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Teaser: (113/125 characters) Asteroid Ryugu and Ivuna-type carbonaceous meteorites may 114 

have originated from the outskirts of the Solar System. 115 

Abstract: (145/150 words) 116 

Little is known about the origin of the spectral diversity of asteroids and what it says about 117 

conditions in the protoplanetary disk. Here we show that samples returned from Cb-type asteroid 118 

Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are 119 

distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu 120 

and CI chondrites formed in a reservoir that was different from the source regions of other 121 

carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby 122 

planetesimals and ejected some inwards to be implanted into the Main Belt. In this 123 

framework, most carbonaceous chondrites may have originated from regions around the 124 

birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and 125 

Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar 126 

System to excitation by Uranus and Neptune. 127 

Main Text: 128 

Introduction 129 

Main Belt asteroids show great compositional diversity (1), ranging from metallic objects that are 130 

remnants of differentiated planetesimals (2) to carbon-rich objects with comet-like dust-ejection 131 

activity (3). The original formation locations of these diverse objects are unknown. Meteorites are 132 

remnants of planetesimals and protoplanets that formed at various heliocentric distances within 133 

the first few million years after the birth of the Solar System. They, therefore, provide invaluable 134 

insights into the early evolution of the Solar System and the building blocks of the terrestrial 135 

planets. Most meteorites are fragments of Main Belt asteroids, but direct asteroid-meteorite links 136 

are scarce (1). Establishing such links is important as it provides clues on the relationship and 137 

formation locations of meteorite parent bodies, asteroids, and other small bodies in the Solar 138 

System. Cb-type asteroid (162173) Ryugu is a near-Earth object (NEO) that most likely originated 139 

from the inner Main Belt (4). Chemical and mineralogical analyses of Ryugu samples returned to 140 

Earth by JAXA’s Hayabusa2 mission (5) show that they share chemical and mineralogical 141 

characteristics with Ivuna-type carbonaceous (CI) chondrites (6). The latter is the only group of 142 

meteorites containing most non-volatile elements in proportions nearly equal to those measured in 143 
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the solar photosphere (7). The physical and chemical similarities of Ryugu and CI chondrites are, 144 

however, not diagnostic of a shared heritage because the low-temperature conditions required to 145 

explain their solar-like chemical compositions could have been widespread in the outer Solar 146 

System disk. 147 

To better constrain Ryugu’s nucleosynthetic heritage, we measured the Fe isotopic compositions 148 

of four Ryugu samples collected during the first and second touchdown (5), 11 different 149 

carbonaceous chondrites from five different groups (CI, CM, CV, CO, CR), and two ungrouped 150 

chondrites. Materials formed in the Solar System display variations in the isotopic compositions 151 

of some elements that stem from the heterogeneous distribution and processing of highly 152 

anomalous presolar materials in the protosolar nebula (8–11). Such anomalies cannot easily be 153 

modified by physicochemical processes on planetary bodies and, therefore, provide lasting 154 

isotopic fingerprints of the regions where planetary bodies formed (12–14). For several elements, 155 

meteorites display a dichotomy in their isotopic anomalies between non-carbonaceous (NC) and 156 

carbonaceous (CC) meteorite groups (13). The origin of this dichotomy could have involved the 157 

physical separation between inner and outer Solar System reservoirs by Jupiter (13, 15, 16) and 158 

planetesimal formation at distinct locations in an evolving protoplanetary disk (17–21). Although 159 

isotopic analyses of Ti and Cr show that Ryugu’s building blocks formed in the CC reservoir and 160 

support a possible kinship between Ryugu and CI chondrites (6), an unambiguous genetic link to 161 

a specific carbonaceous chondrite group could not be established because the Ti and Cr isotopic 162 

anomalies of Ryugu overlap with several carbonaceous chondrites and achondrites (Fig. 1A). 163 

Carbonaceous chondrites also display mass-independent variations in O isotopes that correlate 164 

with Ti and Cr isotopic anomalies (13). Ryugu and CI chondrites have similar O isotopic anomalies 165 

and represent an endmember composition for the CC cluster in O-Cr and O-Ti spaces (Fig. 1B,C) 166 

(6). Those results support the view that CI chondrites and Ryugu formed within the CC reservoir, 167 

but because of correlations between O, Cr, and Ti anomalies (Fig. 1), there is significant 168 

redundancy in evidence presented thus far and further work is needed to better understand the 169 

isotopic architecture of the outer Solar System.   170 

The Fe isotopic composition of CI chondrites (22) is clearly distinct from all other carbonaceous 171 

meteorites (22–24), where all CC meteorites except CI chondrites show significant excesses in 172 
54Fe. Iron isotopes, therefore, provide a diagnostic tool to evaluate if Ryugu has the same 173 

distinct nucleosynthetic heritage as CI chondrites.  174 
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Results 175 

Ryugu samples and all carbonaceous chondrites display limited mass-dependent isotopic 176 

variation relative to the terrestrial standard IRMM-524a (Table S1), meaning that all 177 

isotopic anomalies reported here are real and not artifacts from the internal normalization 178 

scheme used to correct natural and instrumental isotopic fractionation (14). Mass-179 

independent Fe isotopic analyses confirm that most carbonaceous chondrites display variable 180 

excesses of ~+15 to ~+40 in μ54Fe but no resolvable variations in μ58Fe (see Table 1 for a definition 181 

of the μ-notation) (Table 1; Fig. 2). By contrast, all three CI chondrites analyzed in this study are 182 

clearly distinct from other carbonaceous chondrites, defining an average μ54Fe= +3±2, consistent 183 

with previous measurements (Fig. 2; Fig. S1) (22). The four Ryugu samples (A0106 and A0106-184 

A0107 collected during the first touchdown from the surface; C0107 and C0108 collected 185 

during the second touchdown and possibly sampling material from the subsurface) define an 186 

average μ54Fe value of +1±4, which is indistinguishable from the composition of CI chondrites but 187 

distinct from all other carbonaceous chondrites (Fig. 2). The μ54Fe difference of Ryugu and CI 188 

chondrites compared to all other carbonaceous chondrites cannot be due to prolonged exposure to 189 

cosmic rays in space because (i) CI chondrites have low cosmic ray exposure ages (25) and (ii) 190 

cosmogenic effects would induce a positive shift in μ54Fe that would correlate with a negative shift 191 

in μ58Fe (24, 26), which is not observed (Table 1; Fig. S2). Thus, the distinct μ54Fe values of CI 192 

chondrites and Ryugu represent the nucleosynthetic heritage of their formation reservoir in the 193 

protosolar nebula. Examination of μ54Fe-μ50Ti (Fig. 3) and μ54Fe-μ54Cr (Fig. S3) isotopic 194 

anomalies show that Ryugu and CI chondrites form a compositional cluster that is distinct from 195 

the NC and CC fields defined by other meteorites. Thus, whereas the isotopic anomalies of Ti, Cr, 196 

and O in CI chondrites (10, 11, 27–31) and Ryugu (6) tie them to the CC reservoir, the Fe isotopic 197 

data reveal that CI chondrites and Ryugu formed in a reservoir that is rarely sampled by meteorites.  198 

Discussion 199 

Recent models tie the distinct isotopic characteristics of meteorites to planetesimal formation at 200 

different locations and/or at different time in an isotopically heterogeneous protoplanetary disk (9, 201 

15, 17, 18, 20, 21). The main driver of the isotopic heterogeneity could be a change in the 202 

composition of infalling material during collapse of the parental molecular cloud core of the Solar 203 

System (14, 32, 33), or alternatively, unmixing of presolar carriers by disk processes (9, 10, 19). 204 
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Irrespective of the origin of the heterogeneity, it requires the existence of large-scale isotopic 205 

heterogeneities throughout the disk. Interestingly, the Fe isotopic compositions of CI chondrites 206 

and Ryugu are similar to Earth’s mantle and NC meteorites, while isotopic anomalies in other 207 

elements are similar to CC meteorites and significantly different compared to inner Solar System 208 

material (Fig. 1; Fig. 3). This suggests that CI chondrites and Ryugu derive from an isotopic 209 

reservoir that has a distinctive nucleosynthetic heritage from NC and CC meteorites. While the Fe 210 

isotopic characteristics of CI chondrites could be explained by an inner Solar System origin, the 211 

isotopic anomalies of Ti, Cr, and Mo clearly tie CI chondrites to the CC reservoir and the outer 212 

Solar System (10–12, 16, 27). More importantly, the unfractionated chemical compositions and 213 

volatile element-rich nature of CI chondrites and Ryugu support the view that they formed beyond 214 

the snow line, mostly from material that experienced minimal thermal processing. The heavy 215 

hydrogen and nitrogen isotopic compositions of Ryugu are also consistent with an outer Solar 216 

System origin (34). The findings that CI chondrites and Ryugu share the same nucleosynthetic 217 

heritage (Fig. 3) and have close mineralogical, chemical, and isotopic characteristics (6, 34), 218 

therefore, suggest that these objects formed contemporaneously and were co-located in the same 219 

outer Solar System reservoir. It is even possible, although not required by the data, that CI 220 

chondrites and the NEO Ryugu originally derived from the same precursor object, which was 221 

fragmentated by collision during its residence in the inner Main Belt (4, 35).  222 

The distinct isotopic heritage of CI chondrites and Ryugu is unlikely to reflect a temporal change 223 

in the isotopic composition of the CC reservoir because (i) CI chondrites and Ryugu are distinct 224 

from other carbonaceous chondrites and intermediate compositions are missing (Fig. 2), and (ii) 225 

CI chondrites have similar inferred accretion ages as other carbonaceous chondrites (~2.5 to 4 226 

Myr after condensation of refractory inclusions) (36). Thus, the distinctive isotopic heritage of 227 

CI chondrites and Ryugu is most likely caused by spatial separation of their source region from 228 

the CC reservoir, or as discussed below, bias in the implantation of planetesimals from distinct 229 

heliocentric distances into the Main Belt.  230 

Cb-type asteroids like Ryugu represent ~10–20% of all C-type asteroids (37, 38), suggesting that 231 

a substantial portion of Main Belt asteroids formed in the same outer Solar System reservoir where 232 

CI chondrites and Ryugu formed. Planetesimals from a large range of heliocentric distances could 233 

have been implanted into the inner Solar System during the growth and migration of the giant 234 

planets within the protoplanetary disk, before dissipation of nebular gas (39). Planetesimals from 235 
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the outer Solar System could have also been implanted during subsequent instabilities in the orbits 236 

of Uranus and Neptune after dissipation of nebular gas (40–43), but the efficiency of this process 237 

is low and early implantation of C-type asteroids in the Main Belt while nebular gas was still 238 

present is more likely. The planetesimals scattered by the growth and migration of the giant planets 239 

were originally on highly eccentric orbits but they experienced a strong headwind from nebular 240 

gas that circularized their orbits, leading to their trapping in the Main Belt. Simulations of the 241 

growth and migration of the giant planets show that most outer Solar System planetesimals 242 

implanted in the Main Belt originated from the formation region of the gas giant planets Jupiter 243 

and Saturn (e.g., ~4-12 AU), but some could have come from further away in the formation region 244 

of ice giant planets Uranus and Neptune (e.g., 13-25 AU) (39). The dynamical process of orbital 245 

excitation and circularization introduces strong biases in the original orbital radius of the 246 

planetesimals that are eventually implanted in the Main Belt (Fig. S4). In that context, most CC 247 

meteorites could have come from the birth region of Jupiter and Saturn, while the distinctive Fe 248 

isotopic heritage (Fig. 3) and primitive chemical characteristics of CI chondrites and Ryugu (6) 249 

could be explained if they were implanted into the Main Belt from a reservoir that was located 250 

further outside, possibly in the vicinity of the birthplaces of Uranus and Neptune (Fig. 4; Fig. S4). 251 

If correct, CI chondrites and Ryugu would possibly share a common heritage with Oort cloud 252 

comets (44, 45). 253 

A common source region for the parent bodies of CI chondrites/Ryugu and Oort cloud comets 254 

would need to be reconciled with their present-day distinct chemical and physical characteristics 255 

(6, 34, 46). Deuterium/hydrogen (D/H) ratios of water in carbonaceous chondrites (47) and 256 

Ryugu (34) are lower than those of Oort cloud comets and overlap partially with Jupiter-257 

family comets (48). Simulations of ice transport in the nebula predict a spatially and 258 

temporally complex evolution of water D/H ratio in the nebula (49). Furthermore, the water 259 

D/H ratio of active comets and asteroids might have been modified by water sublimation (50, 260 

51) and water-rock reactions (52) during their lifetimes. Therefore, the present-day water 261 

D/H ratio of ice in comets and rock-bound water in carbonaceous chondrites provide little 262 

insights into formation locations. CI chondrites and Ryugu show evidence for extensive aqueous 263 

alteration as late as ~5 Myr after the birth of the Solar System (6, 53, 54). Water responsible for 264 

this aqueous alteration would have presumably been accreted as ice, with melting caused by decay 265 

of 26Al. Such melting could have been hampered in ice-rich comets if much of radioactive heat 266 



8 
 

from 26Al was consumed by ice sublimation rather than melting (55). While most dust grains 267 

captured in the coma of comet 81P/Wild2 were anhydrous (46), Berger et al. (56) found evidence 268 

for low-temperature aqueous activity in 81P/Wild2 under conditions akin to those inferred for CI 269 

chondrites. The Deep Impact mission also found signatures of carbonates, phyllosilicates, sulfides, 270 

water gas, and ice in the ejecta of comet 9P/Tempel, which is consistent with extensive aqueous 271 

alteration (57). While these observations support the presence of aqueous activity on extant 272 

comets, a comparison between icy planetesimals that were scattered inwards and outwards by the 273 

growth and migration of the giant planets is difficult because they would have experienced very 274 

different thermal histories. Indeed, the planetesimals scattered inwards would have been put on 275 

eccentric orbits with low perihelion, well inside the snow line, where ice could have been 276 

sublimated and the more volatile compounds could have been lost. For a ~100 km planetesimal, 277 

the timescale for damping eccentricity through gas interaction is on the order of several tens of 278 

thousands of years, which is in the order of the expected lifetime of short-period comets (58). Thus, 279 

the rock/ice ratio of ice-rich planetesimals formed around Uranus and Neptune may have increased 280 

substantially by the time these planetesimals were implanted in the Main Belt. Such processing 281 

could also have affected other characteristics of the icy planetesimals, notably their inventories of 282 

organics, mineralogical compositions, and physical properties. Further transformations would 283 

have taken place due to collisions during residence in the Main Belt (35, 59). Consequently, 284 

although the Ryugu asteroid and Oort cloud comets may have been born in the same region of the 285 

protoplanetary disk, they would have rapidly diverged in their chemical evolution after being 286 

scattered inwards and outwards by the ice giant planets. 287 

In our model, Cb-type asteroids formed in a reservoir that was located at the outskirts of the 288 

planetary accretion region and were possibly implanted into the Main Belt due to excitation by 289 

Uranus and Neptune (Fig. 4). The outer extent of this isotopic reservoir is unknown. The main 290 

source region of Kuiper Belt objects (KBOs) was likely the trans-Neptunian disk (>20–25 AU) 291 

(60). These KBOs are out of reach for sample return missions but possible trans-Neptunian objects 292 

203 Pompeja and 269 Justitia were recently found in the Main Belt (61). Measuring the Fe and Ti 293 

isotopic compositions of these objects would provide important new insights into the isotopic 294 

architecture of the early Solar System and help evaluate the extent of the CI reservoir. 295 
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Materials and Methods 296 

Samples, preparation, and chemical purification. The Hayabusa2 spacecraft returned a total of 297 

~5 g of material from Cb-type (162173) asteroid Ryugu. Surface samples were collected in 298 

Chamber A (~3 g) during the first touchdown and subsurface samples in Chamber C (~2 g) during 299 

the second touchdown (5, 62). Two subsamples from Chamber A (A0106, A0106-A0107) and two 300 

from Chamber C (C0107, C0108) were digested for isotopic analysis (Table 1). Sample masses 301 

were 14.2, 23.88, 14.20, 12.90, and 22.24 mg, respectively. For samples A0106 and C0107 soluble 302 

organic matter was separated prior to digestion by acids. Sample A0108 was analyzed by XRF 303 

before digestion. Approximately 20–25 mg of six carbonaceous chondrite powders (Table 1: 304 

Orgueil-4, Alais, Murchison-2, Allende-3, Tagish Lake-2, and Tarda) were digested and processed 305 

together with the Hayabusa2 samples. Sample digestion for these samples was conducted at Tokyo 306 

Tech. Powder aliquots were digested using mixtures of HF-HNO3-HCl-H2O2 on hot plate and 307 

under ultrasonic agitation. Approximately 80% of the solutions was taken for sequential separation 308 

of several elements for isotopic analysis. We measured 20 additional carbonaceous chondrite 309 

samples and three terrestrial geostandards (Table 1) to provide some context for interpreting 310 

Ryugu's results. Some samples were digested for this study while others are elution cuts from 311 

previous studies focused on elements other than Fe. The masses digested, original masses 312 

homogenized, and details on the processing history for each sample are summarized in Table S2. 313 

The first step in the chemical processing of Fe in the four Ryugu samples and six accompanying 314 

carbonaceous chondrites was conducted at Tokyo Tech and involved: (i) separation of major 315 

elements, including Fe, from Zn, Pb, and highly siderophile elements using anion exchange 316 

chromatography (AG-1X8), (ii) Separation of Fe and U from remaining major elements using AG-317 

1X8, and (iii) Separation of U from Fe using Eichrom UTEVA resin. A 20% aliquot of the Fe 318 

solution was then purified from remaining traces of Cr, Ni, Co, and Cu at the University of Chicago 319 

using an established protocol (24). Approximately 0.5-1 mg of Fe was loaded in 0.25 ml 10 M HCl 320 

onto 10.5 cm long PFA columns (0.62 cm inner diameter) filled with 3 ml pre-cleaned AG1-X8 321 

(200-400 mesh) anion resin. Matrix elements were eluted in 5 ml 10 M HCl. Other possible 322 

contaminants (e.g., Cu, Cr) were eluted from the resin using 30 ml 4 M HCl. Iron was eluted using 323 

9 ml 0.4 M HCl. The samples not previously processed at Tokyo Institute of Technology were 324 

purified using the same procedure, but the elution was repeated using new resin. The overall Fe 325 

yield is >99% and the procedural blank is negligible (~70 ng) compared to the amount of Fe 326 
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purified for each sample (0.5-1 mg Fe). Interfering elements Cr (54Cr on 54Fe) and Ni (58Ni on 327 
58Fe) were present at low enough levels (Cr/Fe ≤ 9×10–6 and Ni/Fe ≤ 2×10–5) to not affect the 328 

accuracy of the analyses (24). 329 

Iron isotopic measurements. High precision Fe isotopic compositions were measured following 330 

the protocol used for analysis of Fe isotopic anomalies in iron meteorites (24). Measurements were 331 

conducted with a Thermo Scientific Neptune multicollector inductively coupled plasma mass 332 

spectrometer (MC-ICP-MS) at the Origins Laboratory of the University of Chicago. 333 

Measurements were made on the flat-topped peak shoulder in medium-resolution (MR) mode (63). 334 

Ion beams of 54Fe+, 56Fe+, 57Fe+, and 58Fe+ were analyzed statically on Faraday collectors. All 335 

isotopes were measured using 1011 Ω amplifiers, except for high abundance 56Fe+, which was 336 

measured using a 1010 Ω amplifier. Isobaric interferences from 54Cr+ and 58Ni+ were determined 337 

simultaneously by monitoring 53Cr+ and 60Ni+ using 1012 Ω amplifiers. The purified Fe solutions 338 

(10 µg/g in 0.3 M HNO3) were introduced into the MC-ICP-MS using an ESI PFA nebulizer with 339 

an uptake rate of ~100 μl/min combined with a cyclonic glass spray chamber. Iron isotopic 340 

composition was measured at a typical 56Fe+ ion signal intensity of 1.3 nA on a 1010 Ω amplifier. 341 

Each measurement consisted of 50 cycles of 8.369 s each. Sample analyses were bracketed by 342 

measurements of IRMM-524a in a standard-sample-standard scheme. On peak zero intensities 343 

from a blank solution measured at the start of each sequence were subtracted from measurements. 344 

A washout time of 210 s was used between each analysis. The Fe concentrations of the samples 345 

and standards were matched to within ≤2 %, which is required for accurate and precise Fe isotopic 346 

analysis (24). 347 
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Tables 738 

Table 1. Iron isotopic compositions of Ryugu samples and carbonaceous chondrites. 739 
Calculated mass-independent (μ54Fe, μ58Fe) and mass-dependent (δ56Fe) Fe isotopic compositions 740 
in Ryugu samples, carbonaceous chondrites, and geostandards. Uncertainties of individual 741 
samples are 95% confidence intervals of the mean of N standard-sample-standard bracketing 742 
analyses. Uncertainties on group averages are the 95% confidence intervals of the mean. The 743 
isotopic anomalies are calculated by internal normalization to 57Fe/56Fe=0.023095 and expressed 744 
in µ-notation (22, 24) defined as the parts-per-million deviation of the internally normalized 745 
5xFe/56Fe ratio in the sample relative to bracketing measurements of IRMM-524a. The mass-746 
dependent Fe isotopic variations are calculated by sample-standard bracketing and given as δ-747 
notation defined parts-per-thousand deviation of the 56Fe/54Fe ratio of the sample relative to the 748 
IRMM-524a standard solution.  749 

Sample N μ54Fe μ58Fe δ56Fe 
Ryugu     

A0106 30 -2±5 14±14 -0.01±0.02 
A0106-A0107 30 2±5 10±10 -0.01±0.02 

C0107 25 4±4 15±17 -0.02±0.02 
C0108 25 2±5 11±7 0.01±0.02 

Average Ryugu  1±4 13±4 -0.01±0.02 
CI chondrites     

Orgueil-1 30 2±5 12±8 -0.02±0.02 
Orgueil-2 30 3±5 2±11 0.01±0.02 
Orgueil-3 14 4±9 3±12 0.00±0.02 
Orgueil-4 30 3±5 12±8 0.06±0.02 

Ivuna 30 1±4 16±11 0.00±0.02 
Alais 28 6±6 17±12 -0.02±0.02 

Average CI  3±2 10±6 0.00±0.02 
CM chondrites     

Murchison-1 14 23±5 6±7 0.00±0.02 
Murchison-2 15 18±6 2±9 0.01±0.02 

Mighei 14 27±8 7±9 -0.01±0.02 
Average CM  24±7 6±11 0.00±0.02 

CV chondrites     
Allende-1 15 29±4 2±9 -0.02±0.02 
Allende-2 15 32±6 2±9 -0.05±0.02 
Allende-3 15 21±7 3±12 0.08±0.02 
Vigarano 15 29±5 -7±13 0.02±0.02 

Average CV  28±6 0±6 0.01±0.08 
CO chondrites     

Ornans 15 21±5 0±8 -0.03±0.02 
Lance 15 18±5 1±10 0.01±0.02 

CR chondrites     
Acfer 139 14 38±8 9±11 -0.11±0.02 

GRA 06100 15 39±5 9±6 0.00±0.02 
Ungrouped chondrites     

Tagish Lake-1 15 18±7 2±14 -0.03±0.02 
Tagish Lake-2 15 15±6 2±22 0.05±0.02 

Tarda 30 24±8 3±12 -0.01±0.02 
Geostandards     

BHVO-2-1 15 1±7 -9±8 0.09±0.02 
BHVO-2-2 15 1±7 -1±11 0.06±0.02 

AGV-2 30 2±4 1±6 0.08±0.02 
Average Geostandards   1±1 -3±14 0.09±0.06 



19 
 

 Figure captions 750 

751 
Fig. 1. Previously published isotopic anomalies of Ti, Cr, and O in Ryugu and other Solar 752 
System materials. Plots of μ50Ti vs. μ54Cr (A), μ50Ti vs. Δ17O (B), and μ54Cr vs. Δ17O (C). In these 753 
diagrams, Ryugu and CI represent an endmember to the CC array. Data for Ryugu are from 754 
Yokoyama et al. (6). The average Ti and Cr isotopic compositions of non-carbonaceous (NC) and 755 
carbonaceous (CC) meteorite groups and Earth’s mantle are from the data compilation of 756 
Burkhardt et al. (64) and O isotopic data from the compilation of Dauphas (65). Uncertainties for 757 
individual groups are the 95% confidence interval of the mean. If not visible, error bars are 758 
smaller than symbols. 759 

 760 

 761 
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 763 
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 765 

 766 

 767 
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 770 
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 771 

 772 

Fig. 2. Fe isotopic anomalies of returned samples from Cb-type asteroid (162173) Ryugu and 773 
carbonaceous chondrites (Table 1). Ryugu samples and CI chondrites have identical μ54Fe 774 
values, which is distinct from all other carbonaceous chondrite groups (CM, CV, CO, CR, 775 
Ung=ungrouped). The Open triangle is the CI chondrite average from Schiller et al. (22). 776 
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777 
Fig. 3. Isotopic anomalies of Fe and Ti in Solar System materials. Ryugu samples and CI 778 
chondrites have identical μ54Fe and μ50Ti values that are distinct from other meteorites. Red circles 779 
correspond to non-carbonaceous (NC) chondrite groups (E=enstatite; R=rumuruti; OC=ordinary 780 
chondrites), red diamonds to NC achondrites (Ure=ureilites; Dio=diogenites), and blue circles to 781 
carbonaceous (CC) chondrite groups (TL=Tagish Lake). The green square is Earth’s mantle. The 782 
average composition of Ryugu and Ivuna-type carbonaceous chondrites (CI) are shown as 783 
triangles. Average compositions of meteorite groups and Earth’s mantle are calculated using data 784 
from this study (Table 1) and the data compilation of Burkhardt et al. (64) (Table S1). If not 785 
visible, error bars are smaller than symbols. 786 

 787 

 788 

 789 

 790 
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 791 

Fig. 4. Schematic of the possible source region of Cb-type asteroids and CI chondrites. 792 
Planetesimals formed in different regions of the protoplanetary disk. Volatile-poor planetesimals 793 
(red circles) formed in the inner region, while volatile-rich planetesimals (blue circles) formed 794 
beyond Jupiter’s orbit. The growth and migration of the gas and ice giant planets implanted some 795 
of the planetesimals into the Main Belt (small arrows), while the majority of planetesimals were 796 
transported outwards or ejected from the disk (large arrows) (39). A plausible explanation for the 797 
different Fe nucleosynthetic heritage and primitive chemical composition of CI chondrites and 798 
Ryugu is that they were implanted in the Main Belt by excitation from Uranus and Neptune (filled 799 
bright blue circles), while other CCs formed in more internal regions near Jupiter and Saturn 800 
(filled dark blue circles) (Fig. S4). The icy planetesimals that were formed around Uranus and 801 
Neptune and were ejected outwards went to populate the Oort cloud (44, 45). CI chondrites and 802 
Ryugu may thus share some parentage with long-period comets. Such a scenario could explain the 803 
trichotomy between NC, CC, and CI for nucleosynthetic anomalies (Fig. 3). 804 
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 848 

Fig. S1. Comparison of μ54Fe values of carbonaceous chondrites determined in this study 849 
with literature data of Schiller et al. (22). The data from this study agree with previous studies. 850 
Uncertainties of individual samples are 95% confidence intervals calculated from replicate 851 
analysis (N=14-30). 852 
 853 
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 854 

Fig. S2. Average nucleosynthetic isotopic anomalies of carbonaceous chondrites and Ryugu 855 
samples normalized to 57Fe/56Fe. All carbonaceous chondrites except CI chondrites and Ryugu 856 
display resolvable μ54Fe (dark blue lines). The μ58Fe values of most carbonaceous chondrites are 857 
not resolvable from the terrestrial standard. While the calculated averages of CI chondrites and 858 
Ryugu display excesses in μ58Fe resolvable from the standard, these are not resolvable from the 859 
other carbonaceous chondrites. Comparison with expected anomalies produced by sole variations 860 
in 54Fe, 56Fe, and 57Fe (black lines) reveals that the observed μ54Fe anomalies are best explained 861 
by 54Fe variations (24). Exposure to galactic cosmic rays induces positive shifts in μ54Fe that 862 
correlate with negative shifts in μ58Fe (24, 26). If Fe isotopic compositions of CI chondrites and 863 
Ryugu had been affected by exposure to galactic cosmic rays, their primary Fe isotopic 864 
compositions would be even more distinct from other carbonaceous chondrites because the pre-865 
exposure μ54Fe and μ58Fe values would shift towards more negative and positive values, 866 
respectively. 867 
 868 
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 869 

Fig. S3. Isotopic anomalies of Fe and Cr in Ryugu and other Solar System materials. The 870 
average μ54Fe and μ54Cr data of Ryugu samples are from this study and Yokoyama et al. (6). The 871 
average compositions of non-carbonaceous (NC) and carbonaceous (CC) meteorite groups and 872 
Earth’s mantle (BSE) are given in the data compilation Table S1 and are calculated using data 873 
from this study and the data compilation of Burkhardt et al. (64). Uncertainties for individual 874 
groups are the 95% confidence interval of the mean. E-enstatite; R-rumuruti; OC-ordinary 875 
chondrites; Ure=ureilites; Dio=diogeneites. Error bars are smaller than symbols if not visible. 876 
 877 
 878 
 879 
 880 
 881 
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 887 
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 890 

Fig. S4. Example of possible source regions for CC and CI asteroids in the Main Belt 891 
[modified from Fig. 12 of (39)]. This figure depicts the fractions of asteroids from different 892 
starting orbital radii that are implanted into the Main Belt in a simulation involving the growth and 893 
migration of the gas and ice giant planets. In that simulation, Jupiter, Saturn, Uranus, and Neptune 894 
start with initial orbital radii of 10, 15, 20, and 25 AU and grow and migrate inwards on a timescale 895 
of ~2.5 Myr (39). As shown, the processes of planetesimal excitation by the giant planets and 896 
interaction with nebular gas leads to a far-reaching and uneven sampling of planetesimals. We 897 
speculate that CC chondrites could have formed in the birth region of Jupiter and Saturn while CI 898 
chondrites and Ryugu derived from planetesimals that could have been implanted into the Main 899 
Belt by the growth and migration of Uranus and Neptune, explaining their distinct isotopic and 900 
chemical heritage. While the fraction of planetesimals implanted into the Main Belt from the 901 
outskirts of the Solar System (e.g., CI) is small (~1% of the planetesimals located in these 902 
regions are implanted into the Main Belt), the total number of planetesimals from these 903 
regions implanted into the Main Belt can be significant because of more total mass. This 904 
could explain that based on spectral observations up to 20% of carbonaceous (C-type) 905 
asteroids are of Cb-type.906 
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Table S1: Average O, Ti, Cr, and Fe isotopic anomalies of Ryugu, meteorites, and Earth’s mantle. Averages adopted from the 
data compilation of Dauphas (2017) (65) and Burkhardt et al. (64) and updated with more recently published data. 

Samples Reservoir Δ17O ± 95% CI μ50Ti ± 95% CI μ54Cr ± 95% CI μ54Fe ± 95% CI μ58Fe ± 95% CI 
Hayabusa2                 

Ryugu A CC  ±  163 ± 20 135 ± 21 0 ± 4 12 ± 4 
Ryugu C CC  ±  202 ± 19 125 ± 10 3 ± 3 13 ± 4 

Ryugu Mean CC 0.61 ± 0.08 183 ± 27 127 ± 18 1 ± 4 13 ± 4 
Chondrites                 

CI CC 0.39 ± 0.10 189 ± 15 155 ± 10 2 ± 3 10 ± 7 
CM CC -2.92 ± 0.44 301 ± 10 101 ± 13 23 ± 6 5 ± 6 
CV CC 3.62 ± 0.48 345 ± 19 94 ± 8 27 ± 6 0 ± 7 
CO CC -4.32 ± 0.26 377 ± 99 77 ± 33 19 ± 5 1 ± 2 
CK CC -4.47 ± 0.21 342 ± 105 48 ± 42 26 ± 6  ±  
CR CC -1.48 ± 0.55 251 ± 45 128 ± 7 33 ± 7  ±  
CH CC -1.55  0.27    137 ± 29 16 ± 7 9 ± 0 
CB CC    204  7 120  9       

Tagish Lake CC -0.91 ± 0.53 276 ± 26 133 ± 26 16 ± 5 2 ± 12 
Tarda CC       122 ± 10 24 ± 8 3 ± 12 

EC NC -0.02 ± 0.05 -20 ± 8 3 ± 3 6 ± 1    
OC NC 0.98 ± 0.48 -66 ± 6 -37 ± 6 11 ± 3    

R NC 2.64 ± 0.15  ±  -7 ± 3 6 ± 1    
Achondrites/ 

Iron meteorites                 
Diogenites NC -0.29 ± 0.08 -123 ± 5 -69 ± 8 14 ± 3    

Ureilites NC -1.16 ± 0.15 -200 ± 32 -90 ± 4 12 ± 2    
IIAB NC       -83  17 16 ± 4    

IIIAB NC       -78  6 11 ± 6    
IVA NC       -47  6 8 ± 4    

Earth's mantle           0 ± 0 -2 ± 3 10 ± 13 0 ± 1 1 ± 5 
Data sources:  O – Data compilation of  (65), (6); Ti – (6, 10, 66–70); Cr - (6, 11, 29, 30, 66, 67, 69–85); Fe – (22, 24, 26, 86). 
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Table S2: Fe isotopic data of samples investigated in this study. Calculated mass-independent 
(μ54Fe, μ58Fe) and mass-dependent (δ5XFe) Fe isotopic compositions in Ryugu samples, 
carbonaceous chondrites, and geostandards. Uncertainties of individual samples are 95% 
confidence intervals of the mean of standard-sample-standard bracketing analyses (N). The 
chemical procedure used at Tokyo Institute of Technology is described in the Methods and 
Yokoyama et al. (6). Samples processed at the University of Chicago (UofC) were digestion 
aliquots taken after digestion with HF-HNO3-HCl-HClO4 mixtures. Matrix aliquots containing the 
bulk Fe of samples processed at the Institut für Planetologie Münster (IfP) were digested HF-
HNO3-HCl-HClO4 mixtures and then separated from Sr using cation exchange resin (AG50W-
X8). *Samples for which soluble organic matter was extracted prior digestion. †Sample analyzed 
with XRF before digestion.  

Sample 

Mass  
digested 

(g) 

Mass      
homogenized 

(g) Processed? N μ54Fe μ58Fe δ56Fe δ57Fe δ58Fe 
Ryugu          

A0106* 0.0146 0.0175 Fe, U (Tokyo Tech) 30 -2±5 14±14 -0.01±0.02 -0.01±0.02 0.00±0.05 
A0106-A0107 0.0239 0.0289 Fe, U (Tokyo Tech) 30 2±5 10±10 -0.01±0.02 -0.02±0.03 -0.08±0.05 

C0107* 0.0128 0.0174 Fe, U (Tokyo Tech) 25 4±4 15±17 -0.02±0.02 -0.03±0.03 -0.02±0.05 
C0108† 0.0222 0.0333 Fe, U (Tokyo Tech) 25 2±5 11±7 0.01±0.02 0.02±0.03 0.03±0.05 

CI          
Orgueil-1 0.401 1.12 Sr matrix cut (IfP) 30 2±5 12±8 -0.02±0.02 -0.02±0.03 -0.02±0.05 
Orgueil-2 0.012 ~0.1 Fe (UofC) 30 3±5 2±11 0.01±0.02 0.02±0.03 0.02±0.05 
Orgueil-3 0.010 ~0.1 Fe (UofC) 14 4±9 3±12 0.00±0.02 0.00±0.03 0.00±0.05 
Orgueil-4 0.020 0.050 Fe, U (Tokyo Tech) 30 3±5 12±8 0.06±0.02 0.09±0.03 0.13±0.05 

Ivuna 0.099 ~0.1 Fe (UofC) 30 1±4 16±11 0.00±0.02 0.00±0.03 0.01±0.05 
Alais 0.022 0.051 Fe, U (Tokyo Tech) 28 6±6 17±12 -0.02±0.02 -0.02±0.03 -0.01±0.05 

CM          
Murchison-1 0.010 ~0.3 Fe (UofC) 14 23±5 6±7 0.00±0.02 0.01±0.03 0.03±0.05 
Murchison-2 0.025 1.65 Fe, U (Tokyo Tech) 15 18±6 2±9 0.01±0.02 0.03±0.03 0.05±0.05 

Mighei 0.011 ~0.1 Fe (UofC) 14 27±8 7±9 -0.01±0.02 0.00±0.03 0.01±0.05 
CV          

Allende-1 0.012 
~4000 

(USNM) Fe (UofC) 15 29±4 2±9 -0.02±0.02 -0.02±0.03 -0.01±0.05 

Allende-2 0.514 
~100 g (MS-

A) Sr matrix cut (IfP) 15 32±6 2±9 -0.05±0.02 -0.06±0.03 -0.07±0.05 

Allende-3 0.025 
~4000 

(USNM) Fe, U (Tokyo Tech) 15 21±7 3±12 0.08±0.02 0.13±0.03 0.18±0.05 
Vigarano 0.014 ~0.3 Fe (UofC) 15 29±5 -7±13 0.02±0.02 0.05±0.03 0.07±0.05 
CO          

Ornans 0.041 ~0.3 Fe (UofC) 15 21±5 0±8 -0.03±0.02 -0.03±0.03 -0.04±0.05 
Lance 0.092 ~0.5 Fe (UofC) 15 18±5 1±10 0.01±0.02 0.03±0.03 0.04±0.05 

CR          
Acfer 139 0.525 0.525 Mo matrix cut (IfP) 14 38±8 9±11 -0.11±0.02 -0.15±0.03 -0.17±0.05 

GRA 06100 0.281 0.281 Sr matrix cut (IfP) 15 39±5 9±6 0.00±0.02 0.02±0.03 0.04±0.05 
Ungrouped           

Tagish Lake-1 0.486 1.5 Sr matrix cut (IfP) 15 18±7 2±14 -0.03±0.02 -0.04±0.03 -0.04±0.05 
Tagish Lake-2 0.025 1.06 Fe, U (Tokyo Tech) 15 15±6 2±22 0.05±0.02 0.08±0.03 0.11±0.05 

Tarda 0.025 0.212 Fe, U (Tokyo Tech) 30 24±8 3±12 -0.01±0.02 0.00±0.03 0.01±0.05 
Geostandard          

BHVO-2-1 0.012 - Fe (UofC) 15 1±7 -9±8 0.09±0.02 0.14±0.03 0.18±0.05 
BHVO-2-2 0.010 - Fe (UofC) 15 1±7 -1±11 0.06±0.02 0.10±0.03 0.13±0.05 

AGV-2 0.012 - Fe (UofC) 30 2±4 1±6 0.08±0.02 0.13±0.03 0.16±0.05 
 


