matter
[8]. Similarly, there is a wide range of water transparency
trends in the period 1991-2012 for thousands of lakes in
Wisconsin as estimated from remotely sensed reflectance
data [9]. For most lakes, there was no change, but in those
where there was a change in transparency, more exhibited
declines (—23%) than increases in transparency (+6%).
Most recently, remote-sensing lake data have been analysed
for the whole continental United States and the results show
that average lake water transparency has actually increased
since 1984 [10]. Remotely sensed lake transparency has
also increased, on average, for 153 large lakes in China
[11]. Importantly, these studies only deal with visible
transparency, but changes could also apply to average
underwater exposure to UV-B radiation. Establishing
relationships between visible and UV transparency across
broad lake regions is a current knowledge gap. This gap
could be filled by following a modelling approach similar to
that used for the previously cited study of the three Chinese
lakes [6], and can involve CDOM, algal biomass and
suspended sediments (which can all be remotely sensed),
analogous to relationships already established for estuarine
waters [12] discussed below.

Assuming that trends in visible transparency indicate
a change in UV transparency in a similar direction, if not
magnitude, it is relevant to consider how variations in trends
relate to drivers in watersheds. Increasing precipitation
mainly drives browning in clear lakes where CDOM is the
primary determinant of water transparency [9, 13]. Land-
use was the primary driver in the Wisconsin lakes, with a
high percentage of agriculture in the watershed linked to low
transparency [9]. This implied that nutrient inputs exercised
control on transparency in these lakes by encouraging algal
growth. However, the effect of increased runoff is different
for eutrophic lakes already turbid due to algal growth.
There, runoff from increased precipitation tended to dilute
the concentration of algae and increase transparency [13].
In the continental scale studies, the greatest increase in
visible transparency occurred for lakes in densely settled
areas of the United States (1984-2018) and eastern China
(2000-2017) as improvements in water quality reduced
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suspended sediments and nutrients [10, 11]. Remotely
sensed data also showed increased visible transparency of
lakes in arid regions of the Southwest US and the Qinghai-
Tibet Plateau of China [10, 11] due to reduced precipitation
and associated runoff or, for China, inputs of warming-
induced glacial meltwater (except when transporting fine
suspended sediment from glaciers). Overall, there is an
improved understanding of which land-use and climate
factors tend to increase or decrease the visible transparency
of lakes, and a key need for the future is extending this
understanding to how these factors affect UV transparency.

In coastal waters, extreme events such as flooding are
increasing with climate change and result in large pulses of
terrestrially derived DOM that affect both UV transparency
and carbon cycling (e.g., [14, 15]) (see also Sect. 3.4). While
extreme events cause large, short-term pulses of DOM into
coastal and estuarine waters, other factors are causing long-
term decreases in UV radiation. For example, variations in
CDOM are the main source of seasonal changes in trans-
parency in the Rhode River sub-estuary of the Chesapeake
Bay, but increased suspended particulate matter is the main
cause of a long-term decline in transparency to UV-B and
UV-A radiation, and to PAR [12]. Similar long-term trends
of increasing inputs of sediment and terrestrially derived
DOM are causing decreased water transparency in the North
Sea, a phenomenon termed “coastal darkening” [16]. In the
Southern Hemisphere, climate change is also altering rain-
fall patterns and increasing inputs of terrestrial material into
coastal environments, for example in coastal Patagonian
waters [17].

CDOM is also the most important factor causing
decreases in UV transparency in oligotrophic waters such
as the Red Sea [3] and waters around the Great Barrier Reef
[18]. CDOM is typically low in the waters of the Great Bar-
rier Reef but average UV absorbance (at 350 nm) more than
doubles during the wet season [18]. The main sources of
CDOM are rivers flowing into Northeast Australian coastal
waters. Spatial variation in the amount of CDOM in the Red
Sea causes the penetration of UV-B radiation to 1% of the
surface incident to range from 35 m in the North to 13 m
in the South [3]. However, in the Red Sea (surrounded by
desert) CDOM is derived mainly from the breakdown of
marine organisms and is photodegraded under summertime
conditions. Photodegradation is also the most important pro-
cess of reducing CDOM content around the Great Barrier
Reef during the dry season [18]. Photodegradation decreases
both the amount of CDOM and changes its chemical struc-
ture such that it absorbs less UV radiation (Sect. 3.4). The
breakdown can occur both via abiotic and a combination of
abiotic and biotic processes, which are discussed in more
detail in Sect. 3.4. Increased UV transparency in the Red
Sea due to photodegradation coincides with the peak in sur-
face water temperature, subjecting corals to a combination



Photochemical & Photobiological Sciences

Fig.2 a Illustration of the locations of profiling ARGO floats on 22
March 2022 to show the density of global coverage used to observe
mixed-layer depth (source ocean-ops.org) b Latitudinal variation in

of high UV-B radiation and thermal stress (Sect. 5.3). Inter-
nal loading of CDOM also occurs in shallow lakes due to
the breakdown of litter from aquatic plants; this CDOM is
highly susceptible to photodegradation [19].

2.1.2 Mixed layer depth

Water bodies and the organisms within them are in con-
stant motion. After water transparency, the main determi-
nant of how much something in the water is exposed to UV
radiation is how long and how often it is near the surface
where UV radiation is most intense. The oceans and most
lakes are stratified (at least seasonally) between surface and
deep layers having different densities due to different tem-
peratures and salinities (Fig. 1). In the ocean, the surface
layer is generally 20—100 m deep but is much shallower in
lakes at only a few to tens of metres. The depth to which the
surface water circulates (the Mixed Layer Depth, MLD) is
determined by the balance between two opposing forces:
The resistance to movement created when surface waters
are warmed and become less dense than deeper layers vs the
strength of the wind in overpowering the density differences
and mixing shallow and deep water together (Fig. 1). Add-
ing to the density balance in the ocean, seawater becomes
lighter with freshwater inputs (rain/ice melt) and both fresh-
and seawater become heavier as they cool. These changes in
circulation directly affect exposure to UV radiation: Deeper
circulation means that plankton spends less time near the
surface and are exposed to less UV radiation over their life-
time, while shallow circulation increases exposure to UV
radiation.

(b)

40 Deepening

Latitude (~)
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Median Sunmer Trend (m dec ]'_I

the trend (1970-2018) in summertime mixed layer depth, median
(solid line) and 33rd and 66th percentiles (dashed lines), negative val-
ues indicate deepening, redrawn from [25]

2.1.2.1 Oceans There has been a shift over time in our
understanding of how climate change might affect the bal-
ance between the forces of mixing and stratification, with
implications for exposure to UV radiation in the mixed
layer. Early studies highlighted in past EEAP assessments
(e.g. [20]) focused on how warming will lighten surface lay-
ers leading to shallower MLDs [21]. More recently, it has
become clear that climate change does not have a uniform
effect on MLDs [22]. In some cases, there are shallower
MLDs, but in many others, the resistance to mixing due to
the increased density difference has been counterbalanced,
or even overpowered, by stronger winds [23]. A trend of no
change or deepening in MLD was first detected from long-
term (1990-2015) ocean time series observations in three
study areas of the Atlantic and Pacific oceans [22]. At one of
the Atlantic sites and the Pacific site, both the depth of mix-
ing and UV radiation transparency have been monitored.
These combined data sets also showed either no trend or a
net decrease (~5% per decade) in average exposure to UV
radiation in the mixed layer at these sites [24].
Confirmation that these MLD trends apply more widely
throughout the ocean has been obtained by analysing the
records of an international programme of free-floating,
autonomously diving ocean sensors, known as the “Array
for Real-Time Geostrophic Oceanography” (ARGO), which
have now comprehensively profiled all parts of the global
ocean (Fig. 2a). An analysis of almost 50 years (1970-2018)
of density profiles from these floats as well as data from
ships show that, on average, over the global ocean, the MLD
has deepened by 2.9% per decade, adding around 5-10 m
per decade to the MLD [25]. The trend varies regionally,
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with greater deepening in much of the Southern Ocean and
less deepening in the North Atlantic, whereas shallowing is
occurring for some areas near the Equator and in high Arctic
latitudes (Fig. 2b). Deeper mixing in the Southern Ocean is
linked to the strengthening of surface winds associated with
the positive phase of the Southern Annular Mode (in turn an
effect of ozone depletion) [26](see also Bernhard et al. [27],
this issue). Shallowing in some parts of the equatorial region
has been attributed to higher precipitation and freshening of
the surface layer [28].

2.1.2.2 Lakes A “mixed” picture is also emerging for
changes in MLDs and exposure to UV radiation in lakes
and reservoirs. Long time-series data (1970-2010) from 26
lakes around the globe show no significant trend in MLD
despite surface warming trends [29]. On the other hand, the
MLD declined (became shallower) for most European lakes
observed over the period 1981-2019 (n=51). Nevertheless,
only 14 (27%) exhibited statistically significant trends [30].
Despite the lack of clear trends in lacustrine MLDs over time,
the phenomenon of atmospheric stilling, i.e. declining wind
speeds, is associated with shallower MLDs in large lakes [31,
32]. In clear lakes like Crater Lake (United States), these shal-
lower MLDs can cause substantially more exposure to UV
radiation and consequent damage to organisms [31]. In gen-
eral, surface wind speeds on continents were declining over
the period 19792008, but have increased since then [33, 34].
The causes and future of atmospheric stilling are unclear, as
is whether the reversal in atmospheric stilling will continue in
the future [34, 35]. Hence, it is unclear if MLDs, and there-
fore exposure to UV radiation, will continue to exhibit long-
term or widespread changes, especially in larger lakes that are
more sensitive to wind.

In many lakes of the Northern Hemisphere, there is an
increased CDOM concentration resulting in “browning”
(Sect. 2.1.1). The extra energy absorbed by CDOM has
enhanced surface warming and led to shallower mixed lay-
ers (known as shoaling), especially in smaller lakes (e.g.,
[24, 36]). However, the decreased transparency outweighs
the shoaling effect, so the average UV irradiation and PAR
in the surface mixed layer have decreased [24]. Together,
these results indicate decreasing exposures to UV radiation
in the surface mixed layer of lakes with increased CDOM.

In addition to changes in MLD, the seasonal length of
stratification has increased in many regions, which is impor-
tant for cumulative exposure to UV radiation. Most temper-
ate lakes mix at least seasonally in the spring and autumn
and are stratified during the summer. In these lakes, there
is a trend towards longer seasons of stratification [37] and/
or less frequent episodes of full water column mixing [38].
These trends are expected to continue in the future. Under
representative concentration pathways 2.6, 6.0, and 8.5 for
emission of greenhouse gases (see [39]), models predict that
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the average duration of stratification will increase by 13, 22,
and 33 days, respectively, by the end of the century [37].
Empirical evidence demonstrates that a longer duration of
stratification is associated with stronger summer stratifica-
tion and more stable mixed layers [40]. An increase in the
seasonal duration of stratification can increase the cumu-
lative annual exposure of organisms and materials in the
surface mixed layer to UV-B radiation.

2.1.3 Ice and snow cover

Ice cover shades the water column from UV-B radiation and
its duration and extent have exhibited substantial declines in
recent decades. Clean ice has very little absorbance in the UV
range between 200 and 400 nm [41]. However, when pro-
duced under natural conditions, ice includes air bubbles and
brine inclusions (for sea ice) that scatter solar radiation and
reduce UV transmittance. Due to these other characteristics,
ice thickness alone explains only a small amount of variation
in light transmittance [42]. Additionally, the transmittance of
light through ice-cover varies greatly depending on the upper
surface conditions such as the presence and condition of snow
cover and the presence of melt ponds on the ice [43].

Snow on ice scatters solar radiation, although the degree
depends on grain size, for example, melted, refrozen snow has
large grains and low albedo (reflection) [42]. Snow melting
also produces standing water (ponds) on the ice that increases
UV transmission. For example, seasonal studies in Bafin
Bay in 2016 [44, 45] showed that when ponds developed,
average transmittance increased about ten times for PAR
and UV-A radiation (325, 340 and 379 nm) (Fig. 3). UV-B
radiation (305 nm) was nearly undetectable before snow melt,
but average transmittance was greater than 5% afterwards
(Fig. 3). Ponding also causes spatial variability in transmit-
tance. For example, in Bafin Bay on 2 July the transmittance
of UV-B radiation through the ice was twice as high (11-14%)
in areas with ponded ice compared to those without ponds
[44] (Fig. 3b). For the short wavelength UV-A (325 nm), the
maximum transmission was much higher, reaching 22—35%
when ice was ponded. One can assume that for long UV-B
wavelengths, e.g., 315 nm, transmission would be somewhere
in between those values. The formation of ponds may be more
important in the Arctic than on Antarctic sea ice since subli-
mation (i.e. where ice converts directly to water vapour) is the
main process of snow loss in the Antarctic [43].

2.1.3.1 Polar oceans The spatial extent and seasonal dura-
tion of ice-cover in the polar oceans have decreased substan-
tially in recent decades [46, 47]. Sea-ice cover in the Arctic
has, per decade, decreased by 2.6% in May, 7.4% in July
and 13% in September between 1978 and 2017 ([46, 47],
Fig. 4). Over this time span, the area of the Arctic Ocean
with ice cover has reduced from over 60% to about 30% [47]
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Fig.4 Time series of change as percent difference in maximum ice
cover (black, March) and minimum ice cover (red, September) and
linear trend lines (dashed) for the Arctic relative to the 1981 to 2010
average for March and September (Source: [46])

(Fig. 4). While ice melt is directly attributable to warming,
recent global climate modelling suggests about half of the
Arctic warming responsible for ice loss over this period

strong trends ([47, 50], Fig. 5). This polar difference is due
to differences in warming rates and the fact that ice cover has
been increasing in the Ross Sea, while it has been decreasing
in the area around the Antarctic peninsula (the Amundsen-
Bellingshausen Sea) and in the Weddell Sea. Most models,
however, predict that the ice cover will decrease over time
even in Antarctica [51]. While ice cover loss in Antarctica
has been limited, there is considerably more exposure to UV
radiation on a seasonal basis associated with seasonality in
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Fig. 5 Sea ice extent around
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Fig. 6 Scanning electron micrographs of different types of floating micro-algae (phytoplankton). a A cylindrical-shaped diatom in the genus
Thalassiosira, scale bar 3 pm (credit Univ. Washington). b The coccolithophore Emiliania huxleyi, scale bar 20 pm (credit Kunshan Gao)

ice cover. This is because only 15% of Antarctic winter sea
ice remains at the summer minimum, as compared to 40%
in the Arctic [46].

2.1.3.2 Lakes Like ice cover in the oceans, high-latitude
lakes have also exhibited rapid and substantial declines in
ice cover [52]. Data from 60 lakes with records ranging from
107 to 204 years show an acceleration of loss of ice cover
in recent decades. For example, trends in the later onset of
seasonal ice formation and shorter seasonal duration were
six times faster in the last 25-year period (1992-2016)
compared with previous quarter centuries [53]. Similarly,
extreme events, such as years without any ice cover on lakes
that historically had ice every winter, are becoming more
common [54]. Lake ice thickness has also declined, espe-
cially in subarctic lakes [30]. Overall, it has been estimated
that the number of lakes in the Northern Hemisphere experi-
encing intermittent winter ice cover will double or increase
15 fold with 2 or 8 °C of warming, respectively [55]. For
ice-covered lakes at low latitudes (i.e. mountain lakes), ice
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loss is likely to increase exposure to UV radiation even more
since the higher position of the sun in the sky and (gener-
ally) lower attenuation by atmospheric aerosols results in
higher incident UV radiation [56].

In general, reduced ice cover in lakes and seas opens up
aquatic ecosystems to higher UV irradiation, as well as PAR.
The shortened period with ice cover in lakes is manifested
as an earlier breakup in the spring that is followed by
stratification and a later ice-on in the autumn [37]. Earlier
ice thaw could possibly expose more aquatic habitats to
UV-B radiation during the early-spring period when ozone
depletion is often most severe. For the Arctic sea, however,
spring is a period of near maximum ice-coverage (March in
the Arctic) and so-far the reduction in ice-cover at this time
of the year has been small ([46], Fig. 4). During the spring
season, surface conditions, such as increases in melt pools
and snow cover losses, may be the most important drivers of
increases in exposure to UV radiation in the Arctic.
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3 UV radiation in combination with climate
change can have adverse effects
at the ecosystem level

Aquatic organisms differ in their sensitivity to solar UV
radiation and their effectiveness in mitigating and repair-
ing induced damage. When these differences in sensitivity
combine with the effects of climate change, the species
composition of aquatic ecosystems can shift [57]. Differ-
ential responses to changes in UV radiation and increas-
ing temperature favour more resilient species. This is the
case for the floating microalgae (phytoplankton) which are
the base of the food chain in many aquatic ecosystems.
For example, two microalgae in the genus Thalassiosira
(marine diatoms, cell size and shape shown in Fig. 6a)
differed in how they responded to UV-B irradiation from
a solar simulator under a global warming scenario. Con-
sidering the inhibitory effect of UV-B radiation on growth
at temperatures normally experienced by these species
(16 °C), warming to 20 °C moderated the inhibition in
one species but intensified it in another [58].

Organisms in coastal ecosystems are usually more sen-
sitive to solar UV radiation than open ocean species [59,
60], but are better protected due to the lower transparency
of coastal waters (Sect. 2.1). In addition, productivity in
coastal ecosystems is augmented by high nutrient input
from terrestrial runoff and higher temperatures [17]. Both
environmental factors favour enzymatic mechanisms present
in many aquatic organisms that repair UV-induced damage
of DNA [1] and the recovery from UV-induced damage to
the photosynthetic apparatus in many species of microalgae
(e.g., [58, 61]).

Warming caused by greenhouse gases increases the tem-
perature difference between the surface and bottom layers of
lakes and the ocean [25]. For example, two large-scale analy-
ses of hundreds of lakes showed that surface waters have
been warming at median rates of 0.37-0.39 °C decade ™!,
while temperature has remained stable in deep waters [40,
62]. These temperature trends are sharpening the vertical
temperature gradient at the boundary between surface and
deep water, reinforcing it as a barrier limiting nutrient sup-
ply from deep water to phytoplankton in the surface layer
(Fig. 1, [25]). Nutrient limitation not only reduces produc-
tivity but also hampers the repair of cellular damage, which
will generally increase the severity of UV-induced damage
[63, 64].

3.1 Interactive effects of UV radiation, climate
change, and other stressors on aquatic
ecosystems

In addition to excessive UV radiation, aquatic organisms
are exposed to a plethora of other concurrent environmental
stress factors such as warming, eutrophication, and acidifi-
cation [65, 66]. The combined effects differ among species,
and physiological processes and can be antagonistic, neutral,
or synergistic depending on species, strain, and experimental
conditions [65, 67].

Anthropogenic emissions have resulted in increasing
CO, concentrations in both the atmosphere and dissolved
in aquatic ecosystems. In turn, increasing CO, in water
decreases the pH and results in ocean acidification [68].
Ocean acidification reduces the calcium carbonate incorpo-
ration of calcifying algae such as Corallina and Acetabularia
as well as in many zoological taxa such as worms, bivalves,
and corals [66, 69]. In terms of the effects of UV radiation,
inhibition of photosynthesis is more severe under elevated
CO, for some freshwater phytoplankton populations [70]
and marine diatoms [66]. In other microalgae, sensitivity to
photoinhibition is only slightly enhanced or not affected at
all by growth under elevated CO, [66, 71]. For example, in
the coccolithophore Emiliana huxleyi (Fig. 6b), sensitivity
of photosynthesis to inhibition by UV radiation, and in par-
ticular by UV-B radiation, was not affected by elevated CO,
[71]. While the calcified scales (coccoliths) of coccolitho-
phores (Fig. 6b) attenuate the effects of UV radiation [72],
the loss of calcification in coccoliths of E. huxleyi grown at
elevated CO, did not increase its sensitivity to UV radia-
tion [71]. The causes of these variations in species-specific
sensitivity remain to be determined and leave a knowledge
gap in our understanding of how these primary producers
will respond to UV radiation in the future (acidified) ocean.

To understand the overall effect on the aquatic ecosys-
tem, one of the best ways to study the interactive effects of
elevated CO, and solar UV radiation in the ocean is to use
large (thousands of L) experimental enclosures called meso-
cosms, which are often floated in the ocean. However, to be
ecologically relevant, these enclosures need to be transparent
to UV radiation. Unfortunately, some common designs for
mesocosms use UV-opaque materials (e.g., [73]) or covers
(e.g., [74]), which leaves open the question of how repre-
sentative the results of some multi-stressor experiments are
with respect to natural conditions that include exposure to
UV radiation—such as the finding that ocean acidification
encourages the growth of toxic microalgae [75].

There are relatively few reports of the biological
responses of marine ecosystems that combine solar UV
radiation with other multiple stressors including warming,
elevated CO,, and nutrient limitation or eutrophication.
The multiple stressor studies that have been done, including
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Fig. 7 Conceptual model of inactivation mechanisms by solar radia-
tion in viruses and bacteria. The direct mechanism involves photon
absorption by viral or bacterial proteins or nucleic acids (orange
stars), which triggers their photodegradation. In indirect mechanisms,
the photon is absorbed by a sensitiser (Sens) present either inside
(endogenous) or outside (exogenous) the pathogen. This process gen-

effects of UV radiation, are more frequent in freshwater
systems, where smaller (tens of L) “microcosms” have
been used. For example, exposure to solar UV radiation
under present-day conditions inhibited both phytoplankton
and bacterial production in an oligotrophic (low nutrient
content), high-mountain lake in southern Spain with low
watershed inputs of CDOM [76]. Under a global change
scenario of increased temperature and nutrient inputs
from dust-storms, the inhibitory effects of solar UV
radiation were reduced, but bacteria benefited more than
phytoplankton. This result suggests that ambient UV
radiation in combination with climate change could shift this
lake, and other similar oligotrophic systems, towards higher
heterotrophy (enhanced consumption of oxygen).

3.2 Photoinactivation by UV-B radiation
of pathogens and parasites in the aquatic
environment

Exposure to UV radiation is one of several factors leading to
reduced infectivity of parasites and pathogens in aquatic sys-
tems. Photoinactivation has been studied in a number of para-
sites and pathogens affecting human health [77, 78]. Viruses
are thought to be responsible for most gastrointestinal illnesses
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light absorbed by organism g -

erates photochemically produced reactive intermediates (PPRIs) that
include, among others, singlet oxygen, hydroxyl radicals, and triplet
excited states that further damage the pathogen’s proteins and nucleic
acids (orange stars). Green shapes represent proteins. Modified from
[78]

contracted in recreational waters contaminated by human
faeces. Representative human sewage-borne viruses include
enteroviruses, noroviruses, and adenoviruses. Inactivation of
viruses and bacteria upon exposure to solar UV radiation can
contribute to a reduction of their densities in aquatic environ-
ments [78, 79]. Inactivation can occur by direct absorption of
UV-B radiation by microbial nucleic acids or proteins and/or
by photo-oxidative damage to the same structures sensitised by
chromophores present either inside the bacterial cell or in the
environment surrounding the pathogens (Fig. 7) [78]. CDOM
can screen out UV-B radiation, thus reducing direct damage,
but it also can sensitise photooxidative damage via indirect,
exogenous processes. The net effect depends, inter alia, on
depth and spectral attenuation in the water column, biological
weighting functions, and mixing dynamics [78, 80].
Biological weighting functions (BWFs), which are related to
action spectra (see Bernhard et al. [27], this issue), are used to
quantify wavelength effects on the direct photoinactivation of
microorganisms and to better understand the role of microbial
characteristics and environmental changes in their sensitivity to
UV radiation [78, 81-83]. BWFs are used in photobiological
models to evaluate the effects of changes in location and time
on the direct photoinactivation of these microorganisms in
the aquatic environment [78, 81-83]. For example, the effects
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of attenuation of solar radiation on the photoinactivation of
pathogen indicators in various swim areas of the Great Lakes
(United States) were assessed using models that integrate BWFs
and UV attenuation coeficients to estimate depth dependence
and thus UV attenuation effects on inactivation rates [79].

Although BWFs for photoinactivation have been estab-
lished for some water-borne pathogens, less is known about
UV photoinactivation of the SARS-CoV-2 virus causing
the COVID-19 pandemic. The SARS-CoV-2 virus has been
detected in wastewater streams and rivers (e.g., [84, 85]).
The virus can be photo-inactivated by UV-C radiation (e.g.
[86]) but the rate of this process in water in response to solar
radiation is not well-known [87]. The action spectrum of
inactivation by UV radiation of SARS-CoV-2 in the air [88]
is somewhat different from other viruses (either DNA or
RNA based) in that it shows some sensitivity to UV-A radia-
tion (see Bernhard et al. [89], this issue). This suggests that
the inactivation of SARS-CoV-2 by solar UV radiation in
water could be faster than for other viruses, but more study
is needed. UV radiation in the aquatic environment also has
implications for human health via effects on parasite-carry-
ing insect vectors, e.g., by mosquitos. Mosquito larvae are
sensitive to UV-B irradiation, and thus a reduced UV-trans-
parency caused by high concentrations of dissolved organic
matter (cf. Section 2.1) would increase their survival [90].

Not only humans but all organisms, are affected by patho-
gens and parasites. Host—pathogen interactions differentially
affect the growth and survival of individual species and thus
the species composition of aquatic ecosystems [91]. For exam-
ple, experiments suggest that the zooplankton parasite, Pas-
teuria ramosa, is more sensitive to UV radiation compared
to its host [92]; however, this parasite may partially adapt to
its ambient regime of UV radiation. Although experimental
UV irradiation reduced the transmission potential (i.e. reduced
spore production), treated parasites from high-transparency
lakes were more successful at infecting hosts than parasites
from lakes with lower UV transparency [93]. Furthermore,
zooplankton parasites have larger and longer outbreaks in less
transparent systems than in systems with higher transparency
[94]. Hence, factors that reduce exposure to UV radiation, such
as low UV-transparency, extended ice cover, or deep MLDs
(Sect. 2), will also reduce the UV disinfection rate and allow
a greater spread of pathogen vectors in natural waters. In all,
this suggests that exposure to UV radiation (especially UV-B
radiation) is an important factor affecting overall pathogen and
parasite prevalence as well as infectivity such that decreased
exposures have negative consequences for host—pathogen inter-
actions and human health.

While UV irradiation may inactivate some parasites and
pathogens, it also acts as a stressor to many organisms, which
in turn may make them more sensitive to infections and par-
asites. For example, ulcerative dermal necrosis is a disease
found in Atlantic salmon [95]. The disease develops from

small grey to white areas of skin to deep ulcers covering much
of the head, primarily affecting salmon upon return to freshwa-
ters from the ocean. It was recently hypothesised that high UV
irradiation in shallow freshwaters increased stress on salmon,
making them more susceptible to secondary infections by path-
ogens such as Saprolegnia parasitica [95]. This interaction
between the effect of UV radiation and disease susceptibility
could have adverse effects on farmed salmon populations but
the extent of these issues is not well known.

3.3 Reduced production of the marine planktonic
community due to exposure to UV-B radiation

After the realisation in the 1990s that ozone depletion
increased the exposure of aquatic ecosystems to UV-B
radiation, many studies demonstrated that photosynthesis
by aquatic primary producers, mainly phytoplankton, was
inhibited by UV-B radiation (reviewed by [96]). However,
left largely undetermined has been the integrated effect of
UV radiation on the net metabolism of all organisms, pho-
tosynthetic and non-photosynthetic. Such a measure is the
Net Community Production (NCP), the overall increase or
decrease in oxygen over the course of a 24 h in situ incu-
bation in a transparent enclosure. NCP reflects the balance
between the productivity of microalgae (autotrophs), which
generates oxygen, vs the breakdown and consumption of
organic material by all microorganisms and higher organ-
isms (heterotrophs), which consume oxygen. The effect of
UV-B radiation on NCP at the ocean’s surface was recently
measured at sites near the west Australian coast. In a pro-
ductive area that is typically net autotrophic, incubations
in containers transmitting UV-B radiation had a 33% lower
daily NCP, on average, compared to NCP incubations that
excluded UV-B radiation [97]. Thus, exposure to UV-B
radiation shifted the metabolic balance towards heterotro-
phy. In contrast, there was little or no effect of excluding
UV-B radiation in low-productivity waters. These results
complement previous measurements in productive waters
such as those near Antarctica, where exposure to UV-B
radiation also shifted the community towards heterotrophy,
while there was little effect on NCP in low productivity,
open ocean waters [98]. The emerging picture is that shifts
towards greater heterotrophy due to exposure of the plank-
tonic community to UV-B radiation are only important in
high-productivity waters, e.g., coastal and polar oceans.
Increased UV-B radiation could result in high-productivity
waters sequestering less carbon, with potential implications
for the global carbon cycle. However, these results only
relate to NCP right at the ocean’s surface. In the ocean, oxy-
gen production and consumption occur over the whole sur-
face layer (see Fig. 1). The overall effect of UV-B radiation
on the NCP of the entire water column remains unknown,
but is expected to be much less than at the surface due to the
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Fig. 8 Schematic of the sources and processing of dissolved organic
matter (DOM) in the aquatic environment. DOM has both terres-
trial and aquatic sources, whose inputs are controlled by the rate of
production and transport. Terrestrial sources include ancient DOM
released during permafrost thaw. Once in the water, DOM undergoes
photochemical and microbial processing, with the former usually
enhancing the latter. These processes alter DOM composition and
produce low molecular weight products, some of which are green-

attenuation of UV-B radiation with depth (Sect. 2.1). The
effects of UV-B radiation could become more important if
the surface mixed layer becomes more shallow with global
climate change—however, at present, this is not the case in
most marine surface layers (Sect. 2.1.2).

3.4 Aquatic cycling of carbon and other elements
via photodegradation and photofacilitation

DOM is one of the main chromophores” in aquatic ecosys-
tems [99]. By absorbing UV and visible radiation, chromo-
phoric dissolved organic matter (CDOM) controls water
transparency (Sect. 2.1.1). However, the process of absorp-
tion, particularly of UV radiation, also triggers the break-
down of DOM, both its chromophoric and non-chromo-
phoric forms (referred to as DOM).

Regardless of the specific mechanism, DOM photodegra-
dation leads to loss of CDOM content (i.e., photobleaching)
and formation of degradation products. DOM photoproducts

2 A chromophore is a molecule that absorbs radiation, either UV or
visible. Hence, CDOM is the fraction of dissolved organic matter
able to absorb solar radiation. Other chromophores present in surface
waters are nitrate, nitrite, particulate organic matter, and iron com-
plexes.
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house gases. Products include carbon dioxide (CO,), methane (CH,),
carbon monoxide (CO), and carbonyl sulphide (OCS) (photodeg-
radation). Once in an electronically excited state, CDOM can either
breakdown via direct photolysis or produce reactive species (e.g.,
singlet oxygen, hydroxyl radicals, triplet excited states, and hydrated
electrons) that further react with both chromophoric and non-chromo-
phoric DOM.

include trace gases such as carbon dioxide (CO,), carbon
monoxide (CO), and methane (CH,), among others, nutri-
ents such as ammonia and phosphate, low-molecular-weight
compounds, and partially photo-oxidised DOM [99]. For
inorganic end-products (e.g., CO, or ammonia), the process
is referred to as photomineralisation. The chemical changes
induced by UV irradiation of DOM also affect its bioavail-
ability, often leading to increased microbial utilisation or
potential for mineralisation to CO,. This combined process
involving UV radiation, DOM, and microbes (photofacilita-
tion) has been reported in both aquatic and terrestrial eco-
systems (Fig. 8, and for more discussion of terrestrial eco-
systems, see Barnes et al. [100], this issue).

Some DOM photoproducts, such as CO, and CHy,
are greenhouse gases and have the potential to directly
exacerbate climate change, while others can have indirect
impacts. For example, CO can influence atmospheric
methane concentrations by competing for OH radicals
(see Madronich et al. [101], this issue). Climate change is
already impacting DOM biogeochemistry by enhancing
terrestrial runoff to lakes, rivers, and coastal systems
(Sect. 2.1.1), which increases the amount of DOM that
can be photodegraded. Another important source of DOM
are the permafrost soils of the Northern Hemisphere; this
reservoir of terrestrial organic carbon is estimated to be
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about 1300 petagrams C (PgC=10'> g C), which is about
twice as large as the carbon reservoir in the atmosphere
[102] (also see Barnes et al. [100], this issue). As the
climate warms, permafrost is melting and a part of this
carbon pool is especially susceptible to abrupt thaw [103].
DOM released from thawed permafrost soils impacts surface
water composition and is susceptible to photodegradation by
solar UV radiation ([104] also see Sect. 3.4.1). In addition,
reductions in ice and snow, changes in cloud cover, and local
changes in UV irradiation (Sect. 2.1) modify the exposure
of DOM to UV radiation, which influences the magnitude
of photodegradation processes.

3.4.1 Photodegradation of dissolved organic matter
by UV radiation releases greenhouse gases that may
exacerbate climate change

Emissions of CO, resulting from the photodegradation of
DOM at mid-latitudes are generally negligible compared to
emissions from microbial mineralisation of DOM but may
play a large role at high latitudes. Outside of the Arctic,
photomineralisation typically explains<15% of total organic
carbon loss from aquatic ecosystems, namely 9-12% in
Scandinavian lakes [105, 106], 3—5% in rivers [107], and
0.08-0.3% in estuaries [108, 109]. Photomineralisation
could be much higher in Arctic watersheds rich in yedoma
(organic-rich permafrost, [110]) but the magnitude is still
uncertain, with photochemical contributions ranging from
negligible [111-113] to 75-90% of total CO, emissions
[114-116]. Recent work highlighted that seasonality [114,
116] and iron levels [114] are critical controls of DOM
photomineralisation in this environment and may justify
the contrasting literature results. The use of different proto-
cols for sample handling, data collection, and data analyses
also contributes to this variability [117]. Understanding how
DOM photoreactivity varies across seasons and with water
chemistry is crucial to predicting the extent of photochemi-
cal CO, emissions in high-latitude ecosystems and their
variations induced by changes in climate and UV radiation.

Photodegradation of DOM by UV radiation also produces
CO and CH,, which are then released into the atmosphere.
Although this can elevate concentrations of these gases near
the ocean surface, current estimates suggest that emissions
from aquatic environments are negligible at the global scale.
Global CO sources are 2.6 PgCO yr ! (=2,600 TgCO yr )
[118], while photochemical processes in the ocean® produce
44 TgCO yr ! [119]. Of the photochemically produced CO,
a large portion is consumed in situ by microbial processes,

3 Conte et al. [119] report carbon monoxide (CO) as carbon mass
equivalent. In their report, the yearly fluxes of 19 Tg, yr~ ! (photo-
chemical CO production) and 4 Tg. yr~' (net oceanic emission) were

converted to mass of CO using the ratio of CO—C molecular weight

resulting in a net release to the atmosphere of 9.3 TgCO
yr . As a result, oceanic photoproduction is responsible
for 0.36% of global CO emissions. These estimates are
restricted to the open ocean, thereby excluding potential
CO hotspots that may increase the relative importance of
processes driven by UV radiation. Specifically, coastal and
freshwaters have more terrestrial DOM than the open ocean
and produce CO more rapidly than marine DOM ([120] and
references therein). High latitude watersheds in spring may
also represent an overlooked source of this gas, as CO is
always produced alongside CO, during DOM photodegra-
dation (CO,/CO ratio ranges from 4 to 73 [121]). CO pro-
duction from the photodegradation of DOM and particulate
organic matter in the Arctic Ocean is also not yet included
in CO estimates, and its contribution is expected to increase
due to climate change [122, 123].

Global CH, emissions are 576 TgCH, yr ' [124], while
photochemical production from the ocean surface is 121
GgCH, yr ! (Gg=10° g) [125], yielding 0.02% of total
methane emissions. Research on photochemical CH, emis-
sion is still limited but available data indicate that terrestrial
DOM is up to 30 times less eficient than marine DOM in
releasing CH, and that CH, is not a major DOM photo-
degradation product (CH,/CO=0.05x1073—2.5x107%)
[125]. For these reasons, the incorporation of freshwater
and coastal contributions is unlikely to substantially affect
current estimates of global CH, emissions.

Carbonyl sulphide (OCS) is the only greenhouse gas
for which DOM photodegradation in the ocean contributes
significantly to emissions on a global scale (> 16%; [126]).
To date, large uncertainties still exist regarding the impor-
tance of DOM photodegradation as a source of OCS, which
ranges from 41 to 813 GgOCS yr ' [126-129]. Lack of an
understanding of spatial, temporal, and spectral variations
in apparent OCS quantum yields and limited knowledge
of additional non-photochemical sources justify this wide
range [126]. Refined estimates of the oceanic source of OCS
would help constrain other components of the global OCS
budget related to terrestrial plant uptake and aerosol forma-
tion [126].

3.4.2 Partial photo-oxidation modifies the chemical
composition of dissolved organic material and can
trigger its microbial mineralisation to carbon dioxide

Partial photooxidation of DOM by UV radiation is
increasingly recognised as a key trigger of the cycling of
elements in aquatic systems because of the direct impact
that DOM chemistry has on microbial processes [108, 111,
130, 131]. Partial photooxidation is a complex process that

Footnote 3 (Continued)
(28 vs 12 gmol ™). Tg=10'2 g.
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involves, among other things, cleavage of aromatic rings,
decarboxylation, degradation of chromophores, increase
in the overall oxidation state, and decrease in molecular
weight [132, 133]. Carboxylic-rich alicyclic molecules are
among the products of partial DOM photooxidation and are
predominantly formed via singlet oxygen oxidation [133,
134]. While the exact structure and reactivity of carboxylic-
rich alicyclic molecules and other partial photooxidation
products are unknown, they are analogous to the compounds
generated during the breakdown of DOM by natural
microbial communities [132].

New findings have highlighted the importance of partial
photooxidation in facilitating microbial mineralisation
of terrestrial DOM to CO,. Based on a new model for
photodegradation of DOM, 13% of DOM present in
estuarine environments undergoes partial photooxidation,
while direct photomineralisation to CO, accounts for
0.2% of total C fluxes [135]. Photodegradation converts
48% of biologically recalcitrant and 4% of semi-labile
DOM into the labile pool, which is readily mineralised by
microorganisms [135]. Microbial mineralisation elicited
by partial photooxidation may also release more CO, than
direct DOM photomineralisation in Arctic watersheds [111,
131, 133] but the magnitude of this coupled photochemical-
microbial CO, emission, its seasonality, and its variation
in response to climate change and changes in UV radiation
have not yet been estimated.

3.4.3 Photodegradation of dissolved organic material
in aquatic ecosystems releases nutrients

Most studies of photooxidation and photofacilitation in
aquatic ecosystems focus on carbon but these processes can
also affect the inorganic components of DOM. Of particular
interest are processes involving nitrogen and phosphorous
due to their role as nutrients, albeit recent work showed
that sulphur is also eficiently photomineralised to sulphate
[136], in addition to other trace gases such as OCS.

It is well acknowledged that UV irradiation of dissolved
organic nitrogen (DON) releases ammonia [80, 120, 137],
a process with the potential of sustaining microbial activity
in nitrogen-limited ecosystems such as Arctic waterbodies
[137, 138]. Photochemical production of ammonia from
DON was recently determined to contribute on average up
to 5% (range 1-44%) of microbial nitrogen uptake in Arctic
freshwaters, with variations depending on the light intensity,
water depth, and microbial activity [139]. The average value
is comparable to previous estimates for boreal lakes [140].
Substrate limitations [139] and variations in DOM chemistry
across seasons [ 141] can justify contrasting literature results
in DON photomineralisation—as ammonia photoproduction
has been inconsistently observed across studies (see [120]
and references therein).
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In addition to nitrogen species, UV-irradiation of
dissolved and particulate organic matter in aquatic
ecosystems releases phosphate [120, 142], which may
fuel algal blooms. This process is particularly prevalent
in shallow eutrophic lakes, where sediments have high
phosphorous loads, are resuspended frequently, and are
thus susceptible to photochemical processing [142, 143].
Specifically, the amount of phosphate released is directly
proportional to sedimentary phosphorous content, and
rates of release increased over a group of four increasingly
eutrophic lakes in China [142]. This photochemical release
of phosphate may provide a positive feedback loop for
eutrophication but it is unknown whether this process has
general applicability to all shallow lakes.

4 Environmental contaminants exposed
to UV radiation and UV filters are toxic
to aquatic organisms

4.1 Role of UV irradiation in the formation
and potential toxicity of microplastics
in the aquatic environment

There is increasing concern about the prevalence and
risks of microplastics (defined as plastic particles and
fibres <5 mm in size) in terrestrial and aquatic ecosystems
globally. UV radiation plays a key role in the formation
of microplastics, as well as in their absorptive capacity
and release of associated leachates and bound substances
[144]. Evidence is growing that microplastics and associ-
ated chemicals can have detrimental effects on organisms
and ecosystems, but the effects are highly variable across
species that have been studied so far. The relationship of
microplastics to UV radiation, stratospheric ozone deple-
tion and their interactions with climate change is a cross-
cutting issue that involves processes in both terrestrial and
aquatic ecosystems, as well as studies in the fields of toxi-
cology, chemistry, and materials science. For details, the
reader is referred to a separate assessment that covers the
role of UV radiation in the formation of microplastics and
current research about how microplastics may be affect-
ing ecosystems and human health (Jansen et al., [145],
this issue).

4.2 Ecological impacts of the release of UV filters
into the aquatic environment

While UV filters in topical sunscreens are effective at
reducing UV-induced damage during recreational or
occupational exposure in humans [146], some sunscreen
components are considered contaminants of concern



Photochemical & Photobiological Sciences

due to their potential negative impacts on aquatic life
[147-150]. UV filters are categorised as either organic or
inorganic and work by reflecting and/or absorbing harmful
UV radiation. Two of the most common organic UV filters
in sunscreens are oxybenzone and avobenzone, while
inorganic UV filters often include the “white” compounds
Ti0, and ZnO, which reflect both UV and visible radiation.
Nanoparticle formulations of inorganic UV filters are
common, as they often have a lower reflectance in the
visible light range and therefore are perceived as more
aesthetically acceptable [148].

Organic and inorganic UV filters have been detected in
surface waters, sediments, and organisms [151]. Organic
UV filters such as oxybenzone, octinoxate, octocrylene,
and benzophenones are toxic to a wide range of aquatic
organisms, including corals, zooplankton, and marine
bacteria [152, 153]. The toxicity of oxybenzone in corals
and sea anemones can arise in part from its conversion
in animal tissue to derivatives that are phototoxic upon
exposure to solar UV radiation [154]. These organisms
normally have symbiotic algae that can suppress the tox-
icity by sequestering the derivative but this protection is
lost if the algae are expelled [154]. The latter phenomenon
is known as “bleaching” and is discussed in Sect. 5.3.2.

The applicability of many toxicity studies has been
questioned because they were conducted at concentrations
that exceed ecological relevance [155]. For example,
sunscreen compounds such as oxybenzone have been found
in coral tissues and at concentrations of 0.1-136 ng/L
in coastal waters near Oahu, Hawaii [151] and 114, 11,
and 118 ng/L in Chesapeake Bay water, sediments, and
oyster tissues, respectively [156]. These concentrations
are substantially below the effective concentrations that
would adversely affect 50% (EC50) of a population of the
alga Chlorella vulgaris (96 h EC50 at 2.98 mg/L, 95%
CI1=2.70-3.39 mg/L), the zooplankton Daphnia magna
(48 h EC50 at 1.09 mg/L, 95% CI=0.76-1.73 mg/L),
or the fish Brachydania rerio (96 h EC50 at 3.98 mg/L,
95% CI=2.86—6.53 mg/L) [157]. In a large study
of benzophenones, over 90% of examined sites had
concentrations below predicted no-effect concentrations
(Guo et al., 2020). However, concentrations can be
high in some locations at specific times. For example,
the concentration of oxybenzone ranged from 30 ng/L
to 27,880 ng/L in near-shore waters in Hanauma Bay,
Hawai’i [158]. Considering studies conducted to date, the
effects of UV sunscreen compounds on corals and coral
reefs have been highly variable, and the methods used to
examine potential toxicity (e.g., species, life stages, field vs.
laboratory, exposure times, nominal vs. test concentrations)
have varied [159]. Exposure methods can also influence
observed responses [160]. The lack of consistent and
standardised testing makes comparisons between and among

studies dificult and reduces the ability to infer the most
likely ecological effects of sunscreen compounds in aquatic
ecosystems. Therefore, caution is warranted in extrapolating
the findings of many of these studies.

Recent laboratory studies have reported that the toxicity
of sunscreens can depend on the interaction between dif-
ferent sunscreen components. A study involving two spe-
cies of corals, the bush coral, Seriatopora caliendrum, and
the cauliflower coral, Pocillopora damicornis, found that
other ingredients present in commercial formulations may
increase the bioavailability of the active ingredients and
exacerbate their toxicity to adult corals [161]. In a second
study, toxicities and bioaccumulation of 4 benzophenones
were tested in larvae and adults of the same two species
[162]. Larvae of S. caliendrum suffered settlement failure,
bleaching, and mortality upon exposure to benzophenones
BP-1 and BP-8, whereas P. damicornis larvae were unaf-
fected. Small fragments of adults of both species were more
sensitive to benzophenones BP-1, BP-8, and BP-3 than in
the larval stages [162].

In addition to impacting corals, avobenzone can adversely
affect survivourship and behaviour in other organisms, such
as the zooplankton species Daphnia magna [67]. At the
highest concentration tested (228 pg/L), oxybenzone caused
erratic swimming patterns and high mortality in larvae and
decreased metamorphosis of the larvae to the polyp stage
in the upside-down medusae Cassiopea xamachana and C.
frondosa [163]. In a separate study on loggerhead turtles
(Caretta caretta), researchers found evidence of bioaccu-
mulation and observed that gene biomarkers for inflamma-
tion, oxidative stress, and hormonal activity increased with
plasma concentrations of UV filters [164].

In general, inorganic mineral UV filters are considered
less toxic and safer for aquatic organisms compared to their
organic counterparts [165] and have therefore been suggested
as environmentally safer alternatives [148]. Supporting this
claim, researchers reported no significant harmful effects
of TiO, on sea urchin pluteus-stage embryo growth and
immune-cell viability in adults [166]. However, some
studies on inorganic UV filters report environmental effects.
Nanoparticle ZnO negatively impacted Acropora spp. corals
by disrupting the symbiosis with their algal symbionts,
thereby accelerating damage through coral bleaching [167].
Similarly, ZnO reduced the eficiency of photosynthesis
in the Indo-Pacific smooth cauliflower coral, Stylophora
pistillata, compared to controls [168], and exposure
of California purple sea urchins (Strongylocentrotus
purpuratus) to ZnO resulted in embryonic malformations
[169]. Moreover, TiO, and ZnO nanoparticles released
into the aquatic environment generate damaging reactive
oxygen species (ROS) under UV radiation [170]. Therefore,
concerns remain as to the utility of ZnO as an alternative to
organic UV filters.
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Climate change may amplify the toxicity of sunscreen
compounds. For example, the toxicity of both organic and
inorganic sunscreen compounds to sea urchins, diatoms,
and amphipods increases with increasing salinity [171],
and salinity is increasing in regions where evaporation
exceeds precipitation. Also, ocean acidification amplified
the potential toxicity (as measured by biomarkers) of the
benzophenone BP-3 for the yellow clam Amarilladesma
mactroides [172]. In another study, the mortality of
the coral Acropora tenuis was higher when exposed to
sunscreen, oxybenzone, and high temperatures as compared
to high temperatures alone [173]. Exposure of organisms
to oxybenzone at 23 °C also increased gene expression
associated with detoxification, the endocrine system, and
stress responses relative to the control at 18.5 °C.

There continues to be a growing interest in the use of
natural products as active ingredients in sunscreens due
to the toxicity of many common UV filters. Mycosporine-
like amino acids (MAAs) are UV-absorbing compounds
produced by marine macroalgae [174—177], fungi, phy-
toplankton, plants, and bacteria [176, 178] and have been
investigated as natural alternatives to commercial sun-
screen components (see [179] for a database of these com-
pounds). Additional information on the production and
function of MAAs in organisms is provided in Sect. 5.2.
Among the various compounds, there is a particular interest
in mycosporine-glycine [180], palythine [181], palythene
[182], shinorine [183], porphyra-334 [184], and scytone-
min as UV filters for sunscreen [185], skin care [186], and
cosmetic formulations [187, 188] due to their availability,
stability, and antioxidant properties. Genetic engineering of
bacteria to overproduce MAAs is also considered a cost-
eficient form of production [183].

The balance between potential ecological damage vs con-
cerns regarding human skin cancer risks have to be carefully
considered. Health care professionals encourage alternative
methods to reduce exposure to UV radiation, including the
use of photoprotective clothing. However, some UV filters
are now being incorporated into fabrics to increase their UV
shielding capacity (see also Andrady et al. [189], this issue),
and it is presently unknown how much of these UV filters
could be released into the natural environment.

4.3 UV radiation degrades oil pollutants
but enhances their toxicity to aquatic
organisms

New lines of evidence confirmed that UV radiation is a
key factor contributing to the removal of pollution from
oil spills (reviewed by [190]). During the 102 days of the
Deepwater Horizon spill, UV-driven production of water-
soluble organic carbon (also referred to as photodissolution)
accounted for about 8% (estimated range: 3—17%) of overall
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oil removal, an amount comparable to other widely acknowl-
edged removal processes (evaporation and coastal stranding)
[191]. Both UV and visible radiation are important regula-
tors of photo-dissolution rates, with UV radiation becoming
less important as oil slick thickness increases. Even though
these results are based on the photodissolution of a single
oil type, they motivate more research into the ecological
effects of oil photooxidation products in aquatic environ-
ments [191, 192].

Several studies evaluated the effect of co-exposure of
coral reef invertebrates to both UV radiation and oil pollut-
ants (reviewed by [193]). Shallow coral reefs are routinely
exposed to high levels of solar UV radiation, which can
increase the toxicity of some oil components. Results from
66 studies showed that oil toxicity increased on average
7.2 times when corals, sponges, molluscs, polychaetes, and
crustaceans are exposed to UV radiation in the presence of
oil pollutants [193]. Co-exposure with other environmental
stressors also increases oil toxicity, although not as much as
co-exposure with UV irradiation. For example, co-exposure
of oil-pollutants and elevated temperature (12 studies) or
low pH (6 studies) increased oil toxicity by 3.0 and 1.3 fold,
respectively [193]. In addition, exposure of corals in a labo-
ratory study to a combination of UV-B and UV-A radia-
tion exacerbated the toxicity of heavy fuel oil, decreasing
the threshold concentration for 50% lethality or effect by
1.3-fold on average [194]. These tests covered 8 different
development and survival endpoints in early life stages such
as gametes, developing embryos, and planula larvae (the
free-swimming dispersal stage) of the staghorn coral, Acro-
pora millepora, (cf. life stages of related coral 4. palmata
shown in Fig. 9). In this and earlier studies, increased toxic-
ity from co-exposure to oil and UV radiation was considered
to result from oil components that sensitised organisms to
UV radiation, which adds to their inherent toxicity.

UV irradiation following exposure to polycyclic aromatic
hydrocarbons, which are found in oil spills, can increase mor-
tality due to the phototoxicity of bioaccumulated polycyclic
aromatic hydrocarbons. For example, exposure of fiddler crab
eggs to polycyclic aromatic hydrocarbons, which can occur
as they incubate in estuarine sediments, resulted in enhanced
mortality when the free-swimming larvae were exposed to
solar UV radiation upon hatching [195]. Overall, these find-
ings of interactive effects of UV radiation and oil spill com-
ponents indicate the need for a more routine inclusion of UV
radiation treatments in oil toxicity studies so that identified
hazard thresholds are environmentally relevant [195].
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Fig. 9 Life cycle of the Caribbean coral Acropora palmata a show-
ing an adult colony (scale bar=10 cm). b During summer months in
the evening colonies synchronously spawn (scale bar=2 cm) gam-
ete bundles (seen as many pink spheres on the coral branches, two
of which are indicated by black arrows) that contain eggs and sperm.
The eggs are rich in lipids such that when the bundles are released
(indicated by the white arrow) and rise to the surface, they break up
due to wave action and fertilisation can occur between gametes of

4.4 Improved prediction of UV-induced
photoreactions of contaminants in the aquatic
environment

Significant advances have been achieved in the simulation
of photoreactions of contaminants in aquatic environments
including those involving solar UV-B radiation [78, 196, 197].
The Water Quality Assessment Simulation Program (WASP)
is a framework widely used to model contaminants in surface
waters [196]. The latest version, WASP8, has been updated to
simulate light penetration and photoreactions for five wave-
length bands in the ultraviolet (two of which are in the UV-B
waveband) and to model nanoparticle-specific processes. The
updated program can now simulate the direct phototransfor-
mation of nanomaterials and other contaminants taking into
account the full solar spectrum [196, 198]. Potentially, WASP8
can use projected variations in UV-B radiation to predict
changes in contaminant phototransformation that can impact
aquatic ecosystems and the services they provide.

distinct colonies. ¢ The embryos (scale bar=600 pm) develop into d
pear-shaped planula larvae (scale bar=1 mm), both of which float at
the water surface for three to five days exposed to summer-time peaks
of UV radiation. Once the larvae begin to swim, they search for a
suitable substrate to settle, followed by metamorphosis into e a coral
primary polyp (scale bar=1 mm), which undergoes asexual repro-
duction to form the colony. Photo credits: Sandra Mendoza Quiroz

5 The adverse effects of UV radiation
and the defences against those effects
vary among aquatic organisms

5.1 Exposure to UV radiation increases the toxicity
of some harmful microalgae

A primary effect of UV-B radiation on microalgae is
inhibition of photosynthesis and DNA damage, with
cumulative exposure causing decreases in growth rate.
However, the sensitivity of microalgae to the adverse effects
of UV-B radiation varies among species. For example, the
decrease in photosynthetic eficiency (the initial conversion
of light into cellular energy) upon exposure to inhibiting
intensities of simulated solar radiation, including UV-B
radiation, often differs among groups of microalgae. A study
of freshwater algae found that chlorophyte algae were the
least sensitive, diatoms had intermediate sensitivity, and
cyanobacteria were the most sensitive [199]. Given that there
are differences in sensitivity among microalgal species, there
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is concern that undesirable strains might be more resistant
to UV-B radiation, and be favoured by increased UV-B
radiation. Particularly undesirable are toxic microalgae
that accumulate in harmful algal blooms that are a hazard
to public health (reviewed by [200]). Growth of the toxic
marine dinoflagellate Karenia mikimotoi was unaffected
by exposure to solar UV radiation, ocean acidification, or
a combination of the two treatments [201]. Toxicity, on
the other hand, was enhanced by each of these treatments,
although the combined treatment (UV radiation and ocean
acidification) did not increase toxin content further.

Other studies have examined the interactive effects
of UV radiation and nutrient availability on toxic
cyanobacteria, which cause harmful algal blooms in
freshwater environments. When a toxic strain of Microcystis
aeruginosa was grown with large amounts of phosphorus,
as would occur in a nutrient-rich lake, photosynthesis and
growth were little affected by UV radiation compared to
the moderate or severe inhibition observed under low or
depleted phosphorous conditions, respectively [202]. In
addition, short-term inhibition of photosynthesis occurs in
the toxic strain of M. aeruginosa under UV irradiation but
it recovers rapidly. As a result, the toxic strain has better
overall performance under repeated exposures (daily for a
week) when compared to a non-toxic strain [203]. Moreover,
UV irradiation enhanced the accumulation of the toxin,
microcystin [203]. Hence, the effects of UV radiation
on microalgae are species-specific, but there are several
examples suggesting that exposure to UV radiation enhances
the toxicity and/or abundance of toxic strains, which would
make their accumulation in harmful algal blooms more
hazardous.

5.2 Aquatic organisms synthesise or accumulate
photoprotective substances that ameliorate
the effects of UV radiation

UV radiation is an important physical factor that controls the
depth distribution of sessile species (e.g. corals and macroal-
gae) in aquatic environments [204]. In turn, many aquatic
species produce photoprotective substances to counteract
damage induced by UV radiation. These substances are pig-
ments or compounds that intercept solar UV radiation before
they can damage biologically important molecules such as
DNA and structures such as the photosynthetic apparatus
[205, 206].

The most common photoprotective pigments in marine
organisms that specifically absorb UV radiation are
mycosporine-like amino acids (MAAs), which are low
molecular weight, water-soluble compounds. There are more
than 20 types of MAAs with absorption maxima at wave-
lengths ranging from 309 to 362 nm [207] and broad absorp-
tion bands of up to 50 nm at full-width half maximum, which
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can effectively absorb UV-B and UV-A wavelengths [208].
Their high molar absorptivity, stability, and dissipation of
UV radiation energy as heat mean these compounds are par-
ticularly effective photoprotectants against UV-B and UV-A
damage in aquatic organisms ([208] and refs. therein). These
compounds are only synthesised by bacteria, cyanobacteria,
fungi and algae [209]. Recent research has demonstrated
that MAAs are found widely in macroalgae [210-213].
While zooplankton and higher organisms cannot synthesise
these substances, they can take them up in their diet or from
associated microorganisms and incorporate them into outer
tissue cells where they protect the organisms from damage
by UV radiation [174, 214]. Sea urchins and other marine
herbivores use the same protective mechanism ([215] and
Sect. 5.4). In addition to MAAs, several cyanobacteria use
a different class of pigments called scytonemins to screen
UV radiation. These substances are effective UV absorbers
since they protect cyanobacteria on sun-exposed surfaces of
rocks, trees and buildings [216].

The concentration and number of MAAs in any given
organism are probably related to the potential for exposure
to damaging UV radiation such that macroalgae that are
adapted to surface waters synthesise higher amounts of
MAAs than at depth [213]. This conclusion is driven by
observations on the effects of exposure to UV radiation for
macroalgae growing at different depths, for example, UV-
induced inhibition in growth and photosynthesis occurred
in rhodophytes when grown in surface waters but not when
grown at a depth of 1.7 m [217]. The vertical distribution
of macroalgae in the coastal waters of Antarctica is also
strongly influenced by the penetration of solar UV radia-
tion [218]. Finally, there is a strong seasonal variability in
protective MAAs with low concentrations in winter con-
comitant with low stress from exposure to UV radiation
[219, 220].

Certain antioxidants also protect macroalgae from UV
radiation [221-224]. Although most of these compounds
absorb some UV radiation, they mainly provide protec-
tion by scavenging UV-induced reactive oxygen species.
For example, carotenoids perform this function in brown
macroalgae [223]. Among chlorophytes (green macroalgae),
some species such as Cladophora sp. rely on screening pig-
ments, whereas others such as Ulva intestinalis lack such
pigments and instead photo repair UV-B-induced DNA dam-
age [225]. Hence, a wide variety of photoprotective sub-
stances are produced by bacteria, and fungi as well as by
micro- and macroalgae, which suggests that they provide an
important and effective mechanism in aquatic organisms to
ameliorate the negative effects of UV radiation.
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Table1 An assessment of the biological effects on different stages of the life cycle of corals (see Fig. 9) as a result of exposure to UV-B radia-
tion, another stressor, or UV-B radiation and another stressor in combination

Life cycle stage Stressor Biological effect Species Reference
Adult (sessile) UV-B radiation No effect in coral host, decreased photo- Acropora muricata [228]
synthetic eficiency in symbiont
No effect in coral host decreased photo-  Pocillopora damicornis [230]
synthetic eficiency in symbiont
No effect in coral host reduced pigment  Seriatopora caliendrum [229]
concentration in symbiont
Increased water transpar-ency Coral bleaching Mixed, natural assemblage, Red Sea [3]
and peak temperatures
coincide with high UV-B
radiation
Microplastic degradation Decreased growth and food capture Lophelia pertusa, Madrepora oculata [231]
rates
Organic UV filters Coral bleaching and death Pocillopora damicornis, Seriatopora [161, 162]
caliendrum
Increased toxicity of organic ~ Coral death Acropora tenuis [173]
UV filters in combination
with increased temperature
Inorganic UV filters Coral bleaching Acropora spp. [167]
Reduced photosystem II activity Stylophora pistillata [168]
Gametes Phototoxicity of heavy fuel oil Reduced fertilisation success Acropora millepora [194]
Embryos (float- Phototoxicity of heavy fuel oil Fragmentation of embryos resulting in  Acropora millepora [194]
ing on water smaller larvae
surface)
Planula larvae  Exposure to UV-B radiation ~ No effect on larval survival, metamor-  Seriatopora caliendrum [229]
(free-swim- phosis or settlement
ming disper- Organic UV filters Bleaching, settlement failure, mortality ~ Pocillopora damicornis, Seriatopora [162]
sal stage) caliendrum
Phototoxicity of marine fuels reduced metamorphosis success Acropora tenuis [232]
Phototoxicity of heavy fuel oil Reduced survival, deformed larvae, Acropora millepora [194]

reduced metamorphosis success

5.3 Interactive effects of UV radiation and thermal
stress on corals

Tropical coral reefs, which are based on the symbiotic asso-
ciation between reef-building corals and symbiotic dinoflag-
ellates (Symbiodiniaceae), are highly diverse and economi-
cally important ecosystems. These ecosystems are naturally
exposed to high levels of UV radiation because of low solar
zenith angles and the natural thinness of the stratospheric
ozone layer over tropical latitudes, as well as the high trans-
parency of the water column over coral reefs. Therefore,
it is not surprising that coral reef-dwelling organisms have
evolved photoprotective mechanisms [208]. However, tropi-
cal dwelling corals often live near their upper thermal limit
[226], and therefore are particularly vulnerable to thermal
stress associated with increased sea surface temperatures as
a result of climate change. Increased sea surface tempera-
tures by 1 to 2 °C can cause coral bleaching [227]. Most
studies on the impact of UV radiation on coral-reef-dwelling
organisms have used the full spectrum of solar radiation or

combinations of artificial lamps, so the relative importance
of UV-B vs. other spectral bands is uncertain at present.
Assessments of recent findings on the interactive effects of
UV radiation and other stressors on corals are summarised
in Table 1 and discussed in more detail below.

5.3.1 Direct effects of UV-B radiation on symbionts versus
corals

It has been suggested that exposure to UV-B radiation has
a greater effect on symbionts than on the coral host. For
example, in the Indo-Pacific staghorn coral (Acropora
muricata), exposure to solar UV radiation decreased
photosynthetic eficiency in the symbiont but otherwise had
no effect on the holobiont (i.e., the integrated assemblage of
the coral, symbiotic microalgae, and associated microbiome)
[228]. Similarly, in the Indo-Pacific bush coral (Seriatopora
caliendrum), UV-B irradiation (295-320 nm) reduced
pigment concentrations of the symbiont but had no effect
on coral larval survival, metamorphosis, or settlement (life

13



Photochemical & Photobiological Sciences

stages illustrated in Fig. 9) [229]. For symbionts in another
Indo-Pacific species, the cauliflower coral (Pocillopora
damicornis), chronic exposure to solar radiation including
UV-B radiation reduced photosynthetic efficiency and
pigment concentrations of the symbionts [230]. Despite this
evident impairment of the symbionts, which in the long term
could lead to expulsion from the host, short-term (3-day)
exposure to solar and UV-B radiation did not significantly
increase symbiont expulsion beyond that occurring without
UV-B irradiation [230].

Symbiont expulsion from the coral host can lead to
bleaching. Due to climate change causing increased
sea surface temperatures, reports of coral bleaching are
becoming more common, therefore the negative impact of
UV-B radiation on symbiont health is a concern since it can
compound the effects of thermal stress as detailed in the next
section and increase coral bleaching.

5.3.2 Response to UV radiation and thermal stress

Climate change-associated thermal stress causes coral
bleaching (i.e., loss of symbiotic algae) and may be lethal
or, at the very least, affect metabolic processes including
photosynthesis, respiration, and calcification. The effects of
thermal stress are exacerbated by exposure to the naturally
high UV radiation levels characteristic of many tropical
coral reef environments [208]. Some coral reef-dwelling
organisms, such as the Caribbean octocorals Pseudoplexaura
crucis and Eunicea tourneforti [233] and the Indo-Pacific
scleractinian® coral Acropora muricata [228] have proven
to be resistant to the effects of UV irradiation alone or in
combination with thermal stress [233]. The presence of
UV-absorbing compounds such as MAAs in 4. muricata
[228] may provide protection against the damaging effects of
UV radiation as they do for other corals ([234], more details
in Sect. 5.4). However, the induction of bleaching in the
Indo-Pacific coral P. damicornis by thermal stress was the
same whether or not it was exposed to UV radiation [235].
The main effect of UV radiation in this coral (independent
of thermal stress) was to depress the nitrogen content of
organic matter that it released into reef waters [235].
Since this release is a major source of organic matter to
reef waters, UV radiation could cause significant changes
in the nutrient biogeochemistry of tropical reef surface
waters, resulting in higher C:N:P ratios. This imbalance
could lead to higher levels of nitrogen fixation by the coral
microbiome and other reef-dwelling organisms. On the other

# Octocorals and scleractinian corals resemble each other in general
appearance, but octocorals do not deposit a calcium carbonate-based
skeleton whereas scleratinian corals do. Also, octocorals have eight-
fold symmetry whereas scleractinian corals (also known as hexacor-
als) have six-fold symmetry.
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hand, exposure to low levels of artificial, full-spectrum UV
radiation (equivalent to 15 m depth on tropical coral reefs)
was shown to mitigate thermal stress and nitrate-induced
inhibition of photosynthesis by promoting the synthesis of
antioxidant compounds and MAAs in P. damicornis [236].
Thus, mild UV irradiation can protect corals against the
effects of other types of stress.

The impact of combined thermal and UV radiation stress
on tropical corals can be species-specific and depend on
whether photoprotective MAAs are produced by the symbi-
otic algae and are lost during bleaching, or are produced by
the host and retained even after bleaching [237]. Although
exposure to UV radiation in combination with thermal stress
generally has adverse effects on tropical corals, responses
and resistance to long-term damage appear to be species-
dependent. The interactive effects of UV radiation and
thermal stress add to the list of factors that are likely to
negatively affect the persistence of corals and impact spe-
cies distribution of tropical coral reefs as climate change
continues in the future.

5.4 Photoprotection in corals and invertebrates

Aquatic invertebrates use a range of photoprotective
mechanisms to offset potential damage by UV irradiation
including morphological changes, avoidance of exposure,
synthesis of antioxidant and photoprotective compounds
such as carotenoids and MAAs, and molecular defence
mechanisms such as activation of DNA repair mechanisms
and up-regulation of stress genes [238, 239]. Examples of
the latter are the expression of genes for heat shock pro-
teins and signalling kinases [239]. Suites of MAAs have
been detected in tropical reef-dwelling corals, which pro-
vide broad-band protection from damage due to UV irra-
diation [240]. Concentrations of MAAs tend to positively
correlate with exposure to UV radiation such that there are
documented decreases in depth, fluctuations with seasonal
cycles and experiments that manipulate exposures to UV
radiation [208]. However, MAA content in the estuarine-
dwelling anemone Anthopleura hermaphroditica, endemic
to Chile, did not fluctuate despite large seasonal variations
in UV-B radiation [241]. Instead, this anemone accumu-
lates antioxidants and phenolic compounds to protect it
from UV radiation. Overall, different mechanisms or com-
binations of mechanisms are used by aquatic organisms to
offset the deleterious effects of UV radiation.

Sea urchins, like other invertebrates, have developed
a host of protective strategies. These strategies include
the accumulation of photoprotective compounds (such
as MAAs and carotenoids), avoidance of exposure to
UV radiation, and other defence mechanisms [239]. In
addition to MAAs, sea urchins synthesise the “black”
type spinochrome (polyhydroxy-1,4-naphthoquinone),
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a UV-protective compound that is the most abundant
pigment in sea urchins associated with coral reef
environments [242]. Sea urchin embryos, long used as
model organisms to study the effects of chemical stressors
on marine organisms, are potential model systems for
also studying the effects of physical stressors such as UV
radiation including UV-B wavebands. Sea urchins play
an important ecological role as herbivores controlling
the biomass of attached (benthic) algae through grazing.
The most common impacts of exposure to UV radiation
in developing embryos of sea urchins are deviations in
skeleton formation and patterning, with damage being
dependent on cumulative exposure [239].

To summarise, tropical coral reef-dwelling organisms
have developed a wide range of strategies for adapting to
UV irradiation. However, there is still limited information
about how they respond to UV-B radiation in combination
with global change stressors. More information is needed
to predict how these organisms will respond in the future
and how that may affect the coral reef landscape.

5.5 Effects of UV radiation on zooplankton

including sub-lethal, mortality and defence
mechanisms

5.5.1 Exposure to UV-B radiation and fitness
of zooplankton

Experimental studies using lamps that mimic the full spec-
trum of solar UV radiation demonstrated that the lifetime
reproductive success of zooplankton (a proxy for fitness)
can be reduced by exposure to broad-band UV radiation
[243]. However, it is crucial to also understand how effects
on organismal fitness and survival vary across the UV spec-
trum. A type of action spectrum describing the variation in
zooplankton mortality due to exposure to different wave-
lengths of UV radiation, the biological weighting function,
has been previously defined for Daphnia [244]. Recent work
has shown that this function is also applicable to the mortal-
ity of a freshwater ciliate (Pelagodileptus trachelioides) due
to UV irradiation [245, 246]. For both Daphnia and the cili-
ate, short-wavelength UV-B radiation is the most effective at
causing mortality, similar to the wavelengths most effective
for damaging DNA and RNA (see action spectra discus-
sion in the COVID assessment, Bernhard et al. [89], this
issue). Collectively, these experiments illustrate that UV-B
radiation is detrimental to zooplankton and exposure leads
to reduced fitness.

UV radiation can also cause sub-lethal effects, such as
reduced feeding rates, reduced growth and morphological
changes in many organisms [247, 248]. These effects
have been previously documented in all types of major
zooplankton taxa [249-251], and in recent years include

reports on less studied taxa such as ciliates and crab larvae
[245, 252, 253]. Other recent examples of sub-lethal effects
include reduced body length, width and tail spine length in
juvenile Daphnia [254] as well as reduced moulting and
growth in Daphnia upon exposure to combined UV-A and
UV-B radiation [248]. Furthermore, a variable exposure
to UV radiation (combined UV-A and UV-B) mimicking
the natural situation with cloudiness led to lower fitness in
Daphnia compared to a constant exposure [255].

Defence mechanisms in zooplankton mitigate some of
the damage from UV irradiation, for example by repair
systems, photoprotection or avoiding surface waters during
times of high UV irradiance [214, 256-259]. However,
defences may come with some costs, e.g., a reduced predator
avoidance capacity [252, 253]. Recent studies illustrate that
the level of expression of these defences not only depends
on phenotypic plasticity but also on the evolutionary history
[260]. For example, Daphnia isolated from a high-UV
environment displayed intense UV-avoidance and induced
photoprotective pigmentation compared to individuals
of the same species coming from a low-UV environment
[260]. Furthermore, Daphnia was able to diminish the
negative effects of long-term, multi-generational exposure
to UV radiation by progressively altering pigmentation, life-
history and probably other types of defences [261]. These
transgenerational adaptations increased UV-tolerance and
reversed the effect of UV radiation on offspring production
within three generations. The overall outcome of exposure
to UV radiation in terms of effects on population sizes is
not known. Attempts have recently been made to model the
outcome of exposure to UV-B radiation on reproduction in
zooplankton [262]. However, the parameterisation of such
models using realistic biological weighting functions is still
lacking.

5.5.2 Exposure to UV radiation modulates zooplankton
interactions in the food web

Zooplankton respond to several challenges at the same
time, including exposure to UV radiation, predation risk,
and searching for food. An important way that exposure to
UV-B radiation can affect zooplankton is by modifying how
they respond to these other challenges. Predation risk is per-
ceived in several ways, for example by detecting the chemi-
cal signals (kairomones) emitted by an invertebrate predator.

In the trade-off between avoiding the effects of exposure
to UV radiation vs predation, avoidance of exposure to the
radiation was recently suggested to be the most important
factor, as shown for the zooplankton, Daphnia. Depth migra-
tion experiments show that two species (large and small)
avoided exposure to levels of UV-A and UV-B radiation
typical of surface waters by downward migration even when
that increased their vulnerability to a macroinvertebrate
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predator [263]. The presence of a surface visual predator
(fish) did not induce any deeper migration than that needed
to avoid UV radiation. On the other hand, zooplankton
reduced UV-avoidance to access food, showing that feeding
opportunities are favoured in the trade-off with avoiding the
damaging effects of UV radiation [264].

UV-avoidance is furthermore dependent on water
transparency. Reduced penetration of UV radiation into
the water column, which can be caused by factors such as
extreme precipitation events and smoke haze (Sect. 2.1),
reduces zooplankton migration to deeper waters [265-267].
However, a recent field study demonstrated that reduced
exposure to UV radiation created by smoke haze does not
always reduce zooplankton migration [268]. Despite the
lower risk of damage by UV radiation, zooplankton still
migrated downward during the day to avoid predation by
fish, illustrating the multiple challenges to zooplankton
that need to be considered in understanding food web
interactions. UV avoidance has also been studied in water
bodies at low latitudes where UV radiation is relatively high
year round. Evidence from these environments suggests
that zooplankton rely less on vertical migration and more
on other defences such as accumulation of photoprotective
substances to avoid damage due to exposure to UV radiation
[269]. It has been demonstrated multiple times that the
accumulation of photoprotective compounds in zooplankton
reduces the negative effects of UV radiation but increases
their vulnerability to fish predators that track their prey by
visually perceiving UV-absorbing pigments [256]. Recent
studies extend this knowledge, demonstrating the importance
of the composition of the fish community with a negative
association between photoprotective compounds and the
density of visual predators such as sticklebacks [270].

At larger geographic scales, changes in UV-transpar-
ency can lead to range expansions, modulated zooplankton
interactions (see above), as well as changes in community
composition [256, 271, 272]. More recently, zooplankton
predators such as the phantom midge larvae Chaoborus,
and the freshwater jellyfish (Craspedacusta sowerbii) have
been shown to be sensitive to UV radiation and mainly
invade habitats with low UV transparency [273, 274]. Such
invasions may increase with decreased UV transparency
(Sect. 2.1.1) and are expected to result in selective preda-
tion on certain species and changes in the composition of the
zooplankton community. These changes can have cascading
effects on other parts of the aquatic food web, including fish
stocks. Hence, changes in UV radiation combined with the
effects of climate change will lead to changes in species
interactions and the resulting food web structure.
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5.6 Harmful effects of UV-B radiation on fish

Exposure of fish to UV radiation, and particularly UV-B
radiation, has negative effects on physiology, behaviour,
morphology and in some cases leads to mortality of eggs,
juveniles and adult fish [275, 276]. The latest laboratory
studies illustrate this fact, showing that early developmental
stages of the Senegalese sole (Solea senegalesis) changed
pigmentation, behaviour, and reduced growth upon
exposure to UV radiation (combined UV-B and UV-A)
[277]. Additional sub-lethal and lethal effects have been
demonstrated in response to exposure to both UV-B and
UV-A radiation and in different life stages of many fish
species [275, 276]. These negative effects of UV irradiation
have been mostly observed in laboratory settings using
artificial radiation, while fewer examples exist in field
experiments using natural solar radiation. Thus, there is
a need to understand to what extent the laboratory-based
results are realistic and can be extrapolated to effects on
population sizes and yields in the wild and in aquaculture.
Furthermore, the UV lamps used in the laboratory need to
be selected with great care to exclude unrealistic shortwave
UV-B radiation (below 300 nm) and weighting exposures
with action spectra need to be carried out to ensure that
environmentally relevant doses are applied.

Laboratory studies also do not take into account that
fish have a number of mechanisms to avoid damage by UV
radiation in the natural environment including behavioural
avoidance, cellular repair mechanisms, accumulation of pho-
toprotective compounds (including pigments), and physical
barriers such as scales [275, 276]. One recent example of a
potential additional adaptation to avoid damage is the vari-
able buoyancy in eggs of several species that reproduce in
oceanic surface waters (Fig. 10). The embryos sank down to
greater depths when exposed to UV-A radiation and recov-
ered a surface position when released from UV-stress [278,
279]. Although the response is induced by UV-A irradiation,
in the ocean this mechanism would concomitantly reduce
exposure to solar UV-B radiation. In all, these findings sug-
gest that fish are negatively affected if exposed to UV radia-
tion but have a wide range of adaptations that can help to
mitigate damage due to such exposure.

6 Knowledge gaps

Based on this most recent assessment, we can identify sev-
eral important knowledge gaps, new and continuing. These
include:

* Models are needed that demonstrate the benefits to
aquatic ecosystems derived from the implementation
of the Montreal Protocol and the avoidance of large
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Fig. 10 Fish have several mechanisms to avoid UV-damage. Recent
laboratory studies have demonstrated that fish eggs can sink in
response to UV-A irradiation. a The diel expression of this in the
ocean helps to avoid potential damage from concomitant solar UV-B
radiation, since eggs will sink as UV-B irradiation increases. b This
mechanism is active in red snapper (Lutjanus campechanus), cobia
(Rachycentron canadum), and yellowfin tuna (Thunnus albacares).
On the right, a schematic of the experiment with eggs in tubes either
protected from (x) or exposed to (v') UV-A radiation (Figure redrawn
from [278, 279])

increases in incident UV-B radiation. Demonstrating
such benefits will help sustain commitments to the mul-
tinational treaty. A key knowledge gap for implementing
these models in the aquatic environment is defining more
spectral weighting functions that quantify the response
of a variable (e.g., virus inactivation) to exposure to UV
radiation as a function of wavelength. This gap has been
noted also in previous assessments [1]. Spectral weight-
ing functions are known for some biogeochemical pro-
cesses ([120] and references therein) and organismal
responses (e.g. coliphage inactivation [82], phytoplank-
ton photosynthesis [71], Daphnia mortality [244], and
others described in Sect. 3.2, 4.4 and 5.5.1). However,
there are many processes in the aquatic environment for
which information on spectral weighting functions is lim-
ited or unknown, including breakdown of oil contami-
nants, photoinactivation of pathogens and mortality of
various taxa. While the required investment of time and
cost has been a barrier in the past, a novel, light-emitting
diode-based, exposure system now makes it easier to esti-
mate spectral weighting functions for aquatic samples
[280]. Besides spectral weighting functions, models need
to take into account various feedbacks, UV adaptations
among organisms, and the interactive effects with other

factors. Progress on this front is possible using whole
ecosystem manipulations combined with models, such
as those described in Dur et al. [262], as long as those
models use realistic biological weighting functions (see
Sect. 5.5.1).

Improved methods for estimating UV transparency from
remote-sensing data will enable better estimates of expo-
sure to UV radiation in lakes around the globe (Sect. 2.1).
The Arctic is undergoing rapid environmental changes,
the effect of which includes the release of photoreactive
organic matter to surface waters as a result of permafrost
thawing. Photodegradation of dissolved organic matter
releases CO, and other greenhouse gases and impacts
its bioavailability, but there is a lack of agreement on the
magnitude of these processes and on their seasonal and
geographical variability (Sect. 3.4.1). This information
is crucial to predicting the extent of photochemical CO,
emissions in high latitude ecosystems and their variations
induced by changes in climate and UV radiation.

UV-B radiation should be included in more studies of
the effects of contaminants introduced into and/or are
affecting aquatic ecosystems due to human activities.
Particularly important is determining how UV radiation
affects the fate of microplastics and to what extent micro-
plastics pose a danger to aquatic ecosystems (see Jansen
et al. [145] this issue). Recent research assessed here also
shows the importance of UV radiation, including UV-B
wavebands, in dispersing and degrading oil pollutants,
which can then be phototoxic in the marine environment.
This topic has been under-appreciated in the past and is
an area that needs more attention in the future.

There is a need for more assessment of the environmental
impact and toxicity of UV filters. Considering that the
use of these filters in topical sunscreens is important in
preventing skin cancer, a recent report from the National
Academies of Sciences, Engineering and Medicine of the
United States [150] has highlighted the urgent need for
more studies of their environmental impact. This includes
whether impacts can be lessened by using inorganic or
“natural” organic filters.

More studies using solar UV radiation (vs artificial
sources of UV radiation) are needed to better assess how
the responses of fish to UV-B radiation affect fisheries
and aquaculture. Compared to studies on most other
groups of aquatic organisms, there are very few studies
of fish using ecologically relevant exposures to solar UV
radiation.
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7 Conclusions

Our assessment has shown that considerable knowledge
continues to be acquired about how solar UV-B radiation
impacts aquatic organisms and their ecosystems, whether
marine, estuarine, or freshwater. As documented in this and
previous assessments (e.g. [1]), exposure to solar UV-B
radiation most frequently has undesirable effects, such as
reduced productivity or survival, but in some cases, there
are desirable results (at least for humans), such as inactiva-
tion of pathogens. Given that most of the effects are nega-
tive, the large increases in incident UV-B irradiance that
have been avoided by adherence to the Montreal Protocol
(Bernhard et al. [27], this issue) can be viewed as being
largely beneficial to aquatic ecosystems and the services
they provide, supporting progress toward the Sustainable
Development Goals, especially SDG14 (Life Below Water)
[281]. While the world has avoided increased UV-B radia-
tion due to stratospheric ozone depletion, UV-B radiation
in the aquatic environment is nevertheless changing due to
global climate change and other anthropogenic effects such
as increased environmental pollution, both in the air and
water. Our current assessment shows that climate change
has variable effects on exposure to UV-B radiation, either
increasing or decreasing exposure in the aquatic environ-
ment (Sect. 2). All organisms have a set of adaptations that
enable them to reduce damage from UV radiation, but these
may not be as effective when combined with other stressors
such as increased sea-surface temperatures and ocean acidi-
fication. Moreover, other factors such as variations in tem-
perature and pH, and the presence of pollutants can increase
the sensitivity of organisms to damage from UV radiation
and impact biogeochemical processes (Sect. 3).

In summary, this latest assessment of the effects of UV-B
radiation and stratospheric ozone depletion on aquatic eco-
systems reflects a realisation of how effects increasingly
depend on the multi-faceted interaction between exposure
to UV radiation and changes resulting from climate change
and other anthropogenic activities. Minimising the disrup-
tive consequences of these effects on critical services pro-
vided by the world’s rivers, lakes, and oceans (freshwater
supply, recreation, transport, and food security) will not only
require continued adherence to the Montreal Protocol but
also a wider inclusion of solar UV radiation and its effects
in studies and/or models of aquatic ecosystems under condi-
tions of a future global climate.
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