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Teaser: (113/125 characters) Asteroid Ryugu and Ivuna-type carbonaceous meteorites may
have originated from the outskirts of the Solar System.

Abstract: (145/150 words)

Little is known about the origin of the spectral diversity of asteroids and what it says about
conditions in the protoplanetary disk. Here we show that samples returned from Cb-type asteroid
Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are
distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu
and CI chondrites formed in a reservoir that was different from the source regions of other
carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby
planetesimals and ejected some inwards to be implanted into the Main Belt. In this
framework, most carbonaceous chondrites may have originated from regions around the
birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and
Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar

System to excitation by Uranus and Neptune.

Main Text:

Introduction

Main Belt asteroids show great compositional diversity (/), ranging from metallic objects that are
remnants of differentiated planetesimals (2) to carbon-rich objects with comet-like dust-ejection
activity (3). The original formation locations of these diverse objects are unknown. Meteorites are
remnants of planetesimals and protoplanets that formed at various heliocentric distances within
the first few million years after the birth of the Solar System. They, therefore, provide invaluable
insights into the early evolution of the Solar System and the building blocks of the terrestrial
planets. Most meteorites are fragments of Main Belt asteroids, but direct asteroid-meteorite links
are scarce (/). Establishing such links is important as it provides clues on the relationship and
formation locations of meteorite parent bodies, asteroids, and other small bodies in the Solar
System. Cb-type asteroid (162173) Ryugu is a near-Earth object (NEO) that most likely originated
from the inner Main Belt (4). Chemical and mineralogical analyses of Ryugu samples returned to
Earth by JAXA’s Hayabusa2 mission (5) show that they share chemical and mineralogical
characteristics with Ivuna-type carbonaceous (CI) chondrites (6). The latter is the only group of

meteorites containing most non-volatile elements in proportions nearly equal to those measured in
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the solar photosphere (7). The physical and chemical similarities of Ryugu and CI chondrites are,
however, not diagnostic of a shared heritage because the low-temperature conditions required to
explain their solar-like chemical compositions could have been widespread in the outer Solar

System disk.

To better constrain Ryugu’s nucleosynthetic heritage, we measured the Fe isotopic compositions
of four Ryugu samples collected during the first and second touchdown (5), 11 different
carbonaceous chondrites from five different groups (CI, CM, CV, CO, CR), and two ungrouped
chondrites. Materials formed in the Solar System display variations in the isotopic compositions
of some elements that stem from the heterogeneous distribution and processing of highly
anomalous presolar materials in the protosolar nebula (8§—/7). Such anomalies cannot easily be
modified by physicochemical processes on planetary bodies and, therefore, provide lasting
isotopic fingerprints of the regions where planetary bodies formed (/2—14). For several elements,
meteorites display a dichotomy in their isotopic anomalies between non-carbonaceous (NC) and
carbonaceous (CC) meteorite groups (/3). The origin of this dichotomy could have involved the
physical separation between inner and outer Solar System reservoirs by Jupiter (13, 15, 16) and
planetesimal formation at distinct locations in an evolving protoplanetary disk (/7-217). Although
isotopic analyses of Ti and Cr show that Ryugu’s building blocks formed in the CC reservoir and
support a possible kinship between Ryugu and CI chondrites (6), an unambiguous genetic link to
a specific carbonaceous chondrite group could not be established because the Ti and Cr isotopic
anomalies of Ryugu overlap with several carbonaceous chondrites and achondrites (Fig. 1A).
Carbonaceous chondrites also display mass-independent variations in O isotopes that correlate
with Ti and Cr isotopic anomalies (/3). Ryugu and CI chondrites have similar O isotopic anomalies
and represent an endmember composition for the CC cluster in O-Cr and O-Ti1 spaces (Fig. 1B,C)
(6). Those results support the view that CI chondrites and Ryugu formed within the CC reservoir,
but because of correlations between O, Cr, and Ti anomalies (Fig. 1), there is significant
redundancy in evidence presented thus far and further work is needed to better understand the

isotopic architecture of the outer Solar System.

The Fe isotopic composition of CI chondrites (22) is clearly distinct from all other carbonaceous
meteorites (22—24), where all CC meteorites except CI chondrites show significant excesses in
*Fe. Iron isotopes, therefore, provide a diagnostic tool to evaluate if Ryugu has the same

distinct nucleosynthetic heritage as CI chondrites.

4
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Results

Ryugu samples and all carbonaceous chondrites display limited mass-dependent isotopic
variation relative to the terrestrial standard IRMM-524a (Table S1), meaning that all
isotopic anomalies reported here are real and not artifacts from the internal normalization
scheme used to correct natural and instrumental isotopic fractionation (/4). Mass-
independent Fe isotopic analyses confirm that most carbonaceous chondrites display variable
excesses of ~+15 to ~+40 in p>*Fe but no resolvable variations in p>®Fe (see Table 1 for a definition
of the p-notation) (Table 1; Fig. 2). By contrast, all three CI chondrites analyzed in this study are
clearly distinct from other carbonaceous chondrites, defining an average p’*Fe= +3+2, consistent
with previous measurements (Fig. 2; Fig. S1) (22). The four Ryugu samples (A0106 and A0106-
A0107 collected during the first touchdown from the surface; C0107 and CO108 collected
during the second touchdown and possibly sampling material from the subsurface) define an
average p>*Fe value of +1+4, which is indistinguishable from the composition of CI chondrites but
distinct from all other carbonaceous chondrites (Fig. 2). The u>*Fe difference of Ryugu and CI
chondrites compared to all other carbonaceous chondrites cannot be due to prolonged exposure to
cosmic rays in space because (7) CI chondrites have low cosmic ray exposure ages (25) and (ii)
cosmogenic effects would induce a positive shift in p>*Fe that would correlate with a negative shift
in p°8Fe (24, 26), which is not observed (Table 1; Fig. S2). Thus, the distinct p>*Fe values of CI
chondrites and Ryugu represent the nucleosynthetic heritage of their formation reservoir in the
protosolar nebula. Examination of p**Fe-u°Ti (Fig. 3) and p**Fe-p**Cr (Fig. S3) isotopic
anomalies show that Ryugu and CI chondrites form a compositional cluster that is distinct from
the NC and CC fields defined by other meteorites. Thus, whereas the isotopic anomalies of Ti, Cr,
and O in CI chondrites (10, 11, 27-31) and Ryugu (6) tie them to the CC reservoir, the Fe isotopic

data reveal that CI chondrites and Ryugu formed in a reservoir that is rarely sampled by meteorites.
Discussion

Recent models tie the distinct isotopic characteristics of meteorites to planetesimal formation at
different locations and/or at different time in an isotopically heterogeneous protoplanetary disk (9,
15, 17, 18, 20, 21). The main driver of the isotopic heterogeneity could be a change in the
composition of infalling material during collapse of the parental molecular cloud core of the Solar

System (74, 32, 33), or alternatively, unmixing of presolar carriers by disk processes (9, 10, 19).
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Irrespective of the origin of the heterogeneity, it requires the existence of large-scale isotopic
heterogeneities throughout the disk. Interestingly, the Fe isotopic compositions of CI chondrites
and Ryugu are similar to Earth’s mantle and NC meteorites, while isotopic anomalies in other
elements are similar to CC meteorites and significantly different compared to inner Solar System
material (Fig. 1; Fig. 3). This suggests that CI chondrites and Ryugu derive from an isotopic
reservoir that has a distinctive nucleosynthetic heritage from NC and CC meteorites. While the Fe
isotopic characteristics of CI chondrites could be explained by an inner Solar System origin, the
isotopic anomalies of Ti, Cr, and Mo clearly tie CI chondrites to the CC reservoir and the outer
Solar System (/0-12, 16, 27). More importantly, the unfractionated chemical compositions and
volatile element-rich nature of CI chondrites and Ryugu support the view that they formed beyond
the snow line, mostly from material that experienced minimal thermal processing. The heavy
hydrogen and nitrogen isotopic compositions of Ryugu are also consistent with an outer Solar
System origin (34). The findings that CI chondrites and Ryugu share the same nucleosynthetic
heritage (Fig. 3) and have close mineralogical, chemical, and isotopic characteristics (6, 34),
therefore, suggest that these objects formed contemporaneously and were co-located in the same
outer Solar System reservoir. It is even possible, although not required by the data, that CI
chondrites and the NEO Ryugu originally derived from the same precursor object, which was

fragmentated by collision during its residence in the inner Main Belt (4, 35).

The distinct isotopic heritage of CI chondrites and Ryugu is unlikely to reflect a temporal change
in the isotopic composition of the CC reservoir because (i) CI chondrites and Ryugu are distinct
from other carbonaceous chondrites and intermediate compositions are missing (Fig. 2), and (i7)
CI chondrites have similar inferred accretion ages as other carbonaceous chondrites (~2.5 to 4
Myr after condensation of refractory inclusions) (36). Thus, the distinctive isotopic heritage of
CI chondrites and Ryugu i1s most likely caused by spatial separation of their source region from
the CC reservoir, or as discussed below, bias in the implantation of planetesimals from distinct

heliocentric distances into the Main Belt.

Cb-type asteroids like Ryugu represent ~10-20% of all C-type asteroids (37, 38), suggesting that
a substantial portion of Main Belt asteroids formed in the same outer Solar System reservoir where
CI chondrites and Ryugu formed. Planetesimals from a large range of heliocentric distances could
have been implanted into the inner Solar System during the growth and migration of the giant

planets within the protoplanetary disk, before dissipation of nebular gas (39). Planetesimals from

6
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the outer Solar System could have also been implanted during subsequent instabilities in the orbits
of Uranus and Neptune after dissipation of nebular gas (40—43), but the efficiency of this process
is low and early implantation of C-type asteroids in the Main Belt while nebular gas was still
present is more likely. The planetesimals scattered by the growth and migration of the giant planets
were originally on highly eccentric orbits but they experienced a strong headwind from nebular
gas that circularized their orbits, leading to their trapping in the Main Belt. Simulations of the
growth and migration of the giant planets show that most outer Solar System planetesimals
implanted in the Main Belt originated from the formation region of the gas giant planets Jupiter
and Saturn (e.g., ~4-12 AU), but some could have come from further away in the formation region
of ice giant planets Uranus and Neptune (e.g., 13-25 AU) (39). The dynamical process of orbital
excitation and circularization introduces strong biases in the original orbital radius of the
planetesimals that are eventually implanted in the Main Belt (Fig. S4). In that context, most CC
meteorites could have come from the birth region of Jupiter and Saturn, while the distinctive Fe
isotopic heritage (Fig. 3) and primitive chemical characteristics of CI chondrites and Ryugu (6)
could be explained if they were implanted into the Main Belt from a reservoir that was located
further outside, possibly in the vicinity of the birthplaces of Uranus and Neptune (Fig. 4; Fig. S4).
If correct, CI chondrites and Ryugu would possibly share a common heritage with Oort cloud

comets (44, 45).

A common source region for the parent bodies of CI chondrites/Ryugu and Oort cloud comets
would need to be reconciled with their present-day distinct chemical and physical characteristics
(6, 34, 46). Deuterium/hydrogen (D/H) ratios of water in carbonaceous chondrites (47) and
Ryugu (34) are lower than those of Oort cloud comets and overlap partially with Jupiter-
family comets (48). Simulations of ice transport in the nebula predict a spatially and
temporally complex evolution of water D/H ratio in the nebula (49). Furthermore, the water
D/H ratio of active comets and asteroids might have been modified by water sublimation (50,
51) and water-rock reactions (52) during their lifetimes. Therefore, the present-day water
D/H ratio of ice in comets and rock-bound water in carbonaceous chondrites provide little
insights into formation locations. CI chondrites and Ryugu show evidence for extensive aqueous
alteration as late as ~5 Myr after the birth of the Solar System (6, 53, 54). Water responsible for
this aqueous alteration would have presumably been accreted as ice, with melting caused by decay

of 26Al. Such melting could have been hampered in ice-rich comets if much of radioactive heat
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from 26Al was consumed by ice sublimation rather than melting (55). While most dust grains
captured in the coma of comet 81P/Wild2 were anhydrous (46), Berger et al. (56) found evidence
for low-temperature aqueous activity in 8 1P/Wild2 under conditions akin to those inferred for CI
chondrites. The Deep Impact mission also found signatures of carbonates, phyllosilicates, sulfides,
water gas, and ice in the ejecta of comet 9P/Tempel, which is consistent with extensive aqueous
alteration (57). While these observations support the presence of aqueous activity on extant
comets, a comparison between icy planetesimals that were scattered inwards and outwards by the
growth and migration of the giant planets is difficult because they would have experienced very
different thermal histories. Indeed, the planetesimals scattered inwards would have been put on
eccentric orbits with low perihelion, well inside the snow line, where ice could have been
sublimated and the more volatile compounds could have been lost. For a ~100 km planetesimal,
the timescale for damping eccentricity through gas interaction is on the order of several tens of
thousands of years, which is in the order of the expected lifetime of short-period comets (58). Thus,
the rock/ice ratio of ice-rich planetesimals formed around Uranus and Neptune may have increased
substantially by the time these planetesimals were implanted in the Main Belt. Such processing
could also have affected other characteristics of the icy planetesimals, notably their inventories of
organics, mineralogical compositions, and physical properties. Further transformations would
have taken place due to collisions during residence in the Main Belt (35, 59). Consequently,
although the Ryugu asteroid and Oort cloud comets may have been born in the same region of the
protoplanetary disk, they would have rapidly diverged in their chemical evolution after being

scattered inwards and outwards by the ice giant planets.

In our model, Cb-type asteroids formed in a reservoir that was located at the outskirts of the
planetary accretion region and were possibly implanted into the Main Belt due to excitation by
Uranus and Neptune (Fig. 4). The outer extent of this isotopic reservoir is unknown. The main
source region of Kuiper Belt objects (KBOs) was likely the trans-Neptunian disk (>20-25 AU)
(60). These KBOs are out of reach for sample return missions but possible trans-Neptunian objects
203 Pompeja and 269 Justitia were recently found in the Main Belt (6/). Measuring the Fe and Ti
isotopic compositions of these objects would provide important new insights into the isotopic

architecture of the early Solar System and help evaluate the extent of the CI reservoir.
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Materials and Methods

Samples, preparation, and chemical purification. The Hayabusa2 spacecraft returned a total of
~5 g of material from Cb-type (162173) asteroid Ryugu. Surface samples were collected in
Chamber A (~3 g) during the first touchdown and subsurface samples in Chamber C (~2 g) during
the second touchdown (5, 62). Two subsamples from Chamber A (A0106, A0106-A0107) and two
from Chamber C (C0107, C0108) were digested for isotopic analysis (Table 1). Sample masses
were 14.2, 23.88, 14.20, 12.90, and 22.24 mg, respectively. For samples A0106 and C0107 soluble
organic matter was separated prior to digestion by acids. Sample A0108 was analyzed by XRF
before digestion. Approximately 20-25 mg of six carbonaceous chondrite powders (Table 1:
Orgueil-4, Alais, Murchison-2, Allende-3, Tagish Lake-2, and Tarda) were digested and processed
together with the Hayabusa2 samples. Sample digestion for these samples was conducted at Tokyo
Tech. Powder aliquots were digested using mixtures of HF-HNO3-HCI-H20O> on hot plate and
under ultrasonic agitation. Approximately 80% of the solutions was taken for sequential separation
of several elements for isotopic analysis. We measured 20 additional carbonaceous chondrite
samples and three terrestrial geostandards (Table 1) to provide some context for interpreting
Ryugu's results. Some samples were digested for this study while others are elution cuts from
previous studies focused on elements other than Fe. The masses digested, original masses
homogenized, and details on the processing history for each sample are summarized in Table S2.
The first step in the chemical processing of Fe in the four Ryugu samples and six accompanying
carbonaceous chondrites was conducted at Tokyo Tech and involved: (i) separation of major
elements, including Fe, from Zn, Pb, and highly siderophile elements using anion exchange
chromatography (AG-1X8), (i7) Separation of Fe and U from remaining major elements using AG-
1X8, and (ii7) Separation of U from Fe using Eichrom UTEVA resin. A 20% aliquot of the Fe
solution was then purified from remaining traces of Cr, Ni, Co, and Cu at the University of Chicago
using an established protocol (24). Approximately 0.5-1 mg of Fe was loaded in 0.25 ml 10 M HC1
onto 10.5 cm long PFA columns (0.62 cm inner diameter) filled with 3 ml pre-cleaned AG1-X8
(200-400 mesh) anion resin. Matrix elements were eluted in 5 ml 10 M HCI. Other possible
contaminants (e.g., Cu, Cr) were eluted from the resin using 30 ml 4 M HCI. Iron was eluted using
9 ml 0.4 M HCI. The samples not previously processed at Tokyo Institute of Technology were
purified using the same procedure, but the elution was repeated using new resin. The overall Fe

yield is >99% and the procedural blank is negligible (~70 ng) compared to the amount of Fe
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purified for each sample (0.5-1 mg Fe). Interfering elements Cr (**Cr on **Fe) and Ni (**Ni on
58Fe) were present at low enough levels (Cr/Fe < 9x107° and Ni/Fe < 2x107°) to not affect the
accuracy of the analyses (24).

Iron isotopic measurements. High precision Fe isotopic compositions were measured following
the protocol used for analysis of Fe isotopic anomalies in iron meteorites (24). Measurements were
conducted with a Thermo Scientific Neptune multicollector inductively coupled plasma mass
spectrometer (MC-ICP-MS) at the Origins Laboratory of the University of Chicago.
Measurements were made on the flat-topped peak shoulder in medium-resolution (MR) mode (63).
Ion beams of **Fe*, °Fe*, 'Fe’, and **Fe’ were analyzed statically on Faraday collectors. All
isotopes were measured using 10'! Q amplifiers, except for high abundance *°Fe*, which was
measured using a 10'° Q amplifier. Isobaric interferences from **Cr* and **Ni* were determined
simultaneously by monitoring >*Cr" and ®*Ni" using 10'> Q amplifiers. The purified Fe solutions
(10 pg/g in 0.3 M HNO3) were introduced into the MC-ICP-MS using an ESI PFA nebulizer with
an uptake rate of ~100 pl/min combined with a cyclonic glass spray chamber. Iron isotopic
composition was measured at a typical *°Fe" ion signal intensity of 1.3 nA on a 10'° Q amplifier.
Each measurement consisted of 50 cycles of 8.369 s each. Sample analyses were bracketed by
measurements of IRMM-524a in a standard-sample-standard scheme. On peak zero intensities
from a blank solution measured at the start of each sequence were subtracted from measurements.
A washout time of 210 s was used between each analysis. The Fe concentrations of the samples
and standards were matched to within <2 %, which is required for accurate and precise Fe isotopic
analysis (24).
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Tables

Table 1. Iron isotopic compositions of Ryugu samples and carbonaceous chondrites.
Calculated mass-independent (u>*Fe, u>®Fe) and mass-dependent (5°°Fe) Fe isotopic compositions
in Ryugu samples, carbonaceous chondrites, and geostandards. Uncertainties of individual
samples are 95% confidence intervals of the mean of N standard-sample-standard bracketing
analyses. Uncertainties on group averages are the 95% confidence intervals of the mean. The
isotopic anomalies are calculated by internal normalization to >’Fe/*®Fe=0.023095 and expressed
in u-notation (22, 24) defined as the parts-per-million deviation of the internally normalized
SXFe/*SFe ratio in the sample relative to bracketing measurements of IRMM-524a. The mass-
dependent Fe isotopic variations are calculated by sample-standard bracketing and given as o-
notation defined parts-per-thousand deviation of the *°Fe/>*Fe ratio of the sample relative to the
IRMM-524a standard solution.

Sample N MU5Fe W38Fe 55Fe
Ryugu

A0106 30 -215 14114 -0.01+0.02
A0106-A0107 30 2+5 10+10 -0.01+0.02
C0107 25 4+4 1517 -0.02+0.02
C0108 25 2+5 1147 0.01+0.02
Average Ryugu 14 1314 -0.01+0.02

Cl chondrites
Orgueil-1 30 2+5 1248 -0.02+0.02
Orgueil-2 30 315 2+11 0.0110.02
Orgueil-3 14 419 3412 0.00+0.02
Orgueil-4 30 315 1248 0.06+0.02
Ivuna 30 114 1611 0.00£0.02
Alais 28 616 17412 -0.02+0.02
Average CI 3+2 1016 0.00%0.02

CM chondrites
Murchison-1 14 2315 617 0.00+0.02
Murchison-2 15 1816 2+9 0.01£0.02
Mighei 14 27+8 749 -0.01+0.02
Average CM 2447 6+11 0.00%0.02

CV chondrites
Allende-1 15 29+4 2+9 -0.02+0.02
Allende-2 15 326 2+9 -0.05+0.02
Allende-3 15 2117 3112 0.08+0.02
Vigarano 15 2945 -7£13 0.0240.02
Average CV 28+6 0+6 0.01%0.08

CO chondrites
Ornans 15 2115 018 -0.030.02
Lance 15 1815 1110 0.01£0.02

CR chondrites
Acfer 139 14 388 9+11 -0.11£0.02
GRA 06100 15 3915 96 0.00+0.02

Ungrouped chondrites

Tagish Lake-1 15 187 2+14 -0.03+0.02
Tagish Lake-2 15 1546 2422 0.05+0.02
Tarda 30 24148 3+12 -0.01£0.02

Geostandards
BHVO-2-1 15 17 -9+8 0.09+0.02
BHVO-2-2 15 117 -1£11 0.06+0.02
AGV-2 30 214 116 0.08+0.02
Average Geostandards 1+ -3+14 0.09+0.06
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Fig. 1. Previously published isotopic anomalies of Ti, Cr, and O in Ryugu and other Solar
System materials. Plots of u*°Ti vs. p**Cr (A), u*°Ti vs. A0 (B), and p**Cr vs. A0 (C). In these
diagrams, Ryugu and CI represent an endmember to the CC array. Data for Ryugu are from
Yokoyama et al. (6). The average Ti and Cr isotopic compositions of non-carbonaceous (NC) and
carbonaceous (CC) meteorite groups and Earth’s mantle are from the data compilation of
Burkhardt et al. (64) and O isotopic data from the compilation of Dauphas (65). Uncertainties for
individual groups are the 95% confidence interval of the mean. If not visible, error bars are

smaller than symbols.
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correspond to non-carbonaceous (NC) chondrite groups (E=enstatite; R=rumuruti; OC=ordinary
chondrites), red diamonds to NC achondrites (Ure=ureilites; Dio=diogenites), and blue circles to
carbonaceous (CC) chondrite groups (TL=Tagish Lake). The green square is Earth’s mantle. The
average composition of Ryugu and Ivuna-type carbonaceous chondrites (CI) are shown as
triangles. Average compositions of meteorite groups and Earth’s mantle are calculated using data

from this study (Table 1) and the data compilation of Burkhardt et al. (64) (Table S1). If not
visible, error bars are smaller than symbols.
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Fig. 4. Schematic of the possible source region of Cb-type asteroids and CI chondrites.
Planetesimals formed in different regions of the protoplanetary disk. Volatile-poor planetesimals
(red circles) formed in the inner region, while volatile-rich planetesimals (blue circles) formed
beyond Jupiter’s orbit. The growth and migration of the gas and ice giant planets implanted some
of the planetesimals into the Main Belt (small arrows), while the majority of planetesimals were
transported outwards or ejected from the disk (large arrows) (39). A plausible explanation for the
different Fe nucleosynthetic heritage and primitive chemical composition of CI chondrites and
Ryugu is that they were implanted in the Main Belt by excitation from Uranus and Neptune (filled
bright blue circles), while other CCs formed in more internal regions near Jupiter and Saturn
(filled dark blue circles) (Fig. S4). The icy planetesimals that were formed around Uranus and
Neptune and were ejected outwards went to populate the Oort cloud (44, 45). CI chondrites and
Ryugu may thus share some parentage with long-period comets. Such a scenario could explain the
trichotomy between NC, CC, and CI for nucleosynthetic anomalies (Fig. 3).
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display resolvable p**Fe (dark blue lines). The p**Fe values of most carbonaceous chondrites are
not resolvable from the terrestrial standard. While the calculated averages of CI chondrites and
Ryugu display excesses in u>*Fe resolvable from the standard, these are not resolvable from the
other carbonaceous chondrites. Comparison with expected anomalies produced by sole variations
in *Fe, >°Fe, and *’Fe (black lines) reveals that the observed p>*Fe anomalies are best explained
by 3*Fe variations (24). Exposure to galactic cosmic rays induces positive shifts in u**Fe that
correlate with negative shifts in p*®Fe (24, 26). If Fe isotopic compositions of CI chondrites and
Ryugu had been affected by exposure to galactic cosmic rays, their primary Fe isotopic
compositions would be even more distinct from other carbonaceous chondrites because the pre-
exposure p>*Fe and p°®Fe values would shift towards more negative and positive values,
respectively.
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Fig. S4. Example of possible source regions for CC and CI asteroids in the Main Belt
[modified from Fig. 12 of (39)]. This figure depicts the fractions of asteroids from different
starting orbital radii that are implanted into the Main Belt in a simulation involving the growth and
migration of the gas and ice giant planets. In that simulation, Jupiter, Saturn, Uranus, and Neptune
start with initial orbital radii of 10, 15, 20, and 25 AU and grow and migrate inwards on a timescale
of ~2.5 Myr (39). As shown, the processes of planetesimal excitation by the giant planets and
interaction with nebular gas leads to a far-reaching and uneven sampling of planetesimals. We
speculate that CC chondrites could have formed in the birth region of Jupiter and Saturn while CI
chondrites and Ryugu derived from planetesimals that could have been implanted into the Main
Belt by the growth and migration of Uranus and Neptune, explaining their distinct isotopic and
chemical heritage. While the fraction of planetesimals implanted into the Main Belt from the
outskirts of the Solar System (e.g., CI) is small (~1% of the planetesimals located in these
regions are implanted into the Main Belt), the total number of planetesimals from these
regions implanted into the Main Belt can be significant because of more total mass. This
could explain that based on spectral observations up to 20% of carbonaceous (C-type)
asteroids are of Cb-type.
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Table S1: Average O, Ti, Cr, and Fe isotopic anomalies of Ryugu, meteorites, and Earth’s mantle. Averages adopted from the
data compilation of Dauphas (2017) (65) and Burkhardt et al. (64) and updated with more recently published data.

Samples Reservoir A0 +  95%Cl p5°Ti + 95%Cl ps‘Cr £ 95%Cl u5“Fe £ 95%Cl uFe +  95%Cl
Hayabusa2
Ryugu A CcC + 163 + 20 135 + 21 0 + 4 12 + 4
Ryugu C CcC + 202 + 19 125 + 10 3 + 3 13 + 4
Ryugu Mean CcC 0.61 + 0.08 183 + 27 127 + 18 1 + 4 13 + 4
Chondrites
Cl CcC 0.39 + 0.10 189 + 15 155 + 10 2 + 3 10 + 7
CM CcC -2.92 + 0.44 301 + 10 101 + 13 23 + 6 5 + 6
CcVv CcC 3.62 + 0.48 345 + 19 94 + 8 27 + 6 0 + 7
CO CcC -4.32 + 0.26 377 + 99 77 + 33 19 + 5 1 + 2
CK CcC -4.47 + 0.21 342 + 105 48 + 42 26 + 6 +
CR CcC -1.48 + 0.55 251 + 45 128 + 7 33 + 7 +
CH CcC -1.55 0.27 137 + 29 16 + 7 9 + 0
CB CcC 204 7 120 9
Tagish Lake CcC -0.91 + 0.53 276 + 26 133 + 26 16 + 5 2 + 12
Tarda CcC 122 + 10 24 + 8 3 + 12
EC NC -0.02 + 0.05 -20 + 8 3 + 3 6 + 1
ocC NC 0.98 + 0.48 -66 + 6 -37 + 6 11 + 3
R NC 2.64 + 0.15 + -7 + 3 6 + 1
Achondrites/
Iron meteorites
Diogenites NC -0.29 + 0.08 -123 + 5 -69 + 8 14 + 3
Ureilites NC -1.16 + 0.15 -200 + 32 -90 + 4 12 + 2
IIAB NC -83 17 16 + 4
IIAB NC -78 6 11 + 6
IVA NC -47 6 8 + 4
Earth's mantle 0 + 0 -2 + 3 10 13 0 + 1 1 + 5

Data sources: O — Data compilation of (65), (6); Ti— (6, 10, 66—70); Cr - (6, 11, 29, 30, 66, 67, 69-85); Fe — (22, 24, 26, 86).

28



Table S2: Fe isotopic data of samples investigated in this study. Calculated mass-independent
(uWFe, p>®Fe) and mass-dependent (5°XFe) Fe isotopic compositions in Ryugu samples,
carbonaceous chondrites, and geostandards. Uncertainties of individual samples are 95%
confidence intervals of the mean of standard-sample-standard bracketing analyses (N). The
chemical procedure used at Tokyo Institute of Technology is described in the Methods and
Yokoyama et al. (6). Samples processed at the University of Chicago (UofC) were digestion
aliquots taken after digestion with HF-HNO3-HCI-HC1O4 mixtures. Matrix aliquots containing the
bulk Fe of samples processed at the Institut fiir Planetologie Miinster (IfP) were digested HF-
HNO3-HCI-HC1O4 mixtures and then separated from Sr using cation exchange resin (AG50W-
X8). *Samples for which soluble organic matter was extracted prior digestion. $+Sample analyzed
with XRF before digestion.

Mass Mass
digested homogenized
Sample (9) (9) Processed? N u**Fe u®Fe 5%Fe 5%Fe 5%Fe
Ryugu
A0106*  0.0146 0.0175 Fe, U (Tokyo Tech) 30 -2+5 14+14  -0.01£0.02 -0.01x0.02  0.00+0.05
A0106-A0107  0.0239 0.0289 Fe, U (Tokyo Tech) 30 2+5 10+£10 -0.01+0.02 -0.02+0.03 -0.08+0.05
Cc0107*  0.0128 0.0174 Fe, U (Tokyo Tech) 25 4+4 1517  -0.02£0.02  -0.03+0.03 -0.02+0.05
00108T 0.0222 0.0333 Fe, U (Tokyo Tech) 25 2+5 1117 0.01+0.02 0.02+0.03  0.03%0.05
Cl
Orgueil-1 0.401 1.12 Sr matrix cut (IfP) 30 2+5 12¢8  -0.02+0.02 -0.02+0.03 -0.02+0.05
Orgueil-2 0.012 ~0.1 Fe (UofC) 30 35 2+11 0.01+0.02 0.02+0.03  0.02+0.05
Orgueil-3 0.010 ~0.1 Fe (UofC) 14 4+9 3+12 0.00+0.02 0.00£0.03  0.00+0.05
Orgueil-4 0.020 0.050 Fe, U (Tokyo Tech) 30 35 1248 0.06+0.02 0.09+0.03  0.13%0.05
Ivuna 0.099 ~0.1 Fe (UofC) 30 14 16+11  0.00%0.02 0.00£0.03  0.01%0.05
Alais 0.022 0.051 Fe, U (Tokyo Tech) 28 616 + -0.02+0.02  -0.02+0.03 -0.01+0.05
CcM
Murchison-1 0.010 ~0.3 Fe (UofC) 14 23+5 617 0.00+0.02 0.01£0.03  0.03%0.05
Murchison-2 0.025 1.65 Fe, U (Tokyo Tech) 15 1816 2+9 0.01+0.02 0.03+0.03  0.05+0.05
Mighei 0.011 ~0.1 Fe (UofC) 14 27+8 7+9 -0.01£0.02  0.00+0.03  0.01+0.05
cv
~4000
Allende-1 0.012 (USNM) Fe (UofC) 15 29+4 2+9 -0.02+0.02  -0.02+0.03 -0.01+0.05
Allende-2 0.514 1003 s Sr matrix cut (IfP) 15 3246 2+9 -0.05+0.02 -0.06+0.03 -0.07+0.05
Allende-3 0.025 (Ué?\lol\?l) Fe, U (Tokyo Tech) 15 217 3+12 0.08+0.02 0.13+t0.03  0.18+0.05
Vigarano 0.014 ~0.3 Fe (UofC) 15 2945 -7+13  0.02+0.02 0.05£0.03  0.07%0.05
co
Ornans 0.041 ~0.3 Fe (UofC) 15 2145 0+8 -0.03+0.02  -0.03+0.03 -0.04+0.05
Lance 0.092 ~0.5 Fe (UofC) 15 1815 110 0.01+0.02 0.03+0.03  0.04%0.05
CR
Acfer 139 0.525 0.525 Mo matrix cut (IfP) 14 38+8 9+11 -0.11+£0.02  -0.15+0.03 -0.17+0.05
GRA 06100 0.281 0.281 Sr matrix cut (IfP) 15 39+5 9+6 0.00+0.02 0.02+0.03  0.04+0.05
Ungrouped
Tagish Lake-1 0.486 1.5 Sr matrix cut (IfP) 15 1817 2+14  -0.03+0.02  -0.04+0.03 -0.04+0.05
Tagish Lake-2 0.025 1.06 Fe, U (Tokyo Tech) 15 1516 2+22 0.05+0.02 0.08+0.03  0.11%0.05
Tarda 0.025 0.212 Fe, U (Tokyo Tech) 30 24+8 312  -0.01£0.02  0.00+0.03  0.01+0.05
Geostandard
BHVO-2-1 0.012 - Fe (UofC) 15 7 -9+8 0.09+0.02 0.14+0.03  0.18%0.05
BHVO-2-2 0.010 - Fe (UofC) 15 17 -1£11 0.06+0.02 0.10£0.03  0.13+0.05
AGV-2 0.012 - Fe (UofC) 30 2+4 + 0.08+0.02 0.13+0.03  0.16+0.05
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