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Abstract—This paper provides a deterministic channel
model for a scenario where wireless connectivity is
established through a reflection off a smooth planar surface
of an infinite extent. The developed model is rigorously built
upon the physics of wave propagation and is as precise as
tight are the unboundedness and smoothness assumptions on
the surface. This model allows establishing how line-of-sight
multiantenna communication is altered by a reflection off
an electrically large surface, a situation of high interest for
mmWave and terahertz frequencies.

I. INTRODUCTION

The wealth of unexplored spectrum in the millimeter
wave (mmWave) and terahertz ranges brings an onrush of
wireless research seeking its fortune at higher frequencies
[2]-[4]. The short range for which these frequencies are
most suitable, in conjunction with the tiny wavelength,
enable reasonably sized arrays to access multiple spatial
degrees of freedom (DOF) even in line-of-sight (LOS)
[5]. Precisely, LOS spatial multiplexing is made possible
by the rich pattern of phase variations of the radiated
field’s spherical wavefront, which mimics the diversity
richness of multipath propagation at lower frequencies.
This potential has unleashed much research activity
on wide-aperture multiple-input multiple-output (MIMO)
communication over LOS channels [6], [7].

A downside of these high frequencies is blockage
and lack of diffraction around obstacles, which may
render LOS MIMO vulnerable to interruptions. This
naturally raises the interest in studying whether
wide-aperture MIMO could also operate through a
reflection, capitalizing on the availability in many
environments of interest of surfaces that are electrically
(i.e., relative to the wavelength) large.

This paper seeks to examine MIMO communication via
reflection off a smooth planar surface of infinite extent.
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To this end, one possibility would be to apply ray-tracing
tools [8], but the accuracy to which the environment
should be characterized to prevent artifacts is not known
a priori. Also, ray tracing does not provide analytical
insights into the underlying propagation mechanisms,
which are essential to array optimization. Instead, we
derive a deterministic physics-based scalar channel model
that is valid irrespective of the communication range and
embodies other models as particular cases.

A. Contributions

Although an actual reflecting surface is necessarily
finite and with some degree of roughness, at sufficiently
high frequencies it may be reasonably regarded as
infinitely large, as the impact of diffraction vanishes.
Oppositely, the roughness is emphasized at high
frequencies as irregularities on the surface become
comparable to the small wavelengths. The latter aspect
is not considered in this paper, left for future work.

Motivated by the extensive physics literature on the
interaction between a plane wave and an infinite smooth
surface [9], [10], we start by expanding the 3D field
generated by an arbitrary source in terms of plane
waves [10], [11]. Fundamental principles describing the
reflection and transmission phenomena at the surface
can then be applied to each plane wave separately
and combined to obtain the overall field at any point
[10]. An LOS channel is seen to be the cascade of a
low-pass filter that cuts off evanescent waves [12], and a
reverse-bowl-shaped filter imposed by the wave equation
[13]; a reflection off a surface adds an additional filtering
stage that augments the model in [12], [13] with backward
propagation. This paper can also be seen to complement
the zero-mean stochastic model derived in [14], with their
conjunction yielding a Rician fading model.

After discretization through spatial sampling, a
deterministic description of the channel is obtained. This
is finally used to numerically evaluate the eigenvalues,
DOF, and spectral efficiency for the purpose of MIMO
communication. Altogether, the contributions are:

o Starting from first principles, a channel model is
developed that builds upon the physics of wave
propagation. The analysis is as precise as tight are
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the unboundedness and smoothness assumptions on
the surface.

e Progress is made, in the wake of [12]-[14],
towards a comprehensive physics-based modeling of
wireless propagation on which signal processing and
communication theorists can test their algorithms.
Propagation is described in terms of spatial Fourier
transforms and linear system theory, notions central
to both communities.

o Classical electromagnetic results such as the image
theorem are revisited. These have fundamental
implications on the optimization of antenna spacings
as a function of the signal-to-noise ratio (SNR) and
they allow extending results available for a pure LOS
channel [15], [16] to a reflection channel.

B. Outline and Notation

The manuscript is organized as follows. Sec. II revisits
the physics behind plane-wave reflection off a smooth
planar surface relying solely on linear system theory
and Fourier transform. In Sec. III, the Fourier spectral
representations of the LOS and reflected transmissions
are derived. The connection with the image theorem
is established in Sec. IV, whereas the channel impulse
response follows in Sec. V. After discretization, the
channel response is used in Sec. VI to assess the MIMO
performance via reflection. A comparison with ray-tracing
is presented in Sec. VII. Final discussions and possible
extensions are set forth in Sec. VIIL

We use upper (lower) case letters for spatial-frequency
(spatial) entities while Jy(-) is the Bessel function of the
first kind with order 0, (z)™ = max(z,0), and 6(-) is the
Dirac delta function.

II. PLANE-WAVE INTERACTION WITH MATERIALS

Narrowband propagation is considered at angular
frequency w in a 3D medium with an inhomogeneity
created by a z-oriented planar object of infinite thickness,
dividing the medium into a region 1 {r, < 0} (free space)
and a region 2 {r, > 0} (material). The electromagnetic
properties are constant in each of the two ensuing regions,
characterized by the refractive indexes n; = 1 and
ny € C with Re(ng) > 1 and Im(ng) > 0 modeling the
phase variations and absorption losses occurring inside
the material [17, Sec. 4.2]. The wavenumbers in the two
regions are k1 = 27w/ and

Ko = NgoK1. (l)

A. Dielectric Half-Space

We first consider the xz-plane containing the direction
of propagation and the surface normal, namely the plane

1 -

r r T ™ ™ T+ ™ —
-+ ny = oo (perfect conductor) P,
-—-ng = 2.55 + 0.084¢ (concrete) o
0.8 H#n2 = 1.98 4 0.083i (floor board) i J
—a—ny = 1.5 4 0.0017 (plaster board) T
_ 06 ’_,_».,.,— ]
s | T
[ I
0.4 7
0.24 7
0 . . . . . . . .

0 10 20 30 40 50 60 70 80 90
0; (deg)
Figure 1. Fresnel reflection coefficient (magnitude) as a
function of 6; for various refractive indices.

of incidence.! A point in this plane has coordinates

(re, 7). An upgoing incident plane wave
Ci(ry. 1) = Bi(8) =it )

with amplitude F;(6;) traveling in region 1 from an angle
0; relative to the surface normal impinges thereon. As a
result of interaction with the surface, this field creates a
downgoing reflected plane wave in region 1,

@r(rm rz) — Er(er) ejm(m sin §,—r, cos Gr)7 (3)

with amplitude F,(6;) and angle 6, and another upgoing
transmitted plane wave in region 2,

et(,r,z7 Tz) — E[(at) ejﬁz(’l‘x sin O+r. cosG[)’ (4)

with amplitude Ei(6,) and angle 6. Derivable from the
boundary conditions, Snell’s law dictates that reflection
occurs at the specular angle 6, = 6; while transmission
is specified by sin(6;) = sin(6;)/n2 [9, Eq. 1.5.6]. The
complex-valued plane-wave amplitudes can be written in
terms of the Fresnel coefficients R(0;) = E./FE; and
T(0;) = E/E;, specifying the fraction of incident field
reflected from or transmitted across the surface, for every
incident angle. Their magnitude is always less than unity,
and they satisfy the unitarity relation 7'(6;) = 1 + R(6;)
due to conservation of energy.

Multiple reflections that might arise inside an object
of finite thickness would make the interaction with the
surface more involved [10, Ch. 2.1.3]. However, these
never occur at frequencies high enough such that the
material thickness is much larger than the wavelength,
making the reflection phenomenon highly predictable and
suitable for array optimization, as will be seen.

!'This plane can always be obtained by rotating the Cartesian reference
frame opportunely about the z-axis.
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The complex-valued Fresnel reflection coefficient is
given by [18, Eq. 7.4.2]°

(0 ) COS — A/ N5 — SIH (5)
1 COS \ /s — SIH

whose magnitude is plotted in Fig. 1 as a function of
0; for various dielectric materials [19]. Total reflection
is achieved by a perfect conductor, which behaves as a
mirror. Other materials behave as perfect conductors only
at a grazing incidence. In general, denser materials reflect
energy better and, for a given material, close-to-grazing
incidences experience higher reflections than those near
the normal.

B. Linear-System-Theoretic Interpretation

We now deviate from physics and provide a different
viewpoint on the interaction mechanism with the surface;
this perspective relies only on linear system theory
and Fourier transforms, key results in the toolbox of
communication theorists.

The propagation directions of the incident, reflected,
and transmitted plane waves may alternatively be specified
by the wavenumber coordinates

(Ka, £K12) = (K1 sin6;, k1 cos ;) (6)

(K, £22) = (Ko sin by, ko cos 6;) @)

satisfying the dispersion relations x2 + k2, = k2 for i =
1,2. By means of (6), the plane waves in (2) and (3) can
be seen as the 2D Fourier harmonics

ei(ry,r2) = Ei(ky) pA(Fawtr1:2) ®
er(Tzﬂ“z) = Er(ffr) ej(f”»mw—mzz)7 ©)

which are functions of the spatial-frequency variables
(Kz, K12). The same holds for (4), expressed as

= Ei(ky) eA(Fattr2z2)

elry, ) (10)

for (K, ka,). The connection with Fourier theory that
the above change of variables establishes enables a
linear-system-theoretic interpretation of the reflection and
transmission phenomena, with the focus henceforth being
on the reflection.

The response to a harmonic input at spatial frequency
(Kz, K12) 18 another harmonic output at the same spatial
frequency—up to a change of sign in x;, due to the
reflected wave traveling in the opposite direction—whose

2For every angle 6; there are two linearly independent plane waves
being the solutions of the two scalar wave equations characterizing the
transverse electric (TE) polarization, where the electric field is parallel
to the surface, and the transverse magnetic (TM) polarization, where
the magnetic field is parallel [10, Ch. 2.1]. We concentrate on the TE
equation as the TM’s is obtainable by invoking the duality principle.
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Figure 2. Scalar wave propagation in a 3D isotropic
and inhomogeneous medium. View from the plane of
incidence.

complex amplitude is the product of the input’s amplitude
and the Fresnel spectrum, given by [10, Eq. 2.1.13]

R1z — R2z

K1z + K2z
for dielectric materials; this follows from (5) after a
change of variables to wavenumber coordinates while
using (1).
Remarkably, a behavior of this sort characterizes a
linear and space-invariant (LSI) system, which is fully
described by its wavenumber response R(k,) for any .

III. PLANE WAVE SPECTRAL REPRESENTATION

Consider now every possible vertical plane obtainable
by rotating the xz-plane of incidence (i.e., ¢; = 0) about
the z-axis by an angle ¢; € [0, 27). This brings into play
other variables in the spatial and wavenumber domains,
which we embed into the vectors r with coordinates
(rz,ry) and Kk with coordinates (K, ky).

The field e;i(r,r,) radiated by a source of electric
current j(r,r,) is described exactly by an integral
superposition of complex harmonics of different
amplitudes and spatial frequencies via the Fourier (plane
wave) spectral representation [10], [11]. Precisely, for a
source enclosed within a sphere of radius 0 < Ry < Dy
(see Fig. 2),

T dK
k)™ r, < —Ry
€i TTZ = // ( )2
// B (k ew( S e h
(12)

with complex-valued amplitudes

Ei(ﬁ) _ K1 Ji(K’) e:i:jfclzrz

1
5 L 13)
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specified by the source’s spectrum J4 (k) obtained via a
3D Fourier transform of j(7,r,) evaluated at k, = +kK1,,
ki, being defined as

Kiz = /K7 = [[8lI?,

for : = 1, 2. Thus,
Ji(”):/// j(s,s.) e i sk m=) gogs . (15)

given 11 ~ 1207 as the wave impedance of free-space.

The reflected field e, (r) follows from the linearity
of the spatial filtering operation applied by the surface
and the delay property of the Fourier transform, as the
surface is placed at an arbitrary distance Dy from the
source, along the z-axis; see Fig. 2. The Fourier spectral
representation of e,(r) is therefore

(14)

7 Bt )Rl s) e (r:—2D0) e _AE

arr) = [ EFwRG) e

(16)
with R(k) the Fresnel spectrum in (11) and kq, as
defined in (14). Physically, the reflected field is created by
superimposing the interactions with all possible incident
contributions on the plane of incidence and for all possible
vertical planes. With respect to an incident plane wave,
a reflected plane wave exhibits an extra phase shift
that accounts for the round-trip delay accumulated by
the incident wave during the travel to the surface and
back, along the z-axis. This effect can be regarded as a
migration of the incident field and is directly connected
to the image theorem, as discussed in Sec. IV.

1V. IMAGE THEOREM
Plugging (13) into (12), the incident field in {r, > Ry}
is
k1M1 > J—‘r(K’) '(NTT‘-&-H r ) dK
; , — ej 1272
o)== [ )2

where J, (k) is given by (15). Similarly, the reflected field
in (16) can be rewritten as

K CI(K) (kTroryr) R
v = [ () —

where

a7

(18)

Ji(k) = J4 (k) é™1=2P0 R(k). (19)

Notice that (18) and (17) have the same form. Hence,
Ji(k) may be regarded as the Fourier spectrum of a
fictitious source j.(7,7,). For R(k) = —1, the reflected
field in (18) may be reproduced by replicating the source
at r, = 2Dy, which accounts for the field migration to the
surface and backward. This is the image theorem, whereby
the reflection elicited by a perfect conductor is equivalent
to a mirror image of the source [20, Sec. 4.7.1]. As an

example, for a point source j(r,r,) = 6(r)d(r.), i.e., for
J+ (k) = 1, applying Weyl’s identity [10, Eq. 2.2.27]

k1 |l(rlr D)l i oo j(kTr+rizlr:])
eizi// ik )
H(rv ‘TZD” 27 —00 Riz
from (18) we obtain
er(rr) = i G, s, 0,2D0) Q1)
47
where
ejnl||(rfr’,rzfr’z)|\
G(r,r.,r' ) = (22)

dm||(r = v/ re =)

is the Green’s function describing a spherical wave
generated at (7/,r,) and measured at (r,r,). Hence,
gi(ryry) = 8(r)d(r, — 2Dy).

For arbitrary materials, j.(r,r.) is obtained from the
spatial convolution

j&rﬂz)zt//a)j&urz—QI%)r@u—u)du (23)

of the image source and the impulse response of the

surface,
)= [ Rt
r(r) = . K Gn?’

which is defined as the 2D inverse Fourier transform of
R(k) in (11). The azimuthal dependance of r(r) can
be eliminated by evaluating (24) at (||r||,0), which is
possible due to the circular symmetry of R(k).

From (23), we infer that the spatial filtering applied by
the surface creates a blurred image of the source. This
effect vanishes in perfect conductors, recreating a perfect
image. For a point source, j.(r,r,) = r(r)d(r, — 2Dy),
r € R%, modeling the impressed currents induced by the
source on the entire surface.

The spatial filtering simplifies when the surface is far
enough from the source that the reflected propagation
occurs in the paraxial regime. Then, R(k) is roughly
constant for all possible incident angles and given by
the complex material reflectivity [9, Sec. 1.5.3]. Due
to the impulsiveness of the reflection mechanism under
the paraxial assumption, the image source becomes a
weakened (and phase-shifted) version of the original
one, which is the premise of ray-tracing algorithms.
However, this need not be the case in wide-aperture
MIMO, which rests on the range being short; this
aspect is further expounded in Sec. VII. The implications
on the optimization of antenna spacings in MIMO
communication are discussed in Sec. VI.

(24)

V. CHANNEL IMPULSE RESPONSE

A complete description of what unfolds in region 1 is
obtained by combining all contributions into

6(’!’,1"2) = Gi(T,TZ) + er('r,rz) (25)
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. | | ey
// (Eif(,{)eﬂmzrz + EiJr(n)R(n)e*sz(Tr?Do)) e“‘“ﬁ r, < —Rp
™
e(r,r,) = ey dK 0
. H i T
5 (on?
I€12771 ]lD(I‘é) (671'/{12(7“2752) +R(H)67jﬁlz(7’z+3272DO)> r, < —Rp
H(K,; r, Sz) _ ; ]llil(;) (30)
ki i (ejfilz(rz_SZ) + R(n)e‘j“”(rﬁ‘gz_QDO)) Ry <71, < Dy
2 K1z
0 0
) r. < =Ry
1 (R k)ei2r1=Do 1)
H(k, ) = 500y L2 08)) AR .

2

Riz (

R(k)el?m=Do

1 0
) Ry <r, <Dy

whose expression is given by (27) after substituting (12)
and (16). The input-output relationship between j(s,s)
and e(r,r,) is the spatial convolution [14]

e(r,r,) = ///00 j(s,s,)h(r,r,,s,s,)dsds, (28)

where h(r,r,,8,s,) is the channel impulse response.
Combining (27), (13), and (15), the channel response can
be written as the 2D inverse Fourier transform

hir —s;r,,8,) = // H(k;r,,s,) ik’ (r=s)

dk
(2m)?
2
of H(k;r,,s,) in (30). Here, the integration domain
is practically limited to a disk D of radius k; =
27/, correctly showing the low-pass-filtering behavior
of the wireless propagation [12], [14], which is then
converted into a functional dependence through an
indicator function. The reflected channel is space invariant
over any pair of parallel z-planes. This extends to any pair
of parallel planes, not necessarily z, for an LOS channel.

The space invariance is a direct consequence of the

unboundedness and smoothness of the reflecting surface
and enables a linear-system-theoretic interpretation of
the reflection and transmission phenomena. Precisely,
communications between any two different z-planes
cutting source and receiver can be regarded as an LSI
system with the wavenumber response in (30). There
are three main terms in (30), plus a phase shift due to
migration, that may be interpreted as the cascade of:

o First, 1p(k), a low-pass filter introduced by the
migration operation [12], [14].

o Then, 1/k1., which confers a reverse-bowl behavior
to H(k;r.,s,) and is directly attributable to the
wave equation [13], [14].

« Finally, R(x) models the reflection. This depends on
K via ki, in (14), hence it is circularly symmetric in

the wavenumber domain, which is instrumental to
devise an efficient numerical procedure to generate
channel samples (see Appendix).

The space-invariant channel in (29) generated by a
specular reflection is obtainable as a particular instance
of the double 2D Fourier transform [14, Sec. III]

0o
h(T,T‘Z,S,SZ) = //// H(kv’Q;TzaSz)
—0
k"

dk dr

: o
. T —jK S 31
“ e O
of the wavenumber response
H(k,l’\?;Tz,Sz) = ¢H(ka7ﬂz)H(k7H)¢(Kﬂ Sz), (32)

given ¢(k,s.) = (e =5 em1:5:)" The above is

parametrized by the wavenumber matrix

i) O

il et

that models the coupling between every input spatial
frequency k and every other output spatial frequency k.
It can also be regarded as an angular response mapping
every incident plane wave traveling along (, +r1,) into
every other receive plane wave from (k,=+k1,). The
convention adopted for the entries of (33) is that the
first and second subscripts refer, respectively, to received
and incident plane waves (each one being associated with
upgoing or downgoing waves).

We next find the parameterization of H(k, k) that
models the scenario in Sec. III. By inspection, comparing
(29)—-(30) against (31), yields (34). The entries of
the angular matrix are impulsive because incident and
received plane waves are in one-to-one correspondence:
each incident wave turns into a received wave with
specular direction, as specified by Snell’s law.
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Receiver

Surface

Image
source

Figure 3. ULAs separated by D and equipped with
N; = N; = 8 antennas with spacing d. Arrays have
arbitrary orientations J, and ¢, with respect to the
z-axis. The clear and solid circles at source and receiver
indicate the antennas and their projections onto the x-axis,
respectively. Antennas are connected either via a LOS or
a reflected channel off a z-oriented surface. We denote
by 6y the angle formed by the surface normal and the
geometrical path connecting the centroids of the image
source and receiver.

Generally, the surface of a material object may appear
as either smooth or rough depending on the frequency.
A rough surface at microscopic level reflects every
impinging plane wave off multiple directions creating
a diffuse reflection spectrum, typically centered around
the specular direction. These surface irregularities are
accounted by a non-impulsive H (k, ) in (32), whose
computation is left for future work.

VI. APPLICATION TO MIMO COMMUNICATION

Let us now apply the developed model to evaluate the
channel eigenvalues, DOF, and spectral efficiency.

With N, transmit and NV, receive antennas, the channel
matrix H € CN*Ne is obtained by sampling the impulse
response at the antenna locations, [H],, , = h(7m,, S5)
form=0,...,N;—landn =0,..., N;—1. The transmit
array is centered at the origin whereas the centroid of
the receive array is at v = (704, roy,T0z). An efficient
numerical generation procedure for H is provided in the
Appendix.

Let Nyin = min(Ny, Ny) and Nyax = max(Ny, Ny).
We consider uniform linear arrays (ULAs) at 57.5 GHz
(see Fig. 3) under the proviso that those ULAs
are substantially shorter than their separation range,
the so-called paraxial approximation, so we can
leverage results available for LOS channels [15], [16].
The transmitting and receiving ULAs have arbitrary
orientations 1, and ¢, with respect to the z-axis.

We hasten to emphasize that the reliance on the paraxial
approximation is confined to the production of benchmark

results for LOS MIMO, with our channel model being
valid regardless. The frequency, in turn, is motivated by
mmWave applications [2] and by availability of refractive
indices for most common materials [19].

A. Parallel Arrays Optimized for LOS Transmission

Consider parallel ULAs aligned with the x-axis, with
Ny = N, =28 and antenna spacing d. The range is
D = 10 m whereas the surface is at Dy = 15 m. First,
we validate the model in LOS, for which the closed-form
solution in (22) is available. The channel matrix obtained
by sampling (22) is compared to the LOS component in
our model, derivable after an inverse Fourier transform of
the first term in (30), the LOS term, according to (29),
followed by spatial sampling. Setting

d(D) = \/AD/Nmnax,

renders H a Fourier matrix and is optimum at high SNR
[5], [15]. The normalized eigenvalues of HH", \,(H),
are plotted in Fig. 4. The perfect match validates the
numerical procedure in the Appendix for this LOS setting.

Then, we validate the model under perfect reflection.
To this end, the channel obtained by imaging the source
is compared against the one associated with the perfect
reflection in our model; the latter is obtained by plugging
the second term in (30) with R(k) = —1 into (29) and
sampling.

The eigenvalues of the reflected channel matrix are
further shown in Fig. 4 for different materials. These
undergo two effects relative to their LOS brethren:

(35)

e Power loss caused by the longer range and by the
reflection of only a share of the incident power, with
dense materials and shallow angles reflecting better.

o Spatial selectivity due the antenna spacing in (35)
being suboptimally small for the longer range of the
reflected channel.

We now gauge the capacity with channel-state
information at the transmitter, which equals [21], [22]

C(H,SNR) = log, | 1+ <y - > AH(H))
n=1 ’ ( )\n(H)
(36)

where v is such that 22[21 (v— 1//\n(H))+ = SNR
while ij;“l“ A(H) = N:N,. At any given SNR,

C(SNR) = maxg C(H,SNR) satisfies [15], [16]

SNR NrNt)

C(SNR) < plog2<1+p

max
pE€{1,2,...,Nmin}

(37
with the upper bound corresponding to p nonzero
eigenvalues equal to N, N,/p and to the SNR-dependent

antenna spacing

d(D,SNR) = \/n(SNRIAD,/ Ny,

(38)

Authorized licensed use limited to: New York University. Downloaded on May 22,2023 at 13:46:07 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3232742

7
0 0
4»—————0——-_“
SR e e S S e st ST TRy Sy
L AR 3 -10 ]
g e \ g
~—-20 B Z 20f .
= . =
N i |
£ 301 —1os NI £ 30 —Los
& o Green function ;‘32 o Green function
/3 -40 F|-+ ny = oo (perfect conductor) b i3 -40 H-+ ny = oo (perfect conductor) q
¢ Image theorem ¢ Image theorem
gL = 2.55 + 0.084i (concrete) N | sl T 2.55 4 0.084¢ (concrete) i
ny = 1.98 + 0.083i (floor board) \ ny = 1.98 + 0.083¢ (floor board)
—4—ny = 1.5+ 0.0017 (plaster board) AN —a—ny = 1.5 4 0.0017 (plaster board)
-60 T T T I : -60 T T T I I I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Eigenvalue number

Figure 4. Normalized channel eigenvalues for various
materials. Parallel ULAs separated by D = 10 m with
spacing d(D) in (35).

N
o

T T
—==LOS (upper bound)
—LOS

o Green function
H=+ ny = oo (perfect conductor)

¢ Image theorem
-—-ng = 2.55 + 0.084i (concrete)

ny = 1.98 + 0.083: (floor board)

—a—ny = 1.5 4 0.0017 (plaster board)

w
o

N
o

10

Spectral efficiency (b/s/Hz)

Figure 5. Spectral efficiency as a function of SNR for
various materials. Parallel ULAs separated by D = 10 m
with spacing d(D, SNR) in (38).

for a fraction 7(SNR) = p(SNR)/Nupin of the Ny,
potential DOF. Thus, n € [0, 1] with » = 1 at high enough
SNR. The capacity C(H,SNR) is reported in Fig. 5 for
the antenna spacing, d(D, SNR), that is optimum for the
LOS channel at every SNR. With respect to the LOS case,
the capacity of the reflected channel experiences an offset
(power loss, due to the longer range) and a reduced slope
(DOF loss, due to the spatial selectivity).

B. Parallel the

Transmission

Arrays  Optimized for Reflected

While the power loss is inevitable, because of the longer
range, the spatial selectivity can be corrected by tailoring
the antenna spacing to the equivalent LOS transmission
from the image source. To this end, recall from the image
theorem that the reflected channel can be regarded as an
LOS channel with augmented distance D. > D; in the

Eigenvalue number

Figure 6. Normalized channel eigenvalues for various
materials. Parallel ULAs separated by D = 10 m with
spacing d(D) for the LOS channel and d(D.) for the
reflected channel.
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Figure 7. Spectral efficiency as a function of SNR
for various materials. Parallel ULAs separated by D =
10 m with spacing d(D, SNR) for the LOS channel and
d(D., SNR) for the reflected channel.

setting of Figs. 4 and 5, D. = 2Dy — D. For a perfect
conductor, this alone justifies the choice of an antenna
spacing equal to d(D,). The argument is somewhat more
involved for arbitrary materials, due to the distortion
introduced by reflection, but it ultimately leads to the same
observation as illustrated in Fig. 6. Numerically, this is
supported by the invariance of the curves for the materials
in Fig. 4. Physically, it is explained by the paraxial
approximation, whereby the field has an approximately
constant wavenumber response in magnitude. Hence, the
reflection has an approximately multiplicative effect on
the channel impulse response in (30) and the whole
interaction phenomenon with the surface is described by
the reflectivity coefficient, R(y), which is derivable from
(5) after setting 6; = 6y with 6y as per Fig. 3.

Similarly, the eigenvalues of the reflected MIMO

Authorized licensed use limited to: New York University. Downloaded on May 22,2023 at 13:46:07 UTC from IEEE Xplore. Restrictions apply.

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3232742

8 Y
\
\
7 '\\‘
\\

—~ 6 R \ b
m N
= Al L i |
Q = \
= al . |
= A
< \
A~ \

3+ LN . ]

-+ ny = oo (perfect conductor) \
415 e = 2.55 4 0.0847 (concrete) ] \
ny = 1.98 + 0.083i (floor board) 21—ros e —
—a—ny = 1.5 4 0.0017 (plaster board) —-—-ny = 2.55 + 0.084i (concrete) \
-120 1 . 1 ; ; T | | | \
15 10 5 0 2 4 6 8 10 12 14
D (m) Dy — D (m)

Figure 8. Pathloss as a function of D for different
materials at normal incidence.

channel HH" are obtained by scaling the LOS
eigenvalues uniformly by |R()|>. From (5), for the
chosen materials, setting 6; = 6y yields a scaling of
7.19 dB (concrete), 9.63 dB (floorboard), and 13.98 dB
(plaster board). These values describe the gap in Fig. 6
between the eigenvalues of the reflected channel for
various materials and those of a perfect conductor. The
additional gap to the LOS channel is due to the enhanced
range, a loss of 6.02 dB in our setting.

For completeness, Fig. 7 shows the spectral efficiency
corresponding to the eigenvalue distributions in Fig. 6.
With respect to Fig. 5, the antenna spacing is d(D, SNR)
for the LOS channel and d(De,SNR) for the reflected
channel, which lead to the same DOF.

C. Power Loss and Spatial Selectivity for Parallel Arrays

We have seen that the power loss is determined by the
additional range and by the share of incident power not
reflected by the surface. This is constant over the arrays
themselves as amplitude variations thereon are negligible
with the proviso that propagation occurs in the paraxial
regime. From the image theorem,

5= 170 ()

where D = 2Dg — D and R(0) = (1 — ng)/(1 + na).
In Fig. 8, § is plotted as a function of (Dg — D) for
different materials. The interface is at Dy = 15 m from
the source, while the range between receiver and surface
varies accordingly to (Do — D).

Receiver motion away from the surface, if unaccounted
for, leads to a decreasing stepwise function of D — D, €
[0, Dy]; this is shown in Fig. 9, where the DOF equal the
number of eigenvalues that are at most 40 dB below the
maximum. Correcting the antenna spacing as a function
of D prevents this decrease.

(39)

Figure 9. Number of DOF as a function of (Dy — D)
when the material is concrete. Parallel ULAs.

-90 T T T
-+ ny = oo (perfect conductor)

L —-=-ny = 2.55 4 0.084: (concrete)
O5F T T T e — o w ny = 1.98 4 0.083i (foor board) [{
= ~|—4—ny = 1.5+ 0.001¢ (plaster board)

Pathloss (dB)

20 30 40 50 60 70 80
0; (deg)

Figure 10. Pathloss as a function of 6, for various
materials. Oblique incidence with the receiver at rg, €
[0,100] m and ro, = 10 m.

D. Non-Parallel Arrays

Non-parallel ULA configurations arise either when the
receiver is shifted along the x-axis, creating an oblique
incidence (6y > 0), or when arrays are oriented differently
in elevation (¥, # ¥;); see Fig. 3. The relative azimuth
angle is set to zero, as it is immaterial to ULAs [16]. With
the focus on oblique incidence and its impact on power
loss and spatial selectivity, the ULAs are aligned with the
xr-axis (Y = ¢ = 0).

First, let us consider the power loss. Due to rotational
symmetry about the x-axis, the xz-plane can be selected
without loss of generality. The pathloss in (39) generalizes
to arbitrary receive positions when using

2Dg — 19>
cos(fp)

and R(6y), which are parametrized by the incident angle

De(o) = (40)

2Dg — ro.

41
/DT £ 1Dg(Do — o) @b

0y = arccos
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Figure 12. Normalized channel eigenvalues for various
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ro = (1,4,10) m (hence, ¢ = 5.3° and ¥, = 2.8°). The
antenna spacings are d(D,SNR, d) for the LOS channel
and d(De, SNR, ¥,) for the reflected channel.

Fig. 10 depicts § for various materials. The receiver is
shifted along the z-axis on the interval 7o, € [0,100] m
with 7o, = 10 m such that D = (r2, +r2,)"/2.
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Figure 13. Spectral efficiency as a function of SNR
for different materials. Non-parallel ULAs with spacing
d(D,SNR,¥) for the LOS channel and d(D.,SNR,d.)
for the reflected channel.

Second, we turn to spatial selectivity. Consider oblique
incidence on a vertical plane, not necessarily the xz-plane.
Its projected views on the yz-plane and on the xz-plane
are illustrated in Figs. 11a and 11b. For the side view in
Fig. 11b, we define

2
D=D/y/1+ <T0y> (42)
Toz
_ Yy
bo=n\1+ (5pr ). @

which are obtained by projecting their counterparts D
and D, onto the xz-plane; see Fig. 1la. As sketched
in Fig. 1lc, shifting the receiver along the x-axis is
equivalent to rotating the transmitting and receiving ULAs
with respect to the x-axis by an angle

¥ = arccos (TOZ/ﬁ) (44)
for the LOS channel, and by another angle
2Dy — 1oz
e = arccos<0,\ 1o ) (45)
D,

for the reflected channel. Unlike the power loss, spatial
selectivity can be corrected by tailoring the ULA spacing
opportunely [16]. To this end, for the LOS channel,

d(D, SNR)
cos(d)

with d(D,SNR) the optimal antenna spacing for parallel
ULAs in (38) whereas, for the reflected channel,
d(De, SNR, ¥,) with D, in (40) and 9. in (45). Compared
to parallel ULAs, non-parallel ULAs have antennas that
are spaced further apart due to the division by cos()
in (46). The potential DOF thereby shrink for ULAs
tilted sideways. At high SNR, since n(SNR) = 1 in

d(D, SNR,9) = (46)
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Figure 14. Spectral efficiency as a function of the array
apertures over equivalent distance ratio at SNR = 0 dB
when the material is concrete. The antenna spacing is
optimized for the reflected transmission.

(38), d(D,SNR) reduces to d(D) in (35) leading to
full-rank channel matrices for the LOS and reflected
channels. This property is validated in Fig. 12 for an
z-oriented ULA located at ro = (1,4,10) m, i.e., for
¥ = 5.3° and Y. = 2.8°. Finally, the spectral efficiency
with ULA spacings optimized at every SNR for the LOS
and reflected transmissions is also shown in Fig. 13 for
different materials.

VII. IMPLICATIONS FOR RAY TRACING ALGORITHMS

NLOS connectivity is typically established via multiple
reflections involving possibly distinct materials and
orientations. Analysis becomes unwieldy in such general
settings and the recourse are numerical algorithm such
as ray tracing [17]. Our setup provides insights into the
mechanisms involved at each stage of reflection.

Our exact channel model describes the reflected
propagation as an LSI filtering, whereas the ray-tracing
model regards the convolving response as an impulse
weighted by the reflectivity coefficient in (5) at 6; = 6.
To appreciate the difference between the exact and the
approximated method (ray-tracing) one should increase
the array apertures L, and L; for a given communication
range D., thus violating the sufficient condition for
the reflected transmission to be paraxial. To this end,
Fig. 14 depicts the spectral efficiency of the reflected
channel between two ULAs of apertures L, = Ly = L
as a function of L/D. at SNR = 0 dB. The ULAs
are separated by D =2 m and the surface distance is
Dy=3 m so that D, = 4 m. In turn, the antenna
spacing is optimized for the reflected transmission, which
implies array apertures linearly increase with the number
of antennas.

The ray-tracing curve yields a tight match with the
exact one, except for the regime where the two arrays

have an aperture L comparable to the range D, of
the reflected transmission. Hence, ray tracing algorithms
leveraging the paraxial approximation offer a good
fit to reality, as also supported by the robustness of
the underlying approximation against changes in the
propagation geometry.

VIII. CONCLUSION

Through a physics-based formulation, we have
confirmed that reflection off a large and smooth planar
surface, say a wall or ceiling, can serve as alternatives
to LOS for wide-aperture MIMO communication. With
respect to an LOS link, a reflected counterpart exhibits:

« A power loss determined by the additional range and
by the share of incident power not reflected by the
surface.

e A reduction in the number of DOF because of
the antenna spacing tailored to the LOS link being
smaller than the one that the reflected link would
require at the same SNR.

If the arrays are outright configured for the reflected
transmission, then the second effect is corrected. The
above observations bode well for flexible LOS MIMO
communication aided by reflections, with further work
required to determine the impact of surface finiteness and
roughness. This paper ignores mutual coupling effects
among antenna elements, which are most impactful at
sub-wavelength spacings [23]. This ought not to be the
case for wide-aperture MIMO that envisions electrically
large antenna spacings, with follow-up studies needed to
confirm this hypothesis.

Connection with the image theorem that underlies ray
tracing showed that, with non-planar wavefronts, the
image of the transmitter is blurred by the convolution
with a response modeling the not perfect reflectivity of
the surface. Ray tracing ignores this blurring, which is
to say it regards the convolving response as an impulse.
However, our findings show that only for very large arrays
does the response depart from an impulse, justifying the
use of ray tracing algorithms [8] in most situation.

APPENDIX
GENERATION OF THE MIMO CHANNEL MATRIX

For the sake of compactness, let us define the space-lag
variable 6 = r — s with coordinates ¢, = r, — s, and
dy = ry — sy, indicating the displacement between source
and receiver on the z-plane. Due to circular symmetry
of H(k;r,,s,) in (30), we eliminate the azimuthal
dependance of the channel impulse response by evaluating
(29) at (6,,,0), 6, = ||6]. The result is reported in (47) for
any given s, and r, where we introduced k, = K| €
[0,%1] within Kk € D. Hence, the impulse response is
invariant under any affine transformation that preserves
the distance between source and receiver on the z-plane.
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Eq. (47) is a Sommerfeld-type integral [10, Eq. 2.2.30].
This describes the received field as integral superpositions
of cylindrical waves times an upgoing or downgoing plane
wave in the z-direction. Analytical solutions of (47) are
hardly available and problem-specific [10, Ch. 2.7.3].
Hence, we resort to a numerical integration procedure that
accounts for the singularities on the complex /i,)—plane.3
Assuming the analyticity of the integrand, we can
invoke Cauchy’s integral theorem and deform the contour
integration path to avoid singularities. The integral value is
unchanged along this new integration path. This should lie
in the fourth orthant due to Re(x,) > 0 and Sommerfeld
radiation conditions (i.e., Im(k1,) > 0 and Re(k1.) > 0)
that ensures convergence of the improper integral in
(47) [10, Ch. 2.2.3]1.* We follow [25] and choose a
semi-elliptical integration path C that goes around the pole
singularities with semi-axes of the ellipse chosen as [25]

KO = (k1 + ko) /2 K" =

kY /10 (48)
so that the contour of C is sufficiently away from the
singularity but x, is small enough for the argument of the
Bessel function in (47) to ensure controlled oscillations.
For complex integration, we parametrize the curve as
kp(0) : [, 2m) — C where k,(0) = x,(0) + jx/,(0) with
Hmaj min

K, (0) = %(1 +cos(0)) w,(0) = —; sin(6), (49)

leading to [24, Ch. 10.5]

[ ran, = [ sospion|Z52 as o

where f(k,) is the integrand of (47) and the Jacobian is
Ok, (0)

00

The presented numerical generation procedure performs
superbly as long as the transverse distance p is not
too large compared to the wavelength A. Numerical
simulations show no issue for p < 18 m at 60 GHz, i.e.,
9,/ < 3600. For larger d,, the integrand in (47) becomes
a rapidly oscillating function of x,, due to the large
variations into the Bessel function, and C must be chosen
according to the steepest descent path [10, Ch. 2.7.3].

1 maj _: + .min
=3 (=K% sin(0) + ik, cos(f)) .

" (51)

3The error of a numerical integration routine is proportional to the
derivatives of the integrand and are unbounded near a singularity [24].
“The half-planes Im(k1,) =0 and Re(k1,) =0 map to the
hyperbola [10, Eq. 2.2.33] in the complex x, plane; see [10, Fig. 2.2.8].
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